Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2013-2015 Analog Devices Inc. |
| 3 | * Author: Lars-Peter Clausen <lars@metafoo.de> |
| 4 | * |
| 5 | * Licensed under the GPL-2. |
| 6 | */ |
| 7 | |
| 8 | #include <linux/slab.h> |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/device.h> |
| 12 | #include <linux/workqueue.h> |
| 13 | #include <linux/mutex.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/poll.h> |
| 16 | #include <linux/iio/buffer.h> |
Phil Reid | 838519b | 2017-06-13 10:31:36 +0800 | [diff] [blame] | 17 | #include <linux/iio/buffer_impl.h> |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 18 | #include <linux/iio/buffer-dma.h> |
| 19 | #include <linux/dma-mapping.h> |
| 20 | #include <linux/sizes.h> |
| 21 | |
| 22 | /* |
| 23 | * For DMA buffers the storage is sub-divided into so called blocks. Each block |
| 24 | * has its own memory buffer. The size of the block is the granularity at which |
| 25 | * memory is exchanged between the hardware and the application. Increasing the |
| 26 | * basic unit of data exchange from one sample to one block decreases the |
| 27 | * management overhead that is associated with each sample. E.g. if we say the |
| 28 | * management overhead for one exchange is x and the unit of exchange is one |
| 29 | * sample the overhead will be x for each sample. Whereas when using a block |
| 30 | * which contains n samples the overhead per sample is reduced to x/n. This |
| 31 | * allows to achieve much higher samplerates than what can be sustained with |
| 32 | * the one sample approach. |
| 33 | * |
| 34 | * Blocks are exchanged between the DMA controller and the application via the |
| 35 | * means of two queues. The incoming queue and the outgoing queue. Blocks on the |
| 36 | * incoming queue are waiting for the DMA controller to pick them up and fill |
| 37 | * them with data. Block on the outgoing queue have been filled with data and |
| 38 | * are waiting for the application to dequeue them and read the data. |
| 39 | * |
| 40 | * A block can be in one of the following states: |
| 41 | * * Owned by the application. In this state the application can read data from |
| 42 | * the block. |
| 43 | * * On the incoming list: Blocks on the incoming list are queued up to be |
| 44 | * processed by the DMA controller. |
| 45 | * * Owned by the DMA controller: The DMA controller is processing the block |
| 46 | * and filling it with data. |
| 47 | * * On the outgoing list: Blocks on the outgoing list have been successfully |
| 48 | * processed by the DMA controller and contain data. They can be dequeued by |
| 49 | * the application. |
| 50 | * * Dead: A block that is dead has been marked as to be freed. It might still |
| 51 | * be owned by either the application or the DMA controller at the moment. |
| 52 | * But once they are done processing it instead of going to either the |
| 53 | * incoming or outgoing queue the block will be freed. |
| 54 | * |
| 55 | * In addition to this blocks are reference counted and the memory associated |
| 56 | * with both the block structure as well as the storage memory for the block |
| 57 | * will be freed when the last reference to the block is dropped. This means a |
| 58 | * block must not be accessed without holding a reference. |
| 59 | * |
| 60 | * The iio_dma_buffer implementation provides a generic infrastructure for |
| 61 | * managing the blocks. |
| 62 | * |
| 63 | * A driver for a specific piece of hardware that has DMA capabilities need to |
| 64 | * implement the submit() callback from the iio_dma_buffer_ops structure. This |
| 65 | * callback is supposed to initiate the DMA transfer copying data from the |
| 66 | * converter to the memory region of the block. Once the DMA transfer has been |
| 67 | * completed the driver must call iio_dma_buffer_block_done() for the completed |
| 68 | * block. |
| 69 | * |
| 70 | * Prior to this it must set the bytes_used field of the block contains |
| 71 | * the actual number of bytes in the buffer. Typically this will be equal to the |
| 72 | * size of the block, but if the DMA hardware has certain alignment requirements |
| 73 | * for the transfer length it might choose to use less than the full size. In |
| 74 | * either case it is expected that bytes_used is a multiple of the bytes per |
| 75 | * datum, i.e. the block must not contain partial samples. |
| 76 | * |
| 77 | * The driver must call iio_dma_buffer_block_done() for each block it has |
| 78 | * received through its submit_block() callback, even if it does not actually |
| 79 | * perform a DMA transfer for the block, e.g. because the buffer was disabled |
| 80 | * before the block transfer was started. In this case it should set bytes_used |
| 81 | * to 0. |
| 82 | * |
| 83 | * In addition it is recommended that a driver implements the abort() callback. |
| 84 | * It will be called when the buffer is disabled and can be used to cancel |
| 85 | * pending and stop active transfers. |
| 86 | * |
| 87 | * The specific driver implementation should use the default callback |
| 88 | * implementations provided by this module for the iio_buffer_access_funcs |
| 89 | * struct. It may overload some callbacks with custom variants if the hardware |
| 90 | * has special requirements that are not handled by the generic functions. If a |
| 91 | * driver chooses to overload a callback it has to ensure that the generic |
| 92 | * callback is called from within the custom callback. |
| 93 | */ |
| 94 | |
| 95 | static void iio_buffer_block_release(struct kref *kref) |
| 96 | { |
| 97 | struct iio_dma_buffer_block *block = container_of(kref, |
| 98 | struct iio_dma_buffer_block, kref); |
| 99 | |
| 100 | WARN_ON(block->state != IIO_BLOCK_STATE_DEAD); |
| 101 | |
| 102 | dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size), |
| 103 | block->vaddr, block->phys_addr); |
| 104 | |
| 105 | iio_buffer_put(&block->queue->buffer); |
| 106 | kfree(block); |
| 107 | } |
| 108 | |
| 109 | static void iio_buffer_block_get(struct iio_dma_buffer_block *block) |
| 110 | { |
| 111 | kref_get(&block->kref); |
| 112 | } |
| 113 | |
| 114 | static void iio_buffer_block_put(struct iio_dma_buffer_block *block) |
| 115 | { |
| 116 | kref_put(&block->kref, iio_buffer_block_release); |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * dma_free_coherent can sleep, hence we need to take some special care to be |
| 121 | * able to drop a reference from an atomic context. |
| 122 | */ |
| 123 | static LIST_HEAD(iio_dma_buffer_dead_blocks); |
| 124 | static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock); |
| 125 | |
| 126 | static void iio_dma_buffer_cleanup_worker(struct work_struct *work) |
| 127 | { |
| 128 | struct iio_dma_buffer_block *block, *_block; |
| 129 | LIST_HEAD(block_list); |
| 130 | |
| 131 | spin_lock_irq(&iio_dma_buffer_dead_blocks_lock); |
| 132 | list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list); |
| 133 | spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock); |
| 134 | |
| 135 | list_for_each_entry_safe(block, _block, &block_list, head) |
| 136 | iio_buffer_block_release(&block->kref); |
| 137 | } |
| 138 | static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker); |
| 139 | |
| 140 | static void iio_buffer_block_release_atomic(struct kref *kref) |
| 141 | { |
| 142 | struct iio_dma_buffer_block *block; |
| 143 | unsigned long flags; |
| 144 | |
| 145 | block = container_of(kref, struct iio_dma_buffer_block, kref); |
| 146 | |
| 147 | spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags); |
| 148 | list_add_tail(&block->head, &iio_dma_buffer_dead_blocks); |
| 149 | spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags); |
| 150 | |
| 151 | schedule_work(&iio_dma_buffer_cleanup_work); |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Version of iio_buffer_block_put() that can be called from atomic context |
| 156 | */ |
| 157 | static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block) |
| 158 | { |
| 159 | kref_put(&block->kref, iio_buffer_block_release_atomic); |
| 160 | } |
| 161 | |
| 162 | static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf) |
| 163 | { |
| 164 | return container_of(buf, struct iio_dma_buffer_queue, buffer); |
| 165 | } |
| 166 | |
| 167 | static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block( |
| 168 | struct iio_dma_buffer_queue *queue, size_t size) |
| 169 | { |
| 170 | struct iio_dma_buffer_block *block; |
| 171 | |
| 172 | block = kzalloc(sizeof(*block), GFP_KERNEL); |
| 173 | if (!block) |
| 174 | return NULL; |
| 175 | |
| 176 | block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size), |
| 177 | &block->phys_addr, GFP_KERNEL); |
| 178 | if (!block->vaddr) { |
| 179 | kfree(block); |
| 180 | return NULL; |
| 181 | } |
| 182 | |
| 183 | block->size = size; |
| 184 | block->state = IIO_BLOCK_STATE_DEQUEUED; |
| 185 | block->queue = queue; |
| 186 | INIT_LIST_HEAD(&block->head); |
| 187 | kref_init(&block->kref); |
| 188 | |
| 189 | iio_buffer_get(&queue->buffer); |
| 190 | |
| 191 | return block; |
| 192 | } |
| 193 | |
| 194 | static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) |
| 195 | { |
| 196 | struct iio_dma_buffer_queue *queue = block->queue; |
| 197 | |
| 198 | /* |
| 199 | * The buffer has already been freed by the application, just drop the |
| 200 | * reference. |
| 201 | */ |
| 202 | if (block->state != IIO_BLOCK_STATE_DEAD) { |
| 203 | block->state = IIO_BLOCK_STATE_DONE; |
| 204 | list_add_tail(&block->head, &queue->outgoing); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | /** |
| 209 | * iio_dma_buffer_block_done() - Indicate that a block has been completed |
| 210 | * @block: The completed block |
| 211 | * |
| 212 | * Should be called when the DMA controller has finished handling the block to |
| 213 | * pass back ownership of the block to the queue. |
| 214 | */ |
| 215 | void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block) |
| 216 | { |
| 217 | struct iio_dma_buffer_queue *queue = block->queue; |
| 218 | unsigned long flags; |
| 219 | |
| 220 | spin_lock_irqsave(&queue->list_lock, flags); |
| 221 | _iio_dma_buffer_block_done(block); |
| 222 | spin_unlock_irqrestore(&queue->list_lock, flags); |
| 223 | |
| 224 | iio_buffer_block_put_atomic(block); |
Linus Torvalds | a9a0884 | 2018-02-11 14:34:03 -0800 | [diff] [blame] | 225 | wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 226 | } |
| 227 | EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done); |
| 228 | |
| 229 | /** |
| 230 | * iio_dma_buffer_block_list_abort() - Indicate that a list block has been |
| 231 | * aborted |
| 232 | * @queue: Queue for which to complete blocks. |
| 233 | * @list: List of aborted blocks. All blocks in this list must be from @queue. |
| 234 | * |
| 235 | * Typically called from the abort() callback after the DMA controller has been |
| 236 | * stopped. This will set bytes_used to 0 for each block in the list and then |
| 237 | * hand the blocks back to the queue. |
| 238 | */ |
| 239 | void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue, |
| 240 | struct list_head *list) |
| 241 | { |
| 242 | struct iio_dma_buffer_block *block, *_block; |
| 243 | unsigned long flags; |
| 244 | |
| 245 | spin_lock_irqsave(&queue->list_lock, flags); |
| 246 | list_for_each_entry_safe(block, _block, list, head) { |
| 247 | list_del(&block->head); |
| 248 | block->bytes_used = 0; |
| 249 | _iio_dma_buffer_block_done(block); |
| 250 | iio_buffer_block_put_atomic(block); |
| 251 | } |
| 252 | spin_unlock_irqrestore(&queue->list_lock, flags); |
| 253 | |
Linus Torvalds | a9a0884 | 2018-02-11 14:34:03 -0800 | [diff] [blame] | 254 | wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM); |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 255 | } |
| 256 | EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort); |
| 257 | |
| 258 | static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block) |
| 259 | { |
| 260 | /* |
| 261 | * If the core owns the block it can be re-used. This should be the |
| 262 | * default case when enabling the buffer, unless the DMA controller does |
| 263 | * not support abort and has not given back the block yet. |
| 264 | */ |
| 265 | switch (block->state) { |
| 266 | case IIO_BLOCK_STATE_DEQUEUED: |
| 267 | case IIO_BLOCK_STATE_QUEUED: |
| 268 | case IIO_BLOCK_STATE_DONE: |
| 269 | return true; |
| 270 | default: |
| 271 | return false; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * iio_dma_buffer_request_update() - DMA buffer request_update callback |
| 277 | * @buffer: The buffer which to request an update |
| 278 | * |
| 279 | * Should be used as the iio_dma_buffer_request_update() callback for |
| 280 | * iio_buffer_access_ops struct for DMA buffers. |
| 281 | */ |
| 282 | int iio_dma_buffer_request_update(struct iio_buffer *buffer) |
| 283 | { |
| 284 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 285 | struct iio_dma_buffer_block *block; |
| 286 | bool try_reuse = false; |
| 287 | size_t size; |
| 288 | int ret = 0; |
| 289 | int i; |
| 290 | |
| 291 | /* |
| 292 | * Split the buffer into two even parts. This is used as a double |
| 293 | * buffering scheme with usually one block at a time being used by the |
| 294 | * DMA and the other one by the application. |
| 295 | */ |
| 296 | size = DIV_ROUND_UP(queue->buffer.bytes_per_datum * |
| 297 | queue->buffer.length, 2); |
| 298 | |
| 299 | mutex_lock(&queue->lock); |
| 300 | |
| 301 | /* Allocations are page aligned */ |
| 302 | if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size)) |
| 303 | try_reuse = true; |
| 304 | |
| 305 | queue->fileio.block_size = size; |
| 306 | queue->fileio.active_block = NULL; |
| 307 | |
| 308 | spin_lock_irq(&queue->list_lock); |
Phil Reid | 29e3e06 | 2016-06-27 11:17:56 +0800 | [diff] [blame] | 309 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 310 | block = queue->fileio.blocks[i]; |
| 311 | |
| 312 | /* If we can't re-use it free it */ |
| 313 | if (block && (!iio_dma_block_reusable(block) || !try_reuse)) |
| 314 | block->state = IIO_BLOCK_STATE_DEAD; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * At this point all blocks are either owned by the core or marked as |
| 319 | * dead. This means we can reset the lists without having to fear |
| 320 | * corrution. |
| 321 | */ |
| 322 | INIT_LIST_HEAD(&queue->outgoing); |
| 323 | spin_unlock_irq(&queue->list_lock); |
| 324 | |
| 325 | INIT_LIST_HEAD(&queue->incoming); |
| 326 | |
Phil Reid | 29e3e06 | 2016-06-27 11:17:56 +0800 | [diff] [blame] | 327 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 328 | if (queue->fileio.blocks[i]) { |
| 329 | block = queue->fileio.blocks[i]; |
| 330 | if (block->state == IIO_BLOCK_STATE_DEAD) { |
| 331 | /* Could not reuse it */ |
| 332 | iio_buffer_block_put(block); |
| 333 | block = NULL; |
| 334 | } else { |
| 335 | block->size = size; |
| 336 | } |
| 337 | } else { |
| 338 | block = NULL; |
| 339 | } |
| 340 | |
| 341 | if (!block) { |
| 342 | block = iio_dma_buffer_alloc_block(queue, size); |
| 343 | if (!block) { |
| 344 | ret = -ENOMEM; |
| 345 | goto out_unlock; |
| 346 | } |
| 347 | queue->fileio.blocks[i] = block; |
| 348 | } |
| 349 | |
| 350 | block->state = IIO_BLOCK_STATE_QUEUED; |
| 351 | list_add_tail(&block->head, &queue->incoming); |
| 352 | } |
| 353 | |
| 354 | out_unlock: |
| 355 | mutex_unlock(&queue->lock); |
| 356 | |
| 357 | return ret; |
| 358 | } |
| 359 | EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update); |
| 360 | |
| 361 | static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue, |
| 362 | struct iio_dma_buffer_block *block) |
| 363 | { |
| 364 | int ret; |
| 365 | |
| 366 | /* |
| 367 | * If the hardware has already been removed we put the block into |
| 368 | * limbo. It will neither be on the incoming nor outgoing list, nor will |
| 369 | * it ever complete. It will just wait to be freed eventually. |
| 370 | */ |
| 371 | if (!queue->ops) |
| 372 | return; |
| 373 | |
| 374 | block->state = IIO_BLOCK_STATE_ACTIVE; |
| 375 | iio_buffer_block_get(block); |
| 376 | ret = queue->ops->submit(queue, block); |
| 377 | if (ret) { |
| 378 | /* |
| 379 | * This is a bit of a problem and there is not much we can do |
| 380 | * other then wait for the buffer to be disabled and re-enabled |
| 381 | * and try again. But it should not really happen unless we run |
| 382 | * out of memory or something similar. |
| 383 | * |
| 384 | * TODO: Implement support in the IIO core to allow buffers to |
| 385 | * notify consumers that something went wrong and the buffer |
| 386 | * should be disabled. |
| 387 | */ |
| 388 | iio_buffer_block_put(block); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | /** |
| 393 | * iio_dma_buffer_enable() - Enable DMA buffer |
| 394 | * @buffer: IIO buffer to enable |
| 395 | * @indio_dev: IIO device the buffer is attached to |
| 396 | * |
| 397 | * Needs to be called when the device that the buffer is attached to starts |
| 398 | * sampling. Typically should be the iio_buffer_access_ops enable callback. |
| 399 | * |
| 400 | * This will allocate the DMA buffers and start the DMA transfers. |
| 401 | */ |
| 402 | int iio_dma_buffer_enable(struct iio_buffer *buffer, |
| 403 | struct iio_dev *indio_dev) |
| 404 | { |
| 405 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 406 | struct iio_dma_buffer_block *block, *_block; |
| 407 | |
| 408 | mutex_lock(&queue->lock); |
| 409 | queue->active = true; |
| 410 | list_for_each_entry_safe(block, _block, &queue->incoming, head) { |
| 411 | list_del(&block->head); |
| 412 | iio_dma_buffer_submit_block(queue, block); |
| 413 | } |
| 414 | mutex_unlock(&queue->lock); |
| 415 | |
| 416 | return 0; |
| 417 | } |
| 418 | EXPORT_SYMBOL_GPL(iio_dma_buffer_enable); |
| 419 | |
| 420 | /** |
| 421 | * iio_dma_buffer_disable() - Disable DMA buffer |
| 422 | * @buffer: IIO DMA buffer to disable |
| 423 | * @indio_dev: IIO device the buffer is attached to |
| 424 | * |
| 425 | * Needs to be called when the device that the buffer is attached to stops |
| 426 | * sampling. Typically should be the iio_buffer_access_ops disable callback. |
| 427 | */ |
| 428 | int iio_dma_buffer_disable(struct iio_buffer *buffer, |
| 429 | struct iio_dev *indio_dev) |
| 430 | { |
| 431 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 432 | |
| 433 | mutex_lock(&queue->lock); |
| 434 | queue->active = false; |
| 435 | |
| 436 | if (queue->ops && queue->ops->abort) |
| 437 | queue->ops->abort(queue); |
| 438 | mutex_unlock(&queue->lock); |
| 439 | |
| 440 | return 0; |
| 441 | } |
| 442 | EXPORT_SYMBOL_GPL(iio_dma_buffer_disable); |
| 443 | |
| 444 | static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue, |
| 445 | struct iio_dma_buffer_block *block) |
| 446 | { |
| 447 | if (block->state == IIO_BLOCK_STATE_DEAD) { |
| 448 | iio_buffer_block_put(block); |
| 449 | } else if (queue->active) { |
| 450 | iio_dma_buffer_submit_block(queue, block); |
| 451 | } else { |
| 452 | block->state = IIO_BLOCK_STATE_QUEUED; |
| 453 | list_add_tail(&block->head, &queue->incoming); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | static struct iio_dma_buffer_block *iio_dma_buffer_dequeue( |
| 458 | struct iio_dma_buffer_queue *queue) |
| 459 | { |
| 460 | struct iio_dma_buffer_block *block; |
| 461 | |
| 462 | spin_lock_irq(&queue->list_lock); |
| 463 | block = list_first_entry_or_null(&queue->outgoing, struct |
| 464 | iio_dma_buffer_block, head); |
| 465 | if (block != NULL) { |
| 466 | list_del(&block->head); |
| 467 | block->state = IIO_BLOCK_STATE_DEQUEUED; |
| 468 | } |
| 469 | spin_unlock_irq(&queue->list_lock); |
| 470 | |
| 471 | return block; |
| 472 | } |
| 473 | |
| 474 | /** |
| 475 | * iio_dma_buffer_read() - DMA buffer read callback |
| 476 | * @buffer: Buffer to read form |
| 477 | * @n: Number of bytes to read |
| 478 | * @user_buffer: Userspace buffer to copy the data to |
| 479 | * |
| 480 | * Should be used as the read_first_n callback for iio_buffer_access_ops |
| 481 | * struct for DMA buffers. |
| 482 | */ |
| 483 | int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n, |
| 484 | char __user *user_buffer) |
| 485 | { |
| 486 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer); |
| 487 | struct iio_dma_buffer_block *block; |
| 488 | int ret; |
| 489 | |
| 490 | if (n < buffer->bytes_per_datum) |
| 491 | return -EINVAL; |
| 492 | |
| 493 | mutex_lock(&queue->lock); |
| 494 | |
| 495 | if (!queue->fileio.active_block) { |
| 496 | block = iio_dma_buffer_dequeue(queue); |
| 497 | if (block == NULL) { |
| 498 | ret = 0; |
| 499 | goto out_unlock; |
| 500 | } |
| 501 | queue->fileio.pos = 0; |
| 502 | queue->fileio.active_block = block; |
| 503 | } else { |
| 504 | block = queue->fileio.active_block; |
| 505 | } |
| 506 | |
| 507 | n = rounddown(n, buffer->bytes_per_datum); |
| 508 | if (n > block->bytes_used - queue->fileio.pos) |
| 509 | n = block->bytes_used - queue->fileio.pos; |
| 510 | |
| 511 | if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) { |
| 512 | ret = -EFAULT; |
| 513 | goto out_unlock; |
| 514 | } |
| 515 | |
| 516 | queue->fileio.pos += n; |
| 517 | |
| 518 | if (queue->fileio.pos == block->bytes_used) { |
| 519 | queue->fileio.active_block = NULL; |
| 520 | iio_dma_buffer_enqueue(queue, block); |
| 521 | } |
| 522 | |
| 523 | ret = n; |
| 524 | |
| 525 | out_unlock: |
| 526 | mutex_unlock(&queue->lock); |
| 527 | |
| 528 | return ret; |
| 529 | } |
| 530 | EXPORT_SYMBOL_GPL(iio_dma_buffer_read); |
| 531 | |
| 532 | /** |
| 533 | * iio_dma_buffer_data_available() - DMA buffer data_available callback |
| 534 | * @buf: Buffer to check for data availability |
| 535 | * |
| 536 | * Should be used as the data_available callback for iio_buffer_access_ops |
| 537 | * struct for DMA buffers. |
| 538 | */ |
| 539 | size_t iio_dma_buffer_data_available(struct iio_buffer *buf) |
| 540 | { |
| 541 | struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf); |
| 542 | struct iio_dma_buffer_block *block; |
| 543 | size_t data_available = 0; |
| 544 | |
| 545 | /* |
| 546 | * For counting the available bytes we'll use the size of the block not |
| 547 | * the number of actual bytes available in the block. Otherwise it is |
| 548 | * possible that we end up with a value that is lower than the watermark |
| 549 | * but won't increase since all blocks are in use. |
| 550 | */ |
| 551 | |
| 552 | mutex_lock(&queue->lock); |
| 553 | if (queue->fileio.active_block) |
| 554 | data_available += queue->fileio.active_block->size; |
| 555 | |
| 556 | spin_lock_irq(&queue->list_lock); |
| 557 | list_for_each_entry(block, &queue->outgoing, head) |
| 558 | data_available += block->size; |
| 559 | spin_unlock_irq(&queue->list_lock); |
| 560 | mutex_unlock(&queue->lock); |
| 561 | |
| 562 | return data_available; |
| 563 | } |
| 564 | EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available); |
| 565 | |
| 566 | /** |
| 567 | * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback |
| 568 | * @buffer: Buffer to set the bytes-per-datum for |
| 569 | * @bpd: The new bytes-per-datum value |
| 570 | * |
| 571 | * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops |
| 572 | * struct for DMA buffers. |
| 573 | */ |
| 574 | int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd) |
| 575 | { |
| 576 | buffer->bytes_per_datum = bpd; |
| 577 | |
| 578 | return 0; |
| 579 | } |
| 580 | EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum); |
| 581 | |
| 582 | /** |
| 583 | * iio_dma_buffer_set_length - DMA buffer set_length callback |
| 584 | * @buffer: Buffer to set the length for |
| 585 | * @length: The new buffer length |
| 586 | * |
| 587 | * Should be used as the set_length callback for iio_buffer_access_ops |
| 588 | * struct for DMA buffers. |
| 589 | */ |
Martin Kelly | c043ec1 | 2018-03-26 14:27:51 -0700 | [diff] [blame] | 590 | int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length) |
Lars-Peter Clausen | 670b19a | 2015-10-13 18:10:28 +0200 | [diff] [blame] | 591 | { |
| 592 | /* Avoid an invalid state */ |
| 593 | if (length < 2) |
| 594 | length = 2; |
| 595 | buffer->length = length; |
| 596 | buffer->watermark = length / 2; |
| 597 | |
| 598 | return 0; |
| 599 | } |
| 600 | EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length); |
| 601 | |
| 602 | /** |
| 603 | * iio_dma_buffer_init() - Initialize DMA buffer queue |
| 604 | * @queue: Buffer to initialize |
| 605 | * @dev: DMA device |
| 606 | * @ops: DMA buffer queue callback operations |
| 607 | * |
| 608 | * The DMA device will be used by the queue to do DMA memory allocations. So it |
| 609 | * should refer to the device that will perform the DMA to ensure that |
| 610 | * allocations are done from a memory region that can be accessed by the device. |
| 611 | */ |
| 612 | int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue, |
| 613 | struct device *dev, const struct iio_dma_buffer_ops *ops) |
| 614 | { |
| 615 | iio_buffer_init(&queue->buffer); |
| 616 | queue->buffer.length = PAGE_SIZE; |
| 617 | queue->buffer.watermark = queue->buffer.length / 2; |
| 618 | queue->dev = dev; |
| 619 | queue->ops = ops; |
| 620 | |
| 621 | INIT_LIST_HEAD(&queue->incoming); |
| 622 | INIT_LIST_HEAD(&queue->outgoing); |
| 623 | |
| 624 | mutex_init(&queue->lock); |
| 625 | spin_lock_init(&queue->list_lock); |
| 626 | |
| 627 | return 0; |
| 628 | } |
| 629 | EXPORT_SYMBOL_GPL(iio_dma_buffer_init); |
| 630 | |
| 631 | /** |
| 632 | * iio_dma_buffer_exit() - Cleanup DMA buffer queue |
| 633 | * @queue: Buffer to cleanup |
| 634 | * |
| 635 | * After this function has completed it is safe to free any resources that are |
| 636 | * associated with the buffer and are accessed inside the callback operations. |
| 637 | */ |
| 638 | void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue) |
| 639 | { |
| 640 | unsigned int i; |
| 641 | |
| 642 | mutex_lock(&queue->lock); |
| 643 | |
| 644 | spin_lock_irq(&queue->list_lock); |
| 645 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
| 646 | if (!queue->fileio.blocks[i]) |
| 647 | continue; |
| 648 | queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD; |
| 649 | } |
| 650 | INIT_LIST_HEAD(&queue->outgoing); |
| 651 | spin_unlock_irq(&queue->list_lock); |
| 652 | |
| 653 | INIT_LIST_HEAD(&queue->incoming); |
| 654 | |
| 655 | for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) { |
| 656 | if (!queue->fileio.blocks[i]) |
| 657 | continue; |
| 658 | iio_buffer_block_put(queue->fileio.blocks[i]); |
| 659 | queue->fileio.blocks[i] = NULL; |
| 660 | } |
| 661 | queue->fileio.active_block = NULL; |
| 662 | queue->ops = NULL; |
| 663 | |
| 664 | mutex_unlock(&queue->lock); |
| 665 | } |
| 666 | EXPORT_SYMBOL_GPL(iio_dma_buffer_exit); |
| 667 | |
| 668 | /** |
| 669 | * iio_dma_buffer_release() - Release final buffer resources |
| 670 | * @queue: Buffer to release |
| 671 | * |
| 672 | * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be |
| 673 | * called in the buffers release callback implementation right before freeing |
| 674 | * the memory associated with the buffer. |
| 675 | */ |
| 676 | void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue) |
| 677 | { |
| 678 | mutex_destroy(&queue->lock); |
| 679 | } |
| 680 | EXPORT_SYMBOL_GPL(iio_dma_buffer_release); |
| 681 | |
| 682 | MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); |
| 683 | MODULE_DESCRIPTION("DMA buffer for the IIO framework"); |
| 684 | MODULE_LICENSE("GPL v2"); |