Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * JFFS2 -- Journalling Flash File System, Version 2. |
| 3 | * |
| 4 | * Copyright (C) 2001-2003 Red Hat, Inc. |
| 5 | * |
| 6 | * Created by David Woodhouse <dwmw2@infradead.org> |
| 7 | * |
| 8 | * For licensing information, see the file 'LICENCE' in this directory. |
| 9 | * |
| 10 | * $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $ |
| 11 | * |
| 12 | */ |
| 13 | |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/mtd/mtd.h> |
| 17 | #include <linux/compiler.h> |
| 18 | #include <linux/sched.h> /* For cond_resched() */ |
| 19 | #include "nodelist.h" |
| 20 | |
| 21 | /** |
| 22 | * jffs2_reserve_space - request physical space to write nodes to flash |
| 23 | * @c: superblock info |
| 24 | * @minsize: Minimum acceptable size of allocation |
| 25 | * @ofs: Returned value of node offset |
| 26 | * @len: Returned value of allocation length |
| 27 | * @prio: Allocation type - ALLOC_{NORMAL,DELETION} |
| 28 | * |
| 29 | * Requests a block of physical space on the flash. Returns zero for success |
| 30 | * and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC |
| 31 | * or other error if appropriate. |
| 32 | * |
| 33 | * If it returns zero, jffs2_reserve_space() also downs the per-filesystem |
| 34 | * allocation semaphore, to prevent more than one allocation from being |
| 35 | * active at any time. The semaphore is later released by jffs2_commit_allocation() |
| 36 | * |
| 37 | * jffs2_reserve_space() may trigger garbage collection in order to make room |
| 38 | * for the requested allocation. |
| 39 | */ |
| 40 | |
| 41 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len); |
| 42 | |
| 43 | int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio) |
| 44 | { |
| 45 | int ret = -EAGAIN; |
| 46 | int blocksneeded = c->resv_blocks_write; |
| 47 | /* align it */ |
| 48 | minsize = PAD(minsize); |
| 49 | |
| 50 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); |
| 51 | down(&c->alloc_sem); |
| 52 | |
| 53 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); |
| 54 | |
| 55 | spin_lock(&c->erase_completion_lock); |
| 56 | |
| 57 | /* this needs a little more thought (true <tglx> :)) */ |
| 58 | while(ret == -EAGAIN) { |
| 59 | while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { |
| 60 | int ret; |
| 61 | uint32_t dirty, avail; |
| 62 | |
| 63 | /* calculate real dirty size |
| 64 | * dirty_size contains blocks on erase_pending_list |
| 65 | * those blocks are counted in c->nr_erasing_blocks. |
| 66 | * If one block is actually erased, it is not longer counted as dirty_space |
| 67 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it |
| 68 | * with c->nr_erasing_blocks * c->sector_size again. |
| 69 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks |
| 70 | * This helps us to force gc and pick eventually a clean block to spread the load. |
| 71 | * We add unchecked_size here, as we hopefully will find some space to use. |
| 72 | * This will affect the sum only once, as gc first finishes checking |
| 73 | * of nodes. |
| 74 | */ |
| 75 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; |
| 76 | if (dirty < c->nospc_dirty_size) { |
| 77 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { |
| 78 | printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"); |
| 79 | break; |
| 80 | } |
| 81 | D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", |
| 82 | dirty, c->unchecked_size, c->sector_size)); |
| 83 | |
| 84 | spin_unlock(&c->erase_completion_lock); |
| 85 | up(&c->alloc_sem); |
| 86 | return -ENOSPC; |
| 87 | } |
| 88 | |
| 89 | /* Calc possibly available space. Possibly available means that we |
| 90 | * don't know, if unchecked size contains obsoleted nodes, which could give us some |
| 91 | * more usable space. This will affect the sum only once, as gc first finishes checking |
| 92 | * of nodes. |
| 93 | + Return -ENOSPC, if the maximum possibly available space is less or equal than |
| 94 | * blocksneeded * sector_size. |
| 95 | * This blocks endless gc looping on a filesystem, which is nearly full, even if |
| 96 | * the check above passes. |
