blob: dd4ccc7f7baf7ea2ae3636c1ec315b0034a0ef89 [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Marc Zyngier1e947ba2015-01-29 11:59:54 +000031#include <asm/virt.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050032
33#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050034
Marc Zyngier5a677ce2013-04-12 19:12:06 +010035static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010036static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000037static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050038static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
Marc Zyngier5a677ce2013-04-12 19:12:06 +010040static unsigned long hyp_idmap_start;
41static unsigned long hyp_idmap_end;
42static phys_addr_t hyp_idmap_vector;
43
Suzuki K Poulose9163ee232016-03-22 17:01:21 +000044#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
Christoffer Dall38f791a2014-10-10 12:14:28 +020045#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000046
Mario Smarduch15a49a42015-01-15 15:58:58 -080047#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
49
50static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51{
Mario Smarduch15a49a42015-01-15 15:58:58 -080052 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080053}
54
55/**
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
58 *
59 * Interface to HYP function to flush all VM TLB entries
60 */
61void kvm_flush_remote_tlbs(struct kvm *kvm)
62{
63 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080064}
Christoffer Dallad361f02012-11-01 17:14:45 +010065
Marc Zyngier48762762013-01-28 15:27:00 +000066static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050067{
Suzuki K Poulose8684e702016-03-22 17:14:25 +000068 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050069}
70
Marc Zyngier363ef892014-12-19 16:48:06 +000071/*
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
74 * kmap on 32bit).
75 */
76static void kvm_flush_dcache_pte(pte_t pte)
77{
78 __kvm_flush_dcache_pte(pte);
79}
80
81static void kvm_flush_dcache_pmd(pmd_t pmd)
82{
83 __kvm_flush_dcache_pmd(pmd);
84}
85
86static void kvm_flush_dcache_pud(pud_t pud)
87{
88 __kvm_flush_dcache_pud(pud);
89}
90
Ard Biesheuvele6fab542015-11-10 15:11:20 +010091static bool kvm_is_device_pfn(unsigned long pfn)
92{
93 return !pfn_valid(pfn);
94}
95
Mario Smarduch15a49a42015-01-15 15:58:58 -080096/**
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
99 * @addr: IPA
100 * @pmd: pmd pointer for IPA
101 *
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
104 */
105static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106{
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000107 if (!pmd_thp_or_huge(*pmd))
Mario Smarduch15a49a42015-01-15 15:58:58 -0800108 return;
109
110 pmd_clear(pmd);
111 kvm_tlb_flush_vmid_ipa(kvm, addr);
112 put_page(virt_to_page(pmd));
113}
114
Christoffer Dalld5d81842013-01-20 18:28:07 -0500115static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116 int min, int max)
117{
118 void *page;
119
120 BUG_ON(max > KVM_NR_MEM_OBJS);
121 if (cache->nobjs >= min)
122 return 0;
123 while (cache->nobjs < max) {
124 page = (void *)__get_free_page(PGALLOC_GFP);
125 if (!page)
126 return -ENOMEM;
127 cache->objects[cache->nobjs++] = page;
128 }
129 return 0;
130}
131
132static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133{
134 while (mc->nobjs)
135 free_page((unsigned long)mc->objects[--mc->nobjs]);
136}
137
138static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139{
140 void *p;
141
142 BUG_ON(!mc || !mc->nobjs);
143 p = mc->objects[--mc->nobjs];
144 return p;
145}
146
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000147static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100148{
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000149 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150 stage2_pgd_clear(pgd);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200151 kvm_tlb_flush_vmid_ipa(kvm, addr);
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000152 stage2_pud_free(pud_table);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200153 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100154}
155
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000156static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500157{
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000158 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud));
160 stage2_pud_clear(pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200161 kvm_tlb_flush_vmid_ipa(kvm, addr);
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000162 stage2_pmd_free(pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100163 put_page(virt_to_page(pud));
164}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500165
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000166static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100167{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200168 pte_t *pte_table = pte_offset_kernel(pmd, 0);
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000169 VM_BUG_ON(pmd_thp_or_huge(*pmd));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200170 pmd_clear(pmd);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100173 put_page(virt_to_page(pmd));
174}
175
Marc Zyngier363ef892014-12-19 16:48:06 +0000176/*
177 * Unmapping vs dcache management:
178 *
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
182 * data.
