blob: 7fb7558804098d4e3033aebb073a65f5271e01d8 [file] [log] [blame]
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +05301#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
2#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3
Kirill A. Shutemov9849a562017-03-09 17:24:05 +03004#define __ARCH_USE_5LEVEL_HACK
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +05305#include <asm-generic/pgtable-nopmd.h>
6
Aneesh Kumar K.Vcbbb8682015-12-01 09:06:31 +05307#include <asm/book3s/32/hash.h>
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +05308
Aneesh Kumar K.Vcbbb8682015-12-01 09:06:31 +05309/* And here we include common definitions */
10#include <asm/pte-common.h>
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +053011
Christophe Leroy9b081e12016-12-07 08:47:24 +010012#define PTE_INDEX_SIZE PTE_SHIFT
13#define PMD_INDEX_SIZE 0
14#define PUD_INDEX_SIZE 0
15#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
16
17#define PMD_CACHE_INDEX PMD_INDEX_SIZE
18
19#ifndef __ASSEMBLY__
20#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
21#define PMD_TABLE_SIZE 0
22#define PUD_TABLE_SIZE 0
23#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
24#endif /* __ASSEMBLY__ */
25
26#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
27#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
28
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +053029/*
30 * The normal case is that PTEs are 32-bits and we have a 1-page
31 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
32 *
33 * For any >32-bit physical address platform, we can use the following
34 * two level page table layout where the pgdir is 8KB and the MS 13 bits
35 * are an index to the second level table. The combined pgdir/pmd first
36 * level has 2048 entries and the second level has 512 64-bit PTE entries.
37 * -Matt
38 */
39/* PGDIR_SHIFT determines what a top-level page table entry can map */
Christophe Leroy9b081e12016-12-07 08:47:24 +010040#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +053041#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
42#define PGDIR_MASK (~(PGDIR_SIZE-1))
43
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +053044#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +053045/*
46 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
47 * value (for now) on others, from where we can start layout kernel
48 * virtual space that goes below PKMAP and FIXMAP
49 */
50#ifdef CONFIG_HIGHMEM
51#define KVIRT_TOP PKMAP_BASE
52#else
53#define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
54#endif
55
56/*
57 * ioremap_bot starts at that address. Early ioremaps move down from there,
58 * until mem_init() at which point this becomes the top of the vmalloc
59 * and ioremap space
60 */
61#ifdef CONFIG_NOT_COHERENT_CACHE
62#define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
63#else
64#define IOREMAP_TOP KVIRT_TOP
65#endif
66
67/*
68 * Just any arbitrary offset to the start of the vmalloc VM area: the
69 * current 16MB value just means that there will be a 64MB "hole" after the
70 * physical memory until the kernel virtual memory starts. That means that
71 * any out-of-bounds memory accesses will hopefully be caught.
72 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
73 * area for the same reason. ;)
74 *
75 * We no longer map larger than phys RAM with the BATs so we don't have
76 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
77 * about clashes between our early calls to ioremap() that start growing down
78 * from ioremap_base being run into the VM area allocations (growing upwards
79 * from VMALLOC_START). For this reason we have ioremap_bot to check when
80 * we actually run into our mappings setup in the early boot with the VM
81 * system. This really does become a problem for machines with good amounts
82 * of RAM. -- Cort
83 */
84#define VMALLOC_OFFSET (0x1000000) /* 16M */
85#ifdef PPC_PIN_SIZE
86#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
87#else
88#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
89#endif
90#define VMALLOC_END ioremap_bot
91
Aneesh Kumar K.Vcbbb8682015-12-01 09:06:31 +053092#ifndef __ASSEMBLY__
93#include <linux/sched.h>
94#include <linux/threads.h>
95#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
96
97extern unsigned long ioremap_bot;
98
Christophe Leroy9b081e12016-12-07 08:47:24 +010099/* Bits to mask out from a PGD to get to the PUD page */
100#define PGD_MASKED_BITS 0
Aneesh Kumar K.Vcbbb8682015-12-01 09:06:31 +0530101
102#define pte_ERROR(e) \
103 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
104 (unsigned long long)pte_val(e))
105#define pgd_ERROR(e) \
106 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530107/*
108 * Bits in a linux-style PTE. These match the bits in the
109 * (hardware-defined) PowerPC PTE as closely as possible.
110 */
111
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530112#define pte_clear(mm, addr, ptep) \
113 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
114
115#define pmd_none(pmd) (!pmd_val(pmd))
116#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
117#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
Aneesh Kumar K.Vf281b5d2015-12-01 09:06:35 +0530118static inline void pmd_clear(pmd_t *pmdp)
119{
120 *pmdp = __pmd(0);
121}
122
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530123
124/*
125 * When flushing the tlb entry for a page, we also need to flush the hash
126 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
127 */
128extern int flush_hash_pages(unsigned context, unsigned long va,
129 unsigned long pmdval, int count);
130
131/* Add an HPTE to the hash table */
132extern void add_hash_page(unsigned context, unsigned long va,
133 unsigned long pmdval);
134
135/* Flush an entry from the TLB/hash table */
136extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
137 unsigned long address);
138
139/*
140 * PTE updates. This function is called whenever an existing
141 * valid PTE is updated. This does -not- include set_pte_at()
142 * which nowadays only sets a new PTE.
143 *
144 * Depending on the type of MMU, we may need to use atomic updates
145 * and the PTE may be either 32 or 64 bit wide. In the later case,
146 * when using atomic updates, only the low part of the PTE is
147 * accessed atomically.
148 *
149 * In addition, on 44x, we also maintain a global flag indicating
150 * that an executable user mapping was modified, which is needed
151 * to properly flush the virtually tagged instruction cache of
152 * those implementations.
153 */
154#ifndef CONFIG_PTE_64BIT
155static inline unsigned long pte_update(pte_t *p,
156 unsigned long clr,
157 unsigned long set)
158{
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530159 unsigned long old, tmp;
160
161 __asm__ __volatile__("\
1621: lwarx %0,0,%3\n\
163 andc %1,%0,%4\n\
164 or %1,%1,%5\n"
165 PPC405_ERR77(0,%3)
166" stwcx. %1,0,%3\n\
167 bne- 1b"
168 : "=&r" (old), "=&r" (tmp), "=m" (*p)
169 : "r" (p), "r" (clr), "r" (set), "m" (*p)
170 : "cc" );
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530171
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530172 return old;
173}
174#else /* CONFIG_PTE_64BIT */
175static inline unsigned long long pte_update(pte_t *p,
176 unsigned long clr,
177 unsigned long set)
178{
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530179 unsigned long long old;
180 unsigned long tmp;
181
182 __asm__ __volatile__("\
1831: lwarx %L0,0,%4\n\
184 lwzx %0,0,%3\n\
185 andc %1,%L0,%5\n\
186 or %1,%1,%6\n"
187 PPC405_ERR77(0,%3)
188" stwcx. %1,0,%4\n\
189 bne- 1b"
190 : "=&r" (old), "=&r" (tmp), "=m" (*p)
191 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
192 : "cc" );
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530193
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530194 return old;
195}
196#endif /* CONFIG_PTE_64BIT */
197
198/*
199 * 2.6 calls this without flushing the TLB entry; this is wrong
200 * for our hash-based implementation, we fix that up here.
201 */
202#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
203static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
204{
205 unsigned long old;
206 old = pte_update(ptep, _PAGE_ACCESSED, 0);
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530207 if (old & _PAGE_HASHPTE) {
208 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
209 flush_hash_pages(context, addr, ptephys, 1);
210 }
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530211 return (old & _PAGE_ACCESSED) != 0;
212}
213#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
214 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
215
216#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
217static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
218 pte_t *ptep)
219{
220 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
221}
222
223#define __HAVE_ARCH_PTEP_SET_WRPROTECT
224static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
225 pte_t *ptep)
226{
227 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
228}
229static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
230 unsigned long addr, pte_t *ptep)
231{
232 ptep_set_wrprotect(mm, addr, ptep);
233}
234
235
Aneesh Kumar K.Vc6d1a762016-08-24 15:03:38 +0530236static inline void __ptep_set_access_flags(struct mm_struct *mm,
Aneesh Kumar K.Vb3603e12016-11-28 11:47:02 +0530237 pte_t *ptep, pte_t entry,
238 unsigned long address)
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530239{
240 unsigned long set = pte_val(entry) &
241 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
242 unsigned long clr = ~pte_val(entry) & _PAGE_RO;
243
244 pte_update(ptep, clr, set);
245}
246
247#define __HAVE_ARCH_PTE_SAME
248#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
249
250/*
251 * Note that on Book E processors, the pmd contains the kernel virtual
252 * (lowmem) address of the pte page. The physical address is less useful
253 * because everything runs with translation enabled (even the TLB miss
254 * handler). On everything else the pmd contains the physical address
255 * of the pte page. -- paulus
256 */
257#ifndef CONFIG_BOOKE
258#define pmd_page_vaddr(pmd) \
259 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
260#define pmd_page(pmd) \
261 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
262#else
263#define pmd_page_vaddr(pmd) \
264 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
265#define pmd_page(pmd) \
266 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
267#endif
268
269/* to find an entry in a kernel page-table-directory */
270#define pgd_offset_k(address) pgd_offset(&init_mm, address)
271
272/* to find an entry in a page-table-directory */
273#define pgd_index(address) ((address) >> PGDIR_SHIFT)
274#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
275
276/* Find an entry in the third-level page table.. */
277#define pte_index(address) \
278 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
279#define pte_offset_kernel(dir, addr) \
280 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
281#define pte_offset_map(dir, addr) \
282 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
283#define pte_unmap(pte) kunmap_atomic(pte)
284
285/*
286 * Encode and decode a swap entry.
287 * Note that the bits we use in a PTE for representing a swap entry
288 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
289 * -- paulus
290 */
291#define __swp_type(entry) ((entry).val & 0x1f)
292#define __swp_offset(entry) ((entry).val >> 5)
293#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
294#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
295#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
296
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530297extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
298 pmd_t **pmdp);
299
Christophe Leroy4386c092017-05-29 17:31:56 +0200300int map_kernel_page(unsigned long va, phys_addr_t pa, int flags);
301
Aneesh Kumar K.V1ca72122015-12-01 09:06:37 +0530302/* Generic accessors to PTE bits */
303static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
304static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
305static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
306static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
307static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
308static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
309
310static inline int pte_present(pte_t pte)
311{
312 return pte_val(pte) & _PAGE_PRESENT;
313}
314
315/* Conversion functions: convert a page and protection to a page entry,
316 * and a page entry and page directory to the page they refer to.
317 *
318 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
319 * long for now.
320 */
321static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
322{
323 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
324 pgprot_val(pgprot));
325}
326
327static inline unsigned long pte_pfn(pte_t pte)
328{
329 return pte_val(pte) >> PTE_RPN_SHIFT;
330}
331
332/* Generic modifiers for PTE bits */
333static inline pte_t pte_wrprotect(pte_t pte)
334{
335 return __pte(pte_val(pte) & ~_PAGE_RW);
336}
337
338static inline pte_t pte_mkclean(pte_t pte)
339{
340 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
341}
342
343static inline pte_t pte_mkold(pte_t pte)
344{
345 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
346}
347
348static inline pte_t pte_mkwrite(pte_t pte)
349{
350 return __pte(pte_val(pte) | _PAGE_RW);
351}
352
353static inline pte_t pte_mkdirty(pte_t pte)
354{
355 return __pte(pte_val(pte) | _PAGE_DIRTY);
356}
357
358static inline pte_t pte_mkyoung(pte_t pte)
359{
360 return __pte(pte_val(pte) | _PAGE_ACCESSED);
361}
362
363static inline pte_t pte_mkspecial(pte_t pte)
364{
365 return __pte(pte_val(pte) | _PAGE_SPECIAL);
366}
367
368static inline pte_t pte_mkhuge(pte_t pte)
369{
370 return pte;
371}
372
373static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
374{
375 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
376}
377
378
379
380/* This low level function performs the actual PTE insertion
381 * Setting the PTE depends on the MMU type and other factors. It's
382 * an horrible mess that I'm not going to try to clean up now but
383 * I'm keeping it in one place rather than spread around
384 */
385static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte, int percpu)
387{
388#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
389 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
390 * helper pte_update() which does an atomic update. We need to do that
391 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
392 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
393 * the hash bits instead (ie, same as the non-SMP case)
394 */
395 if (percpu)
396 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
397 | (pte_val(pte) & ~_PAGE_HASHPTE));
398 else
399 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
400
401#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
402 /* Second case is 32-bit with 64-bit PTE. In this case, we
403 * can just store as long as we do the two halves in the right order
404 * with a barrier in between. This is possible because we take care,
405 * in the hash code, to pre-invalidate if the PTE was already hashed,
406 * which synchronizes us with any concurrent invalidation.
407 * In the percpu case, we also fallback to the simple update preserving
408 * the hash bits
409 */
410 if (percpu) {
411 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
412 | (pte_val(pte) & ~_PAGE_HASHPTE));
413 return;
414 }
415 if (pte_val(*ptep) & _PAGE_HASHPTE)
416 flush_hash_entry(mm, ptep, addr);
417 __asm__ __volatile__("\
418 stw%U0%X0 %2,%0\n\
419 eieio\n\
420 stw%U0%X0 %L2,%1"
421 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
422 : "r" (pte) : "memory");
423
424#elif defined(CONFIG_PPC_STD_MMU_32)
425 /* Third case is 32-bit hash table in UP mode, we need to preserve
426 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
427 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
428 * and see we need to keep track that this PTE needs invalidating
429 */
430 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
431 | (pte_val(pte) & ~_PAGE_HASHPTE));
432
433#else
434#error "Not supported "
435#endif
436}
437
438/*
439 * Macro to mark a page protection value as "uncacheable".
440 */
441
442#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
443 _PAGE_WRITETHRU)
444
445#define pgprot_noncached pgprot_noncached
446static inline pgprot_t pgprot_noncached(pgprot_t prot)
447{
448 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
449 _PAGE_NO_CACHE | _PAGE_GUARDED);
450}
451
452#define pgprot_noncached_wc pgprot_noncached_wc
453static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
454{
455 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
456 _PAGE_NO_CACHE);
457}
458
459#define pgprot_cached pgprot_cached
460static inline pgprot_t pgprot_cached(pgprot_t prot)
461{
462 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
463 _PAGE_COHERENT);
464}
465
466#define pgprot_cached_wthru pgprot_cached_wthru
467static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
468{
469 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
470 _PAGE_COHERENT | _PAGE_WRITETHRU);
471}
472
473#define pgprot_cached_noncoherent pgprot_cached_noncoherent
474static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
475{
476 return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
477}
478
479#define pgprot_writecombine pgprot_writecombine
480static inline pgprot_t pgprot_writecombine(pgprot_t prot)
481{
482 return pgprot_noncached_wc(prot);
483}
484
Aneesh Kumar K.V3dfcb3152015-12-01 09:06:28 +0530485#endif /* !__ASSEMBLY__ */
486
487#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */