Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 1 | #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H |
| 2 | #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H |
| 3 | |
Kirill A. Shutemov | 9849a56 | 2017-03-09 17:24:05 +0300 | [diff] [blame] | 4 | #define __ARCH_USE_5LEVEL_HACK |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 5 | #include <asm-generic/pgtable-nopmd.h> |
| 6 | |
Aneesh Kumar K.V | cbbb868 | 2015-12-01 09:06:31 +0530 | [diff] [blame] | 7 | #include <asm/book3s/32/hash.h> |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 8 | |
Aneesh Kumar K.V | cbbb868 | 2015-12-01 09:06:31 +0530 | [diff] [blame] | 9 | /* And here we include common definitions */ |
| 10 | #include <asm/pte-common.h> |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 11 | |
Christophe Leroy | 9b081e1 | 2016-12-07 08:47:24 +0100 | [diff] [blame] | 12 | #define PTE_INDEX_SIZE PTE_SHIFT |
| 13 | #define PMD_INDEX_SIZE 0 |
| 14 | #define PUD_INDEX_SIZE 0 |
| 15 | #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) |
| 16 | |
| 17 | #define PMD_CACHE_INDEX PMD_INDEX_SIZE |
| 18 | |
| 19 | #ifndef __ASSEMBLY__ |
| 20 | #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) |
| 21 | #define PMD_TABLE_SIZE 0 |
| 22 | #define PUD_TABLE_SIZE 0 |
| 23 | #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) |
| 24 | #endif /* __ASSEMBLY__ */ |
| 25 | |
| 26 | #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) |
| 27 | #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) |
| 28 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 29 | /* |
| 30 | * The normal case is that PTEs are 32-bits and we have a 1-page |
| 31 | * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus |
| 32 | * |
| 33 | * For any >32-bit physical address platform, we can use the following |
| 34 | * two level page table layout where the pgdir is 8KB and the MS 13 bits |
| 35 | * are an index to the second level table. The combined pgdir/pmd first |
| 36 | * level has 2048 entries and the second level has 512 64-bit PTE entries. |
| 37 | * -Matt |
| 38 | */ |
| 39 | /* PGDIR_SHIFT determines what a top-level page table entry can map */ |
Christophe Leroy | 9b081e1 | 2016-12-07 08:47:24 +0100 | [diff] [blame] | 40 | #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 41 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| 42 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| 43 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 44 | #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 45 | /* |
| 46 | * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary |
| 47 | * value (for now) on others, from where we can start layout kernel |
| 48 | * virtual space that goes below PKMAP and FIXMAP |
| 49 | */ |
| 50 | #ifdef CONFIG_HIGHMEM |
| 51 | #define KVIRT_TOP PKMAP_BASE |
| 52 | #else |
| 53 | #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */ |
| 54 | #endif |
| 55 | |
| 56 | /* |
| 57 | * ioremap_bot starts at that address. Early ioremaps move down from there, |
| 58 | * until mem_init() at which point this becomes the top of the vmalloc |
| 59 | * and ioremap space |
| 60 | */ |
| 61 | #ifdef CONFIG_NOT_COHERENT_CACHE |
| 62 | #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK) |
| 63 | #else |
| 64 | #define IOREMAP_TOP KVIRT_TOP |
| 65 | #endif |
| 66 | |
| 67 | /* |
| 68 | * Just any arbitrary offset to the start of the vmalloc VM area: the |
| 69 | * current 16MB value just means that there will be a 64MB "hole" after the |
| 70 | * physical memory until the kernel virtual memory starts. That means that |
| 71 | * any out-of-bounds memory accesses will hopefully be caught. |
| 72 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| 73 | * area for the same reason. ;) |
| 74 | * |
| 75 | * We no longer map larger than phys RAM with the BATs so we don't have |
| 76 | * to worry about the VMALLOC_OFFSET causing problems. We do have to worry |
| 77 | * about clashes between our early calls to ioremap() that start growing down |
| 78 | * from ioremap_base being run into the VM area allocations (growing upwards |
| 79 | * from VMALLOC_START). For this reason we have ioremap_bot to check when |
| 80 | * we actually run into our mappings setup in the early boot with the VM |