183 *
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
187 *
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
191 *
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
195 */
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000196static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200197 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100198{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200199 phys_addr_t start_addr = addr;
200 pte_t *pte, *start_pte;
201
202 start_pte = pte = pte_offset_kernel(pmd, addr);
203 do {
204 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000205 pte_t old_pte = *pte;
206
Christoffer Dall4f853a72014-05-09 23:31:31 +0200207 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200208 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000209
210 /* No need to invalidate the cache for device mappings */
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100211 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000212 kvm_flush_dcache_pte(old_pte);
213
214 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200215 }
216 } while (pte++, addr += PAGE_SIZE, addr != end);
217
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000218 if (stage2_pte_table_empty(start_pte))
219 clear_stage2_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500220}
221
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000222static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200223 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500224{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200225 phys_addr_t next, start_addr = addr;
226 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000227
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000228 start_pmd = pmd = stage2_pmd_offset(pud, addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200229 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000230 next = stage2_pmd_addr_end(addr, end);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200231 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000232 if (pmd_thp_or_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000233 pmd_t old_pmd = *pmd;
234
Christoffer Dall4f853a72014-05-09 23:31:31 +0200235 pmd_clear(pmd);
236 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000237
238 kvm_flush_dcache_pmd(old_pmd);
239
Christoffer Dall4f853a72014-05-09 23:31:31 +0200240 put_page(virt_to_page(pmd));
241 } else {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000242 unmap_stage2_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100243 }
244 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200245 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100246
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000247 if (stage2_pmd_table_empty(start_pmd))
248 clear_stage2_pud_entry(kvm, pud, start_addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200249}
250
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000251static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200252 phys_addr_t addr, phys_addr_t end)
253{
254 phys_addr_t next, start_addr = addr;
255 pud_t *pud, *start_pud;
256
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000257 start_pud = pud = stage2_pud_offset(pgd, addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200258 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000259 next = stage2_pud_addr_end(addr, end);
260 if (!stage2_pud_none(*pud)) {
261 if (stage2_pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000262 pud_t old_pud = *pud;
263
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000264 stage2_pud_clear(pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200265 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000266 kvm_flush_dcache_pud(old_pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200267 put_page(virt_to_page(pud));
268 } else {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000269 unmap_stage2_pmds(kvm, pud, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200270 }
271 }
272 } while (pud++, addr = next, addr != end);
273
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000274 if (stage2_pud_table_empty(start_pud))
275 clear_stage2_pgd_entry(kvm, pgd, start_addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200276}
277
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000278/**
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
283 *
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
288 */
289static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
Christoffer Dall4f853a72014-05-09 23:31:31 +0200290{
291 pgd_t *pgd;
292 phys_addr_t addr = start, end = start + size;
293 phys_addr_t next;
294
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000295 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200296 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000297 next = stage2_pgd_addr_end(addr, end);
298 if (!stage2_pgd_none(*pgd))
299 unmap_stage2_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200300 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000301}
302
Marc Zyngier9d218a12014-01-15 12:50:23 +0000303static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
304 phys_addr_t addr, phys_addr_t end)
305{
306 pte_t *pte;
307
308 pte = pte_offset_kernel(pmd, addr);
309 do {
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100310 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000311 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000312 } while (pte++, addr += PAGE_SIZE, addr != end);
313}
314
315static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
316 phys_addr_t addr, phys_addr_t end)
317{
318 pmd_t *pmd;
319 phys_addr_t next;
320
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000321 pmd = stage2_pmd_offset(pud, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000322 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000323 next = stage2_pmd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000324 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000325 if (pmd_thp_or_huge(*pmd))
Marc Zyngier363ef892014-12-19 16:48:06 +0000326 kvm_flush_dcache_pmd(*pmd);
327 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000328 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000329 }
330 } while (pmd++, addr = next, addr != end);
331}
332
333static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
334 phys_addr_t addr, phys_addr_t end)
335{
336 pud_t *pud;
337 phys_addr_t next;
338
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000339 pud = stage2_pud_offset(pgd, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000340 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000341 next = stage2_pud_addr_end(addr, end);
342 if (!stage2_pud_none(*pud)) {
343 if (stage2_pud_huge(*pud))
Marc Zyngier363ef892014-12-19 16:48:06 +0000344 kvm_flush_dcache_pud(*pud);
345 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000346 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000347 }
348 } while (pud++, addr = next, addr != end);
349}
350
351static void stage2_flush_memslot(struct kvm *kvm,
352 struct kvm_memory_slot *memslot)
353{
354 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356 phys_addr_t next;
357 pgd_t *pgd;
358
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000359 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000360 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000361 next = stage2_pgd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000362 stage2_flush_puds(kvm, pgd, addr, next);
363 } while (pgd++, addr = next, addr != end);
364}
365
366/**
367 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
368 * @kvm: The struct kvm pointer
369 *
370 * Go through the stage 2 page tables and invalidate any cache lines
371 * backing memory already mapped to the VM.
