blob: cd53c174ced171119eabe814919ff570b310006b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * eth1394.c -- Ethernet driver for Linux IEEE-1394 Subsystem
3 *
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7 *
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25/* This driver intends to support RFC 2734, which describes a method for
26 * transporting IPv4 datagrams over IEEE-1394 serial busses. This driver
27 * will ultimately support that method, but currently falls short in
28 * several areas.
29 *
30 * TODO:
31 * RFC 2734 related:
32 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
33 *
34 * Non-RFC 2734 related:
35 * - Handle fragmented skb's coming from the networking layer.
36 * - Move generic GASP reception to core 1394 code
37 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
38 * - Stability improvements
39 * - Performance enhancements
40 * - Consider garbage collecting old partial datagrams after X amount of time
41 */
42
43
44#include <linux/module.h>
45
46#include <linux/sched.h>
47#include <linux/kernel.h>
48#include <linux/slab.h>
49#include <linux/errno.h>
50#include <linux/types.h>
51#include <linux/delay.h>
52#include <linux/init.h>
53
54#include <linux/netdevice.h>
55#include <linux/inetdevice.h>
56#include <linux/etherdevice.h>
57#include <linux/if_arp.h>
58#include <linux/if_ether.h>
59#include <linux/ip.h>
60#include <linux/in.h>
61#include <linux/tcp.h>
62#include <linux/skbuff.h>
63#include <linux/bitops.h>
64#include <linux/ethtool.h>
65#include <asm/uaccess.h>
66#include <asm/delay.h>
67#include <asm/semaphore.h>
68#include <net/arp.h>
69
70#include "csr1212.h"
71#include "ieee1394_types.h"
72#include "ieee1394_core.h"
73#include "ieee1394_transactions.h"
74#include "ieee1394.h"
75#include "highlevel.h"
76#include "iso.h"
77#include "nodemgr.h"
78#include "eth1394.h"
79#include "config_roms.h"
80
81#define ETH1394_PRINT_G(level, fmt, args...) \
82 printk(level "%s: " fmt, driver_name, ## args)
83
84#define ETH1394_PRINT(level, dev_name, fmt, args...) \
85 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
86
87#define DEBUG(fmt, args...) \
88 printk(KERN_ERR "%s:%s[%d]: " fmt "\n", driver_name, __FUNCTION__, __LINE__, ## args)
89#define TRACE() printk(KERN_ERR "%s:%s[%d] ---- TRACE\n", driver_name, __FUNCTION__, __LINE__)
90
91static char version[] __devinitdata =
Ben Collins1934b8b2005-07-09 20:01:23 -040092 "$Rev: 1264 $ Ben Collins <bcollins@debian.org>";
Linus Torvalds1da177e2005-04-16 15:20:36 -070093
94struct fragment_info {
95 struct list_head list;
96 int offset;
97 int len;
98};
99
100struct partial_datagram {
101 struct list_head list;
102 u16 dgl;
103 u16 dg_size;
104 u16 ether_type;
105 struct sk_buff *skb;
106 char *pbuf;
107 struct list_head frag_info;
108};
109
110struct pdg_list {
111 struct list_head list; /* partial datagram list per node */
112 unsigned int sz; /* partial datagram list size per node */
113 spinlock_t lock; /* partial datagram lock */
114};
115
116struct eth1394_host_info {
117 struct hpsb_host *host;
118 struct net_device *dev;
119};
120
121struct eth1394_node_ref {
122 struct unit_directory *ud;
123 struct list_head list;
124};
125
126struct eth1394_node_info {
127 u16 maxpayload; /* Max payload */
128 u8 sspd; /* Max speed */
129 u64 fifo; /* FIFO address */
130 struct pdg_list pdg; /* partial RX datagram lists */
131 int dgl; /* Outgoing datagram label */
132};
133
134/* Our ieee1394 highlevel driver */
135#define ETH1394_DRIVER_NAME "eth1394"
136static const char driver_name[] = ETH1394_DRIVER_NAME;
137
138static kmem_cache_t *packet_task_cache;
139
140static struct hpsb_highlevel eth1394_highlevel;
141
142/* Use common.lf to determine header len */
143static const int hdr_type_len[] = {
144 sizeof (struct eth1394_uf_hdr),
145 sizeof (struct eth1394_ff_hdr),
146 sizeof (struct eth1394_sf_hdr),
147 sizeof (struct eth1394_sf_hdr)
148};
149
150/* Change this to IEEE1394_SPEED_S100 to make testing easier */
151#define ETH1394_SPEED_DEF IEEE1394_SPEED_MAX
152
153/* For now, this needs to be 1500, so that XP works with us */
154#define ETH1394_DATA_LEN ETH_DATA_LEN
155
156static const u16 eth1394_speedto_maxpayload[] = {
157/* S100, S200, S400, S800, S1600, S3200 */
158 512, 1024, 2048, 4096, 4096, 4096
159};
160
161MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
162MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
163MODULE_LICENSE("GPL");
164
165/* The max_partial_datagrams parameter is the maximum number of fragmented
166 * datagrams per node that eth1394 will keep in memory. Providing an upper
167 * bound allows us to limit the amount of memory that partial datagrams
168 * consume in the event that some partial datagrams are never completed.