| 81 | * system. This really does become a problem for machines with good amounts |
| 82 | * of RAM. -- Cort |
| 83 | */ |
| 84 | #define VMALLOC_OFFSET (0x1000000) /* 16M */ |
| 85 | #ifdef PPC_PIN_SIZE |
| 86 | #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| 87 | #else |
| 88 | #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| 89 | #endif |
| 90 | #define VMALLOC_END ioremap_bot |
| 91 | |
Aneesh Kumar K.V | cbbb868 | 2015-12-01 09:06:31 +0530 | [diff] [blame] | 92 | #ifndef __ASSEMBLY__ |
| 93 | #include <linux/sched.h> |
| 94 | #include <linux/threads.h> |
| 95 | #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ |
| 96 | |
| 97 | extern unsigned long ioremap_bot; |
| 98 | |
Christophe Leroy | 9b081e1 | 2016-12-07 08:47:24 +0100 | [diff] [blame] | 99 | /* Bits to mask out from a PGD to get to the PUD page */ |
| 100 | #define PGD_MASKED_BITS 0 |
Aneesh Kumar K.V | cbbb868 | 2015-12-01 09:06:31 +0530 | [diff] [blame] | 101 | |
| 102 | #define pte_ERROR(e) \ |
| 103 | pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ |
| 104 | (unsigned long long)pte_val(e)) |
| 105 | #define pgd_ERROR(e) \ |
| 106 | pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 107 | /* |
| 108 | * Bits in a linux-style PTE. These match the bits in the |
| 109 | * (hardware-defined) PowerPC PTE as closely as possible. |
| 110 | */ |
| 111 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 112 | #define pte_clear(mm, addr, ptep) \ |
| 113 | do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0) |
| 114 | |
| 115 | #define pmd_none(pmd) (!pmd_val(pmd)) |
| 116 | #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) |
| 117 | #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) |
Aneesh Kumar K.V | f281b5d | 2015-12-01 09:06:35 +0530 | [diff] [blame] | 118 | static inline void pmd_clear(pmd_t *pmdp) |
| 119 | { |
| 120 | *pmdp = __pmd(0); |
| 121 | } |
| 122 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 123 | |
| 124 | /* |
| 125 | * When flushing the tlb entry for a page, we also need to flush the hash |
| 126 | * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. |
| 127 | */ |
| 128 | extern int flush_hash_pages(unsigned context, unsigned long va, |
| 129 | unsigned long pmdval, int count); |
| 130 | |
| 131 | /* Add an HPTE to the hash table */ |
| 132 | extern void add_hash_page(unsigned context, unsigned long va, |
| 133 | unsigned long pmdval); |
| 134 | |
| 135 | /* Flush an entry from the TLB/hash table */ |
| 136 | extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, |
| 137 | unsigned long address); |
| 138 | |
| 139 | /* |
| 140 | * PTE updates. This function is called whenever an existing |
| 141 | * valid PTE is updated. This does -not- include set_pte_at() |
| 142 | * which nowadays only sets a new PTE. |
| 143 | * |
| 144 | * Depending on the type of MMU, we may need to use atomic updates |
| 145 | * and the PTE may be either 32 or 64 bit wide. In the later case, |
| 146 | * when using atomic updates, only the low part of the PTE is |
| 147 | * accessed atomically. |
| 148 | * |
| 149 | * In addition, on 44x, we also maintain a global flag indicating |
| 150 | * that an executable user mapping was modified, which is needed |
| 151 | * to properly flush the virtually tagged instruction cache of |
| 152 | * those implementations. |
| 153 | */ |
| 154 | #ifndef CONFIG_PTE_64BIT |
| 155 | static inline unsigned long pte_update(pte_t *p, |
| 156 | unsigned long clr, |
| 157 | unsigned long set) |
| 158 | { |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 159 | unsigned long old, tmp; |
| 160 | |
| 161 | __asm__ __volatile__("\ |
| 162 | 1: lwarx %0,0,%3\n\ |
| 163 | andc %1,%0,%4\n\ |
| 164 | or %1,%1,%5\n" |
| 165 | PPC405_ERR77(0,%3) |
| 166 | " stwcx. %1,0,%3\n\ |
| 167 | bne- 1b" |
| 168 | : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| 169 | : "r" (p), "r" (clr), "r" (set), "m" (*p) |
| 170 | : "cc" ); |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 171 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 172 | return old; |
| 173 | } |
| 174 | #else /* CONFIG_PTE_64BIT */ |
| 175 | static inline unsigned long long pte_update(pte_t *p, |
| 176 | unsigned long clr, |
| 177 | unsigned long set) |
| 178 | { |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 179 | unsigned long long old; |
| 180 | unsigned long tmp; |
| 181 | |
| 182 | __asm__ __volatile__("\ |
| 183 | 1: lwarx %L0,0,%4\n\ |
| 184 | lwzx %0,0,%3\n\ |
| 185 | andc %1,%L0,%5\n\ |
| 186 | or %1,%1,%6\n" |
| 187 | PPC405_ERR77(0,%3) |
| 188 | " stwcx. %1,0,%4\n\ |
| 189 | bne- 1b" |
| 190 | : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| 191 | : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) |
| 192 | : "cc" ); |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 193 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 194 | return old; |
| 195 | } |
| 196 | #endif /* CONFIG_PTE_64BIT */ |
| 197 | |
| 198 | /* |
| 199 | * 2.6 calls this without flushing the TLB entry; this is wrong |
| 200 | * for our hash-based implementation, we fix that up here. |
| 201 | */ |
| 202 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| 203 | static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) |
| 204 | { |
| 205 | unsigned long old; |
| 206 | old = pte_update(ptep, _PAGE_ACCESSED, 0); |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 207 | if (old & _PAGE_HASHPTE) { |
| 208 | unsigned long ptephys = __pa(ptep) & PAGE_MASK; |
| 209 | flush_hash_pages(context, addr, ptephys, 1); |
| 210 | } |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 211 | return (old & _PAGE_ACCESSED) != 0; |
| 212 | } |
| 213 | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| 214 | __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) |
| 215 | |
| 216 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| 217 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
| 218 | pte_t *ptep) |
| 219 | { |
| 220 | return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); |
| 221 | } |
| 222 | |
| 223 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| 224 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| 225 | pte_t *ptep) |
| 226 | { |
| 227 | pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO); |
| 228 | } |
| 229 | static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, |
| 230 | unsigned long addr, pte_t *ptep) |
| 231 | { |
| 232 | ptep_set_wrprotect(mm, addr, ptep); |
| 233 | } |
| 234 | |
| 235 | |
Aneesh Kumar K.V | c6d1a76 | 2016-08-24 15:03:38 +0530 | [diff] [blame] | 236 | static inline void __ptep_set_access_flags(struct mm_struct *mm, |
Aneesh Kumar K.V | b3603e1 | 2016-11-28 11:47:02 +0530 | [diff] [blame] | 237 | pte_t *ptep, pte_t entry, |
| 238 | unsigned long address) |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 239 | { |
| 240 | unsigned long set = pte_val(entry) & |
| 241 | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| 242 | unsigned long clr = ~pte_val(entry) & _PAGE_RO; |
| 243 | |
| 244 | pte_update(ptep, clr, set); |
| 245 | } |
| 246 | |
| 247 | #define __HAVE_ARCH_PTE_SAME |
| 248 | #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) |
| 249 | |
| 250 | /* |
| 251 | * Note that on Book E processors, the pmd contains the kernel virtual |
| 252 | * (lowmem) address of the pte page. The physical address is less useful |
| 253 | * because everything runs with translation enabled (even the TLB miss |
| 254 | * handler). On everything else the pmd contains the physical address |
| 255 | * of the pte page. -- paulus |
| 256 | */ |
| 257 | #ifndef CONFIG_BOOKE |
| 258 | #define pmd_page_vaddr(pmd) \ |
| 259 | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| 260 | #define pmd_page(pmd) \ |
| 261 | pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) |
| 262 | #else |
| 263 | #define pmd_page_vaddr(pmd) \ |
| 264 | ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) |
| 265 | #define pmd_page(pmd) \ |
| 266 | pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT)) |
| 267 | #endif |
| 268 | |
| 269 | /* to find an entry in a kernel page-table-directory */ |
| 270 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| 271 | |
| 272 | /* to find an entry in a page-table-directory */ |
| 273 | #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| 274 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| 275 | |
| 276 | /* Find an entry in the third-level page table.. */ |