| 97 | */ |
| 98 | avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; |
| 99 | if ( (avail / c->sector_size) <= blocksneeded) { |
| 100 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { |
| 101 | printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"); |
| 102 | break; |
| 103 | } |
| 104 | |
| 105 | D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", |
| 106 | avail, blocksneeded * c->sector_size)); |
| 107 | spin_unlock(&c->erase_completion_lock); |
| 108 | up(&c->alloc_sem); |
| 109 | return -ENOSPC; |
| 110 | } |
| 111 | |
| 112 | up(&c->alloc_sem); |
| 113 | |
| 114 | D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", |
| 115 | c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, |
| 116 | c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); |
| 117 | spin_unlock(&c->erase_completion_lock); |
| 118 | |
| 119 | ret = jffs2_garbage_collect_pass(c); |
| 120 | if (ret) |
| 121 | return ret; |
| 122 | |
| 123 | cond_resched(); |
| 124 | |
| 125 | if (signal_pending(current)) |
| 126 | return -EINTR; |
| 127 | |
| 128 | down(&c->alloc_sem); |
| 129 | spin_lock(&c->erase_completion_lock); |
| 130 | } |
| 131 | |
| 132 | ret = jffs2_do_reserve_space(c, minsize, ofs, len); |
| 133 | if (ret) { |
| 134 | D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); |
| 135 | } |
| 136 | } |
| 137 | spin_unlock(&c->erase_completion_lock); |
| 138 | if (ret) |
| 139 | up(&c->alloc_sem); |
| 140 | return ret; |
| 141 | } |
| 142 | |
| 143 | int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) |
| 144 | { |
| 145 | int ret = -EAGAIN; |
| 146 | minsize = PAD(minsize); |
| 147 | |
| 148 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); |
| 149 | |
| 150 | spin_lock(&c->erase_completion_lock); |
| 151 | while(ret == -EAGAIN) { |
| 152 | ret = jffs2_do_reserve_space(c, minsize, ofs, len); |
| 153 | if (ret) { |
| 154 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); |
| 155 | } |
| 156 | } |
| 157 | spin_unlock(&c->erase_completion_lock); |
| 158 | return ret; |
| 159 | } |
| 160 | |
| 161 | /* Called with alloc sem _and_ erase_completion_lock */ |
| 162 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) |
| 163 | { |
| 164 | struct jffs2_eraseblock *jeb = c->nextblock; |
| 165 | |
| 166 | restart: |
| 167 | if (jeb && minsize > jeb->free_size) { |
| 168 | /* Skip the end of this block and file it as having some dirty space */ |
| 169 | /* If there's a pending write to it, flush now */ |
| 170 | if (jffs2_wbuf_dirty(c)) { |
| 171 | spin_unlock(&c->erase_completion_lock); |
| 172 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); |
| 173 | jffs2_flush_wbuf_pad(c); |
| 174 | spin_lock(&c->erase_completion_lock); |
| 175 | jeb = c->nextblock; |
| 176 | goto restart; |
| 177 | } |
| 178 | c->wasted_size += jeb->free_size; |
| 179 | c->free_size -= jeb->free_size; |
| 180 | jeb->wasted_size += jeb->free_size; |
| 181 | jeb->free_size = 0; |
| 182 | |
| 183 | /* Check, if we have a dirty block now, or if it was dirty already */ |
| 184 | if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { |
| 185 | c->dirty_size += jeb->wasted_size; |
| 186 | c->wasted_size -= jeb->wasted_size; |
| 187 | jeb->dirty_size += jeb->wasted_size; |
| 188 | jeb->wasted_size = 0; |
| 189 | if (VERYDIRTY(c, jeb->dirty_size)) { |
| 190 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| 191 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| 192 | list_add_tail(&jeb->list, &c->very_dirty_list); |
| 193 | } else { |
| 194 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| 195 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| 196 | list_add_tail(&jeb->list, &c->dirty_list); |
| 197 | } |
| 198 | } else { |
| 199 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| 200 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| 201 | list_add_tail(&jeb->list, &c->clean_list); |
| 202 | } |
| 203 | c->nextblock = jeb = NULL; |
| 204 | } |
| 205 | |
| 206 | if (!jeb) { |
| 207 | struct list_head *next; |
| 208 | /* Take the next block off the 'free' list */ |
| 209 | |
| 210 | if (list_empty(&c->free_list)) { |
| 211 | |
| 212 | if (!c->nr_erasing_blocks && |