169 */
170static int max_partial_datagrams = 25;
171module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
172MODULE_PARM_DESC(max_partial_datagrams,
173 "Maximum number of partially received fragmented datagrams "
174 "(default = 25).");
175
176
177static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
178 unsigned short type, void *daddr, void *saddr,
179 unsigned len);
180static int ether1394_rebuild_header(struct sk_buff *skb);
181static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
182static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
183static void ether1394_header_cache_update(struct hh_cache *hh,
184 struct net_device *dev,
185 unsigned char * haddr);
186static int ether1394_mac_addr(struct net_device *dev, void *p);
187
188static void purge_partial_datagram(struct list_head *old);
189static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
190static void ether1394_iso(struct hpsb_iso *iso);
191
192static struct ethtool_ops ethtool_ops;
193
194static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
195 quadlet_t *data, u64 addr, size_t len, u16 flags);
196static void ether1394_add_host (struct hpsb_host *host);
197static void ether1394_remove_host (struct hpsb_host *host);
198static void ether1394_host_reset (struct hpsb_host *host);
199
200/* Function for incoming 1394 packets */
201static struct hpsb_address_ops addr_ops = {
202 .write = ether1394_write,
203};
204
205/* Ieee1394 highlevel driver functions */
206static struct hpsb_highlevel eth1394_highlevel = {
207 .name = driver_name,
208 .add_host = ether1394_add_host,
209 .remove_host = ether1394_remove_host,
210 .host_reset = ether1394_host_reset,
211};
212
213
214/* This is called after an "ifup" */
215static int ether1394_open (struct net_device *dev)
216{
217 struct eth1394_priv *priv = netdev_priv(dev);
218 int ret = 0;
219
220 /* Something bad happened, don't even try */
221 if (priv->bc_state == ETHER1394_BC_ERROR) {
222 /* we'll try again */
223 priv->iso = hpsb_iso_recv_init(priv->host,
224 ETHER1394_GASP_BUFFERS * 2 *
225 (1 << (priv->host->csr.max_rec +
226 1)),
227 ETHER1394_GASP_BUFFERS,
228 priv->broadcast_channel,
229 HPSB_ISO_DMA_PACKET_PER_BUFFER,
230 1, ether1394_iso);
231 if (priv->iso == NULL) {
232 ETH1394_PRINT(KERN_ERR, dev->name,
233 "Could not allocate isochronous receive "
234 "context for the broadcast channel\n");
235 priv->bc_state = ETHER1394_BC_ERROR;
236 ret = -EAGAIN;
237 } else {
238 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
239 priv->bc_state = ETHER1394_BC_STOPPED;
240 else
241 priv->bc_state = ETHER1394_BC_RUNNING;
242 }
243 }
244
245 if (ret)
246 return ret;
247
248 netif_start_queue (dev);
249 return 0;
250}
251
252/* This is called after an "ifdown" */
253static int ether1394_stop (struct net_device *dev)
254{
255 netif_stop_queue (dev);
256 return 0;
257}
258
259/* Return statistics to the caller */
260static struct net_device_stats *ether1394_stats (struct net_device *dev)
261{
262 return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
263}
264
265/* What to do if we timeout. I think a host reset is probably in order, so
266 * that's what we do. Should we increment the stat counters too? */
267static void ether1394_tx_timeout (struct net_device *dev)
268{
269 ETH1394_PRINT (KERN_ERR, dev->name, "Timeout, resetting host %s\n",
270 ((struct eth1394_priv *)netdev_priv(dev))->host->driver->name);
271
272 highlevel_host_reset (((struct eth1394_priv *)netdev_priv(dev))->host);
273
274 netif_wake_queue (dev);
275}
276
277static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
278{
279 struct eth1394_priv *priv = netdev_priv(dev);
280
281 if ((new_mtu < 68) ||
282 (new_mtu > min(ETH1394_DATA_LEN,
283 (int)((1 << (priv->host->csr.max_rec + 1)) -
284 (sizeof(union eth1394_hdr) +
285 ETHER1394_GASP_OVERHEAD)))))
286 return -EINVAL;
287 dev->mtu = new_mtu;
288 return 0;
289}
290
291static void purge_partial_datagram(struct list_head *old)
292{
293 struct partial_datagram *pd = list_entry(old, struct partial_datagram, list);
294 struct list_head *lh, *n;
295
296 list_for_each_safe(lh, n, &pd->frag_info) {
297 struct fragment_info *fi = list_entry(lh, struct fragment_info, list);
298 list_del(lh);
299 kfree(fi);
300 }
301 list_del(old);
302 kfree_skb(pd->skb);
303 kfree(pd);
304}
305
306/******************************************
307 * 1394 bus activity functions
308 ******************************************/
309
310static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
311 struct unit_directory *ud)
312{
313 struct eth1394_node_ref *node;
314
315 list_for_each_entry(node, inl, list)
316 if (node->ud == ud)
317 return node;
318
319 return NULL;
320}
321
322static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
323 u64 guid)
324{
325 struct eth1394_node_ref *node;
326
327 list_for_each_entry(node, inl, list)
328 if (node->ud->ne->guid == guid)
329 return node;
330
331 return NULL;
332}
333
334static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
335 nodeid_t nodeid)
336{
337 struct eth1394_node_ref *node;
338 list_for_each_entry(node, inl, list) {
339 if (node->ud->ne->nodeid == nodeid)
340 return node;
341 }
342
343 return NULL;
344}
345
346static int eth1394_probe(struct device *dev)
347{
348 struct unit_directory *ud;
349 struct eth1394_host_info *hi;
350 struct eth1394_priv *priv;
351 struct eth1394_node_ref *new_node;
352 struct eth1394_node_info *node_info;
353
354 ud = container_of(dev, struct unit_directory, device);
355
356 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
357 if (!hi)
358 return -ENOENT;
359
360 new_node = kmalloc(sizeof(struct eth1394_node_ref),
361 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
362 if (!new_node)
363 return -ENOMEM;
364
365 node_info = kmalloc(sizeof(struct eth1394_node_info),
366 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
367 if (!node_info) {
368 kfree(new_node);
369 return -ENOMEM;
370 }
371
372 spin_lock_init(&node_info->pdg.lock);
373 INIT_LIST_HEAD(&node_info->pdg.list);
374 node_info->pdg.sz = 0;
375 node_info->fifo = ETHER1394_INVALID_ADDR;
376
377 ud->device.driver_data = node_info;
378 new_node->ud = ud;
379
380 priv = netdev_priv(hi->dev);
381 list_add_tail(&new_node->list, &priv->ip_node_list);
382
383 return 0;
384}
385
386static int eth1394_remove(struct device *dev)
387{
388 struct unit_directory *ud;
389 struct eth1394_host_info *hi;
390 struct eth1394_priv *priv;
391 struct eth1394_node_ref *old_node;
392 struct eth1394_node_info *node_info;
393 struct list_head *lh, *n;
394 unsigned long flags;
395
396 ud = container_of(dev, struct unit_directory, device);
397 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
398 if (!hi)
399 return -ENOENT;
400
401 priv = netdev_priv(hi->dev);
402
403 old_node = eth1394_find_node(&priv->ip_node_list, ud);
404
405 if (old_node) {
406 list_del(&old_node->list);
407 kfree(old_node);
408
409 node_info = (struct eth1394_node_info*)ud->device.driver_data;
410
411 spin_lock_irqsave(&node_info->pdg.lock, flags);
412 /* The partial datagram list should be empty, but we'll just
413 * make sure anyway... */
414 list_for_each_safe(lh, n, &node_info->pdg.list) {
415 purge_partial_datagram(lh);
416 }
417 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
418
419 kfree(node_info);
420 ud->device.driver_data = NULL;
421 }
422 return 0;
423}
424
425static int eth1394_update(struct unit_directory *ud)
426{
427 struct eth1394_host_info *hi;
428 struct eth1394_priv *priv;
429 struct eth1394_node_ref *node;
430 struct eth1394_node_info *node_info;
431
432 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
433 if (!hi)
434 return -ENOENT;
435
436 priv = netdev_priv(hi->dev);
437
438 node = eth1394_find_node(&priv->ip_node_list, ud);
439
440 if (!node) {
441 node = kmalloc(sizeof(struct eth1394_node_ref),
442 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
443 if (!node)
444 return -ENOMEM;
445
446 node_info = kmalloc(sizeof(struct eth1394_node_info),
447 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
448 if (!node_info) {
449 kfree(node);
450 return -ENOMEM;
451 }
452
453 spin_lock_init(&node_info->pdg.lock);