372 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000373static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000374{
375 struct kvm_memslots *slots;
376 struct kvm_memory_slot *memslot;
377 int idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 slots = kvm_memslots(kvm);
383 kvm_for_each_memslot(memslot, slots)
384 stage2_flush_memslot(kvm, memslot);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388}
389
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000390static void clear_hyp_pgd_entry(pgd_t *pgd)
391{
392 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
393 pgd_clear(pgd);
394 pud_free(NULL, pud_table);
395 put_page(virt_to_page(pgd));
396}
397
398static void clear_hyp_pud_entry(pud_t *pud)
399{
400 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
401 VM_BUG_ON(pud_huge(*pud));
402 pud_clear(pud);
403 pmd_free(NULL, pmd_table);
404 put_page(virt_to_page(pud));
405}
406
407static void clear_hyp_pmd_entry(pmd_t *pmd)
408{
409 pte_t *pte_table = pte_offset_kernel(pmd, 0);
410 VM_BUG_ON(pmd_thp_or_huge(*pmd));
411 pmd_clear(pmd);
412 pte_free_kernel(NULL, pte_table);
413 put_page(virt_to_page(pmd));
414}
415
416static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
417{
418 pte_t *pte, *start_pte;
419
420 start_pte = pte = pte_offset_kernel(pmd, addr);
421 do {
422 if (!pte_none(*pte)) {
423 kvm_set_pte(pte, __pte(0));
424 put_page(virt_to_page(pte));
425 }
426 } while (pte++, addr += PAGE_SIZE, addr != end);
427
428 if (hyp_pte_table_empty(start_pte))
429 clear_hyp_pmd_entry(pmd);
430}
431
432static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
433{
434 phys_addr_t next;
435 pmd_t *pmd, *start_pmd;
436
437 start_pmd = pmd = pmd_offset(pud, addr);
438 do {
439 next = pmd_addr_end(addr, end);
440 /* Hyp doesn't use huge pmds */
441 if (!pmd_none(*pmd))
442 unmap_hyp_ptes(pmd, addr, next);
443 } while (pmd++, addr = next, addr != end);
444
445 if (hyp_pmd_table_empty(start_pmd))
446 clear_hyp_pud_entry(pud);
447}
448
449static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
450{
451 phys_addr_t next;
452 pud_t *pud, *start_pud;
453
454 start_pud = pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 /* Hyp doesn't use huge puds */
458 if (!pud_none(*pud))
459 unmap_hyp_pmds(pud, addr, next);
460 } while (pud++, addr = next, addr != end);
461
462 if (hyp_pud_table_empty(start_pud))
463 clear_hyp_pgd_entry(pgd);
464}
465
466static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
467{
468 pgd_t *pgd;
469 phys_addr_t addr = start, end = start + size;
470 phys_addr_t next;
471
472 /*
473 * We don't unmap anything from HYP, except at the hyp tear down.
474 * Hence, we don't have to invalidate the TLBs here.
475 */
476 pgd = pgdp + pgd_index(addr);
477 do {
478 next = pgd_addr_end(addr, end);
479 if (!pgd_none(*pgd))
480 unmap_hyp_puds(pgd, addr, next);
481 } while (pgd++, addr = next, addr != end);
482}
483
Marc Zyngier000d3992013-03-05 02:43:17 +0000484/**
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100485 * free_boot_hyp_pgd - free HYP boot page tables
486 *
487 * Free the HYP boot page tables. The bounce page is also freed.
488 */
489void free_boot_hyp_pgd(void)
490{
491 mutex_lock(&kvm_hyp_pgd_mutex);
492
493 if (boot_hyp_pgd) {
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000494 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200495 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100496 boot_hyp_pgd = NULL;
497 }
498
499 if (hyp_pgd)
Marc Zyngier0535a3e2016-06-30 18:40:43 +0100500 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100501
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100502 mutex_unlock(&kvm_hyp_pgd_mutex);
503}
504
505/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100506 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000507 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100508 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
509 * therefore contains either mappings in the kernel memory area (above
510 * PAGE_OFFSET), or device mappings in the vmalloc range (from
511 * VMALLOC_START to VMALLOC_END).
512 *
513 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000514 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100515void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000516{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500517 unsigned long addr;
518
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100519 free_boot_hyp_pgd();
Marc Zyngier4f728272013-04-12 19:12:05 +0100520
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100521 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100522
Marc Zyngier4f728272013-04-12 19:12:05 +0100523 if (hyp_pgd) {
524 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000525 unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100526 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000527 unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100528
Christoffer Dall38f791a2014-10-10 12:14:28 +0200529 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100530 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100531 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000532 if (merged_hyp_pgd) {
533 clear_page(merged_hyp_pgd);
534 free_page((unsigned long)merged_hyp_pgd);
535 merged_hyp_pgd = NULL;
536 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100537
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500538 mutex_unlock(&kvm_hyp_pgd_mutex);
539}
540
541static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100542 unsigned long end, unsigned long pfn,
543 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500544{
545 pte_t *pte;
546 unsigned long addr;
547
Marc Zyngier3562c762013-04-12 19:12:02 +0100548 addr = start;
549 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100550 pte = pte_offset_kernel(pmd, addr);
551 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100552 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100553 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100554 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100555 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500556}
557
558static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100559 unsigned long end, unsigned long pfn,
560 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500561{
562 pmd_t *pmd;
563 pte_t *pte;
564 unsigned long addr, next;
565
Marc Zyngier3562c762013-04-12 19:12:02 +0100566 addr = start;
567 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100568 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500569
570 BUG_ON(pmd_sect(*pmd));
571
572 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100573 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500574 if (!pte) {
575 kvm_err("Cannot allocate Hyp pte\n");
576 return -ENOMEM;
577 }
578 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100579 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100580 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500581 }
582
583 next = pmd_addr_end(addr, end);
584
Marc Zyngier6060df82013-04-12 19:12:01 +0100585 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
586 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100587 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500588
589 return 0;
590}
591
Christoffer Dall38f791a2014-10-10 12:14:28 +0200592static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
593 unsigned long end, unsigned long pfn,
594 pgprot_t prot)
595{
596 pud_t *pud;
597 pmd_t *pmd;
598 unsigned long addr, next;
599 int ret;
600
601 addr = start;
602 do {
603 pud = pud_offset(pgd, addr);
604
605 if (pud_none_or_clear_bad(pud)) {
606 pmd = pmd_alloc_one(NULL, addr);
607 if (!pmd) {
608 kvm_err("Cannot allocate Hyp pmd\n");
609 return -ENOMEM;
610 }
611 pud_populate(NULL, pud, pmd);
612 get_page(virt_to_page(pud));
613 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
614 }
615
616 next = pud_addr_end(addr, end);
617 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
618 if (ret)
619 return ret;
620 pfn += (next - addr) >> PAGE_SHIFT;
621 } while (addr = next, addr != end);
622
623 return 0;
624}
625
Marc Zyngier6060df82013-04-12 19:12:01 +0100626static int __create_hyp_mappings(pgd_t *pgdp,
627 unsigned long start, unsigned long end,
628 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500629{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500630 pgd_t *pgd;
631 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500632 unsigned long addr, next;
633 int err = 0;
634
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500635 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100636 addr = start & PAGE_MASK;
637 end = PAGE_ALIGN(end);
638 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100639 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500640
Christoffer Dall38f791a2014-10-10 12:14:28 +0200641 if (pgd_none(*pgd)) {
642 pud = pud_alloc_one(NULL, addr);
643 if (!pud) {
644 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500645 err = -ENOMEM;
646 goto out;
647 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200648 pgd_populate(NULL, pgd, pud);
649 get_page(virt_to_page(pgd));
650 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500651 }
652
653 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200654 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500655 if (err)
656 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100657 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100658 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500659out:
660 mutex_unlock(&kvm_hyp_pgd_mutex);
661 return err;
662}
663
Christoffer Dall40c27292013-11-15 13:14:12 -0800664static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
665{
666 if (!is_vmalloc_addr(kaddr)) {
667 BUG_ON(!virt_addr_valid(kaddr));
668 return __pa(kaddr);
669 } else {
670 return page_to_phys(vmalloc_to_page(kaddr)) +
671 offset_in_page(kaddr);
672 }
673}
674
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500675/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100676 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500677 * @from: The virtual kernel start address of the range
678 * @to: The virtual kernel end address of the range (exclusive)
Marc Zyngierc8dddec2016-06-13 15:00:45 +0100679 * @prot: The protection to be applied to this range
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500680 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100681 * The same virtual address as the kernel virtual address is also used
682 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
683 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500684 */
Marc Zyngierc8dddec2016-06-13 15:00:45 +0100685int create_hyp_mappings(void *from, void *to, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500686{
Christoffer Dall40c27292013-11-15 13:14:12 -0800687 phys_addr_t phys_addr;
688 unsigned long virt_addr;
Marc Zyngier6060df82013-04-12 19:12:01 +0100689 unsigned long start = KERN_TO_HYP((unsigned long)from);
690 unsigned long end = KERN_TO_HYP((unsigned long)to);
691
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000692 if (is_kernel_in_hyp_mode())
693 return 0;
694
Christoffer Dall40c27292013-11-15 13:14:12 -0800695 start = start & PAGE_MASK;
696 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100697
Christoffer Dall40c27292013-11-15 13:14:12 -0800698 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
699 int err;
700
701 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
702 err = __create_hyp_mappings(hyp_pgd, virt_addr,
703 virt_addr + PAGE_SIZE,
704 __phys_to_pfn(phys_addr),
Marc Zyngierc8dddec2016-06-13 15:00:45 +0100705 prot);
Christoffer Dall40c27292013-11-15 13:14:12 -0800706 if (err)
707 return err;
708 }
709
710 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500711}
712
713/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100714 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
715 * @from: The kernel start VA of the range
716 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100717 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100718 *
719 * The resulting HYP VA is the same as the kernel VA, modulo
720 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500721 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100722int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500723{
Marc Zyngier6060df82013-04-12 19:12:01 +0100724 unsigned long start = KERN_TO_HYP((unsigned long)from);
725 unsigned long end = KERN_TO_HYP((unsigned long)to);
726
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000727 if (is_kernel_in_hyp_mode())
728 return 0;
729
Marc Zyngier6060df82013-04-12 19:12:01 +0100730 /* Check for a valid kernel IO mapping */
731 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
732 return -EINVAL;
733
734 return __create_hyp_mappings(hyp_pgd, start, end,
735 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500736}
737
Christoffer Dalld5d81842013-01-20 18:28:07 -0500738/**
739 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
740 * @kvm: The KVM struct pointer for the VM.
741 *
Vladimir Murzin9d4dc6882015-11-16 11:28:16 +0000742 * Allocates only the stage-2 HW PGD level table(s) (can support either full
743 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
744 * allocated pages.
Christoffer Dalld5d81842013-01-20 18:28:07 -0500745 *
746 * Note we don't need locking here as this is only called when the VM is
747 * created, which can only be done once.
