blob: 636aa9bf5674076bc6e0781c56ed8288c1541c23 [file] [log] [blame]
Changbin Du1f198e22018-02-17 13:39:38 +08001========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a frame work of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Through out the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
98 that is configured.
99
100 available_tracers:
101
102 This holds the different types of tracers that
103 have been compiled into the kernel. The
104 tracers listed here can be configured by
105 echoing their name into current_tracer.
106
107 tracing_on:
108
109 This sets or displays whether writing to the trace
110 ring buffer is enabled. Echo 0 into this file to disable
111 the tracer or 1 to enable it. Note, this only disables
112 writing to the ring buffer, the tracing overhead may
113 still be occurring.
114
115 The kernel function tracing_off() can be used within the
116 kernel to disable writing to the ring buffer, which will
117 set this file to "0". User space can re-enable tracing by
118 echoing "1" into the file.
119
120 Note, the function and event trigger "traceoff" will also
121 set this file to zero and stop tracing. Which can also
122 be re-enabled by user space using this file.
123
124 trace:
125
126 This file holds the output of the trace in a human
127 readable format (described below). Note, tracing is temporarily
128 disabled while this file is being read (opened).
129
130 trace_pipe:
131
132 The output is the same as the "trace" file but this
133 file is meant to be streamed with live tracing.
134 Reads from this file will block until new data is
135 retrieved. Unlike the "trace" file, this file is a
136 consumer. This means reading from this file causes
137 sequential reads to display more current data. Once
138 data is read from this file, it is consumed, and
139 will not be read again with a sequential read. The
140 "trace" file is static, and if the tracer is not
141 adding more data, it will display the same
142 information every time it is read. This file will not
143 disable tracing while being read.
144
145 trace_options:
146
147 This file lets the user control the amount of data
148 that is displayed in one of the above output
149 files. Options also exist to modify how a tracer
150 or events work (stack traces, timestamps, etc).
151
152 options:
153
154 This is a directory that has a file for every available
155 trace option (also in trace_options). Options may also be set
156 or cleared by writing a "1" or "0" respectively into the
157 corresponding file with the option name.
158
159 tracing_max_latency:
160
161 Some of the tracers record the max latency.
162 For example, the maximum time that interrupts are disabled.
163 The maximum time is saved in this file. The max trace will also be
164 stored, and displayed by "trace". A new max trace will only be
165 recorded if the latency is greater than the value in this file
166 (in microseconds).
167
168 By echoing in a time into this file, no latency will be recorded
169 unless it is greater than the time in this file.
170
171 tracing_thresh:
172
173 Some latency tracers will record a trace whenever the
174 latency is greater than the number in this file.
175 Only active when the file contains a number greater than 0.
176 (in microseconds)
177
178 buffer_size_kb:
179
180 This sets or displays the number of kilobytes each CPU
181 buffer holds. By default, the trace buffers are the same size
182 for each CPU. The displayed number is the size of the
183 CPU buffer and not total size of all buffers. The
184 trace buffers are allocated in pages (blocks of memory
185 that the kernel uses for allocation, usually 4 KB in size).
186 If the last page allocated has room for more bytes
187 than requested, the rest of the page will be used,
188 making the actual allocation bigger than requested or shown.
189 ( Note, the size may not be a multiple of the page size
190 due to buffer management meta-data. )
191
192 Buffer sizes for individual CPUs may vary
193 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194 this file will show "X".
195
196 buffer_total_size_kb:
197
198 This displays the total combined size of all the trace buffers.
199
200 free_buffer:
201
202 If a process is performing tracing, and the ring buffer should be
203 shrunk "freed" when the process is finished, even if it were to be
204 killed by a signal, this file can be used for that purpose. On close
205 of this file, the ring buffer will be resized to its minimum size.
206 Having a process that is tracing also open this file, when the process
207 exits its file descriptor for this file will be closed, and in doing so,
208 the ring buffer will be "freed".
209
210 It may also stop tracing if disable_on_free option is set.
211
212 tracing_cpumask:
213
214 This is a mask that lets the user only trace on specified CPUs.
215 The format is a hex string representing the CPUs.
216
217 set_ftrace_filter:
218
219 When dynamic ftrace is configured in (see the
220 section below "dynamic ftrace"), the code is dynamically
221 modified (code text rewrite) to disable calling of the
222 function profiler (mcount). This lets tracing be configured
223 in with practically no overhead in performance. This also
224 has a side effect of enabling or disabling specific functions
225 to be traced. Echoing names of functions into this file
226 will limit the trace to only those functions.
227
228 The functions listed in "available_filter_functions" are what
229 can be written into this file.
230
231 This interface also allows for commands to be used. See the
232 "Filter commands" section for more details.
233
234 set_ftrace_notrace:
235
236 This has an effect opposite to that of
237 set_ftrace_filter. Any function that is added here will not
238 be traced. If a function exists in both set_ftrace_filter
239 and set_ftrace_notrace, the function will _not_ be traced.
240
241 set_ftrace_pid:
242
243 Have the function tracer only trace the threads whose PID are
244 listed in this file.
245
246 If the "function-fork" option is set, then when a task whose
247 PID is listed in this file forks, the child's PID will
248 automatically be added to this file, and the child will be
249 traced by the function tracer as well. This option will also
250 cause PIDs of tasks that exit to be removed from the file.
251
252 set_event_pid:
253
254 Have the events only trace a task with a PID listed in this file.
255 Note, sched_switch and sched_wake_up will also trace events
256 listed in this file.
257
258 To have the PIDs of children of tasks with their PID in this file
259 added on fork, enable the "event-fork" option. That option will also
260 cause the PIDs of tasks to be removed from this file when the task
261 exits.
262
263 set_graph_function:
264
265 Functions listed in this file will cause the function graph
266 tracer to only trace these functions and the functions that
267 they call. (See the section "dynamic ftrace" for more details).
268
269 set_graph_notrace:
270
271 Similar to set_graph_function, but will disable function graph
272 tracing when the function is hit until it exits the function.
273 This makes it possible to ignore tracing functions that are called
274 by a specific function.
275
276 available_filter_functions:
277
278 This lists the functions that ftrace has processed and can trace.
279 These are the function names that you can pass to
280 "set_ftrace_filter" or "set_ftrace_notrace".
281 (See the section "dynamic ftrace" below for more details.)
282
283 dyn_ftrace_total_info:
284
285 This file is for debugging purposes. The number of functions that
286 have been converted to nops and are available to be traced.
287
288 enabled_functions:
289
290 This file is more for debugging ftrace, but can also be useful
291 in seeing if any function has a callback attached to it.
292 Not only does the trace infrastructure use ftrace function
293 trace utility, but other subsystems might too. This file
294 displays all functions that have a callback attached to them
295 as well as the number of callbacks that have been attached.
296 Note, a callback may also call multiple functions which will
297 not be listed in this count.
298
299 If the callback registered to be traced by a function with
300 the "save regs" attribute (thus even more overhead), a 'R'
301 will be displayed on the same line as the function that
302 is returning registers.
303
304 If the callback registered to be traced by a function with
305 the "ip modify" attribute (thus the regs->ip can be changed),
306 an 'I' will be displayed on the same line as the function that
307 can be overridden.
308
309 If the architecture supports it, it will also show what callback
310 is being directly called by the function. If the count is greater
311 than 1 it most likely will be ftrace_ops_list_func().
312
313 If the callback of the function jumps to a trampoline that is
314 specific to a the callback and not the standard trampoline,
315 its address will be printed as well as the function that the
316 trampoline calls.
317
318 function_profile_enabled:
319
320 When set it will enable all functions with either the function
321 tracer, or if configured, the function graph tracer. It will
322 keep a histogram of the number of functions that were called
323 and if the function graph tracer was configured, it will also keep
324 track of the time spent in those functions. The histogram
325 content can be displayed in the files:
326
327 trace_stats/function<cpu> ( function0, function1, etc).
328
329 trace_stats:
330
331 A directory that holds different tracing stats.
332
333 kprobe_events:
334
335 Enable dynamic trace points. See kprobetrace.txt.
336
337 kprobe_profile:
338
339 Dynamic trace points stats. See kprobetrace.txt.
340
341 max_graph_depth:
342
343 Used with the function graph tracer. This is the max depth
344 it will trace into a function. Setting this to a value of
345 one will show only the first kernel function that is called
346 from user space.
347
348 printk_formats:
349
350 This is for tools that read the raw format files. If an event in
351 the ring buffer references a string, only a pointer to the string
352 is recorded into the buffer and not the string itself. This prevents
353 tools from knowing what that string was. This file displays the string
354 and address for the string allowing tools to map the pointers to what
355 the strings were.
356
357 saved_cmdlines:
358
359 Only the pid of the task is recorded in a trace event unless
360 the event specifically saves the task comm as well. Ftrace
361 makes a cache of pid mappings to comms to try to display
362 comms for events. If a pid for a comm is not listed, then
363 "<...>" is displayed in the output.
364
365 If the option "record-cmd" is set to "0", then comms of tasks
366 will not be saved during recording. By default, it is enabled.
367
368 saved_cmdlines_size:
369
370 By default, 128 comms are saved (see "saved_cmdlines" above). To
371 increase or decrease the amount of comms that are cached, echo
372 in a the number of comms to cache, into this file.
373
374 saved_tgids:
375
376 If the option "record-tgid" is set, on each scheduling context switch
377 the Task Group ID of a task is saved in a table mapping the PID of
378 the thread to its TGID. By default, the "record-tgid" option is
379 disabled.
380
381 snapshot:
382
383 This displays the "snapshot" buffer and also lets the user
384 take a snapshot of the current running trace.
385 See the "Snapshot" section below for more details.
386
387 stack_max_size:
388
389 When the stack tracer is activated, this will display the
390 maximum stack size it has encountered.
391 See the "Stack Trace" section below.
392
393 stack_trace:
394
395 This displays the stack back trace of the largest stack
396 that was encountered when the stack tracer is activated.
397 See the "Stack Trace" section below.
398
399 stack_trace_filter:
400
401 This is similar to "set_ftrace_filter" but it limits what
402 functions the stack tracer will check.
403
404 trace_clock:
405
406 Whenever an event is recorded into the ring buffer, a
407 "timestamp" is added. This stamp comes from a specified
408 clock. By default, ftrace uses the "local" clock. This
409 clock is very fast and strictly per cpu, but on some
410 systems it may not be monotonic with respect to other
411 CPUs. In other words, the local clocks may not be in sync
412 with local clocks on other CPUs.
413
414 Usual clocks for tracing::
415
416 # cat trace_clock
417 [local] global counter x86-tsc
418
419 The clock with the square brackets around it is the one in effect.
420
421 local:
422 Default clock, but may not be in sync across CPUs
423
424 global:
425 This clock is in sync with all CPUs but may
426 be a bit slower than the local clock.
427
428 counter:
429 This is not a clock at all, but literally an atomic
430 counter. It counts up one by one, but is in sync
431 with all CPUs. This is useful when you need to
432 know exactly the order events occurred with respect to
433 each other on different CPUs.
434
435 uptime:
436 This uses the jiffies counter and the time stamp
437 is relative to the time since boot up.
438
439 perf:
440 This makes ftrace use the same clock that perf uses.
441 Eventually perf will be able to read ftrace buffers
442 and this will help out in interleaving the data.
443
444 x86-tsc:
445 Architectures may define their own clocks. For
446 example, x86 uses its own TSC cycle clock here.
447
448 ppc-tb:
449 This uses the powerpc timebase register value.
450 This is in sync across CPUs and can also be used
451 to correlate events across hypervisor/guest if
452 tb_offset is known.
453
454 mono:
455 This uses the fast monotonic clock (CLOCK_MONOTONIC)
456 which is monotonic and is subject to NTP rate adjustments.
457
458 mono_raw:
459 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
460 which is montonic but is not subject to any rate adjustments
461 and ticks at the same rate as the hardware clocksource.