454 INIT_LIST_HEAD(&node_info->pdg.list);
455 node_info->pdg.sz = 0;
456
457 ud->device.driver_data = node_info;
458 node->ud = ud;
459
460 priv = netdev_priv(hi->dev);
461 list_add_tail(&node->list, &priv->ip_node_list);
462 }
463
464 return 0;
465}
466
467
468static struct ieee1394_device_id eth1394_id_table[] = {
469 {
470 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
471 IEEE1394_MATCH_VERSION),
472 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
473 .version = ETHER1394_GASP_VERSION,
474 },
475 {}
476};
477
478MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
479
480static struct hpsb_protocol_driver eth1394_proto_driver = {
481 .name = "IPv4 over 1394 Driver",
482 .id_table = eth1394_id_table,
483 .update = eth1394_update,
484 .driver = {
485 .name = ETH1394_DRIVER_NAME,
486 .bus = &ieee1394_bus_type,
487 .probe = eth1394_probe,
488 .remove = eth1394_remove,
489 },
490};
491
492
493static void ether1394_reset_priv (struct net_device *dev, int set_mtu)
494{
495 unsigned long flags;
496 int i;
497 struct eth1394_priv *priv = netdev_priv(dev);
498 struct hpsb_host *host = priv->host;
499 u64 guid = *((u64*)&(host->csr.rom->bus_info_data[3]));
500 u16 maxpayload = 1 << (host->csr.max_rec + 1);
501 int max_speed = IEEE1394_SPEED_MAX;
502
503 spin_lock_irqsave (&priv->lock, flags);
504
505 memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
506 priv->bc_maxpayload = 512;
507
508 /* Determine speed limit */
509 for (i = 0; i < host->node_count; i++)
510 if (max_speed > host->speed_map[NODEID_TO_NODE(host->node_id) *
511 64 + i])
512 max_speed = host->speed_map[NODEID_TO_NODE(host->node_id) *
513 64 + i];
514 priv->bc_sspd = max_speed;
515
516 /* We'll use our maxpayload as the default mtu */
517 if (set_mtu) {
518 dev->mtu = min(ETH1394_DATA_LEN,
519 (int)(maxpayload -
520 (sizeof(union eth1394_hdr) +
521 ETHER1394_GASP_OVERHEAD)));
522
523 /* Set our hardware address while we're at it */
524 *(u64*)dev->dev_addr = guid;
525 *(u64*)dev->broadcast = ~0x0ULL;
526 }
527
528 spin_unlock_irqrestore (&priv->lock, flags);
529}
530
531/* This function is called right before register_netdev */
532static void ether1394_init_dev (struct net_device *dev)
533{
534 /* Our functions */
535 dev->open = ether1394_open;
536 dev->stop = ether1394_stop;
537 dev->hard_start_xmit = ether1394_tx;
538 dev->get_stats = ether1394_stats;
539 dev->tx_timeout = ether1394_tx_timeout;
540 dev->change_mtu = ether1394_change_mtu;
541
542 dev->hard_header = ether1394_header;
543 dev->rebuild_header = ether1394_rebuild_header;
544 dev->hard_header_cache = ether1394_header_cache;
545 dev->header_cache_update= ether1394_header_cache_update;
546 dev->hard_header_parse = ether1394_header_parse;
547 dev->set_mac_address = ether1394_mac_addr;
548 SET_ETHTOOL_OPS(dev, &ethtool_ops);
549
550 /* Some constants */
551 dev->watchdog_timeo = ETHER1394_TIMEOUT;
552 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
553 dev->features = NETIF_F_HIGHDMA;
554 dev->addr_len = ETH1394_ALEN;
555 dev->hard_header_len = ETH1394_HLEN;
556 dev->type = ARPHRD_IEEE1394;
557
558 ether1394_reset_priv (dev, 1);
559}
560
561/*
562 * This function is called every time a card is found. It is generally called
563 * when the module is installed. This is where we add all of our ethernet
564 * devices. One for each host.
565 */
566static void ether1394_add_host (struct hpsb_host *host)
567{
568 struct eth1394_host_info *hi = NULL;
569 struct net_device *dev = NULL;
570 struct eth1394_priv *priv;
571 static int version_printed = 0;
572 u64 fifo_addr;
573
574 if (!(host->config_roms & HPSB_CONFIG_ROM_ENTRY_IP1394))
575 return;
576
577 fifo_addr = hpsb_allocate_and_register_addrspace(&eth1394_highlevel,
578 host,
579 &addr_ops,
580 ETHER1394_REGION_ADDR_LEN,
581 ETHER1394_REGION_ADDR_LEN,
582 -1, -1);
583 if (fifo_addr == ~0ULL)
584 goto out;
585
586 if (version_printed++ == 0)
587 ETH1394_PRINT_G (KERN_INFO, "%s\n", version);
588
589 /* We should really have our own alloc_hpsbdev() function in
590 * net_init.c instead of calling the one for ethernet then hijacking
591 * it for ourselves. That way we'd be a real networking device. */
592 dev = alloc_etherdev(sizeof (struct eth1394_priv));
593
594 if (dev == NULL) {
595 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
596 "etherdevice for IEEE 1394 device %s-%d\n",
597 host->driver->name, host->id);
598 goto out;
599 }
600
601 SET_MODULE_OWNER(dev);
602 SET_NETDEV_DEV(dev, &host->device);
603
604 priv = netdev_priv(dev);
605
606 INIT_LIST_HEAD(&priv->ip_node_list);
607
608 spin_lock_init(&priv->lock);
609 priv->host = host;
610 priv->local_fifo = fifo_addr;
611
612 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
613
614 if (hi == NULL) {
615 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
616 "hostinfo for IEEE 1394 device %s-%d\n",
617 host->driver->name, host->id);
618 goto out;
619 }
620
621 ether1394_init_dev(dev);
622
623 if (register_netdev (dev)) {
624 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
625 goto out;
626 }
627
628 ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
629 host->id);
630
631 hi->host = host;
632 hi->dev = dev;
633
634 /* Ignore validity in hopes that it will be set in the future. It'll
635 * be checked when the eth device is opened. */
636 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
637
638 priv->iso = hpsb_iso_recv_init(host, (ETHER1394_GASP_BUFFERS * 2 *
639 (1 << (host->csr.max_rec + 1))),
640 ETHER1394_GASP_BUFFERS,
641 priv->broadcast_channel,
642 HPSB_ISO_DMA_PACKET_PER_BUFFER,
643 1, ether1394_iso);
644 if (priv->iso == NULL) {
645 ETH1394_PRINT(KERN_ERR, dev->name,
646 "Could not allocate isochronous receive context "
647 "for the broadcast channel\n");
648 priv->bc_state = ETHER1394_BC_ERROR;
649 } else {
650 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
651 priv->bc_state = ETHER1394_BC_STOPPED;
652 else
653 priv->bc_state = ETHER1394_BC_RUNNING;
654 }
655
656 return;
657
658out:
659 if (dev != NULL)
660 free_netdev(dev);
661 if (hi)
662 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
663
664 return;
665}
666
667/* Remove a card from our list */
668static void ether1394_remove_host (struct hpsb_host *host)
669{
670 struct eth1394_host_info *hi;
671
672 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
673 if (hi != NULL) {
674 struct eth1394_priv *priv = netdev_priv(hi->dev);
675
676 hpsb_unregister_addrspace(&eth1394_highlevel, host,
677 priv->local_fifo);
678
679 if (priv->iso != NULL)
680 hpsb_iso_shutdown(priv->iso);
681
682 if (hi->dev) {
683 unregister_netdev (hi->dev);
684 free_netdev(hi->dev);
685 }
686 }
687
688 return;
689}
690
691/* A reset has just arisen */
692static void ether1394_host_reset (struct hpsb_host *host)
693{
694 struct eth1394_host_info *hi;
695 struct eth1394_priv *priv;
696 struct net_device *dev;
697 struct list_head *lh, *n;
698 struct eth1394_node_ref *node;
699 struct eth1394_node_info *node_info;
700 unsigned long flags;
701
702 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
703
704 /* This can happen for hosts that we don't use */
705 if (hi == NULL)
706 return;
707
708 dev = hi->dev;
Ben Collins1934b8b2005-07-09 20:01:23 -0400709 priv = (struct eth1394_priv *)netdev_priv(dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710
711 /* Reset our private host data, but not our mtu */
712 netif_stop_queue (dev);
713 ether1394_reset_priv (dev, 0);
714
715 list_for_each_entry(node, &priv->ip_node_list, list) {
716 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
717
718 spin_lock_irqsave(&node_info->pdg.lock, flags);
719
720 list_for_each_safe(lh, n, &node_info->pdg.list) {
721 purge_partial_datagram(lh);
722 }
723
724 INIT_LIST_HEAD(&(node_info->pdg.list));
725 node_info->pdg.sz = 0;
726
727 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
728 }
729
730 netif_wake_queue (dev);
731}
732
733/******************************************
734 * HW Header net device functions
735 ******************************************/
736/* These functions have been adapted from net/ethernet/eth.c */
737
738
739/* Create a fake MAC header for an arbitrary protocol layer.