| 213 | !list_empty(&c->erasable_list)) { |
| 214 | struct jffs2_eraseblock *ejeb; |
| 215 | |
| 216 | ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); |
| 217 | list_del(&ejeb->list); |
| 218 | list_add_tail(&ejeb->list, &c->erase_pending_list); |
| 219 | c->nr_erasing_blocks++; |
| 220 | jffs2_erase_pending_trigger(c); |
| 221 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n", |
| 222 | ejeb->offset)); |
| 223 | } |
| 224 | |
| 225 | if (!c->nr_erasing_blocks && |
| 226 | !list_empty(&c->erasable_pending_wbuf_list)) { |
| 227 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); |
| 228 | /* c->nextblock is NULL, no update to c->nextblock allowed */ |
| 229 | spin_unlock(&c->erase_completion_lock); |
| 230 | jffs2_flush_wbuf_pad(c); |
| 231 | spin_lock(&c->erase_completion_lock); |
| 232 | /* Have another go. It'll be on the erasable_list now */ |
| 233 | return -EAGAIN; |
| 234 | } |
| 235 | |
| 236 | if (!c->nr_erasing_blocks) { |
| 237 | /* Ouch. We're in GC, or we wouldn't have got here. |
| 238 | And there's no space left. At all. */ |
| 239 | printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", |
| 240 | c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", |
| 241 | list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); |
| 242 | return -ENOSPC; |
| 243 | } |
| 244 | |
| 245 | spin_unlock(&c->erase_completion_lock); |
| 246 | /* Don't wait for it; just erase one right now */ |
| 247 | jffs2_erase_pending_blocks(c, 1); |
| 248 | spin_lock(&c->erase_completion_lock); |
| 249 | |
| 250 | /* An erase may have failed, decreasing the |
| 251 | amount of free space available. So we must |
| 252 | restart from the beginning */ |
| 253 | return -EAGAIN; |
| 254 | } |
| 255 | |
| 256 | next = c->free_list.next; |
| 257 | list_del(next); |
| 258 | c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list); |
| 259 | c->nr_free_blocks--; |
| 260 | |
| 261 | if (jeb->free_size != c->sector_size - c->cleanmarker_size) { |
| 262 | printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); |
| 263 | goto restart; |
| 264 | } |
| 265 | } |
| 266 | /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has |
| 267 | enough space */ |
| 268 | *ofs = jeb->offset + (c->sector_size - jeb->free_size); |
| 269 | *len = jeb->free_size; |
| 270 | |
| 271 | if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && |
| 272 | !jeb->first_node->next_in_ino) { |
| 273 | /* Only node in it beforehand was a CLEANMARKER node (we think). |
| 274 | So mark it obsolete now that there's going to be another node |
| 275 | in the block. This will reduce used_size to zero but We've |
| 276 | already set c->nextblock so that jffs2_mark_node_obsolete() |
| 277 | won't try to refile it to the dirty_list. |
| 278 | */ |
| 279 | spin_unlock(&c->erase_completion_lock); |
| 280 | jffs2_mark_node_obsolete(c, jeb->first_node); |
| 281 | spin_lock(&c->erase_completion_lock); |
| 282 | } |
| 283 | |
| 284 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs)); |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | /** |
| 289 | * jffs2_add_physical_node_ref - add a physical node reference to the list |
| 290 | * @c: superblock info |
| 291 | * @new: new node reference to add |
| 292 | * @len: length of this physical node |
| 293 | * @dirty: dirty flag for new node |
| 294 | * |
| 295 | * Should only be used to report nodes for which space has been allocated |
| 296 | * by jffs2_reserve_space. |
| 297 | * |
| 298 | * Must be called with the alloc_sem held. |
| 299 | */ |
| 300 | |
| 301 | int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new) |
| 302 | { |
| 303 | struct jffs2_eraseblock *jeb; |
| 304 | uint32_t len; |
| 305 | |
| 306 | jeb = &c->blocks[new->flash_offset / c->sector_size]; |
| 307 | len = ref_totlen(c, jeb, new); |
| 308 | |
| 309 | D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len)); |
| 310 | #if 1 |
| 311 | if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) { |
| 312 | printk(KERN_WARNING "argh. node added in wrong place\n"); |
| 313 | jffs2_free_raw_node_ref(new); |
| 314 | return -EINVAL; |
| 315 | } |
| 316 | #endif |
| 317 | spin_lock(&c->erase_completion_lock); |
| 318 | |
| 319 | if (!jeb->first_node) |
| 320 | jeb->first_node = new; |
| 321 | if (jeb->last_node) |
| 322 | jeb->last_node->next_phys = new; |
| 323 | jeb->last_node = new; |
| 324 | |
| 325 | jeb->free_size -= len; |
| 326 | c->free_size -= len; |
| 327 | if (ref_obsolete(new)) { |
| 328 | jeb->dirty_size += len; |
| 329 | c->dirty_size += len; |
| 330 | } else { |
| 331 | jeb->used_size += len; |
| 332 | c->used_size += len; |
| 333 | } |
| 334 | |
| 335 | if (!jeb->free_size && !jeb->dirty_size) { |
| 336 | /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ |
| 337 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", |
| 338 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| 339 | if (jffs2_wbuf_dirty(c)) { |
| 340 | /* Flush the last write in the block if it's outstanding */ |
| 341 | spin_unlock(&c->erase_completion_lock); |
| 342 | jffs2_flush_wbuf_pad(c); |
| 343 | spin_lock(&c->erase_completion_lock); |
| 344 | } |
| 345 | |
| 346 | list_add_tail(&jeb->list, &c->clean_list); |
| 347 | c->nextblock = NULL; |
| 348 | } |
| 349 | ACCT_SANITY_CHECK(c,jeb); |
| 350 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 351 | |
| 352 | spin_unlock(&c->erase_completion_lock); |
| 353 | |
| 354 | return 0; |
| 355 | } |
| 356 | |
| 357 | |
| 358 | void jffs2_complete_reservation(struct jffs2_sb_info *c) |
| 359 | { |
| 360 | D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); |
| 361 | jffs2_garbage_collect_trigger(c); |
| 362 | up(&c->alloc_sem); |
| 363 | } |
| 364 | |
| 365 | static inline int on_list(struct list_head *obj, struct list_head *head) |
| 366 | { |
| 367 | struct list_head *this; |
| 368 | |
| 369 | list_for_each(this, head) { |
| 370 | if (this == obj) { |
| 371 | D1(printk("%p is on list at %p\n", obj, head)); |
| 372 | return 1; |
| 373 | |
| 374 | } |
| 375 | } |
| 376 | return 0; |
| 377 | } |
| 378 | |
| 379 | void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) |
| 380 | { |
| 381 | struct jffs2_eraseblock *jeb; |
| 382 | int blocknr; |
| 383 | struct jffs2_unknown_node n; |
| 384 | int ret, addedsize; |
| 385 | size_t retlen; |
| 386 | |
| 387 | if(!ref) { |
| 388 | printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); |
| 389 | return; |
| 390 | } |
| 391 | if (ref_obsolete(ref)) { |
| 392 | D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); |
| 393 | return; |
| 394 | } |
| 395 | blocknr = ref->flash_offset / c->sector_size; |
| 396 | if (blocknr >= c->nr_blocks) { |
| 397 | printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); |
| 398 | BUG(); |
| 399 | } |
| 400 | jeb = &c->blocks[blocknr]; |
| 401 | |
| 402 | if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && |
| 403 | !(c->flags & JFFS2_SB_FLAG_MOUNTING)) { |
| 404 | /* Hm. This may confuse static lock analysis. If any of the above |
| 405 | three conditions is false, we're going to return from this |
| 406 | function without actually obliterating any nodes or freeing |
| 407 | any jffs2_raw_node_refs. So we don't need to stop erases from |
| 408 | happening, or protect against people holding an obsolete |
| 409 | jffs2_raw_node_ref without the erase_completion_lock. */ |
| 410 | down(&c->erase_free_sem); |
| 411 | } |
| 412 | |
| 413 | spin_lock(&c->erase_completion_lock); |
| 414 | |
| 415 | if (ref_flags(ref) == REF_UNCHECKED) { |
| 416 | D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) { |
| 417 | printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", |
| 418 | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); |
| 419 | BUG(); |
| 420 | }) |
| 421 | D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); |
| 422 | jeb->unchecked_size -= ref_totlen(c, jeb, ref); |
| 423 | c->unchecked_size -= ref_totlen(c, jeb, ref); |
| 424 | } else { |
| 425 | D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) { |
| 426 | printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", |
| 427 | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); |
| 428 | BUG(); |
| 429 | }) |
| 430 | D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); |
| 431 | jeb->used_size -= ref_totlen(c, jeb, ref); |
| 432 | c->used_size -= ref_totlen(c, jeb, ref); |
| 433 | } |
| 434 | |
| 435 | // Take care, that wasted size is taken into concern |
| 436 | if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) { |
| 437 | D1(printk("Dirtying\n")); |
| 438 | addedsize = ref_totlen(c, jeb, ref); |
| 439 | jeb->dirty_size += ref_totlen(c, jeb, ref); |
| 440 | c->dirty_size += ref_totlen(c, jeb, ref); |
| 441 | |
| 442 | /* Convert wasted space to dirty, if not a bad block */ |
| 443 | if (jeb->wasted_size) { |
| 444 | if (on_list(&jeb->list, &c->bad_used_list)) { |
| 445 | D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", |
| 446 | jeb->offset)); |
| 447 | addedsize = 0; /* To fool the refiling code later */ |
| 448 | } else { |
| 449 | D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", |
| 450 | jeb->wasted_size, jeb->offset)); |
| 451 | addedsize += jeb->wasted_size; |
| 452 | jeb->dirty_size += jeb->wasted_size; |
| 453 | c->dirty_size += jeb->wasted_size; |
| 454 | c->wasted_size -= jeb->wasted_size; |
| 455 | jeb->wasted_size = 0; |
| 456 | } |
| 457 | } |
| 458 | } else { |
| 459 | D1(printk("Wasting\n")); |
| 460 | addedsize = 0; |
| 461 | jeb->wasted_size += ref_totlen(c, jeb, ref); |
| 462 | c->wasted_size += ref_totlen(c, jeb, ref); |
| 463 | } |
| 464 | ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; |
| 465 | |
| 466 | ACCT_SANITY_CHECK(c, jeb); |
| 467 | |
| 468 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 469 | |
| 470 | if (c->flags & JFFS2_SB_FLAG_MOUNTING) { |
| 471 | /* Mount in progress. Don't muck about with the block |
| 472 | lists because they're not ready yet, and don't actually |
| 473 | obliterate nodes that look obsolete. If they weren't |
| 474 | marked obsolete on the flash at the time they _became_ |
| 475 | obsolete, there was probably a reason for that. */ |
| 476 | spin_unlock(&c->erase_completion_lock); |
| 477 | /* We didn't lock the erase_free_sem */ |
| 478 | return; |
| 479 | } |
| 480 | |
| 481 | if (jeb == c->nextblock) { |
| 482 | D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); |
| 483 | } else if (!jeb->used_size && !jeb->unchecked_size) { |
| 484 | if (jeb == c->gcblock) { |
| 485 | D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); |
| 486 | c->gcblock = NULL; |
| 487 | } else { |
| 488 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); |
| 489 | list_del(&jeb->list); |
| 490 | } |
| 491 | if (jffs2_wbuf_dirty(c)) { |
| 492 | D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); |
| 493 | list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); |
| 494 | } else { |
| 495 | if (jiffies & 127) { |
| 496 | /* Most of the time, we just erase it immediately. Otherwise we |
| 497 | spend ages scanning it on mount, etc. */ |
| 498 | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); |
| 499 | list_add_tail(&jeb->list, &c->erase_pending_list); |
| 500 | c->nr_erasing_blocks++; |
| 501 | jffs2_erase_pending_trigger(c); |
| 502 | } else { |
| 503 | /* Sometimes, however, we leave it elsewhere so it doesn't get |
| 504 | immediately reused, and we spread the load a bit. */ |
| 505 | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); |
| 506 | list_add_tail(&jeb->list, &c->erasable_list); |
| 507 | } |
| 508 | } |
| 509 | D1(printk(KERN_DEBUG "Done OK\n")); |
| 510 | } else if (jeb == c->gcblock) { |
| 511 | D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); |
| 512 | } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { |
| 513 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); |
| 514 | list_del(&jeb->list); |
| 515 | D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); |
| 516 | list_add_tail(&jeb->list, &c->dirty_list); |
| 517 | } else if (VERYDIRTY(c, jeb->dirty_size) && |
| 518 | !VERYDIRTY(c, jeb->dirty_size - addedsize)) { |
| 519 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); |
| 520 | list_del(&jeb->list); |
| 521 | D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); |
| 522 | list_add_tail(&jeb->list, &c->very_dirty_list); |
| 523 | } else { |
| 524 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", |
| 525 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); |
| 526 | } |
| 527 | |
| 528 | spin_unlock(&c->erase_completion_lock); |
| 529 | |
| 530 | if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) { |
| 531 | /* We didn't lock the erase_free_sem */ |
| 532 | return; |
| 533 | } |
| 534 | |
| 535 | /* The erase_free_sem is locked, and has been since before we marked the node obsolete |
| 536 | and potentially put its eraseblock onto the erase_pending_list. Thus, we know that |
| 537 | the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet |
| 538 | by jffs2_free_all_node_refs() in erase.c. Which is nice. */ |
| 539 | |
| 540 | D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); |
| 541 | ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); |
| 542 | if (ret) { |
| 543 | printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); |
| 544 | goto out_erase_sem; |
| 545 | } |
| 546 | if (retlen != sizeof(n)) { |
| 547 | printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); |
| 548 | goto out_erase_sem; |
| 549 | } |
| 550 | if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) { |
| 551 | printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref)); |
| 552 | goto out_erase_sem; |
| 553 | } |
| 554 | if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { |
| 555 | D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); |
| 556 | goto out_erase_sem; |
| 557 | } |
| 558 | /* XXX FIXME: This is ugly now */ |
| 559 | n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); |
| 560 | ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); |
| 561 | if (ret) { |
| 562 | printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); |
| 563 | goto out_erase_sem; |
| 564 | } |
| 565 | if (retlen != sizeof(n)) { |
| 566 | printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); |
| 567 | goto out_erase_sem; |
| 568 | } |
| 569 | |
| 570 | /* Nodes which have been marked obsolete no longer need to be |
| 571 | associated with any inode. Remove them from the per-inode list. |
| 572 | |
| 573 | Note we can't do this for NAND at the moment because we need |
| 574 | obsolete dirent nodes to stay on the lists, because of the |
| 575 | horridness in jffs2_garbage_collect_deletion_dirent(). Also |
| 576 | because we delete the inocache, and on NAND we need that to |
| 577 | stay around until all the nodes are actually erased, in order |
| 578 | to stop us from giving the same inode number to another newly |
| 579 | created inode. */ |
| 580 | if (ref->next_in_ino) { |
| 581 | struct jffs2_inode_cache *ic; |
| 582 | struct jffs2_raw_node_ref **p; |
| 583 | |
| 584 | spin_lock(&c->erase_completion_lock); |
| 585 | |
| 586 | ic = jffs2_raw_ref_to_ic(ref); |
| 587 | for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) |
| 588 | ; |
| 589 | |
| 590 | *p = ref->next_in_ino; |
| 591 | ref->next_in_ino = NULL; |
| 592 | |
| 593 | if (ic->nodes == (void *)ic) { |
| 594 | D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino)); |
| 595 | jffs2_del_ino_cache(c, ic); |
| 596 | jffs2_free_inode_cache(ic); |
| 597 | } |
| 598 | |
| 599 | spin_unlock(&c->erase_completion_lock); |
| 600 | } |
| 601 | |
| 602 | |
| 603 | /* Merge with the next node in the physical list, if there is one |
| 604 | and if it's also obsolete and if it doesn't belong to any inode */ |
| 605 | if (ref->next_phys && ref_obsolete(ref->next_phys) && |
| 606 | !ref->next_phys->next_in_ino) { |
| 607 | struct jffs2_raw_node_ref *n = ref->next_phys; |
| 608 | |
| 609 | spin_lock(&c->erase_completion_lock); |
| 610 | |
| 611 | ref->__totlen += n->__totlen; |
| 612 | ref->next_phys = n->next_phys; |
| 613 | if (jeb->last_node == n) jeb->last_node = ref; |
| 614 | if (jeb->gc_node == n) { |
| 615 | /* gc will be happy continuing gc on this node */ |
| 616 | jeb->gc_node=ref; |
| 617 | } |
| 618 | spin_unlock(&c->erase_completion_lock); |
| 619 | |
| 620 | jffs2_free_raw_node_ref(n); |
| 621 | } |
| 622 | |
| 623 | /* Also merge with the previous node in the list, if there is one |
| 624 | and that one is obsolete */ |
| 625 | if (ref != jeb->first_node ) { |
| 626 | struct jffs2_raw_node_ref *p = jeb->first_node; |
| 627 | |
| 628 | spin_lock(&c->erase_completion_lock); |
| 629 | |
| 630 | while (p->next_phys != ref) |
| 631 | p = p->next_phys; |
| 632 | |
| 633 | if (ref_obsolete(p) && !ref->next_in_ino) { |
| 634 | p->__totlen += ref->__totlen; |
| 635 | if (jeb->last_node == ref) { |
| 636 | jeb->last_node = p; |
| 637 | } |
| 638 | if (jeb->gc_node == ref) { |
| 639 | /* gc will be happy continuing gc on this node */ |
| 640 | jeb->gc_node=p; |
| 641 | } |
| 642 | p->next_phys = ref->next_phys; |
| 643 | jffs2_free_raw_node_ref(ref); |
| 644 | } |
| 645 | spin_unlock(&c->erase_completion_lock); |
| 646 | } |
| 647 | out_erase_sem: |
| 648 | up(&c->erase_free_sem); |
| 649 | } |
| 650 | |
| 651 | #if CONFIG_JFFS2_FS_DEBUG >= 2 |
| 652 | void jffs2_dump_block_lists(struct jffs2_sb_info *c) |
| 653 | { |
| 654 | |
| 655 | |
| 656 | printk(KERN_DEBUG "jffs2_dump_block_lists:\n"); |
| 657 | printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size); |
| 658 | printk(KERN_DEBUG "used_size: %08x\n", c->used_size); |
| 659 | printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size); |
| 660 | printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size); |
| 661 | printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size); |
| 662 | printk(KERN_DEBUG "free_size: %08x\n", c->free_size); |
| 663 | printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size); |
| 664 | printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size); |
| 665 | printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size); |
| 666 | printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write); |
| 667 | |
| 668 | if (c->nextblock) { |
| 669 | printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 670 | c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size); |
| 671 | } else { |
| 672 | printk(KERN_DEBUG "nextblock: NULL\n"); |
| 673 | } |
| 674 | if (c->gcblock) { |
| 675 | printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 676 | c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size); |
| 677 | } else { |
| 678 | printk(KERN_DEBUG "gcblock: NULL\n"); |
| 679 | } |
| 680 | if (list_empty(&c->clean_list)) { |
| 681 | printk(KERN_DEBUG "clean_list: empty\n"); |
| 682 | } else { |
| 683 | struct list_head *this; |
| 684 | int numblocks = 0; |
| 685 | uint32_t dirty = 0; |
| 686 | |
| 687 | list_for_each(this, &c->clean_list) { |
| 688 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 689 | numblocks ++; |
| 690 | dirty += jeb->wasted_size; |
| 691 | printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 692 | } |
| 693 | printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks); |
| 694 | } |
| 695 | if (list_empty(&c->very_dirty_list)) { |
| 696 | printk(KERN_DEBUG "very_dirty_list: empty\n"); |
| 697 | } else { |
| 698 | struct list_head *this; |
| 699 | int numblocks = 0; |
| 700 | uint32_t dirty = 0; |
| 701 | |
| 702 | list_for_each(this, &c->very_dirty_list) { |
| 703 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 704 | numblocks ++; |
| 705 | dirty += jeb->dirty_size; |
| 706 | printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 707 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 708 | } |
| 709 | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", |
| 710 | numblocks, dirty, dirty / numblocks); |
| 711 | } |
| 712 | if (list_empty(&c->dirty_list)) { |
| 713 | printk(KERN_DEBUG "dirty_list: empty\n"); |
| 714 | } else { |
| 715 | struct list_head *this; |
| 716 | int numblocks = 0; |
| 717 | uint32_t dirty = 0; |
| 718 | |
| 719 | list_for_each(this, &c->dirty_list) { |
| 720 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 721 | numblocks ++; |
| 722 | dirty += jeb->dirty_size; |
| 723 | printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 724 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 725 | } |
| 726 | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", |
| 727 | numblocks, dirty, dirty / numblocks); |
| 728 | } |
| 729 | if (list_empty(&c->erasable_list)) { |
| 730 | printk(KERN_DEBUG "erasable_list: empty\n"); |
| 731 | } else { |
| 732 | struct list_head *this; |
| 733 | |
| 734 | list_for_each(this, &c->erasable_list) { |
| 735 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 736 | printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 737 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 738 | } |
| 739 | } |
| 740 | if (list_empty(&c->erasing_list)) { |
| 741 | printk(KERN_DEBUG "erasing_list: empty\n"); |
| 742 | } else { |
| 743 | struct list_head *this; |
| 744 | |
| 745 | list_for_each(this, &c->erasing_list) { |
| 746 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 747 | printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 748 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 749 | } |
| 750 | } |
| 751 | if (list_empty(&c->erase_pending_list)) { |
| 752 | printk(KERN_DEBUG "erase_pending_list: empty\n"); |
| 753 | } else { |
| 754 | struct list_head *this; |
| 755 | |
| 756 | list_for_each(this, &c->erase_pending_list) { |
| 757 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 758 | printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 759 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 760 | } |
| 761 | } |
| 762 | if (list_empty(&c->erasable_pending_wbuf_list)) { |
| 763 | printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n"); |
| 764 | } else { |
| 765 | struct list_head *this; |
| 766 | |
| 767 | list_for_each(this, &c->erasable_pending_wbuf_list) { |
| 768 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 769 | printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 770 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 771 | } |
| 772 | } |
| 773 | if (list_empty(&c->free_list)) { |
| 774 | printk(KERN_DEBUG "free_list: empty\n"); |
| 775 | } else { |
| 776 | struct list_head *this; |
| 777 | |
| 778 | list_for_each(this, &c->free_list) { |
| 779 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 780 | printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 781 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 782 | } |
| 783 | } |
| 784 | if (list_empty(&c->bad_list)) { |
| 785 | printk(KERN_DEBUG "bad_list: empty\n"); |
| 786 | } else { |
| 787 | struct list_head *this; |
| 788 | |
| 789 | list_for_each(this, &c->bad_list) { |
| 790 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 791 | printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 792 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 793 | } |
| 794 | } |
| 795 | if (list_empty(&c->bad_used_list)) { |
| 796 | printk(KERN_DEBUG "bad_used_list: empty\n"); |
| 797 | } else { |
| 798 | struct list_head *this; |
| 799 | |
| 800 | list_for_each(this, &c->bad_used_list) { |
| 801 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); |
| 802 | printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", |
| 803 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); |
| 804 | } |
| 805 | } |
| 806 | } |
| 807 | #endif /* CONFIG_JFFS2_FS_DEBUG */ |
| 808 | |
| 809 | int jffs2_thread_should_wake(struct jffs2_sb_info *c) |
| 810 | { |
| 811 | int ret = 0; |
| 812 | uint32_t dirty; |
| 813 | |
| 814 | if (c->unchecked_size) { |
| 815 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", |
| 816 | c->unchecked_size, c->checked_ino)); |
| 817 | return 1; |
| 818 | } |
| 819 | |
| 820 | /* dirty_size contains blocks on erase_pending_list |
| 821 | * those blocks are counted in c->nr_erasing_blocks. |
| 822 | * If one block is actually erased, it is not longer counted as dirty_space |
| 823 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it |
| 824 | * with c->nr_erasing_blocks * c->sector_size again. |
| 825 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks |
| 826 | * This helps us to force gc and pick eventually a clean block to spread the load. |
| 827 | */ |
| 828 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; |
| 829 | |
| 830 | if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && |
| 831 | (dirty > c->nospc_dirty_size)) |
| 832 | ret = 1; |
| 833 | |
| 834 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", |
| 835 | c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); |
| 836 | |
| 837 | return ret; |
| 838 | } |