462
463 boot:
464 This is the boot clock (CLOCK_BOOTTIME) and is based on the
465 fast monotonic clock, but also accounts for time spent in
466 suspend. Since the clock access is designed for use in
467 tracing in the suspend path, some side effects are possible
468 if clock is accessed after the suspend time is accounted before
469 the fast mono clock is updated. In this case, the clock update
470 appears to happen slightly sooner than it normally would have.
471 Also on 32-bit systems, it's possible that the 64-bit boot offset
472 sees a partial update. These effects are rare and post
473 processing should be able to handle them. See comments in the
474 ktime_get_boot_fast_ns() function for more information.
475
476 To set a clock, simply echo the clock name into this file::
477
478 echo global > trace_clock
479
480 trace_marker:
481
482 This is a very useful file for synchronizing user space
483 with events happening in the kernel. Writing strings into
484 this file will be written into the ftrace buffer.
485
486 It is useful in applications to open this file at the start
487 of the application and just reference the file descriptor
488 for the file::
489
490 void trace_write(const char *fmt, ...)
491 {
492 va_list ap;
493 char buf[256];
494 int n;
495
496 if (trace_fd < 0)
497 return;
498
499 va_start(ap, fmt);
500 n = vsnprintf(buf, 256, fmt, ap);
501 va_end(ap);
502
503 write(trace_fd, buf, n);
504 }
505
506 start::
507
508 trace_fd = open("trace_marker", WR_ONLY);
509
510 trace_marker_raw:
511
512 This is similar to trace_marker above, but is meant for for binary data
513 to be written to it, where a tool can be used to parse the data
514 from trace_pipe_raw.
515
516 uprobe_events:
517
518 Add dynamic tracepoints in programs.
519 See uprobetracer.txt
520
521 uprobe_profile:
522
523 Uprobe statistics. See uprobetrace.txt
524
525 instances:
526
527 This is a way to make multiple trace buffers where different
528 events can be recorded in different buffers.
529 See "Instances" section below.
530
531 events:
532
533 This is the trace event directory. It holds event tracepoints
534 (also known as static tracepoints) that have been compiled
535 into the kernel. It shows what event tracepoints exist
536 and how they are grouped by system. There are "enable"
537 files at various levels that can enable the tracepoints
538 when a "1" is written to them.
539
540 See events.txt for more information.
541
542 set_event:
543
544 By echoing in the event into this file, will enable that event.
545
546 See events.txt for more information.
547
548 available_events:
549
550 A list of events that can be enabled in tracing.
551
552 See events.txt for more information.
553
554 hwlat_detector:
555
556 Directory for the Hardware Latency Detector.
557 See "Hardware Latency Detector" section below.
558
559 per_cpu:
560
561 This is a directory that contains the trace per_cpu information.
562
563 per_cpu/cpu0/buffer_size_kb:
564
565 The ftrace buffer is defined per_cpu. That is, there's a separate
566 buffer for each CPU to allow writes to be done atomically,
567 and free from cache bouncing. These buffers may have different
568 size buffers. This file is similar to the buffer_size_kb
569 file, but it only displays or sets the buffer size for the
570 specific CPU. (here cpu0).
571
572 per_cpu/cpu0/trace:
573
574 This is similar to the "trace" file, but it will only display
575 the data specific for the CPU. If written to, it only clears
576 the specific CPU buffer.
577
578 per_cpu/cpu0/trace_pipe
579
580 This is similar to the "trace_pipe" file, and is a consuming
581 read, but it will only display (and consume) the data specific
582 for the CPU.
583
584 per_cpu/cpu0/trace_pipe_raw
585
586 For tools that can parse the ftrace ring buffer binary format,
587 the trace_pipe_raw file can be used to extract the data
588 from the ring buffer directly. With the use of the splice()
589 system call, the buffer data can be quickly transferred to
590 a file or to the network where a server is collecting the
591 data.
592
593 Like trace_pipe, this is a consuming reader, where multiple
594 reads will always produce different data.
595
596 per_cpu/cpu0/snapshot:
597
598 This is similar to the main "snapshot" file, but will only
599 snapshot the current CPU (if supported). It only displays
600 the content of the snapshot for a given CPU, and if
601 written to, only clears this CPU buffer.
602
603 per_cpu/cpu0/snapshot_raw:
604
605 Similar to the trace_pipe_raw, but will read the binary format
606 from the snapshot buffer for the given CPU.
607
608 per_cpu/cpu0/stats:
609
610 This displays certain stats about the ring buffer:
611
612 entries:
613 The number of events that are still in the buffer.
614
615 overrun:
616 The number of lost events due to overwriting when
617 the buffer was full.
618
619 commit overrun:
620 Should always be zero.
621 This gets set if so many events happened within a nested
622 event (ring buffer is re-entrant), that it fills the
623 buffer and starts dropping events.
624
625 bytes:
626 Bytes actually read (not overwritten).
627
628 oldest event ts:
629 The oldest timestamp in the buffer
630
631 now ts:
632 The current timestamp
633
634 dropped events:
635 Events lost due to overwrite option being off.
636
637 read events:
638 The number of events read.
639
640The Tracers
641-----------
642
643Here is the list of current tracers that may be configured.
644
645 "function"
646
647 Function call tracer to trace all kernel functions.
648
649 "function_graph"
650
651 Similar to the function tracer except that the
652 function tracer probes the functions on their entry
653 whereas the function graph tracer traces on both entry
654 and exit of the functions. It then provides the ability
655 to draw a graph of function calls similar to C code
656 source.
657
658 "blk"
659
660 The block tracer. The tracer used by the blktrace user
661 application.
662
663 "hwlat"
664
665 The Hardware Latency tracer is used to detect if the hardware
666 produces any latency. See "Hardware Latency Detector" section
667 below.
668
669 "irqsoff"
670
671 Traces the areas that disable interrupts and saves
672 the trace with the longest max latency.
673 See tracing_max_latency. When a new max is recorded,
674 it replaces the old trace. It is best to view this
675 trace with the latency-format option enabled, which
676 happens automatically when the tracer is selected.
677
678 "preemptoff"
679
680 Similar to irqsoff but traces and records the amount of
681 time for which preemption is disabled.
682
683 "preemptirqsoff"
684
685 Similar to irqsoff and preemptoff, but traces and
686 records the largest time for which irqs and/or preemption
687 is disabled.
688
689 "wakeup"
690
691 Traces and records the max latency that it takes for
692 the highest priority task to get scheduled after
693 it has been woken up.
694 Traces all tasks as an average developer would expect.
695
696 "wakeup_rt"
697
698 Traces and records the max latency that it takes for just
699 RT tasks (as the current "wakeup" does). This is useful
700 for those interested in wake up timings of RT tasks.
701
702 "wakeup_dl"
703
704 Traces and records the max latency that it takes for
705 a SCHED_DEADLINE task to be woken (as the "wakeup" and
706 "wakeup_rt" does).
707
708 "mmiotrace"
709
710 A special tracer that is used to trace binary module.
711 It will trace all the calls that a module makes to the
712 hardware. Everything it writes and reads from the I/O
713 as well.
714
715 "branch"
716
717 This tracer can be configured when tracing likely/unlikely
718 calls within the kernel. It will trace when a likely and
719 unlikely branch is hit and if it was correct in its prediction
720 of being correct.
721
722 "nop"
723
724 This is the "trace nothing" tracer. To remove all
725 tracers from tracing simply echo "nop" into
726 current_tracer.
727
728
729Examples of using the tracer
730----------------------------
731
732Here are typical examples of using the tracers when controlling
733them only with the tracefs interface (without using any
734user-land utilities).
735
736Output format:
737--------------
738
739Here is an example of the output format of the file "trace"::
740
741 # tracer: function
742 #
743 # entries-in-buffer/entries-written: 140080/250280 #P:4
744 #
745 # _-----=> irqs-off
746 # / _----=> need-resched
747 # | / _---=> hardirq/softirq
748 # || / _--=> preempt-depth
749 # ||| / delay
750 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
751 # | | | |||| | |
752 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
753 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
754 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
755 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
756 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
757 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
758 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
759 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
760 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
761 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
762 ....
763
764A header is printed with the tracer name that is represented by
765the trace. In this case the tracer is "function". Then it shows the
766number of events in the buffer as well as the total number of entries
767that were written. The difference is the number of entries that were
768lost due to the buffer filling up (250280 - 140080 = 110200 events
769lost).
770
771The header explains the content of the events. Task name "bash", the task
772PID "1977", the CPU that it was running on "000", the latency format
773(explained below), the timestamp in <secs>.<usecs> format, the
774function name that was traced "sys_close" and the parent function that
775called this function "system_call_fastpath". The timestamp is the time
776at which the function was entered.
777
778Latency trace format
779--------------------
780
781When the latency-format option is enabled or when one of the latency
782tracers is set, the trace file gives somewhat more information to see
783why a latency happened. Here is a typical trace::
784
785 # tracer: irqsoff
786 #
787 # irqsoff latency trace v1.1.5 on 3.8.0-test+
788 # --------------------------------------------------------------------
789 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
790 # -----------------
791 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
792 # -----------------
793 # => started at: __lock_task_sighand
794 # => ended at: _raw_spin_unlock_irqrestore
795 #
796 #
797 # _------=> CPU#
798 # / _-----=> irqs-off
799 # | / _----=> need-resched
800 # || / _---=> hardirq/softirq
801 # ||| / _--=> preempt-depth
802 # |||| / delay
803 # cmd pid ||||| time | caller
804 # \ / ||||| \ | /
805 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
806 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
807 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
808 ps-6143 2d..1 306us : <stack trace>
809 => trace_hardirqs_on_caller
810 => trace_hardirqs_on
811 => _raw_spin_unlock_irqrestore
812 => do_task_stat
813 => proc_tgid_stat
814 => proc_single_show
815 => seq_read
816 => vfs_read
817 => sys_read
818 => system_call_fastpath
819
820
821This shows that the current tracer is "irqsoff" tracing the time
822for which interrupts were disabled. It gives the trace version (which
823never changes) and the version of the kernel upon which this was executed on
824(3.8). Then it displays the max latency in microseconds (259 us). The number
825of trace entries displayed and the total number (both are four: #4/4).
826VP, KP, SP, and HP are always zero and are reserved for later use.
827#P is the number of online CPUs (#P:4).
828
829The task is the process that was running when the latency
830occurred. (ps pid: 6143).
831
832The start and stop (the functions in which the interrupts were
833disabled and enabled respectively) that caused the latencies:
834
835 - __lock_task_sighand is where the interrupts were disabled.
836 - _raw_spin_unlock_irqrestore is where they were enabled again.
837
838The next lines after the header are the trace itself. The header
839explains which is which.
840
841 cmd: The name of the process in the trace.
842
843 pid: The PID of that process.
844
845 CPU#: The CPU which the process was running on.
846
847 irqs-off: 'd' interrupts are disabled. '.' otherwise.
848 .. caution:: If the architecture does not support a way to
849 read the irq flags variable, an 'X' will always
850 be printed here.
851
852 need-resched:
853 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
854 - 'n' only TIF_NEED_RESCHED is set,
855 - 'p' only PREEMPT_NEED_RESCHED is set,
856 - '.' otherwise.
857
858 hardirq/softirq:
859 - 'Z' - NMI occurred inside a hardirq
860 - 'z' - NMI is running
861 - 'H' - hard irq occurred inside a softirq.
862 - 'h' - hard irq is running
863 - 's' - soft irq is running
864 - '.' - normal context.
865
866 preempt-depth: The level of preempt_disabled
867
868The above is mostly meaningful for kernel developers.
869
870 time:
871 When the latency-format option is enabled, the trace file
872 output includes a timestamp relative to the start of the
873 trace. This differs from the output when latency-format
874 is disabled, which includes an absolute timestamp.
875
876 delay:
877 This is just to help catch your eye a bit better. And
878 needs to be fixed to be only relative to the same CPU.
879 The marks are determined by the difference between this
880 current trace and the next trace.
881
882 - '$' - greater than 1 second
883 - '@' - greater than 100 milisecond
884 - '*' - greater than 10 milisecond
885 - '#' - greater than 1000 microsecond
886 - '!' - greater than 100 microsecond
887 - '+' - greater than 10 microsecond
888 - ' ' - less than or equal to 10 microsecond.
889
890 The rest is the same as the 'trace' file.
891
892 Note, the latency tracers will usually end with a back trace
893 to easily find where the latency occurred.
894
895trace_options
896-------------
897
898The trace_options file (or the options directory) is used to control
899what gets printed in the trace output, or manipulate the tracers.
900To see what is available, simply cat the file::
901
902 cat trace_options
903 print-parent
904 nosym-offset
905 nosym-addr
906 noverbose
907 noraw
908 nohex
909 nobin
910 noblock
911 trace_printk
912 annotate
913 nouserstacktrace
914 nosym-userobj
915 noprintk-msg-only
916 context-info
917 nolatency-format
918 record-cmd
919 norecord-tgid
920 overwrite
921 nodisable_on_free
922 irq-info
923 markers
924 noevent-fork
925 function-trace
926 nofunction-fork
927 nodisplay-graph
928 nostacktrace
929 nobranch
930
931To disable one of the options, echo in the option prepended with
932"no"::
933
934 echo noprint-parent > trace_options
935
936To enable an option, leave off the "no"::
937
938 echo sym-offset > trace_options
939
940Here are the available options:
941
942 print-parent
943 On function traces, display the calling (parent)
944 function as well as the function being traced.
945 ::
946
947 print-parent:
948 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
949
950 noprint-parent:
951 bash-4000 [01] 1477.606694: simple_strtoul
952
953
954 sym-offset
955 Display not only the function name, but also the
956 offset in the function. For example, instead of
957 seeing just "ktime_get", you will see
958 "ktime_get+0xb/0x20".
959 ::
960
961 sym-offset:
962 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
963
964 sym-addr
965 This will also display the function address as well
966 as the function name.
967 ::
968
969 sym-addr:
970 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
971
972 verbose
973 This deals with the trace file when the
974 latency-format option is enabled.
975 ::
976
977 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
978 (+0.000ms): simple_strtoul (kstrtoul)
979
980 raw
981 This will display raw numbers. This option is best for
982 use with user applications that can translate the raw
983 numbers better than having it done in the kernel.
984
985 hex
986 Similar to raw, but the numbers will be in a hexadecimal format.
987
988 bin
989 This will print out the formats in raw binary.
990
991 block
992 When set, reading trace_pipe will not block when polled.
993
994 trace_printk
995 Can disable trace_printk() from writing into the buffer.
996
997 annotate
998 It is sometimes confusing when the CPU buffers are full
999 and one CPU buffer had a lot of events recently, thus
1000 a shorter time frame, were another CPU may have only had
1001 a few events, which lets it have older events. When
1002 the trace is reported, it shows the oldest events first,
1003 and it may look like only one CPU ran (the one with the
1004 oldest events). When the annotate option is set, it will
1005 display when a new CPU buffer started::
1006
1007 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1008 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1009 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1010 ##### CPU 2 buffer started ####
1011 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1012 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1013 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1014
1015 userstacktrace
1016 This option changes the trace. It records a
1017 stacktrace of the current user space thread after
1018 each trace event.
1019
1020 sym-userobj
1021 when user stacktrace are enabled, look up which
1022 object the address belongs to, and print a
1023 relative address. This is especially useful when
1024 ASLR is on, otherwise you don't get a chance to
1025 resolve the address to object/file/line after
1026 the app is no longer running
1027
1028 The lookup is performed when you read
1029 trace,trace_pipe. Example::
1030
1031 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1032 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1033
1034
1035 printk-msg-only
1036 When set, trace_printk()s will only show the format
1037 and not their parameters (if trace_bprintk() or
1038 trace_bputs() was used to save the trace_printk()).
1039
1040 context-info
1041 Show only the event data. Hides the comm, PID,
1042 timestamp, CPU, and other useful data.
1043
1044 latency-format
1045 This option changes the trace output. When it is enabled,
1046 the trace displays additional information about the
1047 latency, as described in "Latency trace format".
1048
1049 record-cmd
1050 When any event or tracer is enabled, a hook is enabled
1051 in the sched_switch trace point to fill comm cache
1052 with mapped pids and comms. But this may cause some
1053 overhead, and if you only care about pids, and not the
1054 name of the task, disabling this option can lower the
1055 impact of tracing. See "saved_cmdlines".
1056
1057 record-tgid
1058 When any event or tracer is enabled, a hook is enabled
1059 in the sched_switch trace point to fill the cache of
1060 mapped Thread Group IDs (TGID) mapping to pids. See
1061 "saved_tgids".
1062
1063 overwrite
1064 This controls what happens when the trace buffer is
1065 full. If "1" (default), the oldest events are
1066 discarded and overwritten. If "0", then the newest
1067 events are discarded.
1068 (see per_cpu/cpu0/stats for overrun and dropped)
1069
1070 disable_on_free
1071 When the free_buffer is closed, tracing will
1072 stop (tracing_on set to 0).
1073
1074 irq-info
1075 Shows the interrupt, preempt count, need resched data.
1076 When disabled, the trace looks like::
1077
1078 # tracer: function
1079 #
1080 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1081 #
1082 # TASK-PID CPU# TIMESTAMP FUNCTION
1083 # | | | | |
1084 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1085 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1086 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1087
1088
1089 markers
1090 When set, the trace_marker is writable (only by root).
1091 When disabled, the trace_marker will error with EINVAL
1092 on write.
1093
1094 event-fork
1095 When set, tasks with PIDs listed in set_event_pid will have
1096 the PIDs of their children added to set_event_pid when those
1097 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1098 their PIDs will be removed from the file.
1099
1100 function-trace
1101 The latency tracers will enable function tracing
1102 if this option is enabled (default it is). When
1103 it is disabled, the latency tracers do not trace
1104 functions. This keeps the overhead of the tracer down
1105 when performing latency tests.
1106
1107 function-fork
1108 When set, tasks with PIDs listed in set_ftrace_pid will
1109 have the PIDs of their children added to set_ftrace_pid
1110 when those tasks fork. Also, when tasks with PIDs in
1111 set_ftrace_pid exit, their PIDs will be removed from the
1112 file.
1113
1114 display-graph
1115 When set, the latency tracers (irqsoff, wakeup, etc) will
1116 use function graph tracing instead of function tracing.
1117
1118 stacktrace
1119 When set, a stack trace is recorded after any trace event
1120 is recorded.
1121
1122 branch
1123 Enable branch tracing with the tracer. This enables branch
1124 tracer along with the currently set tracer. Enabling this
1125 with the "nop" tracer is the same as just enabling the
1126 "branch" tracer.
1127
1128.. tip:: Some tracers have their own options. They only appear in this
1129 file when the tracer is active. They always appear in the
1130 options directory.
1131
1132
1133Here are the per tracer options:
1134
1135Options for function tracer:
1136
1137 func_stack_trace
1138 When set, a stack trace is recorded after every
1139 function that is recorded. NOTE! Limit the functions
1140 that are recorded before enabling this, with
1141 "set_ftrace_filter" otherwise the system performance
1142 will be critically degraded. Remember to disable
1143 this option before clearing the function filter.
1144
1145Options for function_graph tracer:
1146
1147 Since the function_graph tracer has a slightly different output
1148 it has its own options to control what is displayed.
1149
1150 funcgraph-overrun
1151 When set, the "overrun" of the graph stack is
1152 displayed after each function traced. The
1153 overrun, is when the stack depth of the calls
1154 is greater than what is reserved for each task.
1155 Each task has a fixed array of functions to
1156 trace in the call graph. If the depth of the
1157 calls exceeds that, the function is not traced.
1158 The overrun is the number of functions missed
1159 due to exceeding this array.
1160
1161 funcgraph-cpu
1162 When set, the CPU number of the CPU where the trace
1163 occurred is displayed.
1164
1165 funcgraph-overhead
1166 When set, if the function takes longer than
1167 A certain amount, then a delay marker is
1168 displayed. See "delay" above, under the
1169 header description.
1170
1171 funcgraph-proc
1172 Unlike other tracers, the process' command line
1173 is not displayed by default, but instead only
1174 when a task is traced in and out during a context
1175 switch. Enabling this options has the command
1176 of each process displayed at every line.
1177
1178 funcgraph-duration
1179 At the end of each function (the return)
1180 the duration of the amount of time in the
1181 function is displayed in microseconds.
1182
1183 funcgraph-abstime
1184 When set, the timestamp is displayed at each line.
1185
1186 funcgraph-irqs
1187 When disabled, functions that happen inside an
1188 interrupt will not be traced.
1189
1190 funcgraph-tail
1191 When set, the return event will include the function
1192 that it represents. By default this is off, and
1193 only a closing curly bracket "}" is displayed for
1194 the return of a function.
1195
1196 sleep-time
1197 When running function graph tracer, to include
1198 the time a task schedules out in its function.
1199 When enabled, it will account time the task has been
1200 scheduled out as part of the function call.
1201
1202 graph-time
1203 When running function profiler with function graph tracer,
1204 to include the time to call nested functions. When this is
1205 not set, the time reported for the function will only
1206 include the time the function itself executed for, not the
1207 time for functions that it called.
1208
1209Options for blk tracer:
1210
1211 blk_classic
1212 Shows a more minimalistic output.
1213
1214
1215irqsoff
1216-------
1217
1218When interrupts are disabled, the CPU can not react to any other
1219external event (besides NMIs and SMIs). This prevents the timer
1220interrupt from triggering or the mouse interrupt from letting
1221the kernel know of a new mouse event. The result is a latency
1222with the reaction time.
1223
1224The irqsoff tracer tracks the time for which interrupts are
1225disabled. When a new maximum latency is hit, the tracer saves
1226the trace leading up to that latency point so that every time a
1227new maximum is reached, the old saved trace is discarded and the
1228new trace is saved.
1229
1230To reset the maximum, echo 0 into tracing_max_latency. Here is
1231an example::
1232
1233 # echo 0 > options/function-trace
1234 # echo irqsoff > current_tracer
1235 # echo 1 > tracing_on
1236 # echo 0 > tracing_max_latency
1237 # ls -ltr
1238 [...]
1239 # echo 0 > tracing_on
1240 # cat trace
1241 # tracer: irqsoff
1242 #
1243 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1244 # --------------------------------------------------------------------
1245 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1246 # -----------------
1247 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1248 # -----------------
1249 # => started at: run_timer_softirq
1250 # => ended at: run_timer_softirq
1251 #
1252 #
1253 # _------=> CPU#
1254 # / _-----=> irqs-off
1255 # | / _----=> need-resched
1256 # || / _---=> hardirq/softirq
1257 # ||| / _--=> preempt-depth
1258 # |||| / delay
1259 # cmd pid ||||| time | caller
1260 # \ / ||||| \ | /
1261 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1262 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1263 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1264 <idle>-0 0dNs3 25us : <stack trace>
1265 => _raw_spin_unlock_irq
1266 => run_timer_softirq
1267 => __do_softirq
1268 => call_softirq
1269 => do_softirq
1270 => irq_exit
1271 => smp_apic_timer_interrupt
1272 => apic_timer_interrupt
1273 => rcu_idle_exit
1274 => cpu_idle
1275 => rest_init
1276 => start_kernel
1277 => x86_64_start_reservations
1278 => x86_64_start_kernel
1279
1280Here we see that that we had a latency of 16 microseconds (which is
1281very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1282interrupts. The difference between the 16 and the displayed
1283timestamp 25us occurred because the clock was incremented
1284between the time of recording the max latency and the time of
1285recording the function that had that latency.
1286
1287Note the above example had function-trace not set. If we set
1288function-trace, we get a much larger output::
1289
1290 with echo 1 > options/function-trace
1291
1292 # tracer: irqsoff
1293 #
1294 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1295 # --------------------------------------------------------------------
1296 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1297 # -----------------
1298 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1299 # -----------------
1300 # => started at: ata_scsi_queuecmd
1301 # => ended at: ata_scsi_queuecmd
1302 #
1303 #
1304 # _------=> CPU#
1305 # / _-----=> irqs-off
1306 # | / _----=> need-resched
1307 # || / _---=> hardirq/softirq
1308 # ||| / _--=> preempt-depth
1309 # |||| / delay
1310 # cmd pid ||||| time | caller
1311 # \ / ||||| \ | /
1312 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1313 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1314 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1315 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1316 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1317 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1318 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1319 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1320 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1321 [...]
1322 bash-2042 3d..1 67us : delay_tsc <-__delay
1323 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1324 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1325 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1326 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1327 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1328 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1329 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1330 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1331 bash-2042 3d..1 120us : <stack trace>
1332 => _raw_spin_unlock_irqrestore
1333 => ata_scsi_queuecmd
1334 => scsi_dispatch_cmd
1335 => scsi_request_fn
1336 => __blk_run_queue_uncond
1337 => __blk_run_queue
1338 => blk_queue_bio
1339 => generic_make_request
1340 => submit_bio
1341 => submit_bh
1342 => __ext3_get_inode_loc
1343 => ext3_iget
1344 => ext3_lookup
1345 => lookup_real
1346 => __lookup_hash
1347 => walk_component
1348 => lookup_last
1349 => path_lookupat
1350 => filename_lookup
1351 => user_path_at_empty
1352 => user_path_at
1353 => vfs_fstatat
1354 => vfs_stat
1355 => sys_newstat
1356 => system_call_fastpath
1357
1358
1359Here we traced a 71 microsecond latency. But we also see all the
1360functions that were called during that time. Note that by
1361enabling function tracing, we incur an added overhead. This
1362overhead may extend the latency times. But nevertheless, this
1363trace has provided some very helpful debugging information.
1364
1365
1366preemptoff
1367----------
1368
1369When preemption is disabled, we may be able to receive
1370interrupts but the task cannot be preempted and a higher
1371priority task must wait for preemption to be enabled again
1372before it can preempt a lower priority task.
1373
1374The preemptoff tracer traces the places that disable preemption.
1375Like the irqsoff tracer, it records the maximum latency for
1376which preemption was disabled. The control of preemptoff tracer
1377is much like the irqsoff tracer.
1378::
1379
1380 # echo 0 > options/function-trace
1381 # echo preemptoff > current_tracer
1382 # echo 1 > tracing_on
1383 # echo 0 > tracing_max_latency
1384 # ls -ltr
1385 [...]
1386 # echo 0 > tracing_on
1387 # cat trace
1388 # tracer: preemptoff
1389 #
1390 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1391 # --------------------------------------------------------------------
1392 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1393 # -----------------
1394 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1395 # -----------------
1396 # => started at: do_IRQ
1397 # => ended at: do_IRQ
1398 #
1399 #
1400 # _------=> CPU#
1401 # / _-----=> irqs-off
1402 # | / _----=> need-resched
1403 # || / _---=> hardirq/softirq
1404 # ||| / _--=> preempt-depth
1405 # |||| / delay
1406 # cmd pid ||||| time | caller
1407 # \ / ||||| \ | /
1408 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1409 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1410 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1411 sshd-1991 1d..1 52us : <stack trace>
1412 => sub_preempt_count
1413 => irq_exit
1414 => do_IRQ
1415 => ret_from_intr
1416
1417
1418This has some more changes. Preemption was disabled when an
1419interrupt came in (notice the 'h'), and was enabled on exit.
1420But we also see that interrupts have been disabled when entering
1421the preempt off section and leaving it (the 'd'). We do not know if
1422interrupts were enabled in the mean time or shortly after this
1423was over.
1424::
1425
1426 # tracer: preemptoff
1427 #
1428 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1429 # --------------------------------------------------------------------
1430 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1431 # -----------------
1432 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1433 # -----------------
1434 # => started at: wake_up_new_task
1435 # => ended at: task_rq_unlock
1436 #
1437 #
1438 # _------=> CPU#
1439 # / _-----=> irqs-off
1440 # | / _----=> need-resched
1441 # || / _---=> hardirq/softirq
1442 # ||| / _--=> preempt-depth
1443 # |||| / delay
1444 # cmd pid ||||| time | caller
1445 # \ / ||||| \ | /
1446 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1447 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1448 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1449 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1450 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1451 [...]
1452 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1453 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1454 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1455 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1456 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1457 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1458 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1459 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1460 [...]
1461 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1462 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1463 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1464 bash-1994 1d..2 36us : do_softirq <-irq_exit
1465 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1466 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1467 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1468 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1469 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1470 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1471 [...]
1472 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1473 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1474 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1475 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1476 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1477 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1478 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1479 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1480 bash-1994 1.N.1 104us : <stack trace>
1481 => sub_preempt_count
1482 => _raw_spin_unlock_irqrestore
1483 => task_rq_unlock
1484 => wake_up_new_task
1485 => do_fork
1486 => sys_clone
1487 => stub_clone
1488
1489
1490The above is an example of the preemptoff trace with
1491function-trace set. Here we see that interrupts were not disabled
1492the entire time. The irq_enter code lets us know that we entered
1493an interrupt 'h'. Before that, the functions being traced still
1494show that it is not in an interrupt, but we can see from the
1495functions themselves that this is not the case.
1496
1497preemptirqsoff
1498--------------
1499
1500Knowing the locations that have interrupts disabled or
1501preemption disabled for the longest times is helpful. But
1502sometimes we would like to know when either preemption and/or
1503interrupts are disabled.
1504
1505Consider the following code::
1506
1507 local_irq_disable();
1508 call_function_with_irqs_off();
1509 preempt_disable();
1510 call_function_with_irqs_and_preemption_off();
1511 local_irq_enable();
1512 call_function_with_preemption_off();
1513 preempt_enable();
1514
1515The irqsoff tracer will record the total length of
1516call_function_with_irqs_off() and
1517call_function_with_irqs_and_preemption_off().
1518
1519The preemptoff tracer will record the total length of
1520call_function_with_irqs_and_preemption_off() and
1521call_function_with_preemption_off().
1522
1523But neither will trace the time that interrupts and/or
1524preemption is disabled. This total time is the time that we can
1525not schedule. To record this time, use the preemptirqsoff
1526tracer.
1527
1528Again, using this trace is much like the irqsoff and preemptoff
1529tracers.
1530::
1531
1532 # echo 0 > options/function-trace
1533 # echo preemptirqsoff > current_tracer
1534 # echo 1 > tracing_on
1535 # echo 0 > tracing_max_latency
1536 # ls -ltr
1537 [...]
1538 # echo 0 > tracing_on
1539 # cat trace
1540 # tracer: preemptirqsoff
1541 #
1542 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1543 # --------------------------------------------------------------------
1544 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1545 # -----------------
1546 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1547 # -----------------
1548 # => started at: ata_scsi_queuecmd
1549 # => ended at: ata_scsi_queuecmd
1550 #
1551 #
1552 # _------=> CPU#
1553 # / _-----=> irqs-off
1554 # | / _----=> need-resched
1555 # || / _---=> hardirq/softirq
1556 # ||| / _--=> preempt-depth
1557 # |||| / delay
1558 # cmd pid ||||| time | caller
1559 # \ / ||||| \ | /
1560 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1561 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1562 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1563 ls-2230 3...1 111us : <stack trace>
1564 => sub_preempt_count
1565 => _raw_spin_unlock_irqrestore
1566 => ata_scsi_queuecmd
1567 => scsi_dispatch_cmd
1568 => scsi_request_fn
1569 => __blk_run_queue_uncond
1570 => __blk_run_queue
1571 => blk_queue_bio
1572 => generic_make_request
1573 => submit_bio
1574 => submit_bh
1575 => ext3_bread
1576 => ext3_dir_bread
1577 => htree_dirblock_to_tree
1578 => ext3_htree_fill_tree
1579 => ext3_readdir
1580 => vfs_readdir
1581 => sys_getdents
1582 => system_call_fastpath
1583
1584
1585The trace_hardirqs_off_thunk is called from assembly on x86 when
1586interrupts are disabled in the assembly code. Without the
1587function tracing, we do not know if interrupts were enabled
1588within the preemption points. We do see that it started with
1589preemption enabled.
1590
1591Here is a trace with function-trace set::
1592
1593 # tracer: preemptirqsoff
1594 #
1595 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1596 # --------------------------------------------------------------------
1597 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1598 # -----------------
1599 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1600 # -----------------
1601 # => started at: schedule
1602 # => ended at: mutex_unlock
1603 #
1604 #
1605 # _------=> CPU#
1606 # / _-----=> irqs-off
1607 # | / _----=> need-resched
1608 # || / _---=> hardirq/softirq
1609 # ||| / _--=> preempt-depth
1610 # |||| / delay
1611 # cmd pid ||||| time | caller
1612 # \ / ||||| \ | /
1613 kworker/-59 3...1 0us : __schedule <-schedule
1614 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1615 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1616 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1617 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1618 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1619 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1620 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1621 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1622 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1623 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1624 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1625 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1626 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1627 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1628 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1629 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1630 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1631 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1632 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1633 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1634 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1635 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1636 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1637 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1638 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1639 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1640 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1641 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1642 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1643 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1644 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1645 [...]
1646 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1647 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1648 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1649 ls-2269 3d..3 21us : do_softirq <-irq_exit
1650 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1651 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1652 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1653 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1654 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1655 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1656 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1657 [...]
1658 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1659 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1660 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1661 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1662 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1663 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1664 [...]
1665 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1666 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1667 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1668 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1669 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1670 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1671 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1672 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1673 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1674 ls-2269 3d... 186us : <stack trace>
1675 => __mutex_unlock_slowpath
1676 => mutex_unlock
1677 => process_output
1678 => n_tty_write
1679 => tty_write
1680 => vfs_write
1681 => sys_write
1682 => system_call_fastpath
1683
1684This is an interesting trace. It started with kworker running and
1685scheduling out and ls taking over. But as soon as ls released the
1686rq lock and enabled interrupts (but not preemption) an interrupt
1687triggered. When the interrupt finished, it started running softirqs.
1688But while the softirq was running, another interrupt triggered.
1689When an interrupt is running inside a softirq, the annotation is 'H'.
1690
1691
1692wakeup
1693------
1694
1695One common case that people are interested in tracing is the
1696time it takes for a task that is woken to actually wake up.
1697Now for non Real-Time tasks, this can be arbitrary. But tracing
1698it none the less can be interesting.
1699
1700Without function tracing::
1701
1702 # echo 0 > options/function-trace
1703 # echo wakeup > current_tracer
1704 # echo 1 > tracing_on
1705 # echo 0 > tracing_max_latency
1706 # chrt -f 5 sleep 1
1707 # echo 0 > tracing_on
1708 # cat trace
1709 # tracer: wakeup
1710 #
1711 # wakeup latency trace v1.1.5 on 3.8.0-test+
1712 # --------------------------------------------------------------------
1713 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1714 # -----------------
1715 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1716 # -----------------
1717 #
1718 # _------=> CPU#
1719 # / _-----=> irqs-off
1720 # | / _----=> need-resched
1721 # || / _---=> hardirq/softirq
1722 # ||| / _--=> preempt-depth
1723 # |||| / delay
1724 # cmd pid ||||| time | caller
1725 # \ / ||||| \ | /
1726 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1727 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1728 <idle>-0 3d..3 15us : __schedule <-schedule
1729 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1730
1731The tracer only traces the highest priority task in the system
1732to avoid tracing the normal circumstances. Here we see that
1733the kworker with a nice priority of -20 (not very nice), took
1734just 15 microseconds from the time it woke up, to the time it
1735ran.
1736
1737Non Real-Time tasks are not that interesting. A more interesting
1738trace is to concentrate only on Real-Time tasks.
