Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * JFFS2 -- Journalling Flash File System, Version 2. |
| 3 | * |
| 4 | * Copyright (C) 2001-2003 Red Hat, Inc. |
| 5 | * |
| 6 | * Created by David Woodhouse <dwmw2@infradead.org> |
| 7 | * |
| 8 | * For licensing information, see the file 'LICENCE' in this directory. |
| 9 | * |
| 10 | * $Id: scan.c,v 1.115 2004/11/17 12:59:08 dedekind Exp $ |
| 11 | * |
| 12 | */ |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/mtd/mtd.h> |
| 17 | #include <linux/pagemap.h> |
| 18 | #include <linux/crc32.h> |
| 19 | #include <linux/compiler.h> |
| 20 | #include "nodelist.h" |
| 21 | |
| 22 | #define EMPTY_SCAN_SIZE 1024 |
| 23 | |
| 24 | #define DIRTY_SPACE(x) do { typeof(x) _x = (x); \ |
| 25 | c->free_size -= _x; c->dirty_size += _x; \ |
| 26 | jeb->free_size -= _x ; jeb->dirty_size += _x; \ |
| 27 | }while(0) |
| 28 | #define USED_SPACE(x) do { typeof(x) _x = (x); \ |
| 29 | c->free_size -= _x; c->used_size += _x; \ |
| 30 | jeb->free_size -= _x ; jeb->used_size += _x; \ |
| 31 | }while(0) |
| 32 | #define UNCHECKED_SPACE(x) do { typeof(x) _x = (x); \ |
| 33 | c->free_size -= _x; c->unchecked_size += _x; \ |
| 34 | jeb->free_size -= _x ; jeb->unchecked_size += _x; \ |
| 35 | }while(0) |
| 36 | |
| 37 | #define noisy_printk(noise, args...) do { \ |
| 38 | if (*(noise)) { \ |
| 39 | printk(KERN_NOTICE args); \ |
| 40 | (*(noise))--; \ |
| 41 | if (!(*(noise))) { \ |
| 42 | printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \ |
| 43 | } \ |
| 44 | } \ |
| 45 | } while(0) |
| 46 | |
| 47 | static uint32_t pseudo_random; |
| 48 | |
| 49 | static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 50 | unsigned char *buf, uint32_t buf_size); |
| 51 | |
| 52 | /* These helper functions _must_ increase ofs and also do the dirty/used space accounting. |
| 53 | * Returning an error will abort the mount - bad checksums etc. should just mark the space |
| 54 | * as dirty. |
| 55 | */ |
| 56 | static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 57 | struct jffs2_raw_inode *ri, uint32_t ofs); |
| 58 | static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 59 | struct jffs2_raw_dirent *rd, uint32_t ofs); |
| 60 | |
| 61 | #define BLK_STATE_ALLFF 0 |
| 62 | #define BLK_STATE_CLEAN 1 |
| 63 | #define BLK_STATE_PARTDIRTY 2 |
| 64 | #define BLK_STATE_CLEANMARKER 3 |
| 65 | #define BLK_STATE_ALLDIRTY 4 |
| 66 | #define BLK_STATE_BADBLOCK 5 |
| 67 | |
| 68 | static inline int min_free(struct jffs2_sb_info *c) |
| 69 | { |
| 70 | uint32_t min = 2 * sizeof(struct jffs2_raw_inode); |
| 71 | #if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC |
| 72 | if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize) |
| 73 | return c->wbuf_pagesize; |
| 74 | #endif |
| 75 | return min; |
| 76 | |
| 77 | } |
| 78 | int jffs2_scan_medium(struct jffs2_sb_info *c) |
| 79 | { |
| 80 | int i, ret; |
| 81 | uint32_t empty_blocks = 0, bad_blocks = 0; |
| 82 | unsigned char *flashbuf = NULL; |
| 83 | uint32_t buf_size = 0; |
| 84 | #ifndef __ECOS |
| 85 | size_t pointlen; |
| 86 | |
| 87 | if (c->mtd->point) { |
| 88 | ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf); |
| 89 | if (!ret && pointlen < c->mtd->size) { |
| 90 | /* Don't muck about if it won't let us point to the whole flash */ |
| 91 | D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen)); |
| 92 | c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size); |
| 93 | flashbuf = NULL; |
| 94 | } |
| 95 | if (ret) |
| 96 | D1(printk(KERN_DEBUG "MTD point failed %d\n", ret)); |
| 97 | } |
| 98 | #endif |
| 99 | if (!flashbuf) { |
| 100 | /* For NAND it's quicker to read a whole eraseblock at a time, |
| 101 | apparently */ |
| 102 | if (jffs2_cleanmarker_oob(c)) |
| 103 | buf_size = c->sector_size; |
| 104 | else |
| 105 | buf_size = PAGE_SIZE; |
| 106 | |
| 107 | /* Respect kmalloc limitations */ |
| 108 | if (buf_size > 128*1024) |
| 109 | buf_size = 128*1024; |
| 110 | |
| 111 | D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size)); |
| 112 | flashbuf = kmalloc(buf_size, GFP_KERNEL); |
| 113 | if (!flashbuf) |
| 114 | return -ENOMEM; |
| 115 | } |
| 116 | |
| 117 | for (i=0; i<c->nr_blocks; i++) { |
| 118 | struct jffs2_eraseblock *jeb = &c->blocks[i]; |
| 119 | |
| 120 | ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size); |
