Naveen N. Rao | 156d0e2 | 2016-06-22 21:55:07 +0530 | [diff] [blame^] | 1 | /* |
| 2 | * bpf_jit_comp64.c: eBPF JIT compiler |
| 3 | * |
| 4 | * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> |
| 5 | * IBM Corporation |
| 6 | * |
| 7 | * Based on the powerpc classic BPF JIT compiler by Matt Evans |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation; version 2 |
| 12 | * of the License. |
| 13 | */ |
| 14 | #include <linux/moduleloader.h> |
| 15 | #include <asm/cacheflush.h> |
| 16 | #include <linux/netdevice.h> |
| 17 | #include <linux/filter.h> |
| 18 | #include <linux/if_vlan.h> |
| 19 | #include <asm/kprobes.h> |
| 20 | |
| 21 | #include "bpf_jit64.h" |
| 22 | |
| 23 | int bpf_jit_enable __read_mostly; |
| 24 | |
| 25 | static void bpf_jit_fill_ill_insns(void *area, unsigned int size) |
| 26 | { |
| 27 | int *p = area; |
| 28 | |
| 29 | /* Fill whole space with trap instructions */ |
| 30 | while (p < (int *)((char *)area + size)) |
| 31 | *p++ = BREAKPOINT_INSTRUCTION; |
| 32 | } |
| 33 | |
| 34 | static inline void bpf_flush_icache(void *start, void *end) |
| 35 | { |
| 36 | smp_wmb(); |
| 37 | flush_icache_range((unsigned long)start, (unsigned long)end); |
| 38 | } |
| 39 | |
| 40 | static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i) |
| 41 | { |
| 42 | return (ctx->seen & (1 << (31 - b2p[i]))); |
| 43 | } |
| 44 | |
| 45 | static inline void bpf_set_seen_register(struct codegen_context *ctx, int i) |
| 46 | { |
| 47 | ctx->seen |= (1 << (31 - b2p[i])); |
| 48 | } |
| 49 | |
| 50 | static inline bool bpf_has_stack_frame(struct codegen_context *ctx) |
| 51 | { |
| 52 | /* |
| 53 | * We only need a stack frame if: |
| 54 | * - we call other functions (kernel helpers), or |
| 55 | * - the bpf program uses its stack area |
| 56 | * The latter condition is deduced from the usage of BPF_REG_FP |
| 57 | */ |
| 58 | return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP); |
| 59 | } |
| 60 | |
| 61 | static void bpf_jit_emit_skb_loads(u32 *image, struct codegen_context *ctx) |
| 62 | { |
| 63 | /* |
| 64 | * Load skb->len and skb->data_len |
| 65 | * r3 points to skb |
| 66 | */ |
| 67 | PPC_LWZ(b2p[SKB_HLEN_REG], 3, offsetof(struct sk_buff, len)); |
| 68 | PPC_LWZ(b2p[TMP_REG_1], 3, offsetof(struct sk_buff, data_len)); |
| 69 | /* header_len = len - data_len */ |
| 70 | PPC_SUB(b2p[SKB_HLEN_REG], b2p[SKB_HLEN_REG], b2p[TMP_REG_1]); |
| 71 | |
| 72 | /* skb->data pointer */ |
| 73 | PPC_BPF_LL(b2p[SKB_DATA_REG], 3, offsetof(struct sk_buff, data)); |
| 74 | } |
| 75 | |
| 76 | static void bpf_jit_emit_func_call(u32 *image, struct codegen_context *ctx, u64 func) |
| 77 | { |
| 78 | #ifdef PPC64_ELF_ABI_v1 |
| 79 | /* func points to the function descriptor */ |
| 80 | PPC_LI64(b2p[TMP_REG_2], func); |
| 81 | /* Load actual entry point from function descriptor */ |
| 82 | PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0); |
| 83 | /* ... and move it to LR */ |
| 84 | PPC_MTLR(b2p[TMP_REG_1]); |
| 85 | /* |
| 86 | * Load TOC from function descriptor at offset 8. |
| 87 | * We can clobber r2 since we get called through a |
| 88 | * function pointer (so caller will save/restore r2) |
| 89 | * and since we don't use a TOC ourself. |
| 90 | */ |
| 91 | PPC_BPF_LL(2, b2p[TMP_REG_2], 8); |
| 92 | #else |
| 93 | /* We can clobber r12 */ |
| 94 | PPC_FUNC_ADDR(12, func); |
| 95 | PPC_MTLR(12); |
| 96 | #endif |
| 97 | PPC_BLRL(); |
| 98 | } |
| 99 | |
| 100 | static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx) |
| 101 | { |
| 102 | int i; |
| 103 | bool new_stack_frame = bpf_has_stack_frame(ctx); |
| 104 | |
| 105 | if (new_stack_frame) { |
| 106 | /* |
| 107 | * We need a stack frame, but we don't necessarily need to |
| 108 | * save/restore LR unless we call other functions |
| 109 | */ |
| 110 | if (ctx->seen & SEEN_FUNC) { |
| 111 | EMIT(PPC_INST_MFLR | __PPC_RT(R0)); |
| 112 | PPC_BPF_STL(0, 1, PPC_LR_STKOFF); |
| 113 | } |
| 114 | |
| 115 | PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Back up non-volatile regs -- BPF registers 6-10 |
| 120 | * If we haven't created our own stack frame, we save these |
| 121 | * in the protected zone below the previous stack frame |
| 122 | */ |
| 123 | for (i = BPF_REG_6; i <= BPF_REG_10; i++) |
| 124 | if (bpf_is_seen_register(ctx, i)) |
| 125 | PPC_BPF_STL(b2p[i], 1, |
| 126 | (new_stack_frame ? BPF_PPC_STACKFRAME : 0) - |