748 */
749int kvm_alloc_stage2_pgd(struct kvm *kvm)
750{
751 pgd_t *pgd;
752
753 if (kvm->arch.pgd != NULL) {
754 kvm_err("kvm_arch already initialized?\n");
755 return -EINVAL;
756 }
757
Suzuki K Poulose9163ee232016-03-22 17:01:21 +0000758 /* Allocate the HW PGD, making sure that each page gets its own refcount */
759 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
760 if (!pgd)
Marc Zyngiera9873702015-03-10 19:06:59 +0000761 return -ENOMEM;
762
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100763 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500764 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500765 return 0;
766}
767
Christoffer Dall957db102014-11-27 10:35:03 +0100768static void stage2_unmap_memslot(struct kvm *kvm,
769 struct kvm_memory_slot *memslot)
770{
771 hva_t hva = memslot->userspace_addr;
772 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
773 phys_addr_t size = PAGE_SIZE * memslot->npages;
774 hva_t reg_end = hva + size;
775
776 /*
777 * A memory region could potentially cover multiple VMAs, and any holes
778 * between them, so iterate over all of them to find out if we should
779 * unmap any of them.
780 *
781 * +--------------------------------------------+
782 * +---------------+----------------+ +----------------+
783 * | : VMA 1 | VMA 2 | | VMA 3 : |
784 * +---------------+----------------+ +----------------+
785 * | memory region |
786 * +--------------------------------------------+
787 */
788 do {
789 struct vm_area_struct *vma = find_vma(current->mm, hva);
790 hva_t vm_start, vm_end;
791
792 if (!vma || vma->vm_start >= reg_end)
793 break;
794
795 /*
796 * Take the intersection of this VMA with the memory region
797 */
798 vm_start = max(hva, vma->vm_start);
799 vm_end = min(reg_end, vma->vm_end);
800
801 if (!(vma->vm_flags & VM_PFNMAP)) {
802 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
803 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
804 }
805 hva = vm_end;
806 } while (hva < reg_end);
807}
808
809/**
810 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
811 * @kvm: The struct kvm pointer
812 *
813 * Go through the memregions and unmap any reguler RAM
814 * backing memory already mapped to the VM.
815 */
816void stage2_unmap_vm(struct kvm *kvm)
817{
818 struct kvm_memslots *slots;
819 struct kvm_memory_slot *memslot;
820 int idx;
821
822 idx = srcu_read_lock(&kvm->srcu);
823 spin_lock(&kvm->mmu_lock);
824
825 slots = kvm_memslots(kvm);
826 kvm_for_each_memslot(memslot, slots)
827 stage2_unmap_memslot(kvm, memslot);
828
829 spin_unlock(&kvm->mmu_lock);
830 srcu_read_unlock(&kvm->srcu, idx);
831}
832
Christoffer Dalld5d81842013-01-20 18:28:07 -0500833/**
834 * kvm_free_stage2_pgd - free all stage-2 tables
835 * @kvm: The KVM struct pointer for the VM.
836 *
837 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
838 * underlying level-2 and level-3 tables before freeing the actual level-1 table
839 * and setting the struct pointer to NULL.
840 *
841 * Note we don't need locking here as this is only called when the VM is
842 * destroyed, which can only be done once.
843 */
844void kvm_free_stage2_pgd(struct kvm *kvm)
845{
846 if (kvm->arch.pgd == NULL)
847 return;
848
849 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Suzuki K Poulose9163ee232016-03-22 17:01:21 +0000850 /* Free the HW pgd, one page at a time */
851 free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500852 kvm->arch.pgd = NULL;
853}
854
Christoffer Dall38f791a2014-10-10 12:14:28 +0200855static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
856 phys_addr_t addr)
857{
858 pgd_t *pgd;
859 pud_t *pud;
860
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000861 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
862 if (WARN_ON(stage2_pgd_none(*pgd))) {
Christoffer Dall38f791a2014-10-10 12:14:28 +0200863 if (!cache)
864 return NULL;
865 pud = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000866 stage2_pgd_populate(pgd, pud);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200867 get_page(virt_to_page(pgd));
868 }
869
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000870 return stage2_pud_offset(pgd, addr);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200871}
872
Christoffer Dallad361f02012-11-01 17:14:45 +0100873static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
874 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500875{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500876 pud_t *pud;
877 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500878
Christoffer Dall38f791a2014-10-10 12:14:28 +0200879 pud = stage2_get_pud(kvm, cache, addr);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000880 if (stage2_pud_none(*pud)) {
Christoffer Dalld5d81842013-01-20 18:28:07 -0500881 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100882 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500883 pmd = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000884 stage2_pud_populate(pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500885 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100886 }
887
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000888 return stage2_pmd_offset(pud, addr);
Christoffer Dallad361f02012-11-01 17:14:45 +0100889}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500890
Christoffer Dallad361f02012-11-01 17:14:45 +0100891static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
892 *cache, phys_addr_t addr, const pmd_t *new_pmd)
893{
894 pmd_t *pmd, old_pmd;
895
896 pmd = stage2_get_pmd(kvm, cache, addr);
897 VM_BUG_ON(!pmd);
898
899 /*
900 * Mapping in huge pages should only happen through a fault. If a
901 * page is merged into a transparent huge page, the individual
902 * subpages of that huge page should be unmapped through MMU
903 * notifiers before we get here.
904 *
905 * Merging of CompoundPages is not supported; they should become
906 * splitting first, unmapped, merged, and mapped back in on-demand.
907 */
908 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
909
910 old_pmd = *pmd;
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100911 if (pmd_present(old_pmd)) {
912 pmd_clear(pmd);
Christoffer Dallad361f02012-11-01 17:14:45 +0100913 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100914 } else {
Christoffer Dallad361f02012-11-01 17:14:45 +0100915 get_page(virt_to_page(pmd));
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100916 }
917
918 kvm_set_pmd(pmd, *new_pmd);
Christoffer Dallad361f02012-11-01 17:14:45 +0100919 return 0;
920}
921
922static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800923 phys_addr_t addr, const pte_t *new_pte,
924 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100925{
926 pmd_t *pmd;
927 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800928 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
929 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
930
931 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100932
Christoffer Dall38f791a2014-10-10 12:14:28 +0200933 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100934 pmd = stage2_get_pmd(kvm, cache, addr);
935 if (!pmd) {
936 /*
937 * Ignore calls from kvm_set_spte_hva for unallocated
938 * address ranges.
939 */
940 return 0;
941 }
942
Mario Smarduch15a49a42015-01-15 15:58:58 -0800943 /*
944 * While dirty page logging - dissolve huge PMD, then continue on to
945 * allocate page.
946 */
947 if (logging_active)
948 stage2_dissolve_pmd(kvm, addr, pmd);
949
Christoffer Dallad361f02012-11-01 17:14:45 +0100950 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500951 if (pmd_none(*pmd)) {
952 if (!cache)
953 return 0; /* ignore calls from kvm_set_spte_hva */
954 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100955 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500956 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500957 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100958 }
959
960 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500961
962 if (iomap && pte_present(*pte))
963 return -EFAULT;
964
965 /* Create 2nd stage page table mapping - Level 3 */
966 old_pte = *pte;
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100967 if (pte_present(old_pte)) {
968 kvm_set_pte(pte, __pte(0));
Marc Zyngier48762762013-01-28 15:27:00 +0000969 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100970 } else {
Christoffer Dalld5d81842013-01-20 18:28:07 -0500971 get_page(virt_to_page(pte));
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100972 }
Christoffer Dalld5d81842013-01-20 18:28:07 -0500973
Marc Zyngierd4b9e072016-04-28 16:16:31 +0100974 kvm_set_pte(pte, *new_pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500975 return 0;
976}
977
Catalin Marinas06485052016-04-13 17:57:37 +0100978#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
979static int stage2_ptep_test_and_clear_young(pte_t *pte)
980{
981 if (pte_young(*pte)) {
982 *pte = pte_mkold(*pte);
983 return 1;
984 }
985 return 0;
986}
987#else
988static int stage2_ptep_test_and_clear_young(pte_t *pte)
989{
990 return __ptep_test_and_clear_young(pte);
991}
992#endif
993
994static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
995{
996 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
997}
998
Christoffer Dalld5d81842013-01-20 18:28:07 -0500999/**
1000 * kvm_phys_addr_ioremap - map a device range to guest IPA
1001 *
1002 * @kvm: The KVM pointer
1003 * @guest_ipa: The IPA at which to insert the mapping
1004 * @pa: The physical address of the device
1005 * @size: The size of the mapping
1006 */
1007int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -07001008 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001009{
1010 phys_addr_t addr, end;
1011 int ret = 0;
1012 unsigned long pfn;
1013 struct kvm_mmu_memory_cache cache = { 0, };
1014