| 121 | |
| 122 | if (ret < 0) |
| 123 | goto out; |
| 124 | |
| 125 | ACCT_PARANOIA_CHECK(jeb); |
| 126 | |
| 127 | /* Now decide which list to put it on */ |
| 128 | switch(ret) { |
| 129 | case BLK_STATE_ALLFF: |
| 130 | /* |
| 131 | * Empty block. Since we can't be sure it |
| 132 | * was entirely erased, we just queue it for erase |
| 133 | * again. It will be marked as such when the erase |
| 134 | * is complete. Meanwhile we still count it as empty |
| 135 | * for later checks. |
| 136 | */ |
| 137 | empty_blocks++; |
| 138 | list_add(&jeb->list, &c->erase_pending_list); |
| 139 | c->nr_erasing_blocks++; |
| 140 | break; |
| 141 | |
| 142 | case BLK_STATE_CLEANMARKER: |
| 143 | /* Only a CLEANMARKER node is valid */ |
| 144 | if (!jeb->dirty_size) { |
| 145 | /* It's actually free */ |
| 146 | list_add(&jeb->list, &c->free_list); |
| 147 | c->nr_free_blocks++; |
| 148 | } else { |
| 149 | /* Dirt */ |
| 150 | D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset)); |
| 151 | list_add(&jeb->list, &c->erase_pending_list); |
| 152 | c->nr_erasing_blocks++; |
| 153 | } |
| 154 | break; |
| 155 | |
| 156 | case BLK_STATE_CLEAN: |
| 157 | /* Full (or almost full) of clean data. Clean list */ |
| 158 | list_add(&jeb->list, &c->clean_list); |
| 159 | break; |
| 160 | |
| 161 | case BLK_STATE_PARTDIRTY: |
| 162 | /* Some data, but not full. Dirty list. */ |
| 163 | /* We want to remember the block with most free space |
| 164 | and stick it in the 'nextblock' position to start writing to it. */ |
| 165 | if (jeb->free_size > min_free(c) && |
| 166 | (!c->nextblock || c->nextblock->free_size < jeb->free_size)) { |
| 167 | /* Better candidate for the next writes to go to */ |
| 168 | if (c->nextblock) { |
| 169 | c->nextblock->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size; |
| 170 | c->dirty_size += c->nextblock->free_size + c->nextblock->wasted_size; |
| 171 | c->free_size -= c->nextblock->free_size; |
| 172 | c->wasted_size -= c->nextblock->wasted_size; |
| 173 | c->nextblock->free_size = c->nextblock->wasted_size = 0; |
| 174 | if (VERYDIRTY(c, c->nextblock->dirty_size)) { |
| 175 | list_add(&c->nextblock->list, &c->very_dirty_list); |
| 176 | } else { |
| 177 | list_add(&c->nextblock->list, &c->dirty_list); |
| 178 | } |
| 179 | } |
| 180 | c->nextblock = jeb; |
| 181 | } else { |
| 182 | jeb->dirty_size += jeb->free_size + jeb->wasted_size; |
| 183 | c->dirty_size += jeb->free_size + jeb->wasted_size; |
| 184 | c->free_size -= jeb->free_size; |
| 185 | c->wasted_size -= jeb->wasted_size; |
| 186 | jeb->free_size = jeb->wasted_size = 0; |
| 187 | if (VERYDIRTY(c, jeb->dirty_size)) { |
| 188 | list_add(&jeb->list, &c->very_dirty_list); |
| 189 | } else { |
| 190 | list_add(&jeb->list, &c->dirty_list); |
| 191 | } |
| 192 | } |
| 193 | break; |
| 194 | |
| 195 | case BLK_STATE_ALLDIRTY: |
| 196 | /* Nothing valid - not even a clean marker. Needs erasing. */ |
| 197 | /* For now we just put it on the erasing list. We'll start the erases later */ |
| 198 | D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset)); |
| 199 | list_add(&jeb->list, &c->erase_pending_list); |
| 200 | c->nr_erasing_blocks++; |
| 201 | break; |
| 202 | |
| 203 | case BLK_STATE_BADBLOCK: |
| 204 | D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset)); |
| 205 | list_add(&jeb->list, &c->bad_list); |
| 206 | c->bad_size += c->sector_size; |
| 207 | c->free_size -= c->sector_size; |
| 208 | bad_blocks++; |
| 209 | break; |
| 210 | default: |
| 211 | printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n"); |
| 212 | BUG(); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */ |
| 217 | if (c->nextblock && (c->nextblock->dirty_size)) { |
| 218 | c->nextblock->wasted_size += c->nextblock->dirty_size; |
| 219 | c->wasted_size += c->nextblock->dirty_size; |
| 220 | c->dirty_size -= c->nextblock->dirty_size; |
| 221 | c->nextblock->dirty_size = 0; |
| 222 | } |
| 223 | #if defined CONFIG_JFFS2_FS_NAND || defined CONFIG_JFFS2_FS_NOR_ECC |
| 224 | if (!jffs2_can_mark_obsolete(c) && c->nextblock && (c->nextblock->free_size & (c->wbuf_pagesize-1))) { |
| 225 | /* If we're going to start writing into a block which already |
| 226 | contains data, and the end of the data isn't page-aligned, |
| 227 | skip a little and align it. */ |
| 228 | |
| 229 | uint32_t skip = c->nextblock->free_size & (c->wbuf_pagesize-1); |
| 230 | |
| 231 | D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n", |
| 232 | skip)); |
| 233 | c->nextblock->wasted_size += skip; |
| 234 | c->wasted_size += skip; |
| 235 | |
| 236 | c->nextblock->free_size -= skip; |
| 237 | c->free_size -= skip; |
| 238 | } |
| 239 | #endif |
| 240 | if (c->nr_erasing_blocks) { |
| 241 | if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { |
| 242 | printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n"); |
| 243 | printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks); |
| 244 | ret = -EIO; |
| 245 | goto out; |
| 246 | } |
| 247 | jffs2_erase_pending_trigger(c); |
| 248 | } |
| 249 | ret = 0; |
| 250 | out: |
| 251 | if (buf_size) |
| 252 | kfree(flashbuf); |
| 253 | #ifndef __ECOS |
| 254 | else |
| 255 | c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size); |
| 256 | #endif |
| 257 | return ret; |
| 258 | } |
| 259 | |
| 260 | static int jffs2_fill_scan_buf (struct jffs2_sb_info *c, unsigned char *buf, |
| 261 | uint32_t ofs, uint32_t len) |
| 262 | { |
| 263 | int ret; |
| 264 | size_t retlen; |
| 265 | |
| 266 | ret = jffs2_flash_read(c, ofs, len, &retlen, buf); |
| 267 | if (ret) { |
| 268 | D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret)); |
| 269 | return ret; |
| 270 | } |
| 271 | if (retlen < len) { |
| 272 | D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen)); |
| 273 | return -EIO; |
| 274 | } |
| 275 | D2(printk(KERN_DEBUG "Read 0x%x bytes from 0x%08x into buf\n", len, ofs)); |
| 276 | D2(printk(KERN_DEBUG "000: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", |
| 277 | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7], buf[8], buf[9], buf[10], buf[11], buf[12], buf[13], buf[14], buf[15])); |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 282 | unsigned char *buf, uint32_t buf_size) { |
| 283 | struct jffs2_unknown_node *node; |
| 284 | struct jffs2_unknown_node crcnode; |
| 285 | uint32_t ofs, prevofs; |
| 286 | uint32_t hdr_crc, buf_ofs, buf_len; |
| 287 | int err; |
| 288 | int noise = 0; |
| 289 | #ifdef CONFIG_JFFS2_FS_NAND |
| 290 | int cleanmarkerfound = 0; |
| 291 | #endif |
| 292 | |
| 293 | ofs = jeb->offset; |
| 294 | prevofs = jeb->offset - 1; |
| 295 | |
| 296 | D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs)); |
| 297 | |
| 298 | #ifdef CONFIG_JFFS2_FS_NAND |
| 299 | if (jffs2_cleanmarker_oob(c)) { |
| 300 | int ret = jffs2_check_nand_cleanmarker(c, jeb); |
| 301 | D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret)); |
| 302 | /* Even if it's not found, we still scan to see |
| 303 | if the block is empty. We use this information |
| 304 | to decide whether to erase it or not. */ |
| 305 | switch (ret) { |
| 306 | case 0: cleanmarkerfound = 1; break; |
| 307 | case 1: break; |
| 308 | case 2: return BLK_STATE_BADBLOCK; |
| 309 | case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */ |
| 310 | default: return ret; |
| 311 | } |
| 312 | } |
| 313 | #endif |
| 314 | buf_ofs = jeb->offset; |
| 315 | |
| 316 | if (!buf_size) { |
| 317 | buf_len = c->sector_size; |
| 318 | } else { |
| 319 | buf_len = EMPTY_SCAN_SIZE; |
| 320 | err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len); |
| 321 | if (err) |
| 322 | return err; |
| 323 | } |
| 324 | |
| 325 | /* We temporarily use 'ofs' as a pointer into the buffer/jeb */ |
| 326 | ofs = 0; |
| 327 | |
| 328 | /* Scan only 4KiB of 0xFF before declaring it's empty */ |
| 329 | while(ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) |
| 330 | ofs += 4; |
| 331 | |
| 332 | if (ofs == EMPTY_SCAN_SIZE) { |
| 333 | #ifdef CONFIG_JFFS2_FS_NAND |
| 334 | if (jffs2_cleanmarker_oob(c)) { |
| 335 | /* scan oob, take care of cleanmarker */ |
| 336 | int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound); |
| 337 | D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret)); |
| 338 | switch (ret) { |
| 339 | case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF; |
| 340 | case 1: return BLK_STATE_ALLDIRTY; |
| 341 | default: return ret; |
| 342 | } |
| 343 | } |
| 344 | #endif |
| 345 | D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset)); |
| 346 | return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */ |
| 347 | } |
| 348 | if (ofs) { |
| 349 | D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset, |