| 127 | (8 * (32 - b2p[i]))); |
| 128 | |
| 129 | /* |
| 130 | * Save additional non-volatile regs if we cache skb |
| 131 | * Also, setup skb data |
| 132 | */ |
| 133 | if (ctx->seen & SEEN_SKB) { |
| 134 | PPC_BPF_STL(b2p[SKB_HLEN_REG], 1, |
| 135 | BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_HLEN_REG]))); |
| 136 | PPC_BPF_STL(b2p[SKB_DATA_REG], 1, |
| 137 | BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_DATA_REG]))); |
| 138 | bpf_jit_emit_skb_loads(image, ctx); |
| 139 | } |
| 140 | |
| 141 | /* Setup frame pointer to point to the bpf stack area */ |
| 142 | if (bpf_is_seen_register(ctx, BPF_REG_FP)) |
| 143 | PPC_ADDI(b2p[BPF_REG_FP], 1, |
| 144 | BPF_PPC_STACKFRAME - BPF_PPC_STACK_SAVE); |
| 145 | } |
| 146 | |
| 147 | static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) |
| 148 | { |
| 149 | int i; |
| 150 | bool new_stack_frame = bpf_has_stack_frame(ctx); |
| 151 | |
| 152 | /* Move result to r3 */ |
| 153 | PPC_MR(3, b2p[BPF_REG_0]); |
| 154 | |
| 155 | /* Restore NVRs */ |
| 156 | for (i = BPF_REG_6; i <= BPF_REG_10; i++) |
| 157 | if (bpf_is_seen_register(ctx, i)) |
| 158 | PPC_BPF_LL(b2p[i], 1, |
| 159 | (new_stack_frame ? BPF_PPC_STACKFRAME : 0) - |
| 160 | (8 * (32 - b2p[i]))); |
| 161 | |
| 162 | /* Restore non-volatile registers used for skb cache */ |
| 163 | if (ctx->seen & SEEN_SKB) { |
| 164 | PPC_BPF_LL(b2p[SKB_HLEN_REG], 1, |
| 165 | BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_HLEN_REG]))); |
| 166 | PPC_BPF_LL(b2p[SKB_DATA_REG], 1, |
| 167 | BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_DATA_REG]))); |
| 168 | } |
| 169 | |
| 170 | /* Tear down our stack frame */ |
| 171 | if (new_stack_frame) { |
| 172 | PPC_ADDI(1, 1, BPF_PPC_STACKFRAME); |
| 173 | if (ctx->seen & SEEN_FUNC) { |
| 174 | PPC_BPF_LL(0, 1, PPC_LR_STKOFF); |
| 175 | PPC_MTLR(0); |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | PPC_BLR(); |
| 180 | } |
| 181 | |
| 182 | /* Assemble the body code between the prologue & epilogue */ |
| 183 | static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, |
| 184 | struct codegen_context *ctx, |
| 185 | u32 *addrs) |
| 186 | { |
| 187 | const struct bpf_insn *insn = fp->insnsi; |
| 188 | int flen = fp->len; |
| 189 | int i; |
| 190 | |
| 191 | /* Start of epilogue code - will only be valid 2nd pass onwards */ |
| 192 | u32 exit_addr = addrs[flen]; |
| 193 | |
| 194 | for (i = 0; i < flen; i++) { |
| 195 | u32 code = insn[i].code; |
| 196 | u32 dst_reg = b2p[insn[i].dst_reg]; |
| 197 | u32 src_reg = b2p[insn[i].src_reg]; |
| 198 | s16 off = insn[i].off; |
| 199 | s32 imm = insn[i].imm; |
| 200 | u64 imm64; |
| 201 | u8 *func; |
| 202 | u32 true_cond; |
| 203 | int stack_local_off; |
| 204 | |
| 205 | /* |
| 206 | * addrs[] maps a BPF bytecode address into a real offset from |
| 207 | * the start of the body code. |
| 208 | */ |
| 209 | addrs[i] = ctx->idx * 4; |
| 210 | |
| 211 | /* |
| 212 | * As an optimization, we note down which non-volatile registers |
| 213 | * are used so that we can only save/restore those in our |
| 214 | * prologue and epilogue. We do this here regardless of whether |
| 215 | * the actual BPF instruction uses src/dst registers or not |
| 216 | * (for instance, BPF_CALL does not use them). The expectation |
| 217 | * is that those instructions will have src_reg/dst_reg set to |
| 218 | * 0. Even otherwise, we just lose some prologue/epilogue |
| 219 | * optimization but everything else should work without |
| 220 | * any issues. |
| 221 | */ |
| 222 | if (dst_reg >= 24 && dst_reg <= 31) |
| 223 | bpf_set_seen_register(ctx, insn[i].dst_reg); |
| 224 | if (src_reg >= 24 && src_reg <= 31) |
| 225 | bpf_set_seen_register(ctx, insn[i].src_reg); |
| 226 | |
| 227 | switch (code) { |
| 228 | /* |
| 229 | * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG |
| 230 | */ |
| 231 | case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */ |
| 232 | case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */ |
| 233 | PPC_ADD(dst_reg, dst_reg, src_reg); |
| 234 | goto bpf_alu32_trunc; |
| 235 | case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */ |
| 236 | case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */ |
| 237 | PPC_SUB(dst_reg, dst_reg, src_reg); |
| 238 | goto bpf_alu32_trunc; |
| 239 | case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */ |
| 240 | case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */ |
| 241 | case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */ |
| 242 | case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */ |
| 243 | if (BPF_OP(code) == BPF_SUB) |
| 244 | imm = -imm; |
| 245 | if (imm) { |
| 246 | if (imm >= -32768 && imm < 32768) |
| 247 | PPC_ADDI(dst_reg, dst_reg, IMM_L(imm)); |
| 248 | else { |
| 249 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 250 | PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]); |
| 251 | } |
| 252 | } |
| 253 | goto bpf_alu32_trunc; |
| 254 | case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */ |
| 255 | case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */ |
| 256 | if (BPF_CLASS(code) == BPF_ALU) |
| 257 | PPC_MULW(dst_reg, dst_reg, src_reg); |
| 258 | else |
| 259 | PPC_MULD(dst_reg, dst_reg, src_reg); |
| 260 | goto bpf_alu32_trunc; |
| 261 | case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */ |
| 262 | case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */ |
| 263 | if (imm >= -32768 && imm < 32768) |
| 264 | PPC_MULI(dst_reg, dst_reg, IMM_L(imm)); |
| 265 | else { |
| 266 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 267 | if (BPF_CLASS(code) == BPF_ALU) |
| 268 | PPC_MULW(dst_reg, dst_reg, |
| 269 | b2p[TMP_REG_1]); |
| 270 | else |
| 271 | PPC_MULD(dst_reg, dst_reg, |
| 272 | b2p[TMP_REG_1]); |
| 273 | } |
| 274 | goto bpf_alu32_trunc; |
| 275 | case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */ |
| 276 | case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */ |
| 277 | PPC_CMPWI(src_reg, 0); |
| 278 | PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12); |
| 279 | PPC_LI(b2p[BPF_REG_0], 0); |
| 280 | PPC_JMP(exit_addr); |
| 281 | if (BPF_OP(code) == BPF_MOD) { |
| 282 | PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg); |
| 283 | PPC_MULW(b2p[TMP_REG_1], src_reg, |
| 284 | b2p[TMP_REG_1]); |
| 285 | PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]); |
| 286 | } else |
| 287 | PPC_DIVWU(dst_reg, dst_reg, src_reg); |
| 288 | goto bpf_alu32_trunc; |
| 289 | case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */ |
| 290 | case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */ |
| 291 | PPC_CMPDI(src_reg, 0); |
| 292 | PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12); |
| 293 | PPC_LI(b2p[BPF_REG_0], 0); |
| 294 | PPC_JMP(exit_addr); |
| 295 | if (BPF_OP(code) == BPF_MOD) { |
| 296 | PPC_DIVD(b2p[TMP_REG_1], dst_reg, src_reg); |
| 297 | PPC_MULD(b2p[TMP_REG_1], src_reg, |
| 298 | b2p[TMP_REG_1]); |
| 299 | PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]); |
| 300 | } else |
| 301 | PPC_DIVD(dst_reg, dst_reg, src_reg); |
| 302 | break; |
| 303 | case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */ |
| 304 | case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */ |
| 305 | case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */ |
| 306 | case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */ |
| 307 | if (imm == 0) |
| 308 | return -EINVAL; |
| 309 | else if (imm == 1) |
| 310 | goto bpf_alu32_trunc; |
| 311 | |
| 312 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 313 | switch (BPF_CLASS(code)) { |
| 314 | case BPF_ALU: |
| 315 | if (BPF_OP(code) == BPF_MOD) { |
| 316 | PPC_DIVWU(b2p[TMP_REG_2], dst_reg, |
| 317 | b2p[TMP_REG_1]); |
| 318 | PPC_MULW(b2p[TMP_REG_1], |
| 319 | b2p[TMP_REG_1], |
| 320 | b2p[TMP_REG_2]); |
| 321 | PPC_SUB(dst_reg, dst_reg, |
| 322 | b2p[TMP_REG_1]); |
| 323 | } else |
| 324 | PPC_DIVWU(dst_reg, dst_reg, |
| 325 | b2p[TMP_REG_1]); |
| 326 | break; |
| 327 | case BPF_ALU64: |
| 328 | if (BPF_OP(code) == BPF_MOD) { |
| 329 | PPC_DIVD(b2p[TMP_REG_2], dst_reg, |
| 330 | b2p[TMP_REG_1]); |
| 331 | PPC_MULD(b2p[TMP_REG_1], |
| 332 | b2p[TMP_REG_1], |
| 333 | b2p[TMP_REG_2]); |
| 334 | PPC_SUB(dst_reg, dst_reg, |
| 335 | b2p[TMP_REG_1]); |
| 336 | } else |
| 337 | PPC_DIVD(dst_reg, dst_reg, |
| 338 | b2p[TMP_REG_1]); |
| 339 | break; |
| 340 | } |
| 341 | goto bpf_alu32_trunc; |
| 342 | case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */ |
| 343 | case BPF_ALU64 | BPF_NEG: /* dst = -dst */ |
| 344 | PPC_NEG(dst_reg, dst_reg); |
| 345 | goto bpf_alu32_trunc; |
| 346 | |
| 347 | /* |
| 348 | * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH |
| 349 | */ |
| 350 | case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */ |
| 351 | case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */ |
| 352 | PPC_AND(dst_reg, dst_reg, src_reg); |
| 353 | goto bpf_alu32_trunc; |
| 354 | case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */ |
| 355 | case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */ |
| 356 | if (!IMM_H(imm)) |
| 357 | PPC_ANDI(dst_reg, dst_reg, IMM_L(imm)); |
| 358 | else { |
| 359 | /* Sign-extended */ |
| 360 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 361 | PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]); |
| 362 | } |
| 363 | goto bpf_alu32_trunc; |
| 364 | case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */ |
| 365 | case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */ |
| 366 | PPC_OR(dst_reg, dst_reg, src_reg); |
| 367 | goto bpf_alu32_trunc; |
| 368 | case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */ |
| 369 | case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */ |
| 370 | if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) { |
| 371 | /* Sign-extended */ |
| 372 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 373 | PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]); |
| 374 | } else { |
| 375 | if (IMM_L(imm)) |
| 376 | PPC_ORI(dst_reg, dst_reg, IMM_L(imm)); |
| 377 | if (IMM_H(imm)) |
| 378 | PPC_ORIS(dst_reg, dst_reg, IMM_H(imm)); |
| 379 | } |
| 380 | goto bpf_alu32_trunc; |
| 381 | case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */ |
| 382 | case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */ |
| 383 | PPC_XOR(dst_reg, dst_reg, src_reg); |
| 384 | goto bpf_alu32_trunc; |
| 385 | case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */ |
| 386 | case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */ |
| 387 | if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) { |
| 388 | /* Sign-extended */ |
| 389 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 390 | PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]); |
| 391 | } else { |
| 392 | if (IMM_L(imm)) |
| 393 | PPC_XORI(dst_reg, dst_reg, IMM_L(imm)); |
| 394 | if (IMM_H(imm)) |
| 395 | PPC_XORIS(dst_reg, dst_reg, IMM_H(imm)); |
| 396 | } |
| 397 | goto bpf_alu32_trunc; |
| 398 | case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */ |
| 399 | /* slw clears top 32 bits */ |
| 400 | PPC_SLW(dst_reg, dst_reg, src_reg); |
| 401 | break; |
| 402 | case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */ |
| 403 | PPC_SLD(dst_reg, dst_reg, src_reg); |
| 404 | break; |
| 405 | case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */ |
| 406 | /* with imm 0, we still need to clear top 32 bits */ |
| 407 | PPC_SLWI(dst_reg, dst_reg, imm); |
| 408 | break; |
| 409 | case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */ |
| 410 | if (imm != 0) |
| 411 | PPC_SLDI(dst_reg, dst_reg, imm); |
| 412 | break; |
| 413 | case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */ |
| 414 | PPC_SRW(dst_reg, dst_reg, src_reg); |
| 415 | break; |
| 416 | case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */ |
| 417 | PPC_SRD(dst_reg, dst_reg, src_reg); |
| 418 | break; |
| 419 | case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */ |
| 420 | PPC_SRWI(dst_reg, dst_reg, imm); |
| 421 | break; |
| 422 | case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */ |
| 423 | if (imm != 0) |
| 424 | PPC_SRDI(dst_reg, dst_reg, imm); |
| 425 | break; |
| 426 | case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */ |
| 427 | PPC_SRAD(dst_reg, dst_reg, src_reg); |
| 428 | break; |
| 429 | case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */ |
| 430 | if (imm != 0) |
| 431 | PPC_SRADI(dst_reg, dst_reg, imm); |
| 432 | break; |
| 433 | |
| 434 | /* |
| 435 | * MOV |
| 436 | */ |
| 437 | case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */ |
| 438 | case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */ |
| 439 | PPC_MR(dst_reg, src_reg); |
| 440 | goto bpf_alu32_trunc; |
| 441 | case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */ |
| 442 | case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */ |
| 443 | PPC_LI32(dst_reg, imm); |
| 444 | if (imm < 0) |
| 445 | goto bpf_alu32_trunc; |
| 446 | break; |
| 447 | |
| 448 | bpf_alu32_trunc: |
| 449 | /* Truncate to 32-bits */ |
| 450 | if (BPF_CLASS(code) == BPF_ALU) |
| 451 | PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31); |
| 452 | break; |
| 453 | |
| 454 | /* |
| 455 | * BPF_FROM_BE/LE |
| 456 | */ |
| 457 | case BPF_ALU | BPF_END | BPF_FROM_LE: |
| 458 | case BPF_ALU | BPF_END | BPF_FROM_BE: |
| 459 | #ifdef __BIG_ENDIAN__ |
| 460 | if (BPF_SRC(code) == BPF_FROM_BE) |
| 461 | goto emit_clear; |
| 462 | #else /* !__BIG_ENDIAN__ */ |
| 463 | if (BPF_SRC(code) == BPF_FROM_LE) |
| 464 | goto emit_clear; |
| 465 | #endif |
| 466 | switch (imm) { |
| 467 | case 16: |
| 468 | /* Rotate 8 bits left & mask with 0x0000ff00 */ |
| 469 | PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23); |
| 470 | /* Rotate 8 bits right & insert LSB to reg */ |
| 471 | PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31); |
| 472 | /* Move result back to dst_reg */ |
| 473 | PPC_MR(dst_reg, b2p[TMP_REG_1]); |
| 474 | break; |
| 475 | case 32: |
| 476 | /* |
| 477 | * Rotate word left by 8 bits: |
| 478 | * 2 bytes are already in their final position |
| 479 | * -- byte 2 and 4 (of bytes 1, 2, 3 and 4) |
| 480 | */ |
| 481 | PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31); |
| 482 | /* Rotate 24 bits and insert byte 1 */ |
| 483 | PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7); |
| 484 | /* Rotate 24 bits and insert byte 3 */ |
| 485 | PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23); |
| 486 | PPC_MR(dst_reg, b2p[TMP_REG_1]); |
| 487 | break; |
| 488 | case 64: |
| 489 | /* |
| 490 | * Way easier and faster(?) to store the value |
| 491 | * into stack and then use ldbrx |
| 492 | * |
| 493 | * First, determine where in stack we can store |
| 494 | * this: |
| 495 | * - if we have allotted a stack frame, then we |
| 496 | * will utilize the area set aside by |
| 497 | * BPF_PPC_STACK_LOCALS |
| 498 | * - else, we use the area beneath the NV GPR |
| 499 | * save area |
| 500 | * |
| 501 | * ctx->seen will be reliable in pass2, but |
| 502 | * the instructions generated will remain the |
| 503 | * same across all passes |
| 504 | */ |
| 505 | if (bpf_has_stack_frame(ctx)) |
| 506 | stack_local_off = STACK_FRAME_MIN_SIZE; |
| 507 | else |
| 508 | stack_local_off = -(BPF_PPC_STACK_SAVE + 8); |
| 509 | |
| 510 | PPC_STD(dst_reg, 1, stack_local_off); |
| 511 | PPC_ADDI(b2p[TMP_REG_1], 1, stack_local_off); |
| 512 | PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]); |
| 513 | break; |
| 514 | } |
| 515 | break; |
| 516 | |
| 517 | emit_clear: |
| 518 | switch (imm) { |
| 519 | case 16: |
| 520 | /* zero-extend 16 bits into 64 bits */ |
| 521 | PPC_RLDICL(dst_reg, dst_reg, 0, 48); |
| 522 | break; |
| 523 | case 32: |
| 524 | /* zero-extend 32 bits into 64 bits */ |
| 525 | PPC_RLDICL(dst_reg, dst_reg, 0, 32); |
| 526 | break; |
| 527 | case 64: |
| 528 | /* nop */ |
| 529 | break; |
| 530 | } |
| 531 | break; |
| 532 | |
| 533 | /* |
| 534 | * BPF_ST(X) |
| 535 | */ |
| 536 | case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */ |
| 537 | case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */ |
| 538 | if (BPF_CLASS(code) == BPF_ST) { |
| 539 | PPC_LI(b2p[TMP_REG_1], imm); |
| 540 | src_reg = b2p[TMP_REG_1]; |
| 541 | } |
| 542 | PPC_STB(src_reg, dst_reg, off); |
| 543 | break; |
| 544 | case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */ |
| 545 | case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */ |
| 546 | if (BPF_CLASS(code) == BPF_ST) { |
| 547 | PPC_LI(b2p[TMP_REG_1], imm); |
| 548 | src_reg = b2p[TMP_REG_1]; |
| 549 | } |
| 550 | PPC_STH(src_reg, dst_reg, off); |
| 551 | break; |
| 552 | case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */ |
| 553 | case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */ |
| 554 | if (BPF_CLASS(code) == BPF_ST) { |
| 555 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 556 | src_reg = b2p[TMP_REG_1]; |
| 557 | } |
| 558 | PPC_STW(src_reg, dst_reg, off); |
| 559 | break; |
| 560 | case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */ |
| 561 | case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */ |
| 562 | if (BPF_CLASS(code) == BPF_ST) { |
| 563 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 564 | src_reg = b2p[TMP_REG_1]; |
| 565 | } |
| 566 | PPC_STD(src_reg, dst_reg, off); |
| 567 | break; |
| 568 | |
| 569 | /* |
| 570 | * BPF_STX XADD (atomic_add) |
| 571 | */ |
| 572 | /* *(u32 *)(dst + off) += src */ |
| 573 | case BPF_STX | BPF_XADD | BPF_W: |
| 574 | /* Get EA into TMP_REG_1 */ |
| 575 | PPC_ADDI(b2p[TMP_REG_1], dst_reg, off); |
| 576 | /* error if EA is not word-aligned */ |
| 577 | PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x03); |
| 578 | PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + 12); |
| 579 | PPC_LI(b2p[BPF_REG_0], 0); |
| 580 | PPC_JMP(exit_addr); |
| 581 | /* load value from memory into TMP_REG_2 */ |
| 582 | PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0); |
| 583 | /* add value from src_reg into this */ |
| 584 | PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg); |
| 585 | /* store result back */ |
| 586 | PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]); |
| 587 | /* we're done if this succeeded */ |
| 588 | PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4)); |
| 589 | /* otherwise, let's try once more */ |
| 590 | PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0); |
| 591 | PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg); |
| 592 | PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]); |
| 593 | /* exit if the store was not successful */ |
| 594 | PPC_LI(b2p[BPF_REG_0], 0); |
| 595 | PPC_BCC(COND_NE, exit_addr); |
| 596 | break; |
| 597 | /* *(u64 *)(dst + off) += src */ |
| 598 | case BPF_STX | BPF_XADD | BPF_DW: |
| 599 | PPC_ADDI(b2p[TMP_REG_1], dst_reg, off); |
| 600 | /* error if EA is not doubleword-aligned */ |
| 601 | PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x07); |
| 602 | PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (3*4)); |
| 603 | PPC_LI(b2p[BPF_REG_0], 0); |
| 604 | PPC_JMP(exit_addr); |
| 605 | PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0); |
| 606 | PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg); |
| 607 | PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]); |
| 608 | PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4)); |
| 609 | PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0); |
| 610 | PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg); |
| 611 | PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]); |
| 612 | PPC_LI(b2p[BPF_REG_0], 0); |
| 613 | PPC_BCC(COND_NE, exit_addr); |
| 614 | break; |
| 615 | |
| 616 | /* |
| 617 | * BPF_LDX |
| 618 | */ |
| 619 | /* dst = *(u8 *)(ul) (src + off) */ |
| 620 | case BPF_LDX | BPF_MEM | BPF_B: |
| 621 | PPC_LBZ(dst_reg, src_reg, off); |
| 622 | break; |
| 623 | /* dst = *(u16 *)(ul) (src + off) */ |
| 624 | case BPF_LDX | BPF_MEM | BPF_H: |
| 625 | PPC_LHZ(dst_reg, src_reg, off); |
| 626 | break; |
| 627 | /* dst = *(u32 *)(ul) (src + off) */ |
| 628 | case BPF_LDX | BPF_MEM | BPF_W: |
| 629 | PPC_LWZ(dst_reg, src_reg, off); |
| 630 | break; |
| 631 | /* dst = *(u64 *)(ul) (src + off) */ |
| 632 | case BPF_LDX | BPF_MEM | BPF_DW: |
| 633 | PPC_LD(dst_reg, src_reg, off); |
| 634 | break; |
| 635 | |
| 636 | /* |
| 637 | * Doubleword load |
| 638 | * 16 byte instruction that uses two 'struct bpf_insn' |
| 639 | */ |
| 640 | case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */ |
| 641 | imm64 = ((u64)(u32) insn[i].imm) | |
| 642 | (((u64)(u32) insn[i+1].imm) << 32); |
| 643 | /* Adjust for two bpf instructions */ |
| 644 | addrs[++i] = ctx->idx * 4; |
| 645 | PPC_LI64(dst_reg, imm64); |
| 646 | break; |
| 647 | |
| 648 | /* |
| 649 | * Return/Exit |
| 650 | */ |
| 651 | case BPF_JMP | BPF_EXIT: |
| 652 | /* |
| 653 | * If this isn't the very last instruction, branch to |
| 654 | * the epilogue. If we _are_ the last instruction, |
| 655 | * we'll just fall through to the epilogue. |
| 656 | */ |
| 657 | if (i != flen - 1) |
| 658 | PPC_JMP(exit_addr); |
| 659 | /* else fall through to the epilogue */ |
| 660 | break; |
| 661 | |
| 662 | /* |
| 663 | * Call kernel helper |
| 664 | */ |
| 665 | case BPF_JMP | BPF_CALL: |
| 666 | ctx->seen |= SEEN_FUNC; |
| 667 | func = (u8 *) __bpf_call_base + imm; |
| 668 | |
| 669 | /* Save skb pointer if we need to re-cache skb data */ |
| 670 | if (bpf_helper_changes_skb_data(func)) |
| 671 | PPC_BPF_STL(3, 1, STACK_FRAME_MIN_SIZE); |
| 672 | |
| 673 | bpf_jit_emit_func_call(image, ctx, (u64)func); |
| 674 | |
| 675 | /* move return value from r3 to BPF_REG_0 */ |
| 676 | PPC_MR(b2p[BPF_REG_0], 3); |
| 677 | |
| 678 | /* refresh skb cache */ |
| 679 | if (bpf_helper_changes_skb_data(func)) { |
| 680 | /* reload skb pointer to r3 */ |
| 681 | PPC_BPF_LL(3, 1, STACK_FRAME_MIN_SIZE); |
| 682 | bpf_jit_emit_skb_loads(image, ctx); |
| 683 | } |
| 684 | break; |
| 685 | |
| 686 | /* |
| 687 | * Jumps and branches |
| 688 | */ |
| 689 | case BPF_JMP | BPF_JA: |