| 277 | #define pte_index(address) \ |
| 278 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| 279 | #define pte_offset_kernel(dir, addr) \ |
| 280 | ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) |
| 281 | #define pte_offset_map(dir, addr) \ |
| 282 | ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) |
| 283 | #define pte_unmap(pte) kunmap_atomic(pte) |
| 284 | |
| 285 | /* |
| 286 | * Encode and decode a swap entry. |
| 287 | * Note that the bits we use in a PTE for representing a swap entry |
| 288 | * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). |
| 289 | * -- paulus |
| 290 | */ |
| 291 | #define __swp_type(entry) ((entry).val & 0x1f) |
| 292 | #define __swp_offset(entry) ((entry).val >> 5) |
| 293 | #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) |
| 294 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) |
| 295 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) |
| 296 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 297 | extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, |
| 298 | pmd_t **pmdp); |
| 299 | |
Christophe Leroy | 4386c09 | 2017-05-29 17:31:56 +0200 | [diff] [blame] | 300 | int map_kernel_page(unsigned long va, phys_addr_t pa, int flags); |
| 301 | |
Aneesh Kumar K.V | 1ca7212 | 2015-12-01 09:06:37 +0530 | [diff] [blame] | 302 | /* Generic accessors to PTE bits */ |
| 303 | static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);} |
| 304 | static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); } |
| 305 | static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); } |
| 306 | static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); } |
| 307 | static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } |
| 308 | static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } |
| 309 | |
| 310 | static inline int pte_present(pte_t pte) |
| 311 | { |
| 312 | return pte_val(pte) & _PAGE_PRESENT; |
| 313 | } |
| 314 | |
| 315 | /* Conversion functions: convert a page and protection to a page entry, |
| 316 | * and a page entry and page directory to the page they refer to. |
| 317 | * |
| 318 | * Even if PTEs can be unsigned long long, a PFN is always an unsigned |
| 319 | * long for now. |
| 320 | */ |
| 321 | static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) |
| 322 | { |
| 323 | return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | |
| 324 | pgprot_val(pgprot)); |
| 325 | } |
| 326 | |
| 327 | static inline unsigned long pte_pfn(pte_t pte) |
| 328 | { |
| 329 | return pte_val(pte) >> PTE_RPN_SHIFT; |
| 330 | } |
| 331 | |
| 332 | /* Generic modifiers for PTE bits */ |
| 333 | static inline pte_t pte_wrprotect(pte_t pte) |
| 334 | { |
| 335 | return __pte(pte_val(pte) & ~_PAGE_RW); |
| 336 | } |
| 337 | |
| 338 | static inline pte_t pte_mkclean(pte_t pte) |
| 339 | { |
| 340 | return __pte(pte_val(pte) & ~_PAGE_DIRTY); |
| 341 | } |
| 342 | |
| 343 | static inline pte_t pte_mkold(pte_t pte) |
| 344 | { |
| 345 | return __pte(pte_val(pte) & ~_PAGE_ACCESSED); |
| 346 | } |
| 347 | |
| 348 | static inline pte_t pte_mkwrite(pte_t pte) |
| 349 | { |
| 350 | return __pte(pte_val(pte) | _PAGE_RW); |
| 351 | } |
| 352 | |
| 353 | static inline pte_t pte_mkdirty(pte_t pte) |
| 354 | { |
| 355 | return __pte(pte_val(pte) | _PAGE_DIRTY); |
| 356 | } |
| 357 | |
| 358 | static inline pte_t pte_mkyoung(pte_t pte) |
| 359 | { |
| 360 | return __pte(pte_val(pte) | _PAGE_ACCESSED); |
| 361 | } |
| 362 | |
| 363 | static inline pte_t pte_mkspecial(pte_t pte) |
| 364 | { |
| 365 | return __pte(pte_val(pte) | _PAGE_SPECIAL); |
| 366 | } |
| 367 | |
| 368 | static inline pte_t pte_mkhuge(pte_t pte) |
| 369 | { |
| 370 | return pte; |
| 371 | } |
| 372 | |
| 373 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| 374 | { |
| 375 | return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); |
| 376 | } |
| 377 | |
| 378 | |
| 379 | |
| 380 | /* This low level function performs the actual PTE insertion |
| 381 | * Setting the PTE depends on the MMU type and other factors. It's |
| 382 | * an horrible mess that I'm not going to try to clean up now but |
| 383 | * I'm keeping it in one place rather than spread around |
| 384 | */ |
| 385 | static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, |