| 350 | jeb->offset + ofs)); |
| 351 | DIRTY_SPACE(ofs); |
| 352 | } |
| 353 | |
| 354 | /* Now ofs is a complete physical flash offset as it always was... */ |
| 355 | ofs += jeb->offset; |
| 356 | |
| 357 | noise = 10; |
| 358 | |
| 359 | scan_more: |
| 360 | while(ofs < jeb->offset + c->sector_size) { |
| 361 | |
| 362 | D1(ACCT_PARANOIA_CHECK(jeb)); |
| 363 | |
| 364 | cond_resched(); |
| 365 | |
| 366 | if (ofs & 3) { |
| 367 | printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs); |
| 368 | ofs = PAD(ofs); |
| 369 | continue; |
| 370 | } |
| 371 | if (ofs == prevofs) { |
| 372 | printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs); |
| 373 | DIRTY_SPACE(4); |
| 374 | ofs += 4; |
| 375 | continue; |
| 376 | } |
| 377 | prevofs = ofs; |
| 378 | |
| 379 | if (jeb->offset + c->sector_size < ofs + sizeof(*node)) { |
| 380 | D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node), |
| 381 | jeb->offset, c->sector_size, ofs, sizeof(*node))); |
| 382 | DIRTY_SPACE((jeb->offset + c->sector_size)-ofs); |
| 383 | break; |
| 384 | } |
| 385 | |
| 386 | if (buf_ofs + buf_len < ofs + sizeof(*node)) { |
| 387 | buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| 388 | D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n", |
| 389 | sizeof(struct jffs2_unknown_node), buf_len, ofs)); |
| 390 | err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| 391 | if (err) |
| 392 | return err; |
| 393 | buf_ofs = ofs; |
| 394 | } |
| 395 | |
| 396 | node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs]; |
| 397 | |
| 398 | if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) { |
| 399 | uint32_t inbuf_ofs; |
| 400 | uint32_t empty_start; |
| 401 | |
| 402 | empty_start = ofs; |
| 403 | ofs += 4; |
| 404 | |
| 405 | D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs)); |
| 406 | more_empty: |
| 407 | inbuf_ofs = ofs - buf_ofs; |
| 408 | while (inbuf_ofs < buf_len) { |
| 409 | if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) { |
| 410 | printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", |
| 411 | empty_start, ofs); |
| 412 | DIRTY_SPACE(ofs-empty_start); |
| 413 | goto scan_more; |
| 414 | } |
| 415 | |
| 416 | inbuf_ofs+=4; |
| 417 | ofs += 4; |
| 418 | } |
| 419 | /* Ran off end. */ |
| 420 | D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs)); |
| 421 | |
| 422 | /* If we're only checking the beginning of a block with a cleanmarker, |
| 423 | bail now */ |
| 424 | if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && |
| 425 | c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_in_ino) { |
| 426 | D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE)); |
| 427 | return BLK_STATE_CLEANMARKER; |
| 428 | } |
| 429 | |
| 430 | /* See how much more there is to read in this eraseblock... */ |
| 431 | buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| 432 | if (!buf_len) { |
| 433 | /* No more to read. Break out of main loop without marking |
| 434 | this range of empty space as dirty (because it's not) */ |
| 435 | D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n", |
| 436 | empty_start)); |
| 437 | break; |
| 438 | } |
| 439 | D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs)); |
| 440 | err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| 441 | if (err) |
| 442 | return err; |
| 443 | buf_ofs = ofs; |
| 444 | goto more_empty; |
| 445 | } |
| 446 | |
| 447 | if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) { |
| 448 | printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs); |
| 449 | DIRTY_SPACE(4); |
| 450 | ofs += 4; |
| 451 | continue; |
| 452 | } |
| 453 | if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) { |
| 454 | D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs)); |
| 455 | DIRTY_SPACE(4); |
| 456 | ofs += 4; |
| 457 | continue; |
| 458 | } |
| 459 | if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) { |
| 460 | printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs); |
| 461 | printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n"); |
| 462 | DIRTY_SPACE(4); |
| 463 | ofs += 4; |
| 464 | continue; |
| 465 | } |
| 466 | if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) { |
| 467 | /* OK. We're out of possibilities. Whinge and move on */ |
| 468 | noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", |
| 469 | JFFS2_MAGIC_BITMASK, ofs, |
| 470 | je16_to_cpu(node->magic)); |
| 471 | DIRTY_SPACE(4); |
| 472 | ofs += 4; |
| 473 | continue; |
| 474 | } |
| 475 | /* We seem to have a node of sorts. Check the CRC */ |
| 476 | crcnode.magic = node->magic; |
| 477 | crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE); |
| 478 | crcnode.totlen = node->totlen; |
| 479 | hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4); |
| 480 | |
| 481 | if (hdr_crc != je32_to_cpu(node->hdr_crc)) { |
| 482 | noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n", |
| 483 | ofs, je16_to_cpu(node->magic), |
| 484 | je16_to_cpu(node->nodetype), |
| 485 | je32_to_cpu(node->totlen), |
| 486 | je32_to_cpu(node->hdr_crc), |
| 487 | hdr_crc); |
| 488 | DIRTY_SPACE(4); |
| 489 | ofs += 4; |
| 490 | continue; |
| 491 | } |
| 492 | |
| 493 | if (ofs + je32_to_cpu(node->totlen) > |
| 494 | jeb->offset + c->sector_size) { |
| 495 | /* Eep. Node goes over the end of the erase block. */ |
| 496 | printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n", |
| 497 | ofs, je32_to_cpu(node->totlen)); |
| 498 | printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n"); |
| 499 | DIRTY_SPACE(4); |
| 500 | ofs += 4; |
| 501 | continue; |
| 502 | } |
| 503 | |
| 504 | if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) { |
| 505 | /* Wheee. This is an obsoleted node */ |
| 506 | D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs)); |
| 507 | DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| 508 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 509 | continue; |
| 510 | } |
| 511 | |
| 512 | switch(je16_to_cpu(node->nodetype)) { |
| 513 | case JFFS2_NODETYPE_INODE: |
| 514 | if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { |
| 515 | buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| 516 | D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n", |
| 517 | sizeof(struct jffs2_raw_inode), buf_len, ofs)); |
| 518 | err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| 519 | if (err) |
| 520 | return err; |
| 521 | buf_ofs = ofs; |
| 522 | node = (void *)buf; |
| 523 | } |
| 524 | err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs); |
| 525 | if (err) return err; |
| 526 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 527 | break; |
| 528 | |
| 529 | case JFFS2_NODETYPE_DIRENT: |
| 530 | if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { |
| 531 | buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); |
| 532 | D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n", |
| 533 | je32_to_cpu(node->totlen), buf_len, ofs)); |
| 534 | err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); |
| 535 | if (err) |
| 536 | return err; |
| 537 | buf_ofs = ofs; |
| 538 | node = (void *)buf; |
| 539 | } |
| 540 | err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs); |
| 541 | if (err) return err; |
| 542 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 543 | break; |
| 544 | |
| 545 | case JFFS2_NODETYPE_CLEANMARKER: |
| 546 | D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs)); |
| 547 | if (je32_to_cpu(node->totlen) != c->cleanmarker_size) { |
| 548 | printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", |
| 549 | ofs, je32_to_cpu(node->totlen), c->cleanmarker_size); |
| 550 | DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node))); |
| 551 | ofs += PAD(sizeof(struct jffs2_unknown_node)); |
| 552 | } else if (jeb->first_node) { |
| 553 | printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset); |
| 554 | DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node))); |
| 555 | ofs += PAD(sizeof(struct jffs2_unknown_node)); |
| 556 | } else { |
| 557 | struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref(); |
| 558 | if (!marker_ref) { |
| 559 | printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n"); |
| 560 | return -ENOMEM; |
| 561 | } |
| 562 | marker_ref->next_in_ino = NULL; |
| 563 | marker_ref->next_phys = NULL; |
| 564 | marker_ref->flash_offset = ofs | REF_NORMAL; |
| 565 | marker_ref->__totlen = c->cleanmarker_size; |
| 566 | jeb->first_node = jeb->last_node = marker_ref; |
| 567 | |
| 568 | USED_SPACE(PAD(c->cleanmarker_size)); |
| 569 | ofs += PAD(c->cleanmarker_size); |
| 570 | } |
| 571 | break; |
| 572 | |
| 573 | case JFFS2_NODETYPE_PADDING: |
| 574 | DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| 575 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 576 | break; |
| 577 | |
| 578 | default: |
| 579 | switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) { |
| 580 | case JFFS2_FEATURE_ROCOMPAT: |
| 581 | printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); |
| 582 | c->flags |= JFFS2_SB_FLAG_RO; |
| 583 | if (!(jffs2_is_readonly(c))) |
| 584 | return -EROFS; |
| 585 | DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| 586 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 587 | break; |
| 588 | |
| 589 | case JFFS2_FEATURE_INCOMPAT: |
| 590 | printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); |
| 591 | return -EINVAL; |
| 592 | |
| 593 | case JFFS2_FEATURE_RWCOMPAT_DELETE: |
| 594 | D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); |
| 595 | DIRTY_SPACE(PAD(je32_to_cpu(node->totlen))); |
| 596 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 597 | break; |
| 598 | |
| 599 | case JFFS2_FEATURE_RWCOMPAT_COPY: |
| 600 | D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); |
| 601 | USED_SPACE(PAD(je32_to_cpu(node->totlen))); |
| 602 | ofs += PAD(je32_to_cpu(node->totlen)); |
| 603 | break; |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | |
| 609 | D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset, |
| 610 | jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size)); |
| 611 | |
| 612 | /* mark_node_obsolete can add to wasted !! */ |
| 613 | if (jeb->wasted_size) { |
| 614 | jeb->dirty_size += jeb->wasted_size; |
| 615 | c->dirty_size += jeb->wasted_size; |
| 616 | c->wasted_size -= jeb->wasted_size; |
| 617 | jeb->wasted_size = 0; |
| 618 | } |
| 619 | |
| 620 | if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size |
| 621 | && (!jeb->first_node || !jeb->first_node->next_in_ino) ) |
| 622 | return BLK_STATE_CLEANMARKER; |
| 623 | |
| 624 | /* move blocks with max 4 byte dirty space to cleanlist */ |
| 625 | else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) { |
| 626 | c->dirty_size -= jeb->dirty_size; |
| 627 | c->wasted_size += jeb->dirty_size; |
| 628 | jeb->wasted_size += jeb->dirty_size; |
| 629 | jeb->dirty_size = 0; |
| 630 | return BLK_STATE_CLEAN; |
| 631 | } else if (jeb->used_size || jeb->unchecked_size) |
| 632 | return BLK_STATE_PARTDIRTY; |
| 633 | else |
| 634 | return BLK_STATE_ALLDIRTY; |
| 635 | } |
| 636 | |
| 637 | static struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino) |
| 638 | { |
| 639 | struct jffs2_inode_cache *ic; |
| 640 | |
| 641 | ic = jffs2_get_ino_cache(c, ino); |
| 642 | if (ic) |
| 643 | return ic; |
| 644 | |
| 645 | if (ino > c->highest_ino) |
| 646 | c->highest_ino = ino; |
| 647 | |
| 648 | ic = jffs2_alloc_inode_cache(); |
| 649 | if (!ic) { |
| 650 | printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n"); |
| 651 | return NULL; |
| 652 | } |
| 653 | memset(ic, 0, sizeof(*ic)); |
| 654 | |
| 655 | ic->ino = ino; |
| 656 | ic->nodes = (void *)ic; |
| 657 | jffs2_add_ino_cache(c, ic); |
| 658 | if (ino == 1) |
| 659 | ic->nlink = 1; |
| 660 | return ic; |
| 661 | } |
| 662 | |
| 663 | static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 664 | struct jffs2_raw_inode *ri, uint32_t ofs) |
| 665 | { |
| 666 | struct jffs2_raw_node_ref *raw; |
| 667 | struct jffs2_inode_cache *ic; |
| 668 | uint32_t ino = je32_to_cpu(ri->ino); |
| 669 | |
| 670 | D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs)); |
| 671 | |
| 672 | /* We do very little here now. Just check the ino# to which we should attribute |
| 673 | this node; we can do all the CRC checking etc. later. There's a tradeoff here -- |
| 674 | we used to scan the flash once only, reading everything we want from it into |
| 675 | memory, then building all our in-core data structures and freeing the extra |
| 676 | information. Now we allow the first part of the mount to complete a lot quicker, |
| 677 | but we have to go _back_ to the flash in order to finish the CRC checking, etc. |
| 678 | Which means that the _full_ amount of time to get to proper write mode with GC |
| 679 | operational may actually be _longer_ than before. Sucks to be me. */ |
| 680 | |
| 681 | raw = jffs2_alloc_raw_node_ref(); |
| 682 | if (!raw) { |
| 683 | printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n"); |
| 684 | return -ENOMEM; |
| 685 | } |
| 686 | |
| 687 | ic = jffs2_get_ino_cache(c, ino); |
| 688 | if (!ic) { |
| 689 | /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the |
| 690 | first node we found for this inode. Do a CRC check to protect against the former |
| 691 | case */ |
| 692 | uint32_t crc = crc32(0, ri, sizeof(*ri)-8); |
| 693 | |
| 694 | if (crc != je32_to_cpu(ri->node_crc)) { |
| 695 | printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 696 | ofs, je32_to_cpu(ri->node_crc), crc); |
| 697 | /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ |
| 698 | DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen))); |
| 699 | jffs2_free_raw_node_ref(raw); |
| 700 | return 0; |
| 701 | } |
| 702 | ic = jffs2_scan_make_ino_cache(c, ino); |
| 703 | if (!ic) { |
| 704 | jffs2_free_raw_node_ref(raw); |
| 705 | return -ENOMEM; |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | /* Wheee. It worked */ |
| 710 | |
| 711 | raw->flash_offset = ofs | REF_UNCHECKED; |
| 712 | raw->__totlen = PAD(je32_to_cpu(ri->totlen)); |
| 713 | raw->next_phys = NULL; |
| 714 | raw->next_in_ino = ic->nodes; |
| 715 | |
| 716 | ic->nodes = raw; |
| 717 | if (!jeb->first_node) |
| 718 | jeb->first_node = raw; |
| 719 | if (jeb->last_node) |
| 720 | jeb->last_node->next_phys = raw; |
| 721 | jeb->last_node = raw; |
| 722 | |
| 723 | D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", |
| 724 | je32_to_cpu(ri->ino), je32_to_cpu(ri->version), |
| 725 | je32_to_cpu(ri->offset), |
| 726 | je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize))); |
| 727 | |
| 728 | pseudo_random += je32_to_cpu(ri->version); |
| 729 | |
| 730 | UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen))); |
| 731 | return 0; |
| 732 | } |
| 733 | |
| 734 | static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| 735 | struct jffs2_raw_dirent *rd, uint32_t ofs) |
| 736 | { |
| 737 | struct jffs2_raw_node_ref *raw; |
| 738 | struct jffs2_full_dirent *fd; |
| 739 | struct jffs2_inode_cache *ic; |
| 740 | uint32_t crc; |
| 741 | |
| 742 | D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs)); |
| 743 | |
| 744 | /* We don't get here unless the node is still valid, so we don't have to |
| 745 | mask in the ACCURATE bit any more. */ |
| 746 | crc = crc32(0, rd, sizeof(*rd)-8); |
| 747 | |
| 748 | if (crc != je32_to_cpu(rd->node_crc)) { |
| 749 | printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 750 | ofs, je32_to_cpu(rd->node_crc), crc); |
| 751 | /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ |
| 752 | DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen))); |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | pseudo_random += je32_to_cpu(rd->version); |
| 757 | |
| 758 | fd = jffs2_alloc_full_dirent(rd->nsize+1); |
| 759 | if (!fd) { |
| 760 | return -ENOMEM; |
| 761 | } |
| 762 | memcpy(&fd->name, rd->name, rd->nsize); |
| 763 | fd->name[rd->nsize] = 0; |
| 764 | |
| 765 | crc = crc32(0, fd->name, rd->nsize); |
| 766 | if (crc != je32_to_cpu(rd->name_crc)) { |
| 767 | printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| 768 | ofs, je32_to_cpu(rd->name_crc), crc); |
| 769 | D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino))); |
| 770 | jffs2_free_full_dirent(fd); |
| 771 | /* FIXME: Why do we believe totlen? */ |
| 772 | /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */ |
| 773 | DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen))); |
| 774 | return 0; |
| 775 | } |
| 776 | raw = jffs2_alloc_raw_node_ref(); |
| 777 | if (!raw) { |
| 778 | jffs2_free_full_dirent(fd); |
| 779 | printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n"); |
| 780 | return -ENOMEM; |
| 781 | } |
| 782 | ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino)); |
| 783 | if (!ic) { |
| 784 | jffs2_free_full_dirent(fd); |
| 785 | jffs2_free_raw_node_ref(raw); |
| 786 | return -ENOMEM; |
| 787 | } |
| 788 | |
| 789 | raw->__totlen = PAD(je32_to_cpu(rd->totlen)); |
| 790 | raw->flash_offset = ofs | REF_PRISTINE; |
| 791 | raw->next_phys = NULL; |
| 792 | raw->next_in_ino = ic->nodes; |
| 793 | ic->nodes = raw; |
| 794 | if (!jeb->first_node) |
| 795 | jeb->first_node = raw; |
| 796 | if (jeb->last_node) |
| 797 | jeb->last_node->next_phys = raw; |
| 798 | jeb->last_node = raw; |
| 799 | |
| 800 | fd->raw = raw; |
| 801 | fd->next = NULL; |
| 802 | fd->version = je32_to_cpu(rd->version); |
| 803 | fd->ino = je32_to_cpu(rd->ino); |
| 804 | fd->nhash = full_name_hash(fd->name, rd->nsize); |
| 805 | fd->type = rd->type; |
| 806 | USED_SPACE(PAD(je32_to_cpu(rd->totlen))); |
| 807 | jffs2_add_fd_to_list(c, fd, &ic->scan_dents); |
| 808 | |
| 809 | return 0; |
| 810 | } |
| 811 | |
| 812 | static int count_list(struct list_head *l) |
| 813 | { |
| 814 | uint32_t count = 0; |
| 815 | struct list_head *tmp; |
| 816 | |
| 817 | list_for_each(tmp, l) { |
| 818 | count++; |
| 819 | } |
| 820 | return count; |
| 821 | } |
| 822 | |
| 823 | /* Note: This breaks if list_empty(head). I don't care. You |
| 824 | might, if you copy this code and use it elsewhere :) */ |
| 825 | static void rotate_list(struct list_head *head, uint32_t count) |
| 826 | { |
| 827 | struct list_head *n = head->next; |
| 828 | |
| 829 | list_del(head); |
| 830 | while(count--) { |
| 831 | n = n->next; |
| 832 | } |
| 833 | list_add(head, n); |
| 834 | } |
| 835 | |
| 836 | void jffs2_rotate_lists(struct jffs2_sb_info *c) |
| 837 | { |
| 838 | uint32_t x; |
| 839 | uint32_t rotateby; |
| 840 | |
| 841 | x = count_list(&c->clean_list); |
| 842 | if (x) { |
| 843 | rotateby = pseudo_random % x; |
| 844 | D1(printk(KERN_DEBUG "Rotating clean_list by %d\n", rotateby)); |
| 845 | |
| 846 | rotate_list((&c->clean_list), rotateby); |
| 847 | |
| 848 | D1(printk(KERN_DEBUG "Erase block at front of clean_list is at %08x\n", |
| 849 | list_entry(c->clean_list.next, struct jffs2_eraseblock, list)->offset)); |
| 850 | } else { |
| 851 | D1(printk(KERN_DEBUG "Not rotating empty clean_list\n")); |
| 852 | } |
| 853 | |
| 854 | x = count_list(&c->very_dirty_list); |
| 855 | if (x) { |
| 856 | rotateby = pseudo_random % x; |
| 857 | D1(printk(KERN_DEBUG "Rotating very_dirty_list by %d\n", rotateby)); |
| 858 | |
| 859 | rotate_list((&c->very_dirty_list), rotateby); |
| 860 | |
| 861 | D1(printk(KERN_DEBUG "Erase block at front of very_dirty_list is at %08x\n", |
| 862 | list_entry(c->very_dirty_list.next, struct jffs2_eraseblock, list)->offset)); |
| 863 | } else { |
| 864 | D1(printk(KERN_DEBUG "Not rotating empty very_dirty_list\n")); |
| 865 | } |
| 866 | |
| 867 | x = count_list(&c->dirty_list); |
| 868 | if (x) { |
| 869 | rotateby = pseudo_random % x; |
| 870 | D1(printk(KERN_DEBUG "Rotating dirty_list by %d\n", rotateby)); |
| 871 | |
| 872 | rotate_list((&c->dirty_list), rotateby); |
| 873 | |
| 874 | D1(printk(KERN_DEBUG "Erase block at front of dirty_list is at %08x\n", |
| 875 | list_entry(c->dirty_list.next, struct jffs2_eraseblock, list)->offset)); |
| 876 | } else { |
| 877 | D1(printk(KERN_DEBUG "Not rotating empty dirty_list\n")); |
| 878 | } |
| 879 | |
| 880 | x = count_list(&c->erasable_list); |
| 881 | if (x) { |
| 882 | rotateby = pseudo_random % x; |
| 883 | D1(printk(KERN_DEBUG "Rotating erasable_list by %d\n", rotateby)); |
| 884 | |
| 885 | rotate_list((&c->erasable_list), rotateby); |
| 886 | |
| 887 | D1(printk(KERN_DEBUG "Erase block at front of erasable_list is at %08x\n", |
| 888 | list_entry(c->erasable_list.next, struct jffs2_eraseblock, list)->offset)); |
| 889 | } else { |
| 890 | D1(printk(KERN_DEBUG "Not rotating empty erasable_list\n")); |
| 891 | } |
| 892 | |
| 893 | if (c->nr_erasing_blocks) { |
| 894 | rotateby = pseudo_random % c->nr_erasing_blocks; |
| 895 | D1(printk(KERN_DEBUG "Rotating erase_pending_list by %d\n", rotateby)); |
| 896 | |
| 897 | rotate_list((&c->erase_pending_list), rotateby); |
| 898 | |
| 899 | D1(printk(KERN_DEBUG "Erase block at front of erase_pending_list is at %08x\n", |
| 900 | list_entry(c->erase_pending_list.next, struct jffs2_eraseblock, list)->offset)); |
| 901 | } else { |
| 902 | D1(printk(KERN_DEBUG "Not rotating empty erase_pending_list\n")); |
| 903 | } |
| 904 | |
| 905 | if (c->nr_free_blocks) { |
| 906 | rotateby = pseudo_random % c->nr_free_blocks; |
| 907 | D1(printk(KERN_DEBUG "Rotating free_list by %d\n", rotateby)); |
| 908 | |
| 909 | rotate_list((&c->free_list), rotateby); |
| 910 | |
| 911 | D1(printk(KERN_DEBUG "Erase block at front of free_list is at %08x\n", |
| 912 | list_entry(c->free_list.next, struct jffs2_eraseblock, list)->offset)); |
| 913 | } else { |
| 914 | D1(printk(KERN_DEBUG "Not rotating empty free_list\n")); |
| 915 | } |
| 916 | } |