1739
1740wakeup_rt
1741---------
1742
1743In a Real-Time environment it is very important to know the
1744wakeup time it takes for the highest priority task that is woken
1745up to the time that it executes. This is also known as "schedule
1746latency". I stress the point that this is about RT tasks. It is
1747also important to know the scheduling latency of non-RT tasks,
1748but the average schedule latency is better for non-RT tasks.
1749Tools like LatencyTop are more appropriate for such
1750measurements.
1751
1752Real-Time environments are interested in the worst case latency.
1753That is the longest latency it takes for something to happen,
1754and not the average. We can have a very fast scheduler that may
1755only have a large latency once in a while, but that would not
1756work well with Real-Time tasks. The wakeup_rt tracer was designed
1757to record the worst case wakeups of RT tasks. Non-RT tasks are
1758not recorded because the tracer only records one worst case and
1759tracing non-RT tasks that are unpredictable will overwrite the
1760worst case latency of RT tasks (just run the normal wakeup
1761tracer for a while to see that effect).
1762
1763Since this tracer only deals with RT tasks, we will run this
1764slightly differently than we did with the previous tracers.
1765Instead of performing an 'ls', we will run 'sleep 1' under
1766'chrt' which changes the priority of the task.
1767::
1768
1769 # echo 0 > options/function-trace
1770 # echo wakeup_rt > current_tracer
1771 # echo 1 > tracing_on
1772 # echo 0 > tracing_max_latency
1773 # chrt -f 5 sleep 1
1774 # echo 0 > tracing_on
1775 # cat trace
1776 # tracer: wakeup
1777 #
1778 # tracer: wakeup_rt
1779 #
1780 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1781 # --------------------------------------------------------------------
1782 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1783 # -----------------
1784 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1785 # -----------------
1786 #
1787 # _------=> CPU#
1788 # / _-----=> irqs-off
1789 # | / _----=> need-resched
1790 # || / _---=> hardirq/softirq
1791 # ||| / _--=> preempt-depth
1792 # |||| / delay
1793 # cmd pid ||||| time | caller
1794 # \ / ||||| \ | /
1795 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
1796 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1797 <idle>-0 3d..3 5us : __schedule <-schedule
1798 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1799
1800
1801Running this on an idle system, we see that it only took 5 microseconds
1802to perform the task switch. Note, since the trace point in the schedule
1803is before the actual "switch", we stop the tracing when the recorded task
1804is about to schedule in. This may change if we add a new marker at the
1805end of the scheduler.
1806
1807Notice that the recorded task is 'sleep' with the PID of 2389
1808and it has an rt_prio of 5. This priority is user-space priority
1809and not the internal kernel priority. The policy is 1 for
1810SCHED_FIFO and 2 for SCHED_RR.
1811
1812Note, that the trace data shows the internal priority (99 - rtprio).
1813::
1814
1815 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1816
1817The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1818and in the running state 'R'. The sleep task was scheduled in with
18192389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1820and it too is in the running state.
1821
1822Doing the same with chrt -r 5 and function-trace set.
1823::
1824
1825 echo 1 > options/function-trace
1826
1827 # tracer: wakeup_rt
1828 #
1829 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1830 # --------------------------------------------------------------------
1831 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1832 # -----------------
1833 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1834 # -----------------
1835 #
1836 # _------=> CPU#
1837 # / _-----=> irqs-off
1838 # | / _----=> need-resched
1839 # || / _---=> hardirq/softirq
1840 # ||| / _--=> preempt-depth
1841 # |||| / delay
1842 # cmd pid ||||| time | caller
1843 # \ / ||||| \ | /
1844 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
1845 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1846 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
1847 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
1848 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
1849 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
1850 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
1851 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
1852 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1853 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1854 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
1855 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
1856 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
1857 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
1858 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
1859 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
1860 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
1861 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
1862 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
1863 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
1864 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
1865 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
1866 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1867 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
1868 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
1869 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1870 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
1871 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1872 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
1873 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1874 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1875 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
1876 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
1877 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
1878 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
1879 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
1880 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
1881 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1882 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1883 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
1884 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
1885 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1886 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1887 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
1888 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
1889 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
1890 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
1891 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
1892 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
1893 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
1894 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1895 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1896 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
1897 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1898 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1899 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1900 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1901 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1902 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1903 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
1904 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
1905 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1906 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
1907 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
1908 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
1909 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
1910 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1911 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1912 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
1913 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
1914 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
1915 <idle>-0 3.N.. 25us : schedule <-cpu_idle
1916 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
1917 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
1918 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
1919 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
1920 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
1921 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
1922 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
1923 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
1924 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
1925 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
1926 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
1927 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
1928 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
1929
1930This isn't that big of a trace, even with function tracing enabled,
1931so I included the entire trace.
1932
1933The interrupt went off while when the system was idle. Somewhere
1934before task_woken_rt() was called, the NEED_RESCHED flag was set,
1935this is indicated by the first occurrence of the 'N' flag.
1936
1937Latency tracing and events
1938--------------------------
1939As function tracing can induce a much larger latency, but without
1940seeing what happens within the latency it is hard to know what
1941caused it. There is a middle ground, and that is with enabling
1942events.
1943::
1944
1945 # echo 0 > options/function-trace
1946 # echo wakeup_rt > current_tracer
1947 # echo 1 > events/enable
1948 # echo 1 > tracing_on
1949 # echo 0 > tracing_max_latency
1950 # chrt -f 5 sleep 1
1951 # echo 0 > tracing_on
1952 # cat trace
1953 # tracer: wakeup_rt
1954 #
1955 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1956 # --------------------------------------------------------------------
1957 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1958 # -----------------
1959 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1960 # -----------------
1961 #
1962 # _------=> CPU#
1963 # / _-----=> irqs-off
1964 # | / _----=> need-resched
1965 # || / _---=> hardirq/softirq
1966 # ||| / _--=> preempt-depth
1967 # |||| / delay
1968 # cmd pid ||||| time | caller
1969 # \ / ||||| \ | /
1970 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
1971 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1972 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1973 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1974 <idle>-0 2.N.2 2us : power_end: cpu_id=2
1975 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
1976 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1977 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1978 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
1979 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
1980 <idle>-0 2d..3 6us : __schedule <-schedule
1981 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
1982
1983
1984Hardware Latency Detector
1985-------------------------
1986
1987The hardware latency detector is executed by enabling the "hwlat" tracer.
1988
1989NOTE, this tracer will affect the performance of the system as it will
1990periodically make a CPU constantly busy with interrupts disabled.
1991::
1992
1993 # echo hwlat > current_tracer
1994 # sleep 100
1995 # cat trace
1996 # tracer: hwlat
1997 #
1998 # _-----=> irqs-off
1999 # / _----=> need-resched
2000 # | / _---=> hardirq/softirq
2001 # || / _--=> preempt-depth
2002 # ||| / delay
2003 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2004 # | | | |||| | |
2005 <...>-3638 [001] d... 19452.055471: #1 inner/outer(us): 12/14 ts:1499801089.066141940
2006 <...>-3638 [003] d... 19454.071354: #2 inner/outer(us): 11/9 ts:1499801091.082164365
2007 <...>-3638 [002] dn.. 19461.126852: #3 inner/outer(us): 12/9 ts:1499801098.138150062
2008 <...>-3638 [001] d... 19488.340960: #4 inner/outer(us): 8/12 ts:1499801125.354139633
2009 <...>-3638 [003] d... 19494.388553: #5 inner/outer(us): 8/12 ts:1499801131.402150961
2010 <...>-3638 [003] d... 19501.283419: #6 inner/outer(us): 0/12 ts:1499801138.297435289 nmi-total:4 nmi-count:1
2011
2012
2013The above output is somewhat the same in the header. All events will have
2014interrupts disabled 'd'. Under the FUNCTION title there is:
2015
2016 #1
2017 This is the count of events recorded that were greater than the
2018 tracing_threshold (See below).
2019
2020 inner/outer(us): 12/14
2021
2022 This shows two numbers as "inner latency" and "outer latency". The test
2023 runs in a loop checking a timestamp twice. The latency detected within
2024 the two timestamps is the "inner latency" and the latency detected
2025 after the previous timestamp and the next timestamp in the loop is
2026 the "outer latency".
2027
2028 ts:1499801089.066141940
2029
2030 The absolute timestamp that the event happened.
2031
2032 nmi-total:4 nmi-count:1
2033
2034 On architectures that support it, if an NMI comes in during the
2035 test, the time spent in NMI is reported in "nmi-total" (in
2036 microseconds).
2037
2038 All architectures that have NMIs will show the "nmi-count" if an
2039 NMI comes in during the test.
2040
2041hwlat files:
2042
2043 tracing_threshold
2044 This gets automatically set to "10" to represent 10
2045 microseconds. This is the threshold of latency that
2046 needs to be detected before the trace will be recorded.
2047
2048 Note, when hwlat tracer is finished (another tracer is
2049 written into "current_tracer"), the original value for
2050 tracing_threshold is placed back into this file.
2051
2052 hwlat_detector/width
2053 The length of time the test runs with interrupts disabled.
2054
2055 hwlat_detector/window
2056 The length of time of the window which the test
2057 runs. That is, the test will run for "width"
2058 microseconds per "window" microseconds
2059
2060 tracing_cpumask
2061 When the test is started. A kernel thread is created that
2062 runs the test. This thread will alternate between CPUs
2063 listed in the tracing_cpumask between each period
2064 (one "window"). To limit the test to specific CPUs
2065 set the mask in this file to only the CPUs that the test
2066 should run on.
2067
2068function
2069--------
2070
2071This tracer is the function tracer. Enabling the function tracer
2072can be done from the debug file system. Make sure the
2073ftrace_enabled is set; otherwise this tracer is a nop.
2074See the "ftrace_enabled" section below.
2075::
2076
2077 # sysctl kernel.ftrace_enabled=1
2078 # echo function > current_tracer
2079 # echo 1 > tracing_on
2080 # usleep 1
2081 # echo 0 > tracing_on
2082 # cat trace
2083 # tracer: function
2084 #
2085 # entries-in-buffer/entries-written: 24799/24799 #P:4
2086 #
2087 # _-----=> irqs-off
2088 # / _----=> need-resched
2089 # | / _---=> hardirq/softirq
2090 # || / _--=> preempt-depth
2091 # ||| / delay
2092 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2093 # | | | |||| | |
2094 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2095 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2096 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2097 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2098 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2099 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2100 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2101 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2102 [...]
2103
2104
2105Note: function tracer uses ring buffers to store the above
2106entries. The newest data may overwrite the oldest data.
2107Sometimes using echo to stop the trace is not sufficient because
2108the tracing could have overwritten the data that you wanted to
2109record. For this reason, it is sometimes better to disable
2110tracing directly from a program. This allows you to stop the
2111tracing at the point that you hit the part that you are
2112interested in. To disable the tracing directly from a C program,
2113something like following code snippet can be used::
2114
2115 int trace_fd;
2116 [...]
2117 int main(int argc, char *argv[]) {
2118 [...]
2119 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2120 [...]
2121 if (condition_hit()) {
2122 write(trace_fd, "0", 1);
2123 }
2124 [...]
2125 }
2126
2127
2128Single thread tracing
2129---------------------
2130
2131By writing into set_ftrace_pid you can trace a
2132single thread. For example::
2133
2134 # cat set_ftrace_pid
2135 no pid
2136 # echo 3111 > set_ftrace_pid
2137 # cat set_ftrace_pid
2138 3111
2139 # echo function > current_tracer
2140 # cat trace | head
2141 # tracer: function
2142 #
2143 # TASK-PID CPU# TIMESTAMP FUNCTION
2144 # | | | | |
2145 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2146 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2147 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2148 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2149 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2150 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2151 # echo > set_ftrace_pid
2152 # cat trace |head
2153 # tracer: function
2154 #
2155 # TASK-PID CPU# TIMESTAMP FUNCTION
2156 # | | | | |
2157 ##### CPU 3 buffer started ####
2158 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2159 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2160 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2161 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2162 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2163
2164If you want to trace a function when executing, you could use
2165something like this simple program.
2166::
2167
2168 #include <stdio.h>
2169 #include <stdlib.h>
2170 #include <sys/types.h>
2171 #include <sys/stat.h>
2172 #include <fcntl.h>
2173 #include <unistd.h>
2174 #include <string.h>
2175
2176 #define _STR(x) #x
2177 #define STR(x) _STR(x)
2178 #define MAX_PATH 256
2179
2180 const char *find_tracefs(void)
2181 {
2182 static char tracefs[MAX_PATH+1];
2183 static int tracefs_found;
2184 char type[100];
2185 FILE *fp;
2186
2187 if (tracefs_found)
2188 return tracefs;
2189
2190 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2191 perror("/proc/mounts");
2192 return NULL;
2193 }
2194
2195 while (fscanf(fp, "%*s %"
2196 STR(MAX_PATH)
2197 "s %99s %*s %*d %*d\n",
2198 tracefs, type) == 2) {
2199 if (strcmp(type, "tracefs") == 0)
2200 break;
2201 }
2202 fclose(fp);
2203
2204 if (strcmp(type, "tracefs") != 0) {
2205 fprintf(stderr, "tracefs not mounted");
2206 return NULL;
2207 }
2208
2209 strcat(tracefs, "/tracing/");
2210 tracefs_found = 1;
2211
2212 return tracefs;
2213 }
2214
2215 const char *tracing_file(const char *file_name)
2216 {
2217 static char trace_file[MAX_PATH+1];
2218 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2219 return trace_file;
2220 }
2221
2222 int main (int argc, char **argv)
2223 {
2224 if (argc < 1)
2225 exit(-1);
2226
2227 if (fork() > 0) {
2228 int fd, ffd;
2229 char line[64];
2230 int s;
2231
2232 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2233 if (ffd < 0)
2234 exit(-1);
2235 write(ffd, "nop", 3);
2236
2237 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2238 s = sprintf(line, "%d\n", getpid());
2239 write(fd, line, s);
2240
2241 write(ffd, "function", 8);
2242
2243 close(fd);
2244 close(ffd);
2245
2246 execvp(argv[1], argv+1);
2247 }
2248
2249 return 0;
2250 }
2251
2252Or this simple script!
2253::
2254
2255 #!/bin/bash
2256
2257 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2258 echo nop > $tracefs/tracing/current_tracer
2259 echo 0 > $tracefs/tracing/tracing_on
2260 echo $$ > $tracefs/tracing/set_ftrace_pid
2261 echo function > $tracefs/tracing/current_tracer
2262 echo 1 > $tracefs/tracing/tracing_on
2263 exec "$@"
2264
2265
2266function graph tracer
2267---------------------------
2268
2269This tracer is similar to the function tracer except that it
2270probes a function on its entry and its exit. This is done by
2271using a dynamically allocated stack of return addresses in each
2272task_struct. On function entry the tracer overwrites the return
2273address of each function traced to set a custom probe. Thus the
2274original return address is stored on the stack of return address
2275in the task_struct.
2276
2277Probing on both ends of a function leads to special features
2278such as:
2279
2280- measure of a function's time execution
2281- having a reliable call stack to draw function calls graph
2282
2283This tracer is useful in several situations:
2284
2285- you want to find the reason of a strange kernel behavior and
2286 need to see what happens in detail on any areas (or specific
2287 ones).
2288
2289- you are experiencing weird latencies but it's difficult to
2290 find its origin.
2291
2292- you want to find quickly which path is taken by a specific
2293 function
2294
2295- you just want to peek inside a working kernel and want to see
2296 what happens there.
2297
2298::
2299
2300 # tracer: function_graph
2301 #
2302 # CPU DURATION FUNCTION CALLS
2303 # | | | | | | |
2304
2305 0) | sys_open() {
2306 0) | do_sys_open() {
2307 0) | getname() {
2308 0) | kmem_cache_alloc() {
2309 0) 1.382 us | __might_sleep();
2310 0) 2.478 us | }
2311 0) | strncpy_from_user() {
2312 0) | might_fault() {
2313 0) 1.389 us | __might_sleep();
2314 0) 2.553 us | }
2315 0) 3.807 us | }
2316 0) 7.876 us | }
2317 0) | alloc_fd() {
2318 0) 0.668 us | _spin_lock();
2319 0) 0.570 us | expand_files();
2320 0) 0.586 us | _spin_unlock();
2321
2322
2323There are several columns that can be dynamically
2324enabled/disabled. You can use every combination of options you
2325want, depending on your needs.
2326
2327- The cpu number on which the function executed is default
2328 enabled. It is sometimes better to only trace one cpu (see
2329 tracing_cpu_mask file) or you might sometimes see unordered
2330 function calls while cpu tracing switch.
2331
2332 - hide: echo nofuncgraph-cpu > trace_options
2333 - show: echo funcgraph-cpu > trace_options
2334
2335- The duration (function's time of execution) is displayed on
2336 the closing bracket line of a function or on the same line
2337 than the current function in case of a leaf one. It is default
2338 enabled.
2339
2340 - hide: echo nofuncgraph-duration > trace_options
2341 - show: echo funcgraph-duration > trace_options
2342
2343- The overhead field precedes the duration field in case of
2344 reached duration thresholds.
2345
2346 - hide: echo nofuncgraph-overhead > trace_options
2347 - show: echo funcgraph-overhead > trace_options
2348 - depends on: funcgraph-duration
2349
2350 ie::
2351
2352 3) # 1837.709 us | } /* __switch_to */
2353 3) | finish_task_switch() {
2354 3) 0.313 us | _raw_spin_unlock_irq();
2355 3) 3.177 us | }
2356 3) # 1889.063 us | } /* __schedule */
2357 3) ! 140.417 us | } /* __schedule */
2358 3) # 2034.948 us | } /* schedule */
2359 3) * 33998.59 us | } /* schedule_preempt_disabled */
2360
2361 [...]
2362
2363 1) 0.260 us | msecs_to_jiffies();
2364 1) 0.313 us | __rcu_read_unlock();
2365 1) + 61.770 us | }
2366 1) + 64.479 us | }
2367 1) 0.313 us | rcu_bh_qs();
2368 1) 0.313 us | __local_bh_enable();
2369 1) ! 217.240 us | }
2370 1) 0.365 us | idle_cpu();
2371 1) | rcu_irq_exit() {
2372 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2373 1) 3.125 us | }
2374 1) ! 227.812 us | }
2375 1) ! 457.395 us | }
2376 1) @ 119760.2 us | }
2377
2378 [...]
2379
2380 2) | handle_IPI() {
2381 1) 6.979 us | }
2382 2) 0.417 us | scheduler_ipi();
2383 1) 9.791 us | }
2384 1) + 12.917 us | }
2385 2) 3.490 us | }
2386 1) + 15.729 us | }
2387 1) + 18.542 us | }
2388 2) $ 3594274 us | }
2389
2390Flags::
2391
2392 + means that the function exceeded 10 usecs.
2393 ! means that the function exceeded 100 usecs.
2394 # means that the function exceeded 1000 usecs.
2395 * means that the function exceeded 10 msecs.
2396 @ means that the function exceeded 100 msecs.
2397 $ means that the function exceeded 1 sec.
2398
2399
2400- The task/pid field displays the thread cmdline and pid which
2401 executed the function. It is default disabled.
2402
2403 - hide: echo nofuncgraph-proc > trace_options
2404 - show: echo funcgraph-proc > trace_options
2405
2406 ie::
2407
2408 # tracer: function_graph
2409 #
2410 # CPU TASK/PID DURATION FUNCTION CALLS
2411 # | | | | | | | | |
2412 0) sh-4802 | | d_free() {
2413 0) sh-4802 | | call_rcu() {
2414 0) sh-4802 | | __call_rcu() {
2415 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2416 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2417 0) sh-4802 | 2.899 us | }
2418 0) sh-4802 | 4.040 us | }
2419 0) sh-4802 | 5.151 us | }
2420 0) sh-4802 | + 49.370 us | }
2421
2422
2423- The absolute time field is an absolute timestamp given by the
2424 system clock since it started. A snapshot of this time is
2425 given on each entry/exit of functions
2426
2427 - hide: echo nofuncgraph-abstime > trace_options
2428 - show: echo funcgraph-abstime > trace_options
2429
2430 ie::
2431
2432 #
2433 # TIME CPU DURATION FUNCTION CALLS
2434 # | | | | | | | |
2435 360.774522 | 1) 0.541 us | }
2436 360.774522 | 1) 4.663 us | }
2437 360.774523 | 1) 0.541 us | __wake_up_bit();
2438 360.774524 | 1) 6.796 us | }
2439 360.774524 | 1) 7.952 us | }
2440 360.774525 | 1) 9.063 us | }
2441 360.774525 | 1) 0.615 us | journal_mark_dirty();
2442 360.774527 | 1) 0.578 us | __brelse();
2443 360.774528 | 1) | reiserfs_prepare_for_journal() {
2444 360.774528 | 1) | unlock_buffer() {
2445 360.774529 | 1) | wake_up_bit() {
2446 360.774529 | 1) | bit_waitqueue() {
2447 360.774530 | 1) 0.594 us | __phys_addr();
2448
2449
2450The function name is always displayed after the closing bracket
2451for a function if the start of that function is not in the
2452trace buffer.
2453
2454Display of the function name after the closing bracket may be
2455enabled for functions whose start is in the trace buffer,
2456allowing easier searching with grep for function durations.
2457It is default disabled.
2458
2459 - hide: echo nofuncgraph-tail > trace_options
2460 - show: echo funcgraph-tail > trace_options
2461
2462 Example with nofuncgraph-tail (default)::
2463
2464 0) | putname() {
2465 0) | kmem_cache_free() {
2466 0) 0.518 us | __phys_addr();
2467 0) 1.757 us | }
2468 0) 2.861 us | }
2469
2470 Example with funcgraph-tail::
2471
2472 0) | putname() {
2473 0) | kmem_cache_free() {
2474 0) 0.518 us | __phys_addr();
2475 0) 1.757 us | } /* kmem_cache_free() */
2476 0) 2.861 us | } /* putname() */
2477
2478You can put some comments on specific functions by using
2479trace_printk() For example, if you want to put a comment inside
2480the __might_sleep() function, you just have to include
2481<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2482
2483 trace_printk("I'm a comment!\n")
2484
2485will produce::
2486
2487 1) | __might_sleep() {
2488 1) | /* I'm a comment! */
2489 1) 1.449 us | }
2490
2491
2492You might find other useful features for this tracer in the
2493following "dynamic ftrace" section such as tracing only specific
2494functions or tasks.
2495
2496dynamic ftrace
2497--------------
2498
2499If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2500virtually no overhead when function tracing is disabled. The way
2501this works is the mcount function call (placed at the start of
2502every kernel function, produced by the -pg switch in gcc),
2503starts of pointing to a simple return. (Enabling FTRACE will
2504include the -pg switch in the compiling of the kernel.)
2505
2506At compile time every C file object is run through the
2507recordmcount program (located in the scripts directory). This
2508program will parse the ELF headers in the C object to find all
2509the locations in the .text section that call mcount. Starting
2510with gcc verson 4.6, the -mfentry has been added for x86, which
2511calls "__fentry__" instead of "mcount". Which is called before
2512the creation of the stack frame.
2513
2514Note, not all sections are traced. They may be prevented by either
2515a notrace, or blocked another way and all inline functions are not
2516traced. Check the "available_filter_functions" file to see what functions
2517can be traced.
2518
2519A section called "__mcount_loc" is created that holds
2520references to all the mcount/fentry call sites in the .text section.
2521The recordmcount program re-links this section back into the
2522original object. The final linking stage of the kernel will add all these
2523references into a single table.
2524
2525On boot up, before SMP is initialized, the dynamic ftrace code
2526scans this table and updates all the locations into nops. It
2527also records the locations, which are added to the
2528available_filter_functions list. Modules are processed as they
2529are loaded and before they are executed. When a module is
2530unloaded, it also removes its functions from the ftrace function
2531list. This is automatic in the module unload code, and the
2532module author does not need to worry about it.
2533
2534When tracing is enabled, the process of modifying the function
2535tracepoints is dependent on architecture. The old method is to use
2536kstop_machine to prevent races with the CPUs executing code being
2537modified (which can cause the CPU to do undesirable things, especially
2538if the modified code crosses cache (or page) boundaries), and the nops are
2539patched back to calls. But this time, they do not call mcount
2540(which is just a function stub). They now call into the ftrace
2541infrastructure.
2542
2543The new method of modifying the function tracepoints is to place
2544a breakpoint at the location to be modified, sync all CPUs, modify
2545the rest of the instruction not covered by the breakpoint. Sync
2546all CPUs again, and then remove the breakpoint with the finished
2547version to the ftrace call site.
2548
2549Some archs do not even need to monkey around with the synchronization,
2550and can just slap the new code on top of the old without any
2551problems with other CPUs executing it at the same time.
2552
2553One special side-effect to the recording of the functions being
2554traced is that we can now selectively choose which functions we
2555wish to trace and which ones we want the mcount calls to remain
2556as nops.
2557
2558Two files are used, one for enabling and one for disabling the
2559tracing of specified functions. They are:
2560
2561 set_ftrace_filter
2562
2563and
2564
2565 set_ftrace_notrace
2566
2567A list of available functions that you can add to these files is
2568listed in:
2569
2570 available_filter_functions
2571
2572::
2573
2574 # cat available_filter_functions
2575 put_prev_task_idle
2576 kmem_cache_create
2577 pick_next_task_rt
2578 get_online_cpus
2579 pick_next_task_fair
2580 mutex_lock
2581 [...]
2582
2583If I am only interested in sys_nanosleep and hrtimer_interrupt::
2584
2585 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2586 # echo function > current_tracer
2587 # echo 1 > tracing_on
2588 # usleep 1
2589 # echo 0 > tracing_on
2590 # cat trace
2591 # tracer: function
2592 #
2593 # entries-in-buffer/entries-written: 5/5 #P:4
2594 #
2595 # _-----=> irqs-off
2596 # / _----=> need-resched
2597 # | / _---=> hardirq/softirq
2598 # || / _--=> preempt-depth
2599 # ||| / delay
2600 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2601 # | | | |||| | |
2602 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2603 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2604 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2605 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2606 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2607
2608To see which functions are being traced, you can cat the file:
2609::
2610
2611 # cat set_ftrace_filter
2612 hrtimer_interrupt
2613 sys_nanosleep
2614
2615
2616Perhaps this is not enough. The filters also allow glob(7) matching.
2617
2618 <match>*
2619 will match functions that begin with <match>
2620 *<match>
2621 will match functions that end with <match>
2622 *<match>*
2623 will match functions that have <match> in it
2624 <match1>*<match2>
2625 will match functions that begin with <match1> and end with <match2>
2626
2627.. note::
2628 It is better to use quotes to enclose the wild cards,
2629 otherwise the shell may expand the parameters into names
2630 of files in the local directory.
2631
2632::
2633
2634 # echo 'hrtimer_*' > set_ftrace_filter
2635
2636Produces::
2637
2638 # tracer: function
2639 #
2640 # entries-in-buffer/entries-written: 897/897 #P:4
2641 #
2642 # _-----=> irqs-off
2643 # / _----=> need-resched
2644 # | / _---=> hardirq/softirq
2645 # || / _--=> preempt-depth
2646 # ||| / delay
2647 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2648 # | | | |||| | |
2649 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2650 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2651 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2652 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2653 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2654 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2655 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2656 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
2657
2658Notice that we lost the sys_nanosleep.
2659::
2660
2661 # cat set_ftrace_filter
2662 hrtimer_run_queues
2663 hrtimer_run_pending
2664 hrtimer_init
2665 hrtimer_cancel
2666 hrtimer_try_to_cancel
2667 hrtimer_forward
2668 hrtimer_start
2669 hrtimer_reprogram
2670 hrtimer_force_reprogram
2671 hrtimer_get_next_event
2672 hrtimer_interrupt
2673 hrtimer_nanosleep
2674 hrtimer_wakeup
2675 hrtimer_get_remaining
2676 hrtimer_get_res
2677 hrtimer_init_sleeper
2678
2679
2680This is because the '>' and '>>' act just like they do in bash.
2681To rewrite the filters, use '>'
2682To append to the filters, use '>>'
2683
2684To clear out a filter so that all functions will be recorded
2685again::
2686
2687 # echo > set_ftrace_filter
2688 # cat set_ftrace_filter
2689 #
2690
2691Again, now we want to append.
2692
2693::
2694
2695 # echo sys_nanosleep > set_ftrace_filter
2696 # cat set_ftrace_filter
2697 sys_nanosleep
2698 # echo 'hrtimer_*' >> set_ftrace_filter
2699 # cat set_ftrace_filter
2700 hrtimer_run_queues
2701 hrtimer_run_pending
2702 hrtimer_init
2703 hrtimer_cancel
2704 hrtimer_try_to_cancel
2705 hrtimer_forward
2706 hrtimer_start
2707 hrtimer_reprogram
2708 hrtimer_force_reprogram
2709 hrtimer_get_next_event
2710 hrtimer_interrupt
2711 sys_nanosleep
2712 hrtimer_nanosleep
2713 hrtimer_wakeup
2714 hrtimer_get_remaining
2715 hrtimer_get_res
2716 hrtimer_init_sleeper
2717
2718
2719The set_ftrace_notrace prevents those functions from being
2720traced.
2721::
2722
2723 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2724
2725Produces::
2726
2727 # tracer: function
2728 #
2729 # entries-in-buffer/entries-written: 39608/39608 #P:4
2730 #
2731 # _-----=> irqs-off
2732 # / _----=> need-resched
2733 # | / _---=> hardirq/softirq
2734 # || / _--=> preempt-depth
2735 # ||| / delay
2736 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2737 # | | | |||| | |
2738 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
2739 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
2740 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
2741 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
2742 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
2743 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
2744 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
2745 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate
2746 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
2747 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
2748 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
2749 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
2750
2751We can see that there's no more lock or preempt tracing.
2752
2753
2754Dynamic ftrace with the function graph tracer
2755---------------------------------------------
2756
2757Although what has been explained above concerns both the
2758function tracer and the function-graph-tracer, there are some
2759special features only available in the function-graph tracer.
2760
2761If you want to trace only one function and all of its children,
2762you just have to echo its name into set_graph_function::
2763
2764 echo __do_fault > set_graph_function
2765
2766will produce the following "expanded" trace of the __do_fault()
2767function::
2768
2769 0) | __do_fault() {
2770 0) | filemap_fault() {
2771 0) | find_lock_page() {
2772 0) 0.804 us | find_get_page();
2773 0) | __might_sleep() {
2774 0) 1.329 us | }
2775 0) 3.904 us | }
2776 0) 4.979 us | }
2777 0) 0.653 us | _spin_lock();
2778 0) 0.578 us | page_add_file_rmap();
2779 0) 0.525 us | native_set_pte_at();
2780 0) 0.585 us | _spin_unlock();
2781 0) | unlock_page() {
2782 0) 0.541 us | page_waitqueue();
2783 0) 0.639 us | __wake_up_bit();
2784 0) 2.786 us | }
2785 0) + 14.237 us | }
2786 0) | __do_fault() {
2787 0) | filemap_fault() {
2788 0) | find_lock_page() {
2789 0) 0.698 us | find_get_page();
2790 0) | __might_sleep() {
2791 0) 1.412 us | }
2792 0) 3.950 us | }
2793 0) 5.098 us | }
2794 0) 0.631 us | _spin_lock();
2795 0) 0.571 us | page_add_file_rmap();
2796 0) 0.526 us | native_set_pte_at();
2797 0) 0.586 us | _spin_unlock();
2798 0) | unlock_page() {
2799 0) 0.533 us | page_waitqueue();
2800 0) 0.638 us | __wake_up_bit();
2801 0) 2.793 us | }
2802 0) + 14.012 us | }
2803
2804You can also expand several functions at once::
2805
2806 echo sys_open > set_graph_function
2807 echo sys_close >> set_graph_function
2808
2809Now if you want to go back to trace all functions you can clear
2810this special filter via::
2811
2812 echo > set_graph_function
2813
2814
2815ftrace_enabled
2816--------------
2817
2818Note, the proc sysctl ftrace_enable is a big on/off switch for the
2819function tracer. By default it is enabled (when function tracing is
2820enabled in the kernel). If it is disabled, all function tracing is
2821disabled. This includes not only the function tracers for ftrace, but
2822also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2823
2824Please disable this with care.
2825
2826This can be disable (and enabled) with::
2827
2828 sysctl kernel.ftrace_enabled=0
2829 sysctl kernel.ftrace_enabled=1
2830
2831 or
2832
2833 echo 0 > /proc/sys/kernel/ftrace_enabled
2834 echo 1 > /proc/sys/kernel/ftrace_enabled
2835
2836
2837Filter commands
2838---------------
2839
2840A few commands are supported by the set_ftrace_filter interface.
2841Trace commands have the following format::
2842
2843 <function>:<command>:<parameter>
2844
2845The following commands are supported:
2846
2847- mod:
2848 This command enables function filtering per module. The
2849 parameter defines the module. For example, if only the write*
2850 functions in the ext3 module are desired, run:
2851
2852 echo 'write*:mod:ext3' > set_ftrace_filter
2853
2854 This command interacts with the filter in the same way as
2855 filtering based on function names. Thus, adding more functions
2856 in a different module is accomplished by appending (>>) to the
2857 filter file. Remove specific module functions by prepending
2858 '!'::
2859
2860 echo '!writeback*:mod:ext3' >> set_ftrace_filter
2861
2862 Mod command supports module globbing. Disable tracing for all
2863 functions except a specific module::
2864
2865 echo '!*:mod:!ext3' >> set_ftrace_filter
2866
2867 Disable tracing for all modules, but still trace kernel::
2868
2869 echo '!*:mod:*' >> set_ftrace_filter
2870
2871 Enable filter only for kernel::
2872
2873 echo '*write*:mod:!*' >> set_ftrace_filter
2874
2875 Enable filter for module globbing::
2876
2877 echo '*write*:mod:*snd*' >> set_ftrace_filter
2878
2879- traceon/traceoff:
2880 These commands turn tracing on and off when the specified
2881 functions are hit. The parameter determines how many times the
2882 tracing system is turned on and off. If unspecified, there is
2883 no limit. For example, to disable tracing when a schedule bug
2884 is hit the first 5 times, run::
2885
2886 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2887
2888 To always disable tracing when __schedule_bug is hit::
2889
2890 echo '__schedule_bug:traceoff' > set_ftrace_filter
2891
2892 These commands are cumulative whether or not they are appended
2893 to set_ftrace_filter. To remove a command, prepend it by '!'
2894 and drop the parameter::
2895
2896 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2897
2898 The above removes the traceoff command for __schedule_bug
2899 that have a counter. To remove commands without counters::
2900
2901 echo '!__schedule_bug:traceoff' > set_ftrace_filter
2902
2903- snapshot:
2904 Will cause a snapshot to be triggered when the function is hit.
2905 ::
2906
2907 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2908
2909 To only snapshot once:
2910 ::
2911
2912 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2913
2914 To remove the above commands::
2915
2916 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2917 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2918
2919- enable_event/disable_event:
2920 These commands can enable or disable a trace event. Note, because
2921 function tracing callbacks are very sensitive, when these commands
2922 are registered, the trace point is activated, but disabled in
2923 a "soft" mode. That is, the tracepoint will be called, but
2924 just will not be traced. The event tracepoint stays in this mode
2925 as long as there's a command that triggers it.