| 386 | pte_t *ptep, pte_t pte, int percpu) |
| 387 | { |
| 388 | #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) |
| 389 | /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the |
| 390 | * helper pte_update() which does an atomic update. We need to do that |
| 391 | * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a |
| 392 | * per-CPU PTE such as a kmap_atomic, we do a simple update preserving |
| 393 | * the hash bits instead (ie, same as the non-SMP case) |
| 394 | */ |
| 395 | if (percpu) |
| 396 | *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
| 397 | | (pte_val(pte) & ~_PAGE_HASHPTE)); |
| 398 | else |
| 399 | pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); |
| 400 | |
| 401 | #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) |
| 402 | /* Second case is 32-bit with 64-bit PTE. In this case, we |
| 403 | * can just store as long as we do the two halves in the right order |
| 404 | * with a barrier in between. This is possible because we take care, |
| 405 | * in the hash code, to pre-invalidate if the PTE was already hashed, |
| 406 | * which synchronizes us with any concurrent invalidation. |
| 407 | * In the percpu case, we also fallback to the simple update preserving |
| 408 | * the hash bits |
| 409 | */ |
| 410 | if (percpu) { |
| 411 | *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
| 412 | | (pte_val(pte) & ~_PAGE_HASHPTE)); |
| 413 | return; |
| 414 | } |
| 415 | if (pte_val(*ptep) & _PAGE_HASHPTE) |
| 416 | flush_hash_entry(mm, ptep, addr); |
| 417 | __asm__ __volatile__("\ |
| 418 | stw%U0%X0 %2,%0\n\ |
| 419 | eieio\n\ |
| 420 | stw%U0%X0 %L2,%1" |
| 421 | : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) |
| 422 | : "r" (pte) : "memory"); |
| 423 | |
| 424 | #elif defined(CONFIG_PPC_STD_MMU_32) |
| 425 | /* Third case is 32-bit hash table in UP mode, we need to preserve |
| 426 | * the _PAGE_HASHPTE bit since we may not have invalidated the previous |
| 427 | * translation in the hash yet (done in a subsequent flush_tlb_xxx()) |
| 428 | * and see we need to keep track that this PTE needs invalidating |
| 429 | */ |
| 430 | *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
| 431 | | (pte_val(pte) & ~_PAGE_HASHPTE)); |
| 432 | |
| 433 | #else |
| 434 | #error "Not supported " |
| 435 | #endif |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * Macro to mark a page protection value as "uncacheable". |
| 440 | */ |
| 441 | |
| 442 | #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ |
| 443 | _PAGE_WRITETHRU) |
| 444 | |
| 445 | #define pgprot_noncached pgprot_noncached |
| 446 | static inline pgprot_t pgprot_noncached(pgprot_t prot) |
| 447 | { |
| 448 | return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| 449 | _PAGE_NO_CACHE | _PAGE_GUARDED); |
| 450 | } |
| 451 | |
| 452 | #define pgprot_noncached_wc pgprot_noncached_wc |
| 453 | static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) |
| 454 | { |
| 455 | return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| 456 | _PAGE_NO_CACHE); |
| 457 | } |
| 458 | |
| 459 | #define pgprot_cached pgprot_cached |
| 460 | static inline pgprot_t pgprot_cached(pgprot_t prot) |
| 461 | { |
| 462 | return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| 463 | _PAGE_COHERENT); |
| 464 | } |
| 465 | |
| 466 | #define pgprot_cached_wthru pgprot_cached_wthru |
| 467 | static inline pgprot_t pgprot_cached_wthru(pgprot_t prot) |
| 468 | { |
| 469 | return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | |
| 470 | _PAGE_COHERENT | _PAGE_WRITETHRU); |
| 471 | } |
| 472 | |
| 473 | #define pgprot_cached_noncoherent pgprot_cached_noncoherent |
| 474 | static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot) |
| 475 | { |
| 476 | return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL); |
| 477 | } |
| 478 | |
| 479 | #define pgprot_writecombine pgprot_writecombine |
| 480 | static inline pgprot_t pgprot_writecombine(pgprot_t prot) |
| 481 | { |
| 482 | return pgprot_noncached_wc(prot); |
| 483 | } |
| 484 | |
Aneesh Kumar K.V | 3dfcb315 | 2015-12-01 09:06:28 +0530 | [diff] [blame] | 485 | #endif /* !__ASSEMBLY__ */ |
| 486 | |
| 487 | #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */ |