Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 1 | /** |
| 2 | * imr.c |
| 3 | * |
| 4 | * Copyright(c) 2013 Intel Corporation. |
| 5 | * Copyright(c) 2015 Bryan O'Donoghue <pure.logic@nexus-software.ie> |
| 6 | * |
| 7 | * IMR registers define an isolated region of memory that can |
| 8 | * be masked to prohibit certain system agents from accessing memory. |
| 9 | * When a device behind a masked port performs an access - snooped or |
| 10 | * not, an IMR may optionally prevent that transaction from changing |
| 11 | * the state of memory or from getting correct data in response to the |
| 12 | * operation. |
| 13 | * |
| 14 | * Write data will be dropped and reads will return 0xFFFFFFFF, the |
| 15 | * system will reset and system BIOS will print out an error message to |
| 16 | * inform the user that an IMR has been violated. |
| 17 | * |
| 18 | * This code is based on the Linux MTRR code and reference code from |
| 19 | * Intel's Quark BSP EFI, Linux and grub code. |
| 20 | * |
| 21 | * See quark-x1000-datasheet.pdf for register definitions. |
| 22 | * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/quark-x1000-datasheet.pdf |
| 23 | */ |
| 24 | |
| 25 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 26 | |
| 27 | #include <asm-generic/sections.h> |
| 28 | #include <asm/cpu_device_id.h> |
| 29 | #include <asm/imr.h> |
| 30 | #include <asm/iosf_mbi.h> |
| 31 | #include <linux/debugfs.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/mm.h> |
| 34 | #include <linux/module.h> |
| 35 | #include <linux/types.h> |
| 36 | |
| 37 | struct imr_device { |
| 38 | struct dentry *file; |
| 39 | bool init; |
| 40 | struct mutex lock; |
| 41 | int max_imr; |
| 42 | int reg_base; |
| 43 | }; |
| 44 | |
| 45 | static struct imr_device imr_dev; |
| 46 | |
| 47 | /* |
| 48 | * IMR read/write mask control registers. |
| 49 | * See quark-x1000-datasheet.pdf sections 12.7.4.5 and 12.7.4.6 for |
| 50 | * bit definitions. |
| 51 | * |
| 52 | * addr_hi |
| 53 | * 31 Lock bit |
| 54 | * 30:24 Reserved |
| 55 | * 23:2 1 KiB aligned lo address |
| 56 | * 1:0 Reserved |
| 57 | * |
| 58 | * addr_hi |
| 59 | * 31:24 Reserved |
| 60 | * 23:2 1 KiB aligned hi address |
| 61 | * 1:0 Reserved |
| 62 | */ |
| 63 | #define IMR_LOCK BIT(31) |
| 64 | |
| 65 | struct imr_regs { |
| 66 | u32 addr_lo; |
| 67 | u32 addr_hi; |
| 68 | u32 rmask; |
| 69 | u32 wmask; |
| 70 | }; |
| 71 | |
| 72 | #define IMR_NUM_REGS (sizeof(struct imr_regs)/sizeof(u32)) |
| 73 | #define IMR_SHIFT 8 |
| 74 | #define imr_to_phys(x) ((x) << IMR_SHIFT) |
| 75 | #define phys_to_imr(x) ((x) >> IMR_SHIFT) |
| 76 | |
| 77 | /** |
| 78 | * imr_is_enabled - true if an IMR is enabled false otherwise. |
| 79 | * |
| 80 | * Determines if an IMR is enabled based on address range and read/write |
| 81 | * mask. An IMR set with an address range set to zero and a read/write |
| 82 | * access mask set to all is considered to be disabled. An IMR in any |
| 83 | * other state - for example set to zero but without read/write access |
| 84 | * all is considered to be enabled. This definition of disabled is how |
| 85 | * firmware switches off an IMR and is maintained in kernel for |
| 86 | * consistency. |
| 87 | * |
| 88 | * @imr: pointer to IMR descriptor. |
| 89 | * @return: true if IMR enabled false if disabled. |
| 90 | */ |
| 91 | static inline int imr_is_enabled(struct imr_regs *imr) |
| 92 | { |
| 93 | return !(imr->rmask == IMR_READ_ACCESS_ALL && |
| 94 | imr->wmask == IMR_WRITE_ACCESS_ALL && |
| 95 | imr_to_phys(imr->addr_lo) == 0 && |
| 96 | imr_to_phys(imr->addr_hi) == 0); |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | * imr_read - read an IMR at a given index. |
| 101 | * |
| 102 | * Requires caller to hold imr mutex. |
| 103 | * |
| 104 | * @idev: pointer to imr_device structure. |
| 105 | * @imr_id: IMR entry to read. |
| 106 | * @imr: IMR structure representing address and access masks. |
| 107 | * @return: 0 on success or error code passed from mbi_iosf on failure. |
| 108 | */ |
| 109 | static int imr_read(struct imr_device *idev, u32 imr_id, struct imr_regs *imr) |
| 110 | { |
| 111 | u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; |
| 112 | int ret; |
| 113 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 114 | ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_lo); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 115 | if (ret) |
| 116 | return ret; |
| 117 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 118 | ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->addr_hi); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 119 | if (ret) |
| 120 | return ret; |
| 121 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 122 | ret = iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->rmask); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 123 | if (ret) |
| 124 | return ret; |
| 125 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 126 | return iosf_mbi_read(QRK_MBI_UNIT_MM, MBI_REG_READ, reg++, &imr->wmask); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 127 | } |
| 128 | |
| 129 | /** |
| 130 | * imr_write - write an IMR at a given index. |
| 131 | * |
| 132 | * Requires caller to hold imr mutex. |
| 133 | * Note lock bits need to be written independently of address bits. |
| 134 | * |
| 135 | * @idev: pointer to imr_device structure. |
| 136 | * @imr_id: IMR entry to write. |
| 137 | * @imr: IMR structure representing address and access masks. |
| 138 | * @lock: indicates if the IMR lock bit should be applied. |
| 139 | * @return: 0 on success or error code passed from mbi_iosf on failure. |
| 140 | */ |
| 141 | static int imr_write(struct imr_device *idev, u32 imr_id, |
| 142 | struct imr_regs *imr, bool lock) |
| 143 | { |
| 144 | unsigned long flags; |
| 145 | u32 reg = imr_id * IMR_NUM_REGS + idev->reg_base; |
| 146 | int ret; |
| 147 | |
| 148 | local_irq_save(flags); |
| 149 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 150 | ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_lo); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 151 | if (ret) |
| 152 | goto failed; |
| 153 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 154 | ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->addr_hi); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 155 | if (ret) |
| 156 | goto failed; |
| 157 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 158 | ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->rmask); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 159 | if (ret) |
| 160 | goto failed; |
| 161 | |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 162 | ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, reg++, imr->wmask); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 163 | if (ret) |
| 164 | goto failed; |
| 165 | |
| 166 | /* Lock bit must be set separately to addr_lo address bits. */ |
| 167 | if (lock) { |
| 168 | imr->addr_lo |= IMR_LOCK; |
Andy Shevchenko | 4077a38 | 2015-11-11 19:59:29 +0200 | [diff] [blame] | 169 | ret = iosf_mbi_write(QRK_MBI_UNIT_MM, MBI_REG_WRITE, |
| 170 | reg - IMR_NUM_REGS, imr->addr_lo); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 171 | if (ret) |
| 172 | goto failed; |
| 173 | } |
| 174 | |
| 175 | local_irq_restore(flags); |
| 176 | return 0; |
| 177 | failed: |
| 178 | /* |
| 179 | * If writing to the IOSF failed then we're in an unknown state, |
| 180 | * likely a very bad state. An IMR in an invalid state will almost |
| 181 | * certainly lead to a memory access violation. |
| 182 | */ |
| 183 | local_irq_restore(flags); |
| 184 | WARN(ret, "IOSF-MBI write fail range 0x%08x-0x%08x unreliable\n", |
| 185 | imr_to_phys(imr->addr_lo), imr_to_phys(imr->addr_hi) + IMR_MASK); |
| 186 | |
| 187 | return ret; |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * imr_dbgfs_state_show - print state of IMR registers. |
| 192 | * |
| 193 | * @s: pointer to seq_file for output. |
| 194 | * @unused: unused parameter. |
| 195 | * @return: 0 on success or error code passed from mbi_iosf on failure. |
| 196 | */ |
| 197 | static int imr_dbgfs_state_show(struct seq_file *s, void *unused) |
| 198 | { |
| 199 | phys_addr_t base; |
| 200 | phys_addr_t end; |
| 201 | int i; |
| 202 | struct imr_device *idev = s->private; |
| 203 | struct imr_regs imr; |
| 204 | size_t size; |
| 205 | int ret = -ENODEV; |
| 206 | |
| 207 | mutex_lock(&idev->lock); |
| 208 | |
| 209 | for (i = 0; i < idev->max_imr; i++) { |
| 210 | |
| 211 | ret = imr_read(idev, i, &imr); |
| 212 | if (ret) |
| 213 | break; |
| 214 | |
| 215 | /* |
| 216 | * Remember to add IMR_ALIGN bytes to size to indicate the |
| 217 | * inherent IMR_ALIGN size bytes contained in the masked away |
| 218 | * lower ten bits. |
| 219 | */ |
| 220 | if (imr_is_enabled(&imr)) { |
| 221 | base = imr_to_phys(imr.addr_lo); |
| 222 | end = imr_to_phys(imr.addr_hi) + IMR_MASK; |
| 223 | } else { |
| 224 | base = 0; |
| 225 | end = 0; |
| 226 | } |
| 227 | size = end - base; |
| 228 | seq_printf(s, "imr%02i: base=%pa, end=%pa, size=0x%08zx " |
| 229 | "rmask=0x%08x, wmask=0x%08x, %s, %s\n", i, |
| 230 | &base, &end, size, imr.rmask, imr.wmask, |
| 231 | imr_is_enabled(&imr) ? "enabled " : "disabled", |
| 232 | imr.addr_lo & IMR_LOCK ? "locked" : "unlocked"); |
| 233 | } |
| 234 | |
| 235 | mutex_unlock(&idev->lock); |
| 236 | return ret; |
| 237 | } |
| 238 | |
| 239 | /** |
| 240 | * imr_state_open - debugfs open callback. |
| 241 | * |
| 242 | * @inode: pointer to struct inode. |
| 243 | * @file: pointer to struct file. |
| 244 | * @return: result of single open. |
| 245 | */ |
| 246 | static int imr_state_open(struct inode *inode, struct file *file) |
| 247 | { |
| 248 | return single_open(file, imr_dbgfs_state_show, inode->i_private); |
| 249 | } |
| 250 | |
| 251 | static const struct file_operations imr_state_ops = { |
| 252 | .open = imr_state_open, |
| 253 | .read = seq_read, |
| 254 | .llseek = seq_lseek, |
| 255 | .release = single_release, |
| 256 | }; |
| 257 | |
| 258 | /** |
| 259 | * imr_debugfs_register - register debugfs hooks. |
| 260 | * |
| 261 | * @idev: pointer to imr_device structure. |
| 262 | * @return: 0 on success - errno on failure. |
| 263 | */ |
| 264 | static int imr_debugfs_register(struct imr_device *idev) |
| 265 | { |
| 266 | idev->file = debugfs_create_file("imr_state", S_IFREG | S_IRUGO, NULL, |
| 267 | idev, &imr_state_ops); |
Fengguang Wu | 32d3916 | 2015-02-19 16:14:32 +0800 | [diff] [blame] | 268 | return PTR_ERR_OR_ZERO(idev->file); |
Bryan O'Donoghue | 28a375d | 2015-01-30 16:29:38 +0000 | [diff] [blame] | 269 | } |
| 270 | |
| 271 | /** |
| 272 | * imr_debugfs_unregister - unregister debugfs hooks. |
| 273 | * |
| 274 | * @idev: pointer to imr_device structure. |
| 275 | * @return: |
| 276 | */ |
| 277 | static void imr_debugfs_unregister(struct imr_device *idev) |
| 278 | { |
| 279 | debugfs_remove(idev->file); |
| 280 | } |
| 281 | |
| 282 | /** |
| 283 | * imr_check_params - check passed address range IMR alignment and non-zero size |
| 284 | * |
| 285 | * @base: base address of intended IMR. |
| 286 | * @size: size of intended IMR. |
| 287 | * @return: zero on valid range -EINVAL on unaligned base/size. |
| 288 | */ |
| 289 | static int imr_check_params(phys_addr_t base, size_t size) |
| 290 | { |
| 291 | if ((base & IMR_MASK) || (size & IMR_MASK)) { |
| 292 | pr_err("base %pa size 0x%08zx must align to 1KiB\n", |
| 293 | &base, size); |
| 294 | return -EINVAL; |
| 295 | } |
| 296 | if (size == 0) |
| 297 | return -EINVAL; |
| 298 | |
| 299 | return 0; |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * imr_raw_size - account for the IMR_ALIGN bytes that addr_hi appends. |
| 304 | * |
| 305 | * IMR addr_hi has a built in offset of plus IMR_ALIGN (0x400) bytes from the |
| 306 | * value in the register. We need to subtract IMR_ALIGN bytes from input sizes |
| 307 | * as a result. |
| 308 | * |
| 309 | * @size: input size bytes. |
| 310 | * @return: reduced size. |
| 311 | */ |
| 312 | static inline size_t imr_raw_size(size_t size) |
| 313 | { |
| 314 | return size - IMR_ALIGN; |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * imr_address_overlap - detects an address overlap. |
| 319 | * |
| 320 | * @addr: address to check against an existing IMR. |
| 321 | * @imr: imr being checked. |
| 322 | * @return: true for overlap false for no overlap. |
| 323 | */ |
| 324 | static inline int imr_address_overlap(phys_addr_t addr, struct imr_regs *imr) |
| 325 | { |
| 326 | return addr >= imr_to_phys(imr->addr_lo) && addr <= imr_to_phys(imr->addr_hi); |
| 327 | } |
| 328 | |
| 329 | /** |
| 330 | * imr_add_range - add an Isolated Memory Region. |
| 331 | * |
| 332 | * @base: physical base address of region aligned to 1KiB. |
| 333 | * @size: physical size of region in bytes must be aligned to 1KiB. |
| 334 | * @read_mask: read access mask. |
| 335 | * @write_mask: write access mask. |
| 336 | * @lock: indicates whether or not to permanently lock this region. |
| 337 | * @return: zero on success or negative value indicating error. |
| 338 | */ |
| 339 | int imr_add_range(phys_addr_t base, size_t size, |
| 340 | unsigned int rmask, unsigned int wmask, bool lock) |
| 341 | { |
| 342 | phys_addr_t end; |
| 343 | unsigned int i; |
| 344 | struct imr_device *idev = &imr_dev; |
| 345 | struct imr_regs imr; |
| 346 | size_t raw_size; |
| 347 | int reg; |
| 348 | int ret; |
| 349 | |
| 350 | if (WARN_ONCE(idev->init == false, "driver not initialized")) |
| 351 | return -ENODEV; |
| 352 | |
| 353 | ret = imr_check_params(base, size); |
| 354 | if (ret) |
| 355 | return ret; |
| 356 | |
| 357 | /* Tweak the size value. */ |
| 358 | raw_size = imr_raw_size(size); |
| 359 | end = base + raw_size; |
| 360 | |
| 361 | /* |
| 362 | * Check for reserved IMR value common to firmware, kernel and grub |
| 363 | * indicating a disabled IMR. |
| 364 | */ |
| 365 | imr.addr_lo = phys_to_imr(base); |
| 366 | imr.addr_hi = phys_to_imr(end); |
| 367 | imr.rmask = rmask; |
| 368 | imr.wmask = wmask; |
| 369 | if (!imr_is_enabled(&imr)) |
| 370 | return -ENOTSUPP; |
| 371 | |
| 372 | mutex_lock(&idev->lock); |
| 373 | |
| 374 | /* |
| 375 | * Find a free IMR while checking for an existing overlapping range. |
| 376 | * Note there's no restriction in silicon to prevent IMR overlaps. |
| 377 | * For the sake of simplicity and ease in defining/debugging an IMR |
| 378 | * memory map we exclude IMR overlaps. |
| 379 | */ |
| 380 | reg = -1; |
| 381 | for (i = 0; i < idev->max_imr; i++) { |
| 382 | ret = imr_read(idev, i, &imr); |
| 383 | if (ret) |
| 384 | goto failed; |
| 385 | |
| 386 | /* Find overlap @ base or end of requested range. */ |
| 387 | ret = -EINVAL; |
| 388 | if (imr_is_enabled(&imr)) { |
| 389 | if (imr_address_overlap(base, &imr)) |
| 390 | goto failed; |
| 391 | if (imr_address_overlap(end, &imr)) |
| 392 | goto failed; |
| 393 | } else { |
| 394 | reg = i; |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | /* Error out if we have no free IMR entries. */ |
| 399 | if (reg == -1) { |
| 400 | ret = -ENOMEM; |
| 401 | goto failed; |
| 402 | } |
| 403 | |
| 404 | pr_debug("add %d phys %pa-%pa size %zx mask 0x%08x wmask 0x%08x\n", |
| 405 | reg, &base, &end, raw_size, rmask, wmask); |
| 406 | |
| 407 | /* Enable IMR at specified range and access mask. */ |
| 408 | imr.addr_lo = phys_to_imr(base); |
| 409 | imr.addr_hi = phys_to_imr(end); |
| 410 | imr.rmask = rmask; |
| 411 | imr.wmask = wmask; |
| 412 | |
| 413 | ret = imr_write(idev, reg, &imr, lock); |
| 414 | if (ret < 0) { |
| 415 | /* |
| 416 | * In the highly unlikely event iosf_mbi_write failed |
| 417 | * attempt to rollback the IMR setup skipping the trapping |
| 418 | * of further IOSF write failures. |
| 419 | */ |
| 420 | imr.addr_lo = 0; |
| 421 | imr.addr_hi = 0; |
| 422 | imr.rmask = IMR_READ_ACCESS_ALL; |
| 423 | imr.wmask = IMR_WRITE_ACCESS_ALL; |
| 424 | imr_write(idev, reg, &imr, false); |
| 425 | } |
| 426 | failed: |
| 427 | mutex_unlock(&idev->lock); |
| 428 | return ret; |
| 429 | } |
| 430 | EXPORT_SYMBOL_GPL(imr_add_range); |
| 431 | |
| 432 | /** |
| 433 | * __imr_remove_range - delete an Isolated Memory Region. |
| 434 | * |
| 435 | * This function allows you to delete an IMR by its index specified by reg or |
| 436 | * by address range specified by base and size respectively. If you specify an |
| 437 | * index on its own the base and size parameters are ignored. |
| 438 | * imr_remove_range(0, base, size); delete IMR at index 0 base/size ignored. |
| 439 | * imr_remove_range(-1, base, size); delete IMR from base to base+size. |
| 440 | * |
| 441 | * @reg: imr index to remove. |
| 442 | * @base: physical base address of region aligned to 1 KiB. |
| 443 | * @size: physical size of region in bytes aligned to 1 KiB. |
| 444 | * @return: -EINVAL on invalid range or out or range id |
| 445 | * -ENODEV if reg is valid but no IMR exists or is locked |
| 446 | * 0 on success. |
| 447 | */ |
| 448 | static int __imr_remove_range(int reg, phys_addr_t base, size_t size) |
| 449 | { |
| 450 | phys_addr_t end; |
| 451 | bool found = false; |
| 452 | unsigned int i; |
| 453 | struct imr_device *idev = &imr_dev; |
| 454 | struct imr_regs imr; |
| 455 | size_t raw_size; |
| 456 | int ret = 0; |
| 457 | |
| 458 | if (WARN_ONCE(idev->init == false, "driver not initialized")) |
| 459 | return -ENODEV; |
| 460 | |
| 461 | /* |
| 462 | * Validate address range if deleting by address, else we are |
| 463 | * deleting by index where base and size will be ignored. |
| 464 | */ |
| 465 | if (reg == -1) { |
| 466 | ret = imr_check_params(base, size); |
| 467 | if (ret) |
| 468 | return ret; |
| 469 | } |
| 470 | |
| 471 | /* Tweak the size value. */ |
| 472 | raw_size = imr_raw_size(size); |
| 473 | end = base + raw_size; |
| 474 | |
| 475 | mutex_lock(&idev->lock); |
| 476 | |
| 477 | if (reg >= 0) { |
| 478 | /* If a specific IMR is given try to use it. */ |
| 479 | ret = imr_read(idev, reg, &imr); |
| 480 | if (ret) |
| 481 | goto failed; |
| 482 | |
| 483 | if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) { |
| 484 | ret = -ENODEV; |
| 485 | goto failed; |
| 486 | } |
| 487 | found = true; |
| 488 | } else { |
| 489 | /* Search for match based on address range. */ |
| 490 | for (i = 0; i < idev->max_imr; i++) { |
| 491 | ret = imr_read(idev, i, &imr); |
| 492 | if (ret) |
| 493 | goto failed; |
| 494 | |
| 495 | if (!imr_is_enabled(&imr) || imr.addr_lo & IMR_LOCK) |
| 496 | continue; |
| 497 | |
| 498 | if ((imr_to_phys(imr.addr_lo) == base) && |
| 499 | (imr_to_phys(imr.addr_hi) == end)) { |
| 500 | found = true; |
| 501 | reg = i; |
| 502 | break; |
| 503 | } |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | if (!found) { |
| 508 | ret = -ENODEV; |
| 509 | goto failed; |
| 510 | } |
| 511 | |
| 512 | pr_debug("remove %d phys %pa-%pa size %zx\n", reg, &base, &end, raw_size); |
| 513 | |
| 514 | /* Tear down the IMR. */ |
| 515 | imr.addr_lo = 0; |
| 516 | imr.addr_hi = 0; |
| 517 | imr.rmask = IMR_READ_ACCESS_ALL; |
| 518 | imr.wmask = IMR_WRITE_ACCESS_ALL; |
| 519 | |
| 520 | ret = imr_write(idev, reg, &imr, false); |
| 521 | |
| 522 | failed: |
| 523 | mutex_unlock(&idev->lock); |
| 524 | return ret; |
| 525 | } |
| 526 | |
| 527 | /** |
| 528 | * imr_remove_range - delete an Isolated Memory Region by address |
| 529 | * |
| 530 | * This function allows you to delete an IMR by an address range specified |
| 531 | * by base and size respectively. |
| 532 | * imr_remove_range(base, size); delete IMR from base to base+size. |
| 533 | * |
| 534 | * @base: physical base address of region aligned to 1 KiB. |
| 535 | * @size: physical size of region in bytes aligned to 1 KiB. |
| 536 | * @return: -EINVAL on invalid range or out or range id |
| 537 | * -ENODEV if reg is valid but no IMR exists or is locked |
| 538 | * 0 on success. |
| 539 | */ |
| 540 | int imr_remove_range(phys_addr_t base, size_t size) |
| 541 | { |
| 542 | return __imr_remove_range(-1, base, size); |
| 543 | } |
| 544 | EXPORT_SYMBOL_GPL(imr_remove_range); |
| 545 | |
| 546 | /** |
| 547 | * imr_clear - delete an Isolated Memory Region by index |
| 548 | * |
| 549 | * This function allows you to delete an IMR by an address range specified |
| 550 | * by the index of the IMR. Useful for initial sanitization of the IMR |
| 551 | * address map. |
| 552 | * imr_ge(base, size); delete IMR from base to base+size. |
| 553 | * |
| 554 | * @reg: imr index to remove. |
| 555 | * @return: -EINVAL on invalid range or out or range id |
| 556 | * -ENODEV if reg is valid but no IMR exists or is locked |
| 557 | * 0 on success. |
| 558 | */ |
| 559 | static inline int imr_clear(int reg) |
| 560 | { |
| 561 | return __imr_remove_range(reg, 0, 0); |
| 562 | } |
| 563 | |
| 564 | /** |
| 565 | * imr_fixup_memmap - Tear down IMRs used during bootup. |
| 566 | * |
| 567 | * BIOS and Grub both setup IMRs around compressed kernel, initrd memory |
| 568 | * that need to be removed before the kernel hands out one of the IMR |
| 569 | * encased addresses to a downstream DMA agent such as the SD or Ethernet. |
| 570 | * IMRs on Galileo are setup to immediately reset the system on violation. |
| 571 | * As a result if you're running a root filesystem from SD - you'll need |
| 572 | * the boot-time IMRs torn down or you'll find seemingly random resets when |
| 573 | * using your filesystem. |
| 574 | * |
| 575 | * @idev: pointer to imr_device structure. |
| 576 | * @return: |
| 577 | */ |
| 578 | static void __init imr_fixup_memmap(struct imr_device *idev) |
| 579 | { |
| 580 | phys_addr_t base = virt_to_phys(&_text); |
| 581 | size_t size = virt_to_phys(&__end_rodata) - base; |
| 582 | int i; |
| 583 | int ret; |
| 584 | |
| 585 | /* Tear down all existing unlocked IMRs. */ |
| 586 | for (i = 0; i < idev->max_imr; i++) |
| 587 | imr_clear(i); |
| 588 | |
| 589 | /* |
| 590 | * Setup a locked IMR around the physical extent of the kernel |
| 591 | * from the beginning of the .text secton to the end of the |
| 592 | * .rodata section as one physically contiguous block. |
| 593 | */ |
| 594 | ret = imr_add_range(base, size, IMR_CPU, IMR_CPU, true); |
| 595 | if (ret < 0) { |
| 596 | pr_err("unable to setup IMR for kernel: (%p - %p)\n", |
| 597 | &_text, &__end_rodata); |
| 598 | } else { |
| 599 | pr_info("protecting kernel .text - .rodata: %zu KiB (%p - %p)\n", |
| 600 | size / 1024, &_text, &__end_rodata); |
| 601 | } |
| 602 | |
| 603 | } |
| 604 | |
| 605 | static const struct x86_cpu_id imr_ids[] __initconst = { |
| 606 | { X86_VENDOR_INTEL, 5, 9 }, /* Intel Quark SoC X1000. */ |
| 607 | {} |
| 608 | }; |
| 609 | MODULE_DEVICE_TABLE(x86cpu, imr_ids); |
| 610 | |
| 611 | /** |
| 612 | * imr_init - entry point for IMR driver. |
| 613 | * |
| 614 | * return: -ENODEV for no IMR support 0 if good to go. |
| 615 | */ |
| 616 | static int __init imr_init(void) |
| 617 | { |
| 618 | struct imr_device *idev = &imr_dev; |
| 619 | int ret; |
| 620 | |
| 621 | if (!x86_match_cpu(imr_ids) || !iosf_mbi_available()) |
| 622 | return -ENODEV; |
| 623 | |
| 624 | idev->max_imr = QUARK_X1000_IMR_MAX; |
| 625 | idev->reg_base = QUARK_X1000_IMR_REGBASE; |
| 626 | idev->init = true; |
| 627 | |
| 628 | mutex_init(&idev->lock); |
| 629 | ret = imr_debugfs_register(idev); |
| 630 | if (ret != 0) |
| 631 | pr_warn("debugfs register failed!\n"); |
| 632 | imr_fixup_memmap(idev); |
| 633 | return 0; |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * imr_exit - exit point for IMR code. |
| 638 | * |
| 639 | * Deregisters debugfs, leave IMR state as-is. |
| 640 | * |
| 641 | * return: |
| 642 | */ |
| 643 | static void __exit imr_exit(void) |
| 644 | { |
| 645 | imr_debugfs_unregister(&imr_dev); |
| 646 | } |
| 647 | |
| 648 | module_init(imr_init); |
| 649 | module_exit(imr_exit); |
| 650 | |
| 651 | MODULE_AUTHOR("Bryan O'Donoghue <pure.logic@nexus-software.ie>"); |
| 652 | MODULE_DESCRIPTION("Intel Isolated Memory Region driver"); |
| 653 | MODULE_LICENSE("Dual BSD/GPL"); |