| 690 | PPC_JMP(addrs[i + 1 + off]); |
| 691 | break; |
| 692 | |
| 693 | case BPF_JMP | BPF_JGT | BPF_K: |
| 694 | case BPF_JMP | BPF_JGT | BPF_X: |
| 695 | case BPF_JMP | BPF_JSGT | BPF_K: |
| 696 | case BPF_JMP | BPF_JSGT | BPF_X: |
| 697 | true_cond = COND_GT; |
| 698 | goto cond_branch; |
| 699 | case BPF_JMP | BPF_JGE | BPF_K: |
| 700 | case BPF_JMP | BPF_JGE | BPF_X: |
| 701 | case BPF_JMP | BPF_JSGE | BPF_K: |
| 702 | case BPF_JMP | BPF_JSGE | BPF_X: |
| 703 | true_cond = COND_GE; |
| 704 | goto cond_branch; |
| 705 | case BPF_JMP | BPF_JEQ | BPF_K: |
| 706 | case BPF_JMP | BPF_JEQ | BPF_X: |
| 707 | true_cond = COND_EQ; |
| 708 | goto cond_branch; |
| 709 | case BPF_JMP | BPF_JNE | BPF_K: |
| 710 | case BPF_JMP | BPF_JNE | BPF_X: |
| 711 | true_cond = COND_NE; |
| 712 | goto cond_branch; |
| 713 | case BPF_JMP | BPF_JSET | BPF_K: |
| 714 | case BPF_JMP | BPF_JSET | BPF_X: |
| 715 | true_cond = COND_NE; |
| 716 | /* Fall through */ |
| 717 | |
| 718 | cond_branch: |
| 719 | switch (code) { |
| 720 | case BPF_JMP | BPF_JGT | BPF_X: |
| 721 | case BPF_JMP | BPF_JGE | BPF_X: |
| 722 | case BPF_JMP | BPF_JEQ | BPF_X: |
| 723 | case BPF_JMP | BPF_JNE | BPF_X: |
| 724 | /* unsigned comparison */ |
| 725 | PPC_CMPLD(dst_reg, src_reg); |
| 726 | break; |
| 727 | case BPF_JMP | BPF_JSGT | BPF_X: |
| 728 | case BPF_JMP | BPF_JSGE | BPF_X: |
| 729 | /* signed comparison */ |
| 730 | PPC_CMPD(dst_reg, src_reg); |
| 731 | break; |
| 732 | case BPF_JMP | BPF_JSET | BPF_X: |
| 733 | PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, src_reg); |
| 734 | break; |
| 735 | case BPF_JMP | BPF_JNE | BPF_K: |
| 736 | case BPF_JMP | BPF_JEQ | BPF_K: |
| 737 | case BPF_JMP | BPF_JGT | BPF_K: |
| 738 | case BPF_JMP | BPF_JGE | BPF_K: |
| 739 | /* |
| 740 | * Need sign-extended load, so only positive |
| 741 | * values can be used as imm in cmpldi |
| 742 | */ |
| 743 | if (imm >= 0 && imm < 32768) |
| 744 | PPC_CMPLDI(dst_reg, imm); |
| 745 | else { |
| 746 | /* sign-extending load */ |
| 747 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 748 | /* ... but unsigned comparison */ |
| 749 | PPC_CMPLD(dst_reg, b2p[TMP_REG_1]); |
| 750 | } |
| 751 | break; |
| 752 | case BPF_JMP | BPF_JSGT | BPF_K: |
| 753 | case BPF_JMP | BPF_JSGE | BPF_K: |
| 754 | /* |
| 755 | * signed comparison, so any 16-bit value |
| 756 | * can be used in cmpdi |
| 757 | */ |
| 758 | if (imm >= -32768 && imm < 32768) |
| 759 | PPC_CMPDI(dst_reg, imm); |
| 760 | else { |
| 761 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 762 | PPC_CMPD(dst_reg, b2p[TMP_REG_1]); |
| 763 | } |
| 764 | break; |
| 765 | case BPF_JMP | BPF_JSET | BPF_K: |
| 766 | /* andi does not sign-extend the immediate */ |
| 767 | if (imm >= 0 && imm < 32768) |
| 768 | /* PPC_ANDI is _only/always_ dot-form */ |
| 769 | PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm); |
| 770 | else { |
| 771 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 772 | PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, |
| 773 | b2p[TMP_REG_1]); |
| 774 | } |
| 775 | break; |
| 776 | } |
| 777 | PPC_BCC(true_cond, addrs[i + 1 + off]); |
| 778 | break; |
| 779 | |
| 780 | /* |
| 781 | * Loads from packet header/data |
| 782 | * Assume 32-bit input value in imm and X (src_reg) |
| 783 | */ |
| 784 | |
| 785 | /* Absolute loads */ |
| 786 | case BPF_LD | BPF_W | BPF_ABS: |
| 787 | func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_word); |
| 788 | goto common_load_abs; |
| 789 | case BPF_LD | BPF_H | BPF_ABS: |
| 790 | func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_half); |
| 791 | goto common_load_abs; |
| 792 | case BPF_LD | BPF_B | BPF_ABS: |
| 793 | func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_byte); |
| 794 | common_load_abs: |
| 795 | /* |
| 796 | * Load from [imm] |
| 797 | * Load into r4, which can just be passed onto |
| 798 | * skb load helpers as the second parameter |
| 799 | */ |
| 800 | PPC_LI32(4, imm); |
| 801 | goto common_load; |
| 802 | |
| 803 | /* Indirect loads */ |
| 804 | case BPF_LD | BPF_W | BPF_IND: |
| 805 | func = (u8 *)sk_load_word; |
| 806 | goto common_load_ind; |
| 807 | case BPF_LD | BPF_H | BPF_IND: |
| 808 | func = (u8 *)sk_load_half; |
| 809 | goto common_load_ind; |
| 810 | case BPF_LD | BPF_B | BPF_IND: |
| 811 | func = (u8 *)sk_load_byte; |
| 812 | common_load_ind: |
| 813 | /* |
| 814 | * Load from [src_reg + imm] |
