blob: 8799ae9a8788f6fd8628c35974ec172d6aab61cc [file] [log] [blame]
David S. Miller7a12b502017-04-17 18:44:36 -07001#include <linux/moduleloader.h>
2#include <linux/workqueue.h>
3#include <linux/netdevice.h>
4#include <linux/filter.h>
5#include <linux/bpf.h>
6#include <linux/cache.h>
7#include <linux/if_vlan.h>
8
9#include <asm/cacheflush.h>
10#include <asm/ptrace.h>
11
12#include "bpf_jit_64.h"
13
14int bpf_jit_enable __read_mostly;
15
16static inline bool is_simm13(unsigned int value)
17{
18 return value + 0x1000 < 0x2000;
19}
20
David S. Millere3a724e2017-04-24 15:56:21 -070021static inline bool is_simm10(unsigned int value)
22{
23 return value + 0x200 < 0x400;
24}
25
26static inline bool is_simm5(unsigned int value)
27{
28 return value + 0x10 < 0x20;
29}
30
David S. Miller14933dc2017-04-24 19:42:34 -070031static inline bool is_sethi(unsigned int value)
32{
33 return (value & ~0x3fffff) == 0;
34}
35
David S. Miller7a12b502017-04-17 18:44:36 -070036static void bpf_flush_icache(void *start_, void *end_)
37{
38 /* Cheetah's I-cache is fully coherent. */
39 if (tlb_type == spitfire) {
40 unsigned long start = (unsigned long) start_;
41 unsigned long end = (unsigned long) end_;
42
43 start &= ~7UL;
44 end = (end + 7UL) & ~7UL;
45 while (start < end) {
46 flushi(start);
47 start += 32;
48 }
49 }
50}
51
52#define SEEN_DATAREF 1 /* might call external helpers */
53#define SEEN_XREG 2 /* ebx is used */
54#define SEEN_MEM 4 /* use mem[] for temporary storage */
55
56#define S13(X) ((X) & 0x1fff)
David S. Millere3a724e2017-04-24 15:56:21 -070057#define S5(X) ((X) & 0x1f)
David S. Miller7a12b502017-04-17 18:44:36 -070058#define IMMED 0x00002000
59#define RD(X) ((X) << 25)
60#define RS1(X) ((X) << 14)
61#define RS2(X) ((X))
62#define OP(X) ((X) << 30)
63#define OP2(X) ((X) << 22)
64#define OP3(X) ((X) << 19)
David S. Millere3a724e2017-04-24 15:56:21 -070065#define COND(X) (((X) & 0xf) << 25)
66#define CBCOND(X) (((X) & 0x1f) << 25)
David S. Miller7a12b502017-04-17 18:44:36 -070067#define F1(X) OP(X)
68#define F2(X, Y) (OP(X) | OP2(Y))
69#define F3(X, Y) (OP(X) | OP3(Y))
70#define ASI(X) (((X) & 0xff) << 5)
71
72#define CONDN COND(0x0)
73#define CONDE COND(0x1)
74#define CONDLE COND(0x2)
75#define CONDL COND(0x3)
76#define CONDLEU COND(0x4)
77#define CONDCS COND(0x5)
78#define CONDNEG COND(0x6)
79#define CONDVC COND(0x7)
80#define CONDA COND(0x8)
81#define CONDNE COND(0x9)
82#define CONDG COND(0xa)
83#define CONDGE COND(0xb)
84#define CONDGU COND(0xc)
85#define CONDCC COND(0xd)
86#define CONDPOS COND(0xe)
87#define CONDVS COND(0xf)
88
89#define CONDGEU CONDCC
90#define CONDLU CONDCS
91
92#define WDISP22(X) (((X) >> 2) & 0x3fffff)
93#define WDISP19(X) (((X) >> 2) & 0x7ffff)
94
David S. Millere3a724e2017-04-24 15:56:21 -070095/* The 10-bit branch displacement for CBCOND is split into two fields */
96static u32 WDISP10(u32 off)
97{
98 u32 ret = ((off >> 2) & 0xff) << 5;
99
100 ret |= ((off >> (2 + 8)) & 0x03) << 19;
101
102 return ret;
103}
104
105#define CBCONDE CBCOND(0x09)
106#define CBCONDLE CBCOND(0x0a)
107#define CBCONDL CBCOND(0x0b)
108#define CBCONDLEU CBCOND(0x0c)
109#define CBCONDCS CBCOND(0x0d)
110#define CBCONDN CBCOND(0x0e)
111#define CBCONDVS CBCOND(0x0f)
112#define CBCONDNE CBCOND(0x19)
113#define CBCONDG CBCOND(0x1a)
114#define CBCONDGE CBCOND(0x1b)
115#define CBCONDGU CBCOND(0x1c)
116#define CBCONDCC CBCOND(0x1d)
117#define CBCONDPOS CBCOND(0x1e)
118#define CBCONDVC CBCOND(0x1f)
119
120#define CBCONDGEU CBCONDCC
121#define CBCONDLU CBCONDCS
122
David S. Miller7a12b502017-04-17 18:44:36 -0700123#define ANNUL (1 << 29)
124#define XCC (1 << 21)
125
126#define BRANCH (F2(0, 1) | XCC)
David S. Millere3a724e2017-04-24 15:56:21 -0700127#define CBCOND_OP (F2(0, 3) | XCC)
David S. Miller7a12b502017-04-17 18:44:36 -0700128
129#define BA (BRANCH | CONDA)
130#define BG (BRANCH | CONDG)
131#define BGU (BRANCH | CONDGU)
132#define BLEU (BRANCH | CONDLEU)
133#define BGE (BRANCH | CONDGE)
134#define BGEU (BRANCH | CONDGEU)
135#define BLU (BRANCH | CONDLU)
136#define BE (BRANCH | CONDE)
137#define BNE (BRANCH | CONDNE)
138
139#define SETHI(K, REG) \
140 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
141#define OR_LO(K, REG) \
142 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
143
144#define ADD F3(2, 0x00)
145#define AND F3(2, 0x01)
146#define ANDCC F3(2, 0x11)
147#define OR F3(2, 0x02)
148#define XOR F3(2, 0x03)
149#define SUB F3(2, 0x04)
150#define SUBCC F3(2, 0x14)
151#define MUL F3(2, 0x0a)
152#define MULX F3(2, 0x09)
153#define UDIVX F3(2, 0x0d)
154#define DIV F3(2, 0x0e)
155#define SLL F3(2, 0x25)
156#define SLLX (F3(2, 0x25)|(1<<12))
157#define SRA F3(2, 0x27)
158#define SRAX (F3(2, 0x27)|(1<<12))
159#define SRL F3(2, 0x26)
160#define SRLX (F3(2, 0x26)|(1<<12))
161#define JMPL F3(2, 0x38)
162#define SAVE F3(2, 0x3c)
163#define RESTORE F3(2, 0x3d)
164#define CALL F1(1)
165#define BR F2(0, 0x01)
166#define RD_Y F3(2, 0x28)
167#define WR_Y F3(2, 0x30)
168
169#define LD32 F3(3, 0x00)
170#define LD8 F3(3, 0x01)
171#define LD16 F3(3, 0x02)
172#define LD64 F3(3, 0x0b)
173#define LD64A F3(3, 0x1b)
174#define ST8 F3(3, 0x05)
175#define ST16 F3(3, 0x06)
176#define ST32 F3(3, 0x04)
177#define ST64 F3(3, 0x0e)
178
179#define CAS F3(3, 0x3c)
180#define CASX F3(3, 0x3e)
181
182#define LDPTR LD64
183#define BASE_STACKFRAME 176
184
185#define LD32I (LD32 | IMMED)
186#define LD8I (LD8 | IMMED)
187#define LD16I (LD16 | IMMED)
188#define LD64I (LD64 | IMMED)
189#define LDPTRI (LDPTR | IMMED)
190#define ST32I (ST32 | IMMED)
191
192struct jit_ctx {
193 struct bpf_prog *prog;
194 unsigned int *offset;
195 int idx;
196 int epilogue_offset;
197 bool tmp_1_used;
198 bool tmp_2_used;
199 bool tmp_3_used;
200 bool saw_ld_abs_ind;
201 bool saw_frame_pointer;
202 bool saw_call;
203 bool saw_tail_call;
204 u32 *image;
205};
206
207#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
208#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
209#define SKB_HLEN_REG (MAX_BPF_JIT_REG + 2)
210#define SKB_DATA_REG (MAX_BPF_JIT_REG + 3)
211#define TMP_REG_3 (MAX_BPF_JIT_REG + 4)
212
213/* Map BPF registers to SPARC registers */
214static const int bpf2sparc[] = {
215 /* return value from in-kernel function, and exit value from eBPF */
216 [BPF_REG_0] = O5,
217
218 /* arguments from eBPF program to in-kernel function */
219 [BPF_REG_1] = O0,
220 [BPF_REG_2] = O1,
221 [BPF_REG_3] = O2,
222 [BPF_REG_4] = O3,
223 [BPF_REG_5] = O4,
224
225 /* callee saved registers that in-kernel function will preserve */
226 [BPF_REG_6] = L0,
227 [BPF_REG_7] = L1,
228 [BPF_REG_8] = L2,
229 [BPF_REG_9] = L3,
230
231 /* read-only frame pointer to access stack */
232 [BPF_REG_FP] = L6,
233
234 [BPF_REG_AX] = G7,
235
236 /* temporary register for internal BPF JIT */
237 [TMP_REG_1] = G1,
238 [TMP_REG_2] = G2,
239 [TMP_REG_3] = G3,
240
241 [SKB_HLEN_REG] = L4,
242 [SKB_DATA_REG] = L5,
243};
244
245static void emit(const u32 insn, struct jit_ctx *ctx)
246{
247 if (ctx->image != NULL)
248 ctx->image[ctx->idx] = insn;
249
250 ctx->idx++;
251}
252
253static void emit_call(u32 *func, struct jit_ctx *ctx)
254{
255 if (ctx->image != NULL) {
256 void *here = &ctx->image[ctx->idx];
257 unsigned int off;
258
259 off = (void *)func - here;
260 ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
261 }
262 ctx->idx++;
263}
264
265static void emit_nop(struct jit_ctx *ctx)
266{
267 emit(SETHI(0, G0), ctx);
268}
269
270static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
271{
272 emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
273}
274
275/* Emit 32-bit constant, zero extended. */
276static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
277{
278 emit(SETHI(K, reg), ctx);
279 emit(OR_LO(K, reg), ctx);
280}
281
282/* Emit 32-bit constant, sign extended. */
283static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
284{
285 if (K >= 0) {
286 emit(SETHI(K, reg), ctx);
287 emit(OR_LO(K, reg), ctx);
288 } else {
289 u32 hbits = ~(u32) K;
290 u32 lbits = -0x400 | (u32) K;
291
292 emit(SETHI(hbits, reg), ctx);
293 emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
294 }
295}
296
297static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
298{
299 emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
300}
301
302static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
303{
304 emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
305}
306
307static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
308 struct jit_ctx *ctx)
309{
310 bool small_immed = is_simm13(imm);
311 unsigned int insn = opcode;
312
313 insn |= RS1(dst) | RD(dst);
314 if (small_immed) {
315 emit(insn | IMMED | S13(imm), ctx);
316 } else {
317 unsigned int tmp = bpf2sparc[TMP_REG_1];
318
319 ctx->tmp_1_used = true;
320
321 emit_set_const_sext(imm, tmp, ctx);
322 emit(insn | RS2(tmp), ctx);
323 }
324}
325
326static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
327 unsigned int dst, struct jit_ctx *ctx)
328{
329 bool small_immed = is_simm13(imm);
330 unsigned int insn = opcode;
331
332 insn |= RS1(src) | RD(dst);
333 if (small_immed) {
334 emit(insn | IMMED | S13(imm), ctx);
335 } else {
336 unsigned int tmp = bpf2sparc[TMP_REG_1];
337
338 ctx->tmp_1_used = true;
339
340 emit_set_const_sext(imm, tmp, ctx);
341 emit(insn | RS2(tmp), ctx);
342 }
343}
344
345static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
346{
347 if (K >= 0 && is_simm13(K)) {
348 /* or %g0, K, DEST */
349 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
350 } else {
351 emit_set_const(K, dest, ctx);
352 }
353}
354
355static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
356{
357 if (is_simm13(K)) {
358 /* or %g0, K, DEST */
359 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
360 } else {
361 emit_set_const(K, dest, ctx);
362 }
363}
364
365static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
366{
367 if (is_simm13(K)) {
368 /* or %g0, K, DEST */
369 emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
370 } else {
371 emit_set_const_sext(K, dest, ctx);
372 }
373}
374
David S. Miller14933dc2017-04-24 19:42:34 -0700375static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
376 int *hbsp, int *lbsp, int *abbasp)
377{
378 int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
379 int i;
380
381 lowest_bit_set = highest_bit_set = -1;
382 i = 0;
383 do {
384 if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
385 lowest_bit_set = i;
386 if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
387 highest_bit_set = (64 - i - 1);
388 } while (++i < 32 && (highest_bit_set == -1 ||
389 lowest_bit_set == -1));
390 if (i == 32) {
391 i = 0;
392 do {
393 if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
394 lowest_bit_set = i + 32;
395 if (highest_bit_set == -1 &&
396 ((low_bits >> (32 - i - 1)) & 1))
397 highest_bit_set = 32 - i - 1;
398 } while (++i < 32 && (highest_bit_set == -1 ||
399 lowest_bit_set == -1));
400 }
401
402 all_bits_between_are_set = 1;
403 for (i = lowest_bit_set; i <= highest_bit_set; i++) {
404 if (i < 32) {
405 if ((low_bits & (1 << i)) != 0)
406 continue;
407 } else {
408 if ((high_bits & (1 << (i - 32))) != 0)
409 continue;
410 }
411 all_bits_between_are_set = 0;
412 break;
413 }
414 *hbsp = highest_bit_set;
415 *lbsp = lowest_bit_set;
416 *abbasp = all_bits_between_are_set;
417}
418
419static unsigned long create_simple_focus_bits(unsigned long high_bits,
420 unsigned long low_bits,
421 int lowest_bit_set, int shift)
422{
423 long hi, lo;
424
425 if (lowest_bit_set < 32) {
426 lo = (low_bits >> lowest_bit_set) << shift;
427 hi = ((high_bits << (32 - lowest_bit_set)) << shift);
428 } else {
429 lo = 0;
430 hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
431 }
432 return hi | lo;
433}
434
435static bool const64_is_2insns(unsigned long high_bits,
436 unsigned long low_bits)
437{
438 int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
439
440 if (high_bits == 0 || high_bits == 0xffffffff)
441 return true;
442
443 analyze_64bit_constant(high_bits, low_bits,
444 &highest_bit_set, &lowest_bit_set,
445 &all_bits_between_are_set);
446
447 if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
448 all_bits_between_are_set != 0)
449 return true;
450
451 if (highest_bit_set - lowest_bit_set < 21)
452 return true;
453
454 return false;
455}
456
457static void sparc_emit_set_const64_quick2(unsigned long high_bits,
458 unsigned long low_imm,
459 unsigned int dest,
460 int shift_count, struct jit_ctx *ctx)
461{
462 emit_loadimm32(high_bits, dest, ctx);
463
464 /* Now shift it up into place. */
465 emit_alu_K(SLLX, dest, shift_count, ctx);
466
467 /* If there is a low immediate part piece, finish up by
468 * putting that in as well.
469 */
470 if (low_imm != 0)
471 emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
472}
473
David S. Miller7a12b502017-04-17 18:44:36 -0700474static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
475{
David S. Miller14933dc2017-04-24 19:42:34 -0700476 int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
David S. Miller7a12b502017-04-17 18:44:36 -0700477 unsigned int tmp = bpf2sparc[TMP_REG_1];
David S. Miller14933dc2017-04-24 19:42:34 -0700478 u32 low_bits = (K & 0xffffffff);
479 u32 high_bits = (K >> 32);
David S. Miller7a12b502017-04-17 18:44:36 -0700480
David S. Miller14933dc2017-04-24 19:42:34 -0700481 /* These two tests also take care of all of the one
482 * instruction cases.
483 */
484 if (high_bits == 0xffffffff && (low_bits & 0x80000000))
485 return emit_loadimm_sext(K, dest, ctx);
486 if (high_bits == 0x00000000)
487 return emit_loadimm32(K, dest, ctx);
488
489 analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
490 &lowest_bit_set, &all_bits_between_are_set);
491
492 /* 1) mov -1, %reg
493 * sllx %reg, shift, %reg
494 * 2) mov -1, %reg
495 * srlx %reg, shift, %reg
496 * 3) mov some_small_const, %reg
497 * sllx %reg, shift, %reg
498 */
499 if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
500 all_bits_between_are_set != 0) ||
501 ((highest_bit_set - lowest_bit_set) < 12)) {
502 int shift = lowest_bit_set;
503 long the_const = -1;
504
505 if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
506 all_bits_between_are_set == 0) {
507 the_const =
508 create_simple_focus_bits(high_bits, low_bits,
509 lowest_bit_set, 0);
510 } else if (lowest_bit_set == 0)
511 shift = -(63 - highest_bit_set);
512
513 emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
514 if (shift > 0)
515 emit_alu_K(SLLX, dest, shift, ctx);
516 else if (shift < 0)
517 emit_alu_K(SRLX, dest, -shift, ctx);
518
519 return;
520 }
521
522 /* Now a range of 22 or less bits set somewhere.
523 * 1) sethi %hi(focus_bits), %reg
524 * sllx %reg, shift, %reg
525 * 2) sethi %hi(focus_bits), %reg
526 * srlx %reg, shift, %reg
527 */
528 if ((highest_bit_set - lowest_bit_set) < 21) {
529 unsigned long focus_bits =
530 create_simple_focus_bits(high_bits, low_bits,
531 lowest_bit_set, 10);
532
533 emit(SETHI(focus_bits, dest), ctx);
534
535 /* If lowest_bit_set == 10 then a sethi alone could
536 * have done it.
537 */
538 if (lowest_bit_set < 10)
539 emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
540 else if (lowest_bit_set > 10)
541 emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
542 return;
543 }
544
545 /* Ok, now 3 instruction sequences. */
546 if (low_bits == 0) {
547 emit_loadimm32(high_bits, dest, ctx);
548 emit_alu_K(SLLX, dest, 32, ctx);
549 return;
550 }
551
552 /* We may be able to do something quick
553 * when the constant is negated, so try that.
554 */
555 if (const64_is_2insns((~high_bits) & 0xffffffff,
556 (~low_bits) & 0xfffffc00)) {
557 /* NOTE: The trailing bits get XOR'd so we need the
558 * non-negated bits, not the negated ones.
559 */
560 unsigned long trailing_bits = low_bits & 0x3ff;
561
562 if ((((~high_bits) & 0xffffffff) == 0 &&
563 ((~low_bits) & 0x80000000) == 0) ||
564 (((~high_bits) & 0xffffffff) == 0xffffffff &&
565 ((~low_bits) & 0x80000000) != 0)) {
566 unsigned long fast_int = (~low_bits & 0xffffffff);
567
568 if ((is_sethi(fast_int) &&
569 (~high_bits & 0xffffffff) == 0)) {
570 emit(SETHI(fast_int, dest), ctx);
571 } else if (is_simm13(fast_int)) {
572 emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
573 } else {
574 emit_loadimm64(fast_int, dest, ctx);
575 }
576 } else {
577 u64 n = ((~low_bits) & 0xfffffc00) |
578 (((unsigned long)((~high_bits) & 0xffffffff))<<32);
579 emit_loadimm64(n, dest, ctx);
580 }
581
582 low_bits = -0x400 | trailing_bits;
583
584 emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
585 return;
586 }
587
588 /* 1) sethi %hi(xxx), %reg
589 * or %reg, %lo(xxx), %reg
590 * sllx %reg, yyy, %reg
591 */
592 if ((highest_bit_set - lowest_bit_set) < 32) {
593 unsigned long focus_bits =
594 create_simple_focus_bits(high_bits, low_bits,
595 lowest_bit_set, 0);
596
597 /* So what we know is that the set bits straddle the
598 * middle of the 64-bit word.
599 */
600 sparc_emit_set_const64_quick2(focus_bits, 0, dest,
601 lowest_bit_set, ctx);
602 return;
603 }
604
605 /* 1) sethi %hi(high_bits), %reg
606 * or %reg, %lo(high_bits), %reg
607 * sllx %reg, 32, %reg
608 * or %reg, low_bits, %reg
609 */
610 if (is_simm13(low_bits) && ((int)low_bits > 0)) {
611 sparc_emit_set_const64_quick2(high_bits, low_bits,
612 dest, 32, ctx);
613 return;
614 }
615
616 /* Oh well, we tried... Do a full 64-bit decomposition. */
David S. Miller7a12b502017-04-17 18:44:36 -0700617 ctx->tmp_1_used = true;
618
David S. Miller14933dc2017-04-24 19:42:34 -0700619 emit_loadimm32(high_bits, tmp, ctx);
620 emit_loadimm32(low_bits, dest, ctx);
David S. Miller7a12b502017-04-17 18:44:36 -0700621 emit_alu_K(SLLX, tmp, 32, ctx);
622 emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
623}
624
625static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
626 struct jit_ctx *ctx)
627{
628 unsigned int off = to_idx - from_idx;
629
630 if (br_opc & XCC)
631 emit(br_opc | WDISP19(off << 2), ctx);
632 else
633 emit(br_opc | WDISP22(off << 2), ctx);
634}
635
David S. Millere3a724e2017-04-24 15:56:21 -0700636static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
637 const u8 dst, const u8 src, struct jit_ctx *ctx)
638{
639 unsigned int off = to_idx - from_idx;
640
641 emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
642}
643
644static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
645 const u8 dst, s32 imm, struct jit_ctx *ctx)
646{
647 unsigned int off = to_idx - from_idx;
648
649 emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
650}
651
David S. Miller7a12b502017-04-17 18:44:36 -0700652#define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
653#define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
654
655#define emit_cmp(R1, R2, CTX) \
656 emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
657
658#define emit_cmpi(R1, IMM, CTX) \
David S. Millere3a724e2017-04-24 15:56:21 -0700659 emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
David S. Miller7a12b502017-04-17 18:44:36 -0700660
661#define emit_btst(R1, R2, CTX) \
662 emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
663
664#define emit_btsti(R1, IMM, CTX) \
665 emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
666
David S. Millere3a724e2017-04-24 15:56:21 -0700667static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
668 const s32 imm, bool is_imm, int branch_dst,
669 struct jit_ctx *ctx)
670{
671 bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
672 const u8 tmp = bpf2sparc[TMP_REG_1];
673
674 branch_dst = ctx->offset[branch_dst];
675
676 if (!is_simm10(branch_dst - ctx->idx) ||
677 BPF_OP(code) == BPF_JSET)
678 use_cbcond = false;
679
680 if (is_imm) {
681 bool fits = true;
682
683 if (use_cbcond) {
684 if (!is_simm5(imm))
685 fits = false;
686 } else if (!is_simm13(imm)) {
687 fits = false;
688 }
689 if (!fits) {
690 ctx->tmp_1_used = true;
691 emit_loadimm_sext(imm, tmp, ctx);
692 src = tmp;
693 is_imm = false;
694 }
695 }
696
697 if (!use_cbcond) {
698 u32 br_opcode;
699
700 if (BPF_OP(code) == BPF_JSET) {
701 if (is_imm)
702 emit_btsti(dst, imm, ctx);
703 else
704 emit_btst(dst, src, ctx);
705 } else {
706 if (is_imm)
707 emit_cmpi(dst, imm, ctx);
708 else
709 emit_cmp(dst, src, ctx);
710 }
711 switch (BPF_OP(code)) {
712 case BPF_JEQ:
713 br_opcode = BE;
714 break;
715 case BPF_JGT:
716 br_opcode = BGU;
717 break;
718 case BPF_JGE:
719 br_opcode = BGEU;
720 break;
721 case BPF_JSET:
722 case BPF_JNE:
723 br_opcode = BNE;
724 break;
725 case BPF_JSGT:
726 br_opcode = BG;
727 break;
728 case BPF_JSGE:
729 br_opcode = BGE;
730 break;
731 default:
732 /* Make sure we dont leak kernel information to the
733 * user.
734 */
735 return -EFAULT;
736 }
737 emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
738 emit_nop(ctx);
739 } else {
740 u32 cbcond_opcode;
741
742 switch (BPF_OP(code)) {
743 case BPF_JEQ:
744 cbcond_opcode = CBCONDE;
745 break;
746 case BPF_JGT:
747 cbcond_opcode = CBCONDGU;
748 break;
749 case BPF_JGE:
750 cbcond_opcode = CBCONDGEU;
751 break;
752 case BPF_JNE:
753 cbcond_opcode = CBCONDNE;
754 break;
755 case BPF_JSGT:
756 cbcond_opcode = CBCONDG;
757 break;
758 case BPF_JSGE:
759 cbcond_opcode = CBCONDGE;
760 break;
761 default:
762 /* Make sure we dont leak kernel information to the
763 * user.
764 */
765 return -EFAULT;
766 }
767 cbcond_opcode |= CBCOND_OP;
768 if (is_imm)
769 emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
770 dst, imm, ctx);
771 else
772 emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
773 dst, src, ctx);
774 }
775 return 0;
776}
777
David S. Miller7a12b502017-04-17 18:44:36 -0700778static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
779{
780 const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
781 const u8 r_data = bpf2sparc[SKB_DATA_REG];
782 const u8 r_tmp = bpf2sparc[TMP_REG_1];
783 unsigned int off;
784
785 off = offsetof(struct sk_buff, len);
786 emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
787
788 off = offsetof(struct sk_buff, data_len);
789 emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
790
791 emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
792
793 off = offsetof(struct sk_buff, data);
794 emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
795}
796
797/* Just skip the save instruction and the ctx register move. */
798#define BPF_TAILCALL_PROLOGUE_SKIP 16
799#define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
800
801static void build_prologue(struct jit_ctx *ctx)
802{
803 s32 stack_needed = BASE_STACKFRAME;
804
David S. Millera5e2ee52017-05-31 19:35:00 -0700805 if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
806 struct bpf_prog *prog = ctx->prog;
807 u32 stack_depth;
808
809 stack_depth = prog->aux->stack_depth;
810 stack_needed += round_up(stack_depth, 16);
811 }
David S. Miller7a12b502017-04-17 18:44:36 -0700812
813 if (ctx->saw_tail_call)
814 stack_needed += 8;
815
816 /* save %sp, -176, %sp */
817 emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
818
819 /* tail_call_cnt = 0 */
820 if (ctx->saw_tail_call) {
821 u32 off = BPF_TAILCALL_CNT_SP_OFF;
822
823 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
824 } else {
825 emit_nop(ctx);
826 }
827 if (ctx->saw_frame_pointer) {
828 const u8 vfp = bpf2sparc[BPF_REG_FP];
829
830 emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
831 }
832
833 emit_reg_move(I0, O0, ctx);
834 /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
835
836 if (ctx->saw_ld_abs_ind)
837 load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
838}
839
840static void build_epilogue(struct jit_ctx *ctx)
841{
842 ctx->epilogue_offset = ctx->idx;
843
844 /* ret (jmpl %i7 + 8, %g0) */
845 emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
846
847 /* restore %i5, %g0, %o0 */
848 emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
849}
850
851static void emit_tail_call(struct jit_ctx *ctx)
852{
853 const u8 bpf_array = bpf2sparc[BPF_REG_2];
854 const u8 bpf_index = bpf2sparc[BPF_REG_3];
855 const u8 tmp = bpf2sparc[TMP_REG_1];
856 u32 off;
857
858 ctx->saw_tail_call = true;
859
860 off = offsetof(struct bpf_array, map.max_entries);
861 emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
862 emit_cmp(bpf_index, tmp, ctx);
863#define OFFSET1 17
864 emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
865 emit_nop(ctx);
866
867 off = BPF_TAILCALL_CNT_SP_OFF;
868 emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
869 emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
870#define OFFSET2 13
871 emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
872 emit_nop(ctx);
873
874 emit_alu_K(ADD, tmp, 1, ctx);
875 off = BPF_TAILCALL_CNT_SP_OFF;
876 emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
877
878 emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
879 emit_alu(ADD, bpf_array, tmp, ctx);
880 off = offsetof(struct bpf_array, ptrs);
881 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
882
883 emit_cmpi(tmp, 0, ctx);
884#define OFFSET3 5
885 emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
886 emit_nop(ctx);
887
888 off = offsetof(struct bpf_prog, bpf_func);
889 emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
890
891 off = BPF_TAILCALL_PROLOGUE_SKIP;
892 emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
893 emit_nop(ctx);
894}
895
896static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
897{
898 const u8 code = insn->code;
899 const u8 dst = bpf2sparc[insn->dst_reg];
900 const u8 src = bpf2sparc[insn->src_reg];
901 const int i = insn - ctx->prog->insnsi;
902 const s16 off = insn->off;
903 const s32 imm = insn->imm;
904 u32 *func;
905
906 if (insn->src_reg == BPF_REG_FP)
907 ctx->saw_frame_pointer = true;
908
909 switch (code) {
910 /* dst = src */
911 case BPF_ALU | BPF_MOV | BPF_X:
912 emit_alu3_K(SRL, src, 0, dst, ctx);
913 break;
914 case BPF_ALU64 | BPF_MOV | BPF_X:
915 emit_reg_move(src, dst, ctx);
916 break;
917 /* dst = dst OP src */
918 case BPF_ALU | BPF_ADD | BPF_X:
919 case BPF_ALU64 | BPF_ADD | BPF_X:
920 emit_alu(ADD, src, dst, ctx);
921 goto do_alu32_trunc;
922 case BPF_ALU | BPF_SUB | BPF_X:
923 case BPF_ALU64 | BPF_SUB | BPF_X:
924 emit_alu(SUB, src, dst, ctx);
925 goto do_alu32_trunc;
926 case BPF_ALU | BPF_AND | BPF_X:
927 case BPF_ALU64 | BPF_AND | BPF_X:
928 emit_alu(AND, src, dst, ctx);
929 goto do_alu32_trunc;
930 case BPF_ALU | BPF_OR | BPF_X:
931 case BPF_ALU64 | BPF_OR | BPF_X:
932 emit_alu(OR, src, dst, ctx);
933 goto do_alu32_trunc;
934 case BPF_ALU | BPF_XOR | BPF_X:
935 case BPF_ALU64 | BPF_XOR | BPF_X:
936 emit_alu(XOR, src, dst, ctx);
937 goto do_alu32_trunc;
938 case BPF_ALU | BPF_MUL | BPF_X:
939 emit_alu(MUL, src, dst, ctx);
940 goto do_alu32_trunc;
941 case BPF_ALU64 | BPF_MUL | BPF_X:
942 emit_alu(MULX, src, dst, ctx);
943 break;
944 case BPF_ALU | BPF_DIV | BPF_X:
945 emit_cmp(src, G0, ctx);
946 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
947 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
948
949 emit_write_y(G0, ctx);
950 emit_alu(DIV, src, dst, ctx);
951 break;
952
953 case BPF_ALU64 | BPF_DIV | BPF_X:
954 emit_cmp(src, G0, ctx);
955 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
956 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
957
958 emit_alu(UDIVX, src, dst, ctx);
959 break;
960
961 case BPF_ALU | BPF_MOD | BPF_X: {
962 const u8 tmp = bpf2sparc[TMP_REG_1];
963
964 ctx->tmp_1_used = true;
965
966 emit_cmp(src, G0, ctx);
967 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
968 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
969
970 emit_write_y(G0, ctx);
971 emit_alu3(DIV, dst, src, tmp, ctx);
972 emit_alu3(MULX, tmp, src, tmp, ctx);
973 emit_alu3(SUB, dst, tmp, dst, ctx);
974 goto do_alu32_trunc;
975 }
976 case BPF_ALU64 | BPF_MOD | BPF_X: {
977 const u8 tmp = bpf2sparc[TMP_REG_1];
978
979 ctx->tmp_1_used = true;
980
981 emit_cmp(src, G0, ctx);
982 emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
983 emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
984
985 emit_alu3(UDIVX, dst, src, tmp, ctx);
986 emit_alu3(MULX, tmp, src, tmp, ctx);
987 emit_alu3(SUB, dst, tmp, dst, ctx);
988 break;
989 }
990 case BPF_ALU | BPF_LSH | BPF_X:
991 emit_alu(SLL, src, dst, ctx);
992 goto do_alu32_trunc;
993 case BPF_ALU64 | BPF_LSH | BPF_X:
994 emit_alu(SLLX, src, dst, ctx);
995 break;
996 case BPF_ALU | BPF_RSH | BPF_X:
997 emit_alu(SRL, src, dst, ctx);
998 break;
999 case BPF_ALU64 | BPF_RSH | BPF_X:
1000 emit_alu(SRLX, src, dst, ctx);
1001 break;
1002 case BPF_ALU | BPF_ARSH | BPF_X:
1003 emit_alu(SRA, src, dst, ctx);
1004 goto do_alu32_trunc;
1005 case BPF_ALU64 | BPF_ARSH | BPF_X:
1006 emit_alu(SRAX, src, dst, ctx);
1007 break;
1008
1009 /* dst = -dst */
1010 case BPF_ALU | BPF_NEG:
1011 case BPF_ALU64 | BPF_NEG:
1012 emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
1013 goto do_alu32_trunc;
1014
1015 case BPF_ALU | BPF_END | BPF_FROM_BE:
1016 switch (imm) {
1017 case 16:
1018 emit_alu_K(SLL, dst, 16, ctx);
1019 emit_alu_K(SRL, dst, 16, ctx);
1020 break;
1021 case 32:
1022 emit_alu_K(SRL, dst, 0, ctx);
1023 break;
1024 case 64:
1025 /* nop */
1026 break;
1027
1028 }
1029 break;
1030
1031 /* dst = BSWAP##imm(dst) */
1032 case BPF_ALU | BPF_END | BPF_FROM_LE: {
1033 const u8 tmp = bpf2sparc[TMP_REG_1];
1034 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1035
1036 ctx->tmp_1_used = true;
1037 switch (imm) {
1038 case 16:
1039 emit_alu3_K(AND, dst, 0xff, tmp, ctx);
1040 emit_alu3_K(SRL, dst, 8, dst, ctx);
1041 emit_alu3_K(AND, dst, 0xff, dst, ctx);
1042 emit_alu3_K(SLL, tmp, 8, tmp, ctx);
1043 emit_alu(OR, tmp, dst, ctx);
1044 break;
1045
1046 case 32:
1047 ctx->tmp_2_used = true;
1048 emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
1049 emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
1050 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1051 emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
1052 emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
1053 emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
1054 emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
1055 emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
1056 emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
1057 emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
1058 emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
1059 emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
1060 break;
1061
1062 case 64:
1063 emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
1064 emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1065 emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
1066 break;
1067 }
1068 break;
1069 }
1070 /* dst = imm */
1071 case BPF_ALU | BPF_MOV | BPF_K:
1072 emit_loadimm32(imm, dst, ctx);
1073 break;
1074 case BPF_ALU64 | BPF_MOV | BPF_K:
1075 emit_loadimm_sext(imm, dst, ctx);
1076 break;
1077 /* dst = dst OP imm */
1078 case BPF_ALU | BPF_ADD | BPF_K:
1079 case BPF_ALU64 | BPF_ADD | BPF_K:
1080 emit_alu_K(ADD, dst, imm, ctx);
1081 goto do_alu32_trunc;
1082 case BPF_ALU | BPF_SUB | BPF_K:
1083 case BPF_ALU64 | BPF_SUB | BPF_K:
1084 emit_alu_K(SUB, dst, imm, ctx);
1085 goto do_alu32_trunc;
1086 case BPF_ALU | BPF_AND | BPF_K:
1087 case BPF_ALU64 | BPF_AND | BPF_K:
1088 emit_alu_K(AND, dst, imm, ctx);
1089 goto do_alu32_trunc;
1090 case BPF_ALU | BPF_OR | BPF_K:
1091 case BPF_ALU64 | BPF_OR | BPF_K:
1092 emit_alu_K(OR, dst, imm, ctx);
1093 goto do_alu32_trunc;
1094 case BPF_ALU | BPF_XOR | BPF_K:
1095 case BPF_ALU64 | BPF_XOR | BPF_K:
1096 emit_alu_K(XOR, dst, imm, ctx);
1097 goto do_alu32_trunc;
1098 case BPF_ALU | BPF_MUL | BPF_K:
1099 emit_alu_K(MUL, dst, imm, ctx);
1100 goto do_alu32_trunc;
1101 case BPF_ALU64 | BPF_MUL | BPF_K:
1102 emit_alu_K(MULX, dst, imm, ctx);
1103 break;
1104 case BPF_ALU | BPF_DIV | BPF_K:
1105 if (imm == 0)
1106 return -EINVAL;
1107
1108 emit_write_y(G0, ctx);
1109 emit_alu_K(DIV, dst, imm, ctx);
1110 goto do_alu32_trunc;
1111 case BPF_ALU64 | BPF_DIV | BPF_K:
1112 if (imm == 0)
1113 return -EINVAL;
1114
1115 emit_alu_K(UDIVX, dst, imm, ctx);
1116 break;
1117 case BPF_ALU64 | BPF_MOD | BPF_K:
1118 case BPF_ALU | BPF_MOD | BPF_K: {
1119 const u8 tmp = bpf2sparc[TMP_REG_2];
1120 unsigned int div;
1121
1122 if (imm == 0)
1123 return -EINVAL;
1124
1125 div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
1126
1127 ctx->tmp_2_used = true;
1128
1129 if (BPF_CLASS(code) != BPF_ALU64)
1130 emit_write_y(G0, ctx);
1131 if (is_simm13(imm)) {
1132 emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
1133 emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
1134 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1135 } else {
1136 const u8 tmp1 = bpf2sparc[TMP_REG_1];
1137
1138 ctx->tmp_1_used = true;
1139
1140 emit_set_const_sext(imm, tmp1, ctx);
1141 emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
1142 emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
1143 emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
1144 }
1145 goto do_alu32_trunc;
1146 }
1147 case BPF_ALU | BPF_LSH | BPF_K:
1148 emit_alu_K(SLL, dst, imm, ctx);
1149 goto do_alu32_trunc;
1150 case BPF_ALU64 | BPF_LSH | BPF_K:
1151 emit_alu_K(SLLX, dst, imm, ctx);
1152 break;
1153 case BPF_ALU | BPF_RSH | BPF_K:
1154 emit_alu_K(SRL, dst, imm, ctx);
1155 break;
1156 case BPF_ALU64 | BPF_RSH | BPF_K:
1157 emit_alu_K(SRLX, dst, imm, ctx);
1158 break;
1159 case BPF_ALU | BPF_ARSH | BPF_K:
1160 emit_alu_K(SRA, dst, imm, ctx);
1161 goto do_alu32_trunc;
1162 case BPF_ALU64 | BPF_ARSH | BPF_K:
1163 emit_alu_K(SRAX, dst, imm, ctx);
1164 break;
1165
1166 do_alu32_trunc:
1167 if (BPF_CLASS(code) == BPF_ALU)
1168 emit_alu_K(SRL, dst, 0, ctx);
1169 break;
1170
1171 /* JUMP off */
1172 case BPF_JMP | BPF_JA:
1173 emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
1174 emit_nop(ctx);
1175 break;
1176 /* IF (dst COND src) JUMP off */
1177 case BPF_JMP | BPF_JEQ | BPF_X:
1178 case BPF_JMP | BPF_JGT | BPF_X:
1179 case BPF_JMP | BPF_JGE | BPF_X:
1180 case BPF_JMP | BPF_JNE | BPF_X:
1181 case BPF_JMP | BPF_JSGT | BPF_X:
David S. Millere3a724e2017-04-24 15:56:21 -07001182 case BPF_JMP | BPF_JSGE | BPF_X:
1183 case BPF_JMP | BPF_JSET | BPF_X: {
1184 int err;
David S. Miller7a12b502017-04-17 18:44:36 -07001185
David S. Millere3a724e2017-04-24 15:56:21 -07001186 err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
1187 if (err)
1188 return err;
David S. Miller7a12b502017-04-17 18:44:36 -07001189 break;
1190 }
David S. Miller7a12b502017-04-17 18:44:36 -07001191 /* IF (dst COND imm) JUMP off */
1192 case BPF_JMP | BPF_JEQ | BPF_K:
1193 case BPF_JMP | BPF_JGT | BPF_K:
1194 case BPF_JMP | BPF_JGE | BPF_K:
1195 case BPF_JMP | BPF_JNE | BPF_K:
1196 case BPF_JMP | BPF_JSGT | BPF_K:
1197 case BPF_JMP | BPF_JSGE | BPF_K:
David S. Millere3a724e2017-04-24 15:56:21 -07001198 case BPF_JMP | BPF_JSET | BPF_K: {
1199 int err;
1200
1201 err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
1202 if (err)
1203 return err;
1204 break;
1205 }
David S. Miller7a12b502017-04-17 18:44:36 -07001206
1207 /* function call */
1208 case BPF_JMP | BPF_CALL:
1209 {
1210 u8 *func = ((u8 *)__bpf_call_base) + imm;
1211
1212 ctx->saw_call = true;
1213
1214 emit_call((u32 *)func, ctx);
1215 emit_nop(ctx);
1216
1217 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1218
1219 if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
1220 load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
1221 break;
1222 }
1223
1224 /* tail call */
Alexei Starovoitov71189fa2017-05-30 13:31:27 -07001225 case BPF_JMP | BPF_TAIL_CALL:
David S. Miller7a12b502017-04-17 18:44:36 -07001226 emit_tail_call(ctx);
1227 break;
1228
1229 /* function return */
1230 case BPF_JMP | BPF_EXIT:
1231 /* Optimization: when last instruction is EXIT,
1232 simply fallthrough to epilogue. */
1233 if (i == ctx->prog->len - 1)
1234 break;
1235 emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
1236 emit_nop(ctx);
1237 break;
1238
1239 /* dst = imm64 */
1240 case BPF_LD | BPF_IMM | BPF_DW:
1241 {
1242 const struct bpf_insn insn1 = insn[1];
1243 u64 imm64;
1244
1245 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1246 emit_loadimm64(imm64, dst, ctx);
1247
1248 return 1;
1249 }
1250
1251 /* LDX: dst = *(size *)(src + off) */
1252 case BPF_LDX | BPF_MEM | BPF_W:
1253 case BPF_LDX | BPF_MEM | BPF_H:
1254 case BPF_LDX | BPF_MEM | BPF_B:
1255 case BPF_LDX | BPF_MEM | BPF_DW: {
1256 const u8 tmp = bpf2sparc[TMP_REG_1];
1257 u32 opcode = 0, rs2;
1258
1259 ctx->tmp_1_used = true;
1260 switch (BPF_SIZE(code)) {
1261 case BPF_W:
1262 opcode = LD32;
1263 break;
1264 case BPF_H:
1265 opcode = LD16;
1266 break;
1267 case BPF_B:
1268 opcode = LD8;
1269 break;
1270 case BPF_DW:
1271 opcode = LD64;
1272 break;
1273 }
1274
1275 if (is_simm13(off)) {
1276 opcode |= IMMED;
1277 rs2 = S13(off);
1278 } else {
1279 emit_loadimm(off, tmp, ctx);
1280 rs2 = RS2(tmp);
1281 }
1282 emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
1283 break;
1284 }
1285 /* ST: *(size *)(dst + off) = imm */
1286 case BPF_ST | BPF_MEM | BPF_W:
1287 case BPF_ST | BPF_MEM | BPF_H:
1288 case BPF_ST | BPF_MEM | BPF_B:
1289 case BPF_ST | BPF_MEM | BPF_DW: {
1290 const u8 tmp = bpf2sparc[TMP_REG_1];
1291 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1292 u32 opcode = 0, rs2;
1293
1294 ctx->tmp_2_used = true;
1295 emit_loadimm(imm, tmp2, ctx);
1296
1297 switch (BPF_SIZE(code)) {
1298 case BPF_W:
1299 opcode = ST32;
1300 break;
1301 case BPF_H:
1302 opcode = ST16;
1303 break;
1304 case BPF_B:
1305 opcode = ST8;
1306 break;
1307 case BPF_DW:
1308 opcode = ST64;
1309 break;
1310 }
1311
1312 if (is_simm13(off)) {
1313 opcode |= IMMED;
1314 rs2 = S13(off);
1315 } else {
1316 ctx->tmp_1_used = true;
1317 emit_loadimm(off, tmp, ctx);
1318 rs2 = RS2(tmp);
1319 }
1320 emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
1321 break;
1322 }
1323
1324 /* STX: *(size *)(dst + off) = src */
1325 case BPF_STX | BPF_MEM | BPF_W:
1326 case BPF_STX | BPF_MEM | BPF_H:
1327 case BPF_STX | BPF_MEM | BPF_B:
1328 case BPF_STX | BPF_MEM | BPF_DW: {
1329 const u8 tmp = bpf2sparc[TMP_REG_1];
1330 u32 opcode = 0, rs2;
1331
1332 switch (BPF_SIZE(code)) {
1333 case BPF_W:
1334 opcode = ST32;
1335 break;
1336 case BPF_H:
1337 opcode = ST16;
1338 break;
1339 case BPF_B:
1340 opcode = ST8;
1341 break;
1342 case BPF_DW:
1343 opcode = ST64;
1344 break;
1345 }
1346 if (is_simm13(off)) {
1347 opcode |= IMMED;
1348 rs2 = S13(off);
1349 } else {
1350 ctx->tmp_1_used = true;
1351 emit_loadimm(off, tmp, ctx);
1352 rs2 = RS2(tmp);
1353 }
1354 emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
1355 break;
1356 }
1357
1358 /* STX XADD: lock *(u32 *)(dst + off) += src */
1359 case BPF_STX | BPF_XADD | BPF_W: {
1360 const u8 tmp = bpf2sparc[TMP_REG_1];
1361 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1362 const u8 tmp3 = bpf2sparc[TMP_REG_3];
1363
1364 ctx->tmp_1_used = true;
1365 ctx->tmp_2_used = true;
1366 ctx->tmp_3_used = true;
1367 emit_loadimm(off, tmp, ctx);
1368 emit_alu3(ADD, dst, tmp, tmp, ctx);
1369
1370 emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1371 emit_alu3(ADD, tmp2, src, tmp3, ctx);
1372 emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1373 emit_cmp(tmp2, tmp3, ctx);
1374 emit_branch(BNE, 4, 0, ctx);
1375 emit_nop(ctx);
1376 break;
1377 }
1378 /* STX XADD: lock *(u64 *)(dst + off) += src */
1379 case BPF_STX | BPF_XADD | BPF_DW: {
1380 const u8 tmp = bpf2sparc[TMP_REG_1];
1381 const u8 tmp2 = bpf2sparc[TMP_REG_2];
1382 const u8 tmp3 = bpf2sparc[TMP_REG_3];
1383
1384 ctx->tmp_1_used = true;
1385 ctx->tmp_2_used = true;
1386 ctx->tmp_3_used = true;
1387 emit_loadimm(off, tmp, ctx);
1388 emit_alu3(ADD, dst, tmp, tmp, ctx);
1389
1390 emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
1391 emit_alu3(ADD, tmp2, src, tmp3, ctx);
1392 emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
1393 emit_cmp(tmp2, tmp3, ctx);
1394 emit_branch(BNE, 4, 0, ctx);
1395 emit_nop(ctx);
1396 break;
1397 }
1398#define CHOOSE_LOAD_FUNC(K, func) \
1399 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
1400
1401 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
1402 case BPF_LD | BPF_ABS | BPF_W:
1403 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
1404 goto common_load;
1405 case BPF_LD | BPF_ABS | BPF_H:
1406 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
1407 goto common_load;
1408 case BPF_LD | BPF_ABS | BPF_B:
1409 func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
1410 goto common_load;
1411 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
1412 case BPF_LD | BPF_IND | BPF_W:
1413 func = bpf_jit_load_word;
1414 goto common_load;
1415 case BPF_LD | BPF_IND | BPF_H:
1416 func = bpf_jit_load_half;
1417 goto common_load;
1418
1419 case BPF_LD | BPF_IND | BPF_B:
1420 func = bpf_jit_load_byte;
1421 common_load:
1422 ctx->saw_ld_abs_ind = true;
1423
1424 emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
1425 emit_loadimm(imm, O1, ctx);
1426
1427 if (BPF_MODE(code) == BPF_IND)
1428 emit_alu(ADD, src, O1, ctx);
1429
1430 emit_call(func, ctx);
1431 emit_alu_K(SRA, O1, 0, ctx);
1432
1433 emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
1434 break;
1435
1436 default:
1437 pr_err_once("unknown opcode %02x\n", code);
1438 return -EINVAL;
1439 }
1440
1441 return 0;
1442}
1443
1444static int build_body(struct jit_ctx *ctx)
1445{
1446 const struct bpf_prog *prog = ctx->prog;
1447 int i;
1448
1449 for (i = 0; i < prog->len; i++) {
1450 const struct bpf_insn *insn = &prog->insnsi[i];
1451 int ret;
1452
1453 ret = build_insn(insn, ctx);
David S. Miller7a12b502017-04-17 18:44:36 -07001454
1455 if (ret > 0) {
1456 i++;
David S. Millere3bf4c62017-05-01 20:26:02 -07001457 ctx->offset[i] = ctx->idx;
David S. Miller7a12b502017-04-17 18:44:36 -07001458 continue;
1459 }
David S. Millere3bf4c62017-05-01 20:26:02 -07001460 ctx->offset[i] = ctx->idx;
David S. Miller7a12b502017-04-17 18:44:36 -07001461 if (ret)
1462 return ret;
1463 }
1464 return 0;
1465}
1466
1467static void jit_fill_hole(void *area, unsigned int size)
1468{
1469 u32 *ptr;
1470 /* We are guaranteed to have aligned memory. */
1471 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
1472 *ptr++ = 0x91d02005; /* ta 5 */
1473}
1474
1475struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1476{
1477 struct bpf_prog *tmp, *orig_prog = prog;
1478 struct bpf_binary_header *header;
1479 bool tmp_blinded = false;
1480 struct jit_ctx ctx;
1481 u32 image_size;
1482 u8 *image_ptr;
1483 int pass;
1484
1485 if (!bpf_jit_enable)
1486 return orig_prog;
1487
1488 tmp = bpf_jit_blind_constants(prog);
1489 /* If blinding was requested and we failed during blinding,
1490 * we must fall back to the interpreter.
1491 */
1492 if (IS_ERR(tmp))
1493 return orig_prog;
1494 if (tmp != prog) {
1495 tmp_blinded = true;
1496 prog = tmp;
1497 }
1498
1499 memset(&ctx, 0, sizeof(ctx));
1500 ctx.prog = prog;
1501
1502 ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
1503 if (ctx.offset == NULL) {
1504 prog = orig_prog;
1505 goto out;
1506 }
1507
1508 /* Fake pass to detect features used, and get an accurate assessment
1509 * of what the final image size will be.
1510 */
1511 if (build_body(&ctx)) {
1512 prog = orig_prog;
1513 goto out_off;
1514 }
1515 build_prologue(&ctx);
1516 build_epilogue(&ctx);
1517
1518 /* Now we know the actual image size. */
1519 image_size = sizeof(u32) * ctx.idx;
1520 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1521 sizeof(u32), jit_fill_hole);
1522 if (header == NULL) {
1523 prog = orig_prog;
1524 goto out_off;
1525 }
1526
1527 ctx.image = (u32 *)image_ptr;
1528
1529 for (pass = 1; pass < 3; pass++) {
1530 ctx.idx = 0;
1531
1532 build_prologue(&ctx);
1533
1534 if (build_body(&ctx)) {
1535 bpf_jit_binary_free(header);
1536 prog = orig_prog;
1537 goto out_off;
1538 }
1539
1540 build_epilogue(&ctx);
1541
1542 if (bpf_jit_enable > 1)
1543 pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
1544 image_size - (ctx.idx * 4),
1545 ctx.tmp_1_used ? '1' : ' ',
1546 ctx.tmp_2_used ? '2' : ' ',
1547 ctx.tmp_3_used ? '3' : ' ',
1548 ctx.saw_ld_abs_ind ? 'L' : ' ',
1549 ctx.saw_frame_pointer ? 'F' : ' ',
1550 ctx.saw_call ? 'C' : ' ',
1551 ctx.saw_tail_call ? 'T' : ' ');
1552 }
1553
1554 if (bpf_jit_enable > 1)
1555 bpf_jit_dump(prog->len, image_size, pass, ctx.image);
1556
1557 bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
1558
1559 bpf_jit_binary_lock_ro(header);
1560
1561 prog->bpf_func = (void *)ctx.image;
1562 prog->jited = 1;
Martin KaFai Lau783d28dd12017-06-05 12:15:51 -07001563 prog->jited_len = image_size;
David S. Miller7a12b502017-04-17 18:44:36 -07001564
1565out_off:
1566 kfree(ctx.offset);
1567out:
1568 if (tmp_blinded)
1569 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1570 tmp : orig_prog);
1571 return prog;
1572}