2926 ::
2927
2928 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2929 set_ftrace_filter
2930
2931 The format is::
2932
2933 <function>:enable_event:<system>:<event>[:count]
2934 <function>:disable_event:<system>:<event>[:count]
2935
2936 To remove the events commands::
2937
2938 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2939 set_ftrace_filter
2940 echo '!schedule:disable_event:sched:sched_switch' > \
2941 set_ftrace_filter
2942
2943- dump:
2944 When the function is hit, it will dump the contents of the ftrace
2945 ring buffer to the console. This is useful if you need to debug
2946 something, and want to dump the trace when a certain function
2947 is hit. Perhaps its a function that is called before a tripple
2948 fault happens and does not allow you to get a regular dump.
2949
2950- cpudump:
2951 When the function is hit, it will dump the contents of the ftrace
2952 ring buffer for the current CPU to the console. Unlike the "dump"
2953 command, it only prints out the contents of the ring buffer for the
2954 CPU that executed the function that triggered the dump.
2955
2956trace_pipe
2957----------
2958
2959The trace_pipe outputs the same content as the trace file, but
2960the effect on the tracing is different. Every read from
2961trace_pipe is consumed. This means that subsequent reads will be
2962different. The trace is live.
2963::
2964
2965 # echo function > current_tracer
2966 # cat trace_pipe > /tmp/trace.out &
2967 [1] 4153
2968 # echo 1 > tracing_on
2969 # usleep 1
2970 # echo 0 > tracing_on
2971 # cat trace
2972 # tracer: function
2973 #
2974 # entries-in-buffer/entries-written: 0/0 #P:4
2975 #
2976 # _-----=> irqs-off
2977 # / _----=> need-resched
2978 # | / _---=> hardirq/softirq
2979 # || / _--=> preempt-depth
2980 # ||| / delay
2981 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2982 # | | | |||| | |
2983
2984 #
2985 # cat /tmp/trace.out
2986 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
2987 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
2988 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
2989 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
2990 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
2991 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
2992 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
2993 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
2994 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
2995
2996
2997Note, reading the trace_pipe file will block until more input is
2998added.
2999
3000trace entries
3001-------------
3002
3003Having too much or not enough data can be troublesome in
3004diagnosing an issue in the kernel. The file buffer_size_kb is
3005used to modify the size of the internal trace buffers. The
3006number listed is the number of entries that can be recorded per
3007CPU. To know the full size, multiply the number of possible CPUs
3008with the number of entries.
3009::
3010
3011 # cat buffer_size_kb
3012 1408 (units kilobytes)
3013
3014Or simply read buffer_total_size_kb
3015::
3016
3017 # cat buffer_total_size_kb
3018 5632
3019
3020To modify the buffer, simple echo in a number (in 1024 byte segments).
3021::
3022
3023 # echo 10000 > buffer_size_kb
3024 # cat buffer_size_kb
3025 10000 (units kilobytes)
3026
3027It will try to allocate as much as possible. If you allocate too
3028much, it can cause Out-Of-Memory to trigger.
3029::
3030
3031 # echo 1000000000000 > buffer_size_kb
3032 -bash: echo: write error: Cannot allocate memory
3033 # cat buffer_size_kb
3034 85
3035
3036The per_cpu buffers can be changed individually as well:
3037::
3038
3039 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3040 # echo 100 > per_cpu/cpu1/buffer_size_kb
3041
3042When the per_cpu buffers are not the same, the buffer_size_kb
3043at the top level will just show an X
3044::
3045
3046 # cat buffer_size_kb
3047 X
3048
3049This is where the buffer_total_size_kb is useful:
3050::
3051
3052 # cat buffer_total_size_kb
3053 12916
3054
3055Writing to the top level buffer_size_kb will reset all the buffers
3056to be the same again.
3057
3058Snapshot
3059--------
3060CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3061available to all non latency tracers. (Latency tracers which
3062record max latency, such as "irqsoff" or "wakeup", can't use
3063this feature, since those are already using the snapshot
3064mechanism internally.)
3065
3066Snapshot preserves a current trace buffer at a particular point
3067in time without stopping tracing. Ftrace swaps the current
3068buffer with a spare buffer, and tracing continues in the new
3069current (=previous spare) buffer.
3070
3071The following tracefs files in "tracing" are related to this
3072feature:
3073
3074 snapshot:
3075
3076 This is used to take a snapshot and to read the output
3077 of the snapshot. Echo 1 into this file to allocate a
3078 spare buffer and to take a snapshot (swap), then read
3079 the snapshot from this file in the same format as
3080 "trace" (described above in the section "The File
3081 System"). Both reads snapshot and tracing are executable
3082 in parallel. When the spare buffer is allocated, echoing
3083 0 frees it, and echoing else (positive) values clear the
3084 snapshot contents.
3085 More details are shown in the table below.
3086
3087 +--------------+------------+------------+------------+
3088 |status\\input | 0 | 1 | else |
3089 +==============+============+============+============+
3090 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3091 +--------------+------------+------------+------------+
3092 |allocated | free | swap | clear |
3093 +--------------+------------+------------+------------+
3094
3095Here is an example of using the snapshot feature.
3096::
3097
3098 # echo 1 > events/sched/enable
3099 # echo 1 > snapshot
3100 # cat snapshot
3101 # tracer: nop
3102 #
3103 # entries-in-buffer/entries-written: 71/71 #P:8
3104 #
3105 # _-----=> irqs-off
3106 # / _----=> need-resched
3107 # | / _---=> hardirq/softirq
3108 # || / _--=> preempt-depth
3109 # ||| / delay
3110 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3111 # | | | |||| | |
3112 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3113 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3114 [...]
3115 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3116
3117 # cat trace
3118 # tracer: nop
3119 #
3120 # entries-in-buffer/entries-written: 77/77 #P:8
3121 #
3122 # _-----=> irqs-off
3123 # / _----=> need-resched
3124 # | / _---=> hardirq/softirq
3125 # || / _--=> preempt-depth
3126 # ||| / delay
3127 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3128 # | | | |||| | |
3129 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3130 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3131 [...]
3132
3133
3134If you try to use this snapshot feature when current tracer is
3135one of the latency tracers, you will get the following results.
3136::
3137
3138 # echo wakeup > current_tracer
3139 # echo 1 > snapshot
3140 bash: echo: write error: Device or resource busy
3141 # cat snapshot
3142 cat: snapshot: Device or resource busy
3143
3144
3145Instances
3146---------
3147In the tracefs tracing directory is a directory called "instances".
3148This directory can have new directories created inside of it using
3149mkdir, and removing directories with rmdir. The directory created
3150with mkdir in this directory will already contain files and other
3151directories after it is created.
3152::
3153
3154 # mkdir instances/foo
3155 # ls instances/foo
3156 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3157 set_event snapshot trace trace_clock trace_marker trace_options
3158 trace_pipe tracing_on
3159
3160As you can see, the new directory looks similar to the tracing directory
3161itself. In fact, it is very similar, except that the buffer and
3162events are agnostic from the main director, or from any other
3163instances that are created.
3164
3165The files in the new directory work just like the files with the
3166same name in the tracing directory except the buffer that is used
3167is a separate and new buffer. The files affect that buffer but do not
3168affect the main buffer with the exception of trace_options. Currently,
3169the trace_options affect all instances and the top level buffer
3170the same, but this may change in future releases. That is, options
3171may become specific to the instance they reside in.
3172
3173Notice that none of the function tracer files are there, nor is
3174current_tracer and available_tracers. This is because the buffers
3175can currently only have events enabled for them.
3176::
3177
3178 # mkdir instances/foo
3179 # mkdir instances/bar
3180 # mkdir instances/zoot
3181 # echo 100000 > buffer_size_kb
3182 # echo 1000 > instances/foo/buffer_size_kb
3183 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3184 # echo function > current_trace
3185 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3186 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3187 # echo 1 > instances/foo/events/sched/sched_switch/enable
3188 # echo 1 > instances/bar/events/irq/enable
3189 # echo 1 > instances/zoot/events/syscalls/enable
3190 # cat trace_pipe
3191 CPU:2 [LOST 11745 EVENTS]
3192 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3193 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3194 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3195 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3196 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3197 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3198 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3199 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3200 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3201 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3202 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3203 [...]
3204
3205 # cat instances/foo/trace_pipe
3206 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3207 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3208 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3209 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3210 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3211 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3212 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3213 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3214 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3215 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3216 [...]
3217
3218 # cat instances/bar/trace_pipe
3219 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3220 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3221 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3222 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3223 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3224 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3225 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3226 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3227 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3228 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3229 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3230 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3231 [...]
3232
3233 # cat instances/zoot/trace
3234 # tracer: nop
3235 #
3236 # entries-in-buffer/entries-written: 18996/18996 #P:4
3237 #
3238 # _-----=> irqs-off
3239 # / _----=> need-resched
3240 # | / _---=> hardirq/softirq
3241 # || / _--=> preempt-depth
3242 # ||| / delay
3243 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3244 # | | | |||| | |
3245 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3246 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3247 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3248 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3249 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3250 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3251 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3252 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3253 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3254 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3255 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3256
3257You can see that the trace of the top most trace buffer shows only
3258the function tracing. The foo instance displays wakeups and task
3259switches.
3260
3261To remove the instances, simply delete their directories:
3262::
3263
3264 # rmdir instances/foo
3265 # rmdir instances/bar
3266 # rmdir instances/zoot
3267
3268Note, if a process has a trace file open in one of the instance
3269directories, the rmdir will fail with EBUSY.
3270
3271
3272Stack trace
3273-----------
3274Since the kernel has a fixed sized stack, it is important not to
3275waste it in functions. A kernel developer must be conscience of
3276what they allocate on the stack. If they add too much, the system
3277can be in danger of a stack overflow, and corruption will occur,
3278usually leading to a system panic.
3279
3280There are some tools that check this, usually with interrupts
3281periodically checking usage. But if you can perform a check
3282at every function call that will become very useful. As ftrace provides
3283a function tracer, it makes it convenient to check the stack size
3284at every function call. This is enabled via the stack tracer.
3285
3286CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3287To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3288::
3289
3290 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3291
3292You can also enable it from the kernel command line to trace
3293the stack size of the kernel during boot up, by adding "stacktrace"
3294to the kernel command line parameter.
3295
3296After running it for a few minutes, the output looks like:
3297::
3298
3299 # cat stack_max_size
3300 2928
3301
3302 # cat stack_trace
3303 Depth Size Location (18 entries)
3304 ----- ---- --------
3305 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3306 1) 2704 160 find_busiest_group+0x31/0x1f1
3307 2) 2544 256 load_balance+0xd9/0x662
3308 3) 2288 80 idle_balance+0xbb/0x130
3309 4) 2208 128 __schedule+0x26e/0x5b9
3310 5) 2080 16 schedule+0x64/0x66
3311 6) 2064 128 schedule_timeout+0x34/0xe0
3312 7) 1936 112 wait_for_common+0x97/0xf1
3313 8) 1824 16 wait_for_completion+0x1d/0x1f
3314 9) 1808 128 flush_work+0xfe/0x119
3315 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3316 11) 1664 48 input_available_p+0x1d/0x5c
3317 12) 1616 48 n_tty_poll+0x6d/0x134
3318 13) 1568 64 tty_poll+0x64/0x7f
3319 14) 1504 880 do_select+0x31e/0x511
3320 15) 624 400 core_sys_select+0x177/0x216
3321 16) 224 96 sys_select+0x91/0xb9
3322 17) 128 128 system_call_fastpath+0x16/0x1b
3323
3324Note, if -mfentry is being used by gcc, functions get traced before
3325they set up the stack frame. This means that leaf level functions
3326are not tested by the stack tracer when -mfentry is used.
3327
3328Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3329
3330More
3331----
3332More details can be found in the source code, in the `kernel/trace/*.c` files.