| 815 | * Treat src_reg as a 32-bit value |
| 816 | */ |
| 817 | PPC_EXTSW(4, src_reg); |
| 818 | if (imm) { |
| 819 | if (imm >= -32768 && imm < 32768) |
| 820 | PPC_ADDI(4, 4, IMM_L(imm)); |
| 821 | else { |
| 822 | PPC_LI32(b2p[TMP_REG_1], imm); |
| 823 | PPC_ADD(4, 4, b2p[TMP_REG_1]); |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | common_load: |
| 828 | ctx->seen |= SEEN_SKB; |
| 829 | ctx->seen |= SEEN_FUNC; |
| 830 | bpf_jit_emit_func_call(image, ctx, (u64)func); |
| 831 | |
| 832 | /* |
| 833 | * Helper returns 'lt' condition on error, and an |
| 834 | * appropriate return value in BPF_REG_0 |
| 835 | */ |
| 836 | PPC_BCC(COND_LT, exit_addr); |
| 837 | break; |
| 838 | |
| 839 | /* |
| 840 | * TODO: Tail call |
| 841 | */ |
| 842 | case BPF_JMP | BPF_CALL | BPF_X: |
| 843 | |
| 844 | default: |
| 845 | /* |
| 846 | * The filter contains something cruel & unusual. |
| 847 | * We don't handle it, but also there shouldn't be |
| 848 | * anything missing from our list. |
| 849 | */ |
| 850 | pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n", |
| 851 | code, i); |
| 852 | return -ENOTSUPP; |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | /* Set end-of-body-code address for exit. */ |
| 857 | addrs[i] = ctx->idx * 4; |
| 858 | |
| 859 | return 0; |
| 860 | } |
| 861 | |
| 862 | void bpf_jit_compile(struct bpf_prog *fp) { } |
| 863 | |
| 864 | struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp) |
| 865 | { |
| 866 | u32 proglen; |
| 867 | u32 alloclen; |
| 868 | u8 *image = NULL; |
| 869 | u32 *code_base; |
| 870 | u32 *addrs; |
| 871 | struct codegen_context cgctx; |
| 872 | int pass; |
| 873 | int flen; |
| 874 | struct bpf_binary_header *bpf_hdr; |
| 875 | |
| 876 | if (!bpf_jit_enable) |
| 877 | return fp; |
| 878 | |
| 879 | flen = fp->len; |
| 880 | addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL); |
| 881 | if (addrs == NULL) |
| 882 | return fp; |
| 883 | |
| 884 | cgctx.idx = 0; |
| 885 | cgctx.seen = 0; |
| 886 | /* Scouting faux-generate pass 0 */ |
| 887 | if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) |
| 888 | /* We hit something illegal or unsupported. */ |
| 889 | goto out; |
| 890 | |
| 891 | /* |
| 892 | * Pretend to build prologue, given the features we've seen. This will |
| 893 | * update ctgtx.idx as it pretends to output instructions, then we can |
| 894 | * calculate total size from idx. |
| 895 | */ |
| 896 | bpf_jit_build_prologue(0, &cgctx); |
| 897 | bpf_jit_build_epilogue(0, &cgctx); |
| 898 | |
| 899 | proglen = cgctx.idx * 4; |
| 900 | alloclen = proglen + FUNCTION_DESCR_SIZE; |
| 901 | |
| 902 | bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4, |
| 903 | bpf_jit_fill_ill_insns); |
| 904 | if (!bpf_hdr) |
| 905 | goto out; |
| 906 | |
| 907 | code_base = (u32 *)(image + FUNCTION_DESCR_SIZE); |
| 908 | |
| 909 | /* Code generation passes 1-2 */ |
| 910 | for (pass = 1; pass < 3; pass++) { |
| 911 | /* Now build the prologue, body code & epilogue for real. */ |
| 912 | cgctx.idx = 0; |
| 913 | bpf_jit_build_prologue(code_base, &cgctx); |
| 914 | bpf_jit_build_body(fp, code_base, &cgctx, addrs); |
| 915 | bpf_jit_build_epilogue(code_base, &cgctx); |
| 916 | |
| 917 | if (bpf_jit_enable > 1) |
| 918 | pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass, |
| 919 | proglen - (cgctx.idx * 4), cgctx.seen); |
| 920 | } |
| 921 | |
| 922 | if (bpf_jit_enable > 1) |
| 923 | /* |
| 924 | * Note that we output the base address of the code_base |
| 925 | * rather than image, since opcodes are in code_base. |
| 926 | */ |
| 927 | bpf_jit_dump(flen, proglen, pass, code_base); |
| 928 | |
| 929 | if (image) { |
| 930 | bpf_flush_icache(bpf_hdr, image + alloclen); |
| 931 | #ifdef PPC64_ELF_ABI_v1 |
| 932 | /* Function descriptor nastiness: Address + TOC */ |
| 933 | ((u64 *)image)[0] = (u64)code_base; |
| 934 | ((u64 *)image)[1] = local_paca->kernel_toc; |
| 935 | #endif |
| 936 | fp->bpf_func = (void *)image; |
| 937 | fp->jited = 1; |
| 938 | } |
| 939 | |
| 940 | out: |
| 941 | kfree(addrs); |
| 942 | return fp; |
| 943 | } |
| 944 | |
| 945 | void bpf_jit_free(struct bpf_prog *fp) |
| 946 | { |
| 947 | unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK; |
| 948 | struct bpf_binary_header *bpf_hdr = (void *)addr; |
| 949 | |
| 950 | if (fp->jited) |
| 951 | bpf_jit_binary_free(bpf_hdr); |
| 952 | |
| 953 | bpf_prog_unlock_free(fp); |
| 954 | } |