740 * saddr=NULL means use device source address
741 * daddr=NULL means leave destination address (eg unresolved arp). */
742static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
743 unsigned short type, void *daddr, void *saddr,
744 unsigned len)
745{
746 struct eth1394hdr *eth = (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
747
748 eth->h_proto = htons(type);
749
750 if (dev->flags & (IFF_LOOPBACK|IFF_NOARP)) {
751 memset(eth->h_dest, 0, dev->addr_len);
752 return(dev->hard_header_len);
753 }
754
755 if (daddr) {
756 memcpy(eth->h_dest,daddr,dev->addr_len);
757 return dev->hard_header_len;
758 }
759
760 return -dev->hard_header_len;
761
762}
763
764
765/* Rebuild the faked MAC header. This is called after an ARP
766 * (or in future other address resolution) has completed on this
767 * sk_buff. We now let ARP fill in the other fields.
768 *
769 * This routine CANNOT use cached dst->neigh!
770 * Really, it is used only when dst->neigh is wrong.
771 */
772static int ether1394_rebuild_header(struct sk_buff *skb)
773{
774 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
775 struct net_device *dev = skb->dev;
776
777 switch (eth->h_proto) {
778
779#ifdef CONFIG_INET
780 case __constant_htons(ETH_P_IP):
781 return arp_find((unsigned char*)&eth->h_dest, skb);
782#endif
783 default:
784 ETH1394_PRINT(KERN_DEBUG, dev->name,
785 "unable to resolve type %04x addresses.\n",
786 eth->h_proto);
787 break;
788 }
789
790 return 0;
791}
792
793static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
794{
795 struct net_device *dev = skb->dev;
796 memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
797 return ETH1394_ALEN;
798}
799
800
801static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
802{
803 unsigned short type = hh->hh_type;
804 struct eth1394hdr *eth = (struct eth1394hdr*)(((u8*)hh->hh_data) +
805 (16 - ETH1394_HLEN));
806 struct net_device *dev = neigh->dev;
807
808 if (type == __constant_htons(ETH_P_802_3)) {
809 return -1;
810 }
811
812 eth->h_proto = type;
813 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
814
815 hh->hh_len = ETH1394_HLEN;
816 return 0;
817}
818
819/* Called by Address Resolution module to notify changes in address. */
820static void ether1394_header_cache_update(struct hh_cache *hh,
821 struct net_device *dev,
822 unsigned char * haddr)
823{
824 memcpy(((u8*)hh->hh_data) + (16 - ETH1394_HLEN), haddr, dev->addr_len);
825}
826
827static int ether1394_mac_addr(struct net_device *dev, void *p)
828{
829 if (netif_running(dev))
830 return -EBUSY;
831
832 /* Not going to allow setting the MAC address, we really need to use
833 * the real one supplied by the hardware */
834 return -EINVAL;
835 }
836
837
838
839/******************************************
840 * Datagram reception code
841 ******************************************/
842
843/* Copied from net/ethernet/eth.c */
844static inline u16 ether1394_type_trans(struct sk_buff *skb,
845 struct net_device *dev)
846{
847 struct eth1394hdr *eth;
848 unsigned char *rawp;
849
850 skb->mac.raw = skb->data;
851 skb_pull (skb, ETH1394_HLEN);
852 eth = eth1394_hdr(skb);
853
854 if (*eth->h_dest & 1) {
855 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len)==0)
856 skb->pkt_type = PACKET_BROADCAST;
857#if 0
858 else
859 skb->pkt_type = PACKET_MULTICAST;
860#endif
861 } else {
862 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
863 skb->pkt_type = PACKET_OTHERHOST;
864 }
865
866 if (ntohs (eth->h_proto) >= 1536)
867 return eth->h_proto;
868
869 rawp = skb->data;
870
871 if (*(unsigned short *)rawp == 0xFFFF)
872 return htons (ETH_P_802_3);
873
874 return htons (ETH_P_802_2);
875}
876
877/* Parse an encapsulated IP1394 header into an ethernet frame packet.
878 * We also perform ARP translation here, if need be. */
879static inline u16 ether1394_parse_encap(struct sk_buff *skb,
880 struct net_device *dev,
881 nodeid_t srcid, nodeid_t destid,
882 u16 ether_type)
883{
884 struct eth1394_priv *priv = netdev_priv(dev);
885 u64 dest_hw;
886 unsigned short ret = 0;
887
888 /* Setup our hw addresses. We use these to build the
889 * ethernet header. */
890 if (destid == (LOCAL_BUS | ALL_NODES))
891 dest_hw = ~0ULL; /* broadcast */
892 else
893 dest_hw = cpu_to_be64((((u64)priv->host->csr.guid_hi) << 32) |
894 priv->host->csr.guid_lo);
895
896 /* If this is an ARP packet, convert it. First, we want to make
897 * use of some of the fields, since they tell us a little bit
898 * about the sending machine. */
899 if (ether_type == __constant_htons (ETH_P_ARP)) {
900 struct eth1394_arp *arp1394 = (struct eth1394_arp*)skb->data;
901 struct arphdr *arp = (struct arphdr *)skb->data;
902 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
903 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
904 ntohl(arp1394->fifo_lo);
905 u8 max_rec = min(priv->host->csr.max_rec,
906 (u8)(arp1394->max_rec));
907 int sspd = arp1394->sspd;
908 u16 maxpayload;
909 struct eth1394_node_ref *node;
910 struct eth1394_node_info *node_info;
911
912 /* Sanity check. MacOSX seems to be sending us 131 in this
913 * field (atleast on my Panther G5). Not sure why. */
914 if (sspd > 5 || sspd < 0)
915 sspd = 0;
916
917 maxpayload = min(eth1394_speedto_maxpayload[sspd], (u16)(1 << (max_rec + 1)));
918
919 node = eth1394_find_node_guid(&priv->ip_node_list,
920 be64_to_cpu(arp1394->s_uniq_id));
921 if (!node) {
922 return 0;
923 }
924
925 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
926
927 /* Update our speed/payload/fifo_offset table */
928 node_info->maxpayload = maxpayload;
929 node_info->sspd = sspd;
930 node_info->fifo = fifo_addr;
931
932 /* Now that we're done with the 1394 specific stuff, we'll
933 * need to alter some of the data. Believe it or not, all
934 * that needs to be done is sender_IP_address needs to be
935 * moved, the destination hardware address get stuffed
936 * in and the hardware address length set to 8.
937 *
938 * IMPORTANT: The code below overwrites 1394 specific data
939 * needed above so keep the munging of the data for the
940 * higher level IP stack last. */
941
942 arp->ar_hln = 8;
943 arp_ptr += arp->ar_hln; /* skip over sender unique id */
944 *(u32*)arp_ptr = arp1394->sip; /* move sender IP addr */
945 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
946
947 if (arp->ar_op == 1)
948 /* just set ARP req target unique ID to 0 */
949 *((u64*)arp_ptr) = 0;
950 else
951 *((u64*)arp_ptr) = *((u64*)dev->dev_addr);
952 }
953
954 /* Now add the ethernet header. */
955 if (dev->hard_header (skb, dev, __constant_ntohs (ether_type),
956 &dest_hw, NULL, skb->len) >= 0)
957 ret = ether1394_type_trans(skb, dev);
958
959 return ret;
960}
961
962static inline int fragment_overlap(struct list_head *frag_list, int offset, int len)
963{
964 struct fragment_info *fi;
965
966 list_for_each_entry(fi, frag_list, list) {
967 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
968 ((offset + len - 1) < fi->offset)))
969 return 1;
970 }
971 return 0;
972}
973
974static inline struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
975{
976 struct partial_datagram *pd;
977
978 list_for_each_entry(pd, pdgl, list) {
979 if (pd->dgl == dgl)
980 return &pd->list;
981 }
982 return NULL;
983}
984
985/* Assumes that new fragment does not overlap any existing fragments */
986static inline int new_fragment(struct list_head *frag_info, int offset, int len)
987{
988 struct list_head *lh;
989 struct fragment_info *fi, *fi2, *new;
990
991 list_for_each(lh, frag_info) {
992 fi = list_entry(lh, struct fragment_info, list);
993 if ((fi->offset + fi->len) == offset) {
994 /* The new fragment can be tacked on to the end */
995 fi->len += len;
996 /* Did the new fragment plug a hole? */
997 fi2 = list_entry(lh->next, struct fragment_info, list);
998 if ((fi->offset + fi->len) == fi2->offset) {
999 /* glue fragments together */
1000 fi->len += fi2->len;
1001 list_del(lh->next);
1002 kfree(fi2);
1003 }
1004 return 0;
1005 } else if ((offset + len) == fi->offset) {
1006 /* The new fragment can be tacked on to the beginning */
1007 fi->offset = offset;
1008 fi->len += len;
1009 /* Did the new fragment plug a hole? */
1010 fi2 = list_entry(lh->prev, struct fragment_info, list);
1011 if ((fi2->offset + fi2->len) == fi->offset) {
1012 /* glue fragments together */
1013 fi2->len += fi->len;
1014 list_del(lh);
1015 kfree(fi);
1016 }
1017 return 0;
1018 } else if (offset > (fi->offset + fi->len)) {
1019 break;
1020 } else if ((offset + len) < fi->offset) {
1021 lh = lh->prev;
1022 break;
1023 }
1024 }
1025
1026 new = kmalloc(sizeof(struct fragment_info), GFP_ATOMIC);
1027 if (!new)
1028 return -ENOMEM;
1029
1030 new->offset = offset;
1031 new->len = len;
1032
1033 list_add(&new->list, lh);
1034
1035 return 0;
1036}
1037
1038static inline int new_partial_datagram(struct net_device *dev,
1039 struct list_head *pdgl, int dgl,
1040 int dg_size, char *frag_buf,
1041 int frag_off, int frag_len)
1042{
1043 struct partial_datagram *new;
1044
1045 new = kmalloc(sizeof(struct partial_datagram), GFP_ATOMIC);
1046 if (!new)
1047 return -ENOMEM;
1048
1049 INIT_LIST_HEAD(&new->frag_info);
1050
1051 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1052 kfree(new);
1053 return -ENOMEM;
1054 }
1055
1056 new->dgl = dgl;
1057 new->dg_size = dg_size;
1058
1059 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1060 if (!new->skb) {
1061 struct fragment_info *fi = list_entry(new->frag_info.next,
1062 struct fragment_info,
1063 list);
1064 kfree(fi);
1065 kfree(new);
1066 return -ENOMEM;
1067 }
1068
1069 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1070 new->pbuf = skb_put(new->skb, dg_size);
1071 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1072
1073 list_add(&new->list, pdgl);
1074
1075 return 0;
1076}
1077
1078static inline int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1079 char *frag_buf, int frag_off, int frag_len)
1080{
1081 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1082
1083 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0) {
1084 return -ENOMEM;
1085 }
1086
1087 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1088
1089 /* Move list entry to beginnig of list so that oldest partial
1090 * datagrams percolate to the end of the list */
1091 list_del(lh);
1092 list_add(lh, pdgl);
1093
1094 return 0;
1095}
1096
1097static inline int is_datagram_complete(struct list_head *lh, int dg_size)
1098{
1099 struct partial_datagram *pd = list_entry(lh, struct partial_datagram, list);
1100 struct fragment_info *fi = list_entry(pd->frag_info.next,
1101 struct fragment_info, list);
1102
1103 return (fi->len == dg_size);
1104}
1105
1106/* Packet reception. We convert the IP1394 encapsulation header to an
1107 * ethernet header, and fill it with some of our other fields. This is
1108 * an incoming packet from the 1394 bus. */
1109static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1110 char *buf, int len)
1111{
1112 struct sk_buff *skb;
1113 unsigned long flags;
1114 struct eth1394_priv *priv = netdev_priv(dev);
1115 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1116 u16 ether_type = 0; /* initialized to clear warning */
1117 int hdr_len;
1118 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1119 struct eth1394_node_info *node_info;
1120
1121 if (!ud) {
1122 struct eth1394_node_ref *node;
1123 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1124 if (!node) {
1125 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1126 "lookup failure: " NODE_BUS_FMT,
1127 NODE_BUS_ARGS(priv->host, srcid));
1128 priv->stats.rx_dropped++;
1129 return -1;
1130 }
1131 ud = node->ud;
1132
1133 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1134 }
1135
1136 node_info = (struct eth1394_node_info*)ud->device.driver_data;
1137
1138 /* First, did we receive a fragmented or unfragmented datagram? */
1139 hdr->words.word1 = ntohs(hdr->words.word1);
1140
1141 hdr_len = hdr_type_len[hdr->common.lf];
1142
1143 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1144 /* An unfragmented datagram has been received by the ieee1394
1145 * bus. Build an skbuff around it so we can pass it to the
1146 * high level network layer. */
1147
1148 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1149 if (!skb) {
1150 HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1151 priv->stats.rx_dropped++;
1152 return -1;
1153 }
1154 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1155 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len, len - hdr_len);
1156 ether_type = hdr->uf.ether_type;
1157 } else {
1158 /* A datagram fragment has been received, now the fun begins. */
1159
1160 struct list_head *pdgl, *lh;
1161 struct partial_datagram *pd;
1162 int fg_off;
1163 int fg_len = len - hdr_len;
1164 int dg_size;
1165 int dgl;
1166 int retval;
1167 struct pdg_list *pdg = &(node_info->pdg);
1168
1169 hdr->words.word3 = ntohs(hdr->words.word3);
1170 /* The 4th header word is reserved so no need to do ntohs() */
1171
1172 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1173 ether_type = hdr->ff.ether_type;
1174 dgl = hdr->ff.dgl;
1175 dg_size = hdr->ff.dg_size + 1;
1176 fg_off = 0;
1177 } else {
1178 hdr->words.word2 = ntohs(hdr->words.word2);
1179 dgl = hdr->sf.dgl;
1180 dg_size = hdr->sf.dg_size + 1;
1181 fg_off = hdr->sf.fg_off;
1182 }
1183 spin_lock_irqsave(&pdg->lock, flags);
1184
1185 pdgl = &(pdg->list);
1186 lh = find_partial_datagram(pdgl, dgl);
1187
1188 if (lh == NULL) {
1189 while (pdg->sz >= max_partial_datagrams) {
1190 /* remove the oldest */
1191 purge_partial_datagram(pdgl->prev);
1192 pdg->sz--;
1193 }
1194
1195 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1196 buf + hdr_len, fg_off,
1197 fg_len);
1198 if (retval < 0) {
1199 spin_unlock_irqrestore(&pdg->lock, flags);
1200 goto bad_proto;
1201 }
1202 pdg->sz++;
1203 lh = find_partial_datagram(pdgl, dgl);
1204 } else {
1205 struct partial_datagram *pd;
1206
1207 pd = list_entry(lh, struct partial_datagram, list);
1208
1209 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1210 /* Overlapping fragments, obliterate old
1211 * datagram and start new one. */
1212 purge_partial_datagram(lh);
1213 retval = new_partial_datagram(dev, pdgl, dgl,
1214 dg_size,
1215 buf + hdr_len,
1216 fg_off, fg_len);
1217 if (retval < 0) {
1218 pdg->sz--;
1219 spin_unlock_irqrestore(&pdg->lock, flags);
1220 goto bad_proto;
1221 }
1222 } else {
1223 retval = update_partial_datagram(pdgl, lh,
1224 buf + hdr_len,
1225 fg_off, fg_len);
1226 if (retval < 0) {
1227 /* Couldn't save off fragment anyway
1228 * so might as well obliterate the
1229 * datagram now. */
1230 purge_partial_datagram(lh);
1231 pdg->sz--;
1232 spin_unlock_irqrestore(&pdg->lock, flags);
1233 goto bad_proto;
1234 }
1235 } /* fragment overlap */
1236 } /* new datagram or add to existing one */
1237
1238 pd = list_entry(lh, struct partial_datagram, list);
1239
1240 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1241 pd->ether_type = ether_type;
1242 }
1243
1244 if (is_datagram_complete(lh, dg_size)) {
1245 ether_type = pd->ether_type;
1246 pdg->sz--;
1247 skb = skb_get(pd->skb);
1248 purge_partial_datagram(lh);
1249 spin_unlock_irqrestore(&pdg->lock, flags);
1250 } else {
1251 /* Datagram is not complete, we're done for the
1252 * moment. */
1253 spin_unlock_irqrestore(&pdg->lock, flags);
1254 return 0;
1255 }
1256 } /* unframgented datagram or fragmented one */
1257
1258 /* Write metadata, and then pass to the receive level */
1259 skb->dev = dev;
1260 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1261
1262 /* Parse the encapsulation header. This actually does the job of
1263 * converting to an ethernet frame header, aswell as arp
1264 * conversion if needed. ARP conversion is easier in this
1265 * direction, since we are using ethernet as our backend. */
1266 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1267 ether_type);
1268
1269
1270 spin_lock_irqsave(&priv->lock, flags);
1271 if (!skb->protocol) {
1272 priv->stats.rx_errors++;
1273 priv->stats.rx_dropped++;
1274 dev_kfree_skb_any(skb);
1275 goto bad_proto;
1276 }
1277
1278 if (netif_rx(skb) == NET_RX_DROP) {
1279 priv->stats.rx_errors++;
1280 priv->stats.rx_dropped++;
1281 goto bad_proto;
1282 }
1283
1284 /* Statistics */
1285 priv->stats.rx_packets++;
1286 priv->stats.rx_bytes += skb->len;
1287
1288bad_proto:
1289 if (netif_queue_stopped(dev))
1290 netif_wake_queue(dev);
1291 spin_unlock_irqrestore(&priv->lock, flags);
1292
1293 dev->last_rx = jiffies;
1294
1295 return 0;
1296}
1297
1298static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1299 quadlet_t *data, u64 addr, size_t len, u16 flags)
1300{
1301 struct eth1394_host_info *hi;
1302
1303 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1304 if (hi == NULL) {
1305 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1306 host->driver->name);
1307 return RCODE_ADDRESS_ERROR;
1308 }
1309
1310 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1311 return RCODE_ADDRESS_ERROR;
1312 else
1313 return RCODE_COMPLETE;
1314}
1315
1316static void ether1394_iso(struct hpsb_iso *iso)
1317{
1318 quadlet_t *data;
1319 char *buf;
1320 struct eth1394_host_info *hi;
1321 struct net_device *dev;
1322 struct eth1394_priv *priv;
1323 unsigned int len;
1324 u32 specifier_id;
1325 u16 source_id;
1326 int i;
1327 int nready;
1328
1329 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1330 if (hi == NULL) {
1331 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1332 iso->host->driver->name);
1333 return;
1334 }
1335
1336 dev = hi->dev;
1337
1338 nready = hpsb_iso_n_ready(iso);
1339 for (i = 0; i < nready; i++) {
1340 struct hpsb_iso_packet_info *info =
1341 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1342 data = (quadlet_t*) (iso->data_buf.kvirt + info->offset);
1343
1344 /* skip over GASP header */
1345 buf = (char *)data + 8;
1346 len = info->len - 8;
1347
1348 specifier_id = (((be32_to_cpu(data[0]) & 0xffff) << 8) |
1349 ((be32_to_cpu(data[1]) & 0xff000000) >> 24));
1350 source_id = be32_to_cpu(data[0]) >> 16;
1351
1352 priv = netdev_priv(dev);
1353
1354 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f) ||
1355 specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1356 /* This packet is not for us */
1357 continue;
1358 }
1359 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1360 buf, len);
1361 }
1362
1363 hpsb_iso_recv_release_packets(iso, i);
1364
1365 dev->last_rx = jiffies;
1366}
1367
1368/******************************************
1369 * Datagram transmission code
1370 ******************************************/
1371
1372/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1373 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1374 * needs to be munged a bit. The remainder of the arphdr is formatted based
1375 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1376 * judge.
1377 *
1378 * Now that the EUI is used for the hardware address all we need to do to make
1379 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1380 * speed, and unicast FIFO address information between the sender_unique_id
1381 * and the IP addresses.
1382 */
1383static inline void ether1394_arp_to_1394arp(struct sk_buff *skb,
1384 struct net_device *dev)
1385{
1386 struct eth1394_priv *priv = netdev_priv(dev);
1387
1388 struct arphdr *arp = (struct arphdr *)skb->data;
1389 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1390 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1391
1392 /* Believe it or not, all that need to happen is sender IP get moved
1393 * and set hw_addr_len, max_rec, sspd, fifo_hi and fifo_lo. */
1394 arp1394->hw_addr_len = 16;
1395 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1396 arp1394->max_rec = priv->host->csr.max_rec;
1397 arp1394->sspd = priv->host->csr.lnk_spd;
1398 arp1394->fifo_hi = htons (priv->local_fifo >> 32);
1399 arp1394->fifo_lo = htonl (priv->local_fifo & ~0x0);
1400
1401 return;
1402}
1403
1404/* We need to encapsulate the standard header with our own. We use the
1405 * ethernet header's proto for our own. */
1406static inline unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1407 int proto,
1408 union eth1394_hdr *hdr,
1409 u16 dg_size, u16 dgl)
1410{
1411 unsigned int adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1412
1413 /* Does it all fit in one packet? */
1414 if (dg_size <= adj_max_payload) {
1415 hdr->uf.lf = ETH1394_HDR_LF_UF;
1416 hdr->uf.ether_type = proto;
1417 } else {
1418 hdr->ff.lf = ETH1394_HDR_LF_FF;
1419 hdr->ff.ether_type = proto;
1420 hdr->ff.dg_size = dg_size - 1;
1421 hdr->ff.dgl = dgl;
1422 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1423 }
1424 return((dg_size + (adj_max_payload - 1)) / adj_max_payload);
1425}
1426
1427static inline unsigned int ether1394_encapsulate(struct sk_buff *skb,
1428 unsigned int max_payload,
1429 union eth1394_hdr *hdr)
1430{
1431 union eth1394_hdr *bufhdr;
1432 int ftype = hdr->common.lf;
1433 int hdrsz = hdr_type_len[ftype];
1434 unsigned int adj_max_payload = max_payload - hdrsz;
1435
1436 switch(ftype) {
1437 case ETH1394_HDR_LF_UF:
1438 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1439 bufhdr->words.word1 = htons(hdr->words.word1);
1440 bufhdr->words.word2 = hdr->words.word2;
1441 break;
1442
1443 case ETH1394_HDR_LF_FF:
1444 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1445 bufhdr->words.word1 = htons(hdr->words.word1);
1446 bufhdr->words.word2 = hdr->words.word2;
1447 bufhdr->words.word3 = htons(hdr->words.word3);
1448 bufhdr->words.word4 = 0;
1449
1450 /* Set frag type here for future interior fragments */
1451 hdr->common.lf = ETH1394_HDR_LF_IF;
1452 hdr->sf.fg_off = 0;
1453 break;
1454
1455 default:
1456 hdr->sf.fg_off += adj_max_payload;
1457 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1458 if (max_payload >= skb->len)
1459 hdr->common.lf = ETH1394_HDR_LF_LF;
1460 bufhdr->words.word1 = htons(hdr->words.word1);
1461 bufhdr->words.word2 = htons(hdr->words.word2);
1462 bufhdr->words.word3 = htons(hdr->words.word3);
1463 bufhdr->words.word4 = 0;
1464 }
1465
1466 return min(max_payload, skb->len);
1467}
1468
1469static inline struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1470{
1471 struct hpsb_packet *p;
1472
1473 p = hpsb_alloc_packet(0);
1474 if (p) {
1475 p->host = host;
1476 p->generation = get_hpsb_generation(host);
1477 p->type = hpsb_async;
1478 }
1479 return p;
1480}
1481
1482static inline int ether1394_prep_write_packet(struct hpsb_packet *p,
1483 struct hpsb_host *host,
1484 nodeid_t node, u64 addr,
1485 void * data, int tx_len)
1486{
1487 p->node_id = node;
1488 p->data = NULL;
1489
1490 p->tcode = TCODE_WRITEB;
1491 p->header[1] = (host->node_id << 16) | (addr >> 32);
1492 p->header[2] = addr & 0xffffffff;
1493
1494 p->header_size = 16;
1495 p->expect_response = 1;
1496
1497 if (hpsb_get_tlabel(p)) {
1498 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1499 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1500 return -1;
1501 }
1502 p->header[0] = (p->node_id << 16) | (p->tlabel << 10)
1503 | (1 << 8) | (TCODE_WRITEB << 4);
1504
1505 p->header[3] = tx_len << 16;
1506 p->data_size = (tx_len + 3) & ~3;
1507 p->data = (quadlet_t*)data;
1508
1509 return 0;
1510}
1511
1512static inline void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1513 struct eth1394_priv *priv,
1514 struct sk_buff *skb, int length)
1515{
1516 p->header_size = 4;
1517 p->tcode = TCODE_STREAM_DATA;
1518
1519 p->header[0] = (length << 16) | (3 << 14)
1520 | ((priv->broadcast_channel) << 8)
1521 | (TCODE_STREAM_DATA << 4);
1522 p->data_size = length;
1523 p->data = ((quadlet_t*)skb->data) - 2;
1524 p->data[0] = cpu_to_be32((priv->host->node_id << 16) |
1525 ETHER1394_GASP_SPECIFIER_ID_HI);
1526 p->data[1] = __constant_cpu_to_be32((ETHER1394_GASP_SPECIFIER_ID_LO << 24) |
1527 ETHER1394_GASP_VERSION);
1528
1529 /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1530 * prevents hpsb_send_packet() from setting the speed to an arbitrary
1531 * value based on packet->node_id if packet->node_id is not set. */
1532 p->node_id = ALL_NODES;
1533 p->speed_code = priv->bc_sspd;
1534}
1535
1536static inline void ether1394_free_packet(struct hpsb_packet *packet)
1537{
1538 if (packet->tcode != TCODE_STREAM_DATA)
1539 hpsb_free_tlabel(packet);
1540 hpsb_free_packet(packet);
1541}
1542
1543static void ether1394_complete_cb(void *__ptask);
1544
1545static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1546{
1547 struct eth1394_priv *priv = ptask->priv;
1548 struct hpsb_packet *packet = NULL;
1549
1550 packet = ether1394_alloc_common_packet(priv->host);
1551 if (!packet)
1552 return -1;
1553
1554 if (ptask->tx_type == ETH1394_GASP) {
1555 int length = tx_len + (2 * sizeof(quadlet_t));
1556
1557 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1558 } else if (ether1394_prep_write_packet(packet, priv->host,
1559 ptask->dest_node,
1560 ptask->addr, ptask->skb->data,
1561 tx_len)) {
1562 hpsb_free_packet(packet);
1563 return -1;
1564 }
1565
1566 ptask->packet = packet;
1567 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1568 ptask);
1569
1570 if (hpsb_send_packet(packet) < 0) {
1571 ether1394_free_packet(packet);
1572 return -1;
1573 }
1574
1575 return 0;
1576}
1577
1578
1579/* Task function to be run when a datagram transmission is completed */
1580static inline void ether1394_dg_complete(struct packet_task *ptask, int fail)
1581{
1582 struct sk_buff *skb = ptask->skb;
1583 struct net_device *dev = skb->dev;
1584 struct eth1394_priv *priv = netdev_priv(dev);
1585 unsigned long flags;
1586
1587 /* Statistics */
1588 spin_lock_irqsave(&priv->lock, flags);
1589 if (fail) {
1590 priv->stats.tx_dropped++;
1591 priv->stats.tx_errors++;
1592 } else {
1593 priv->stats.tx_bytes += skb->len;
1594 priv->stats.tx_packets++;
1595 }
1596 spin_unlock_irqrestore(&priv->lock, flags);
1597
1598 dev_kfree_skb_any(skb);
1599 kmem_cache_free(packet_task_cache, ptask);
1600}
1601
1602
1603/* Callback for when a packet has been sent and the status of that packet is
1604 * known */
1605static void ether1394_complete_cb(void *__ptask)
1606{
1607 struct packet_task *ptask = (struct packet_task *)__ptask;
1608 struct hpsb_packet *packet = ptask->packet;
1609 int fail = 0;
1610
1611 if (packet->tcode != TCODE_STREAM_DATA)
1612 fail = hpsb_packet_success(packet);
1613
1614 ether1394_free_packet(packet);
1615
1616 ptask->outstanding_pkts--;
1617 if (ptask->outstanding_pkts > 0 && !fail) {
1618 int tx_len;
1619
1620 /* Add the encapsulation header to the fragment */
1621 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1622 &ptask->hdr);
1623 if (ether1394_send_packet(ptask, tx_len))
1624 ether1394_dg_complete(ptask, 1);
1625 } else {
1626 ether1394_dg_complete(ptask, fail);
1627 }
1628}
1629
1630
1631
1632/* Transmit a packet (called by kernel) */
1633static int ether1394_tx (struct sk_buff *skb, struct net_device *dev)
1634{
1635 int kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1636 struct eth1394hdr *eth;
1637 struct eth1394_priv *priv = netdev_priv(dev);
1638 int proto;
1639 unsigned long flags;
1640 nodeid_t dest_node;
1641 eth1394_tx_type tx_type;
1642 int ret = 0;
1643 unsigned int tx_len;
1644 unsigned int max_payload;
1645 u16 dg_size;
1646 u16 dgl;
1647 struct packet_task *ptask;
1648 struct eth1394_node_ref *node;
1649 struct eth1394_node_info *node_info = NULL;
1650
1651 ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1652 if (ptask == NULL) {
1653 ret = -ENOMEM;
1654 goto fail;
1655 }
1656
1657 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1658 * it does not set our validity bit. We need to compensate for
1659 * that somewhere else, but not in eth1394. */
1660#if 0
1661 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1662 ret = -EAGAIN;
1663 goto fail;
1664 }
1665#endif
1666
1667 if ((skb = skb_share_check (skb, kmflags)) == NULL) {
1668 ret = -ENOMEM;
1669 goto fail;
1670 }
1671
1672 /* Get rid of the fake eth1394 header, but save a pointer */
1673 eth = (struct eth1394hdr*)skb->data;
1674 skb_pull(skb, ETH1394_HLEN);
1675
1676 proto = eth->h_proto;
1677 dg_size = skb->len;
1678
1679 /* Set the transmission type for the packet. ARP packets and IP
1680 * broadcast packets are sent via GASP. */
1681 if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1682 proto == __constant_htons(ETH_P_ARP) ||
1683 (proto == __constant_htons(ETH_P_IP) &&
1684 IN_MULTICAST(__constant_ntohl(skb->nh.iph->daddr)))) {
1685 tx_type = ETH1394_GASP;
1686 dest_node = LOCAL_BUS | ALL_NODES;
1687 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1688 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1689 dgl = priv->bc_dgl;
1690 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1691 priv->bc_dgl++;
1692 } else {
1693 node = eth1394_find_node_guid(&priv->ip_node_list,
1694 be64_to_cpu(*(u64*)eth->h_dest));
1695 if (!node) {
1696 ret = -EAGAIN;
1697 goto fail;
1698 }
1699 node_info = (struct eth1394_node_info*)node->ud->device.driver_data;
1700 if (node_info->fifo == ETHER1394_INVALID_ADDR) {
1701 ret = -EAGAIN;
1702 goto fail;
1703 }
1704
1705 dest_node = node->ud->ne->nodeid;
1706 max_payload = node_info->maxpayload;
1707 BUG_ON(max_payload < (512 - ETHER1394_GASP_OVERHEAD));
1708
1709 dgl = node_info->dgl;
1710 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1711 node_info->dgl++;
1712 tx_type = ETH1394_WRREQ;
1713 }
1714
1715 /* If this is an ARP packet, convert it */
1716 if (proto == __constant_htons (ETH_P_ARP))
1717 ether1394_arp_to_1394arp (skb, dev);
1718
1719 ptask->hdr.words.word1 = 0;
1720 ptask->hdr.words.word2 = 0;
1721 ptask->hdr.words.word3 = 0;
1722 ptask->hdr.words.word4 = 0;
1723 ptask->skb = skb;
1724 ptask->priv = priv;
1725 ptask->tx_type = tx_type;
1726
1727 if (tx_type != ETH1394_GASP) {
1728 u64 addr;
1729
1730 spin_lock_irqsave(&priv->lock, flags);
1731 addr = node_info->fifo;
1732 spin_unlock_irqrestore(&priv->lock, flags);
1733
1734 ptask->addr = addr;
1735 ptask->dest_node = dest_node;
1736 }
1737
1738 ptask->tx_type = tx_type;
1739 ptask->max_payload = max_payload;
1740 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload, proto,
1741 &ptask->hdr, dg_size,
1742 dgl);
1743
1744 /* Add the encapsulation header to the fragment */
1745 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1746 dev->trans_start = jiffies;
1747 if (ether1394_send_packet(ptask, tx_len))
1748 goto fail;
1749
1750 netif_wake_queue(dev);
1751 return 0;
1752fail:
1753 if (ptask)
1754 kmem_cache_free(packet_task_cache, ptask);
1755
1756 if (skb != NULL)
1757 dev_kfree_skb(skb);
1758
1759 spin_lock_irqsave (&priv->lock, flags);
1760 priv->stats.tx_dropped++;
1761 priv->stats.tx_errors++;
1762 spin_unlock_irqrestore (&priv->lock, flags);
1763
1764 if (netif_queue_stopped(dev))
1765 netif_wake_queue(dev);
1766
1767 return 0; /* returning non-zero causes serious problems */
1768}
1769
1770static void ether1394_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1771{
1772 strcpy (info->driver, driver_name);
Ben Collins1934b8b2005-07-09 20:01:23 -04001773 strcpy (info->version, "$Rev: 1264 $");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 /* FIXME XXX provide sane businfo */
1775 strcpy (info->bus_info, "ieee1394");
1776}
1777
1778static struct ethtool_ops ethtool_ops = {
1779 .get_drvinfo = ether1394_get_drvinfo
1780};
1781
1782static int __init ether1394_init_module (void)
1783{
1784 packet_task_cache = kmem_cache_create("packet_task", sizeof(struct packet_task),
1785 0, 0, NULL, NULL);
1786
1787 /* Register ourselves as a highlevel driver */
1788 hpsb_register_highlevel(&eth1394_highlevel);
1789
1790 return hpsb_register_protocol(&eth1394_proto_driver);
1791}
1792
1793static void __exit ether1394_exit_module (void)
1794{
1795 hpsb_unregister_protocol(&eth1394_proto_driver);
1796 hpsb_unregister_highlevel(&eth1394_highlevel);
1797 kmem_cache_destroy(packet_task_cache);
1798}
1799
1800module_init(ether1394_init_module);
1801module_exit(ether1394_exit_module);