1015 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1016 pfn = __phys_to_pfn(pa);
1017
1018 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +01001019 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001020
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -07001021 if (writable)
Catalin Marinas06485052016-04-13 17:57:37 +01001022 pte = kvm_s2pte_mkwrite(pte);
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -07001023
Christoffer Dall38f791a2014-10-10 12:14:28 +02001024 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1025 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001026 if (ret)
1027 goto out;
1028 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001029 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1030 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001031 spin_unlock(&kvm->mmu_lock);
1032 if (ret)
1033 goto out;
1034
1035 pfn++;
1036 }
1037
1038out:
1039 mmu_free_memory_cache(&cache);
1040 return ret;
1041}
1042
Dan Williamsba049e92016-01-15 16:56:11 -08001043static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001044{
Dan Williamsba049e92016-01-15 16:56:11 -08001045 kvm_pfn_t pfn = *pfnp;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001046 gfn_t gfn = *ipap >> PAGE_SHIFT;
1047
Andrea Arcangeli127393f2016-05-05 16:22:20 -07001048 if (PageTransCompoundMap(pfn_to_page(pfn))) {
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001049 unsigned long mask;
1050 /*
1051 * The address we faulted on is backed by a transparent huge
1052 * page. However, because we map the compound huge page and
1053 * not the individual tail page, we need to transfer the
1054 * refcount to the head page. We have to be careful that the
1055 * THP doesn't start to split while we are adjusting the
1056 * refcounts.
1057 *
1058 * We are sure this doesn't happen, because mmu_notifier_retry
1059 * was successful and we are holding the mmu_lock, so if this
1060 * THP is trying to split, it will be blocked in the mmu
1061 * notifier before touching any of the pages, specifically
1062 * before being able to call __split_huge_page_refcount().
1063 *
1064 * We can therefore safely transfer the refcount from PG_tail
1065 * to PG_head and switch the pfn from a tail page to the head
1066 * page accordingly.
1067 */
1068 mask = PTRS_PER_PMD - 1;
1069 VM_BUG_ON((gfn & mask) != (pfn & mask));
1070 if (pfn & mask) {
1071 *ipap &= PMD_MASK;
1072 kvm_release_pfn_clean(pfn);
1073 pfn &= ~mask;
1074 kvm_get_pfn(pfn);
1075 *pfnp = pfn;
1076 }
1077
1078 return true;
1079 }
1080
1081 return false;
1082}
1083
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001084static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1085{
1086 if (kvm_vcpu_trap_is_iabt(vcpu))
1087 return false;
1088
1089 return kvm_vcpu_dabt_iswrite(vcpu);
1090}
1091
Mario Smarduchc6473552015-01-15 15:58:56 -08001092/**
1093 * stage2_wp_ptes - write protect PMD range
1094 * @pmd: pointer to pmd entry
1095 * @addr: range start address
1096 * @end: range end address
1097 */
1098static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1099{
1100 pte_t *pte;
1101
1102 pte = pte_offset_kernel(pmd, addr);
1103 do {
1104 if (!pte_none(*pte)) {
1105 if (!kvm_s2pte_readonly(pte))
1106 kvm_set_s2pte_readonly(pte);
1107 }
1108 } while (pte++, addr += PAGE_SIZE, addr != end);
1109}
1110
1111/**
1112 * stage2_wp_pmds - write protect PUD range
1113 * @pud: pointer to pud entry
1114 * @addr: range start address
1115 * @end: range end address
1116 */
1117static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1118{
1119 pmd_t *pmd;
1120 phys_addr_t next;
1121
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001122 pmd = stage2_pmd_offset(pud, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001123
1124 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001125 next = stage2_pmd_addr_end(addr, end);
Mario Smarduchc6473552015-01-15 15:58:56 -08001126 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001127 if (pmd_thp_or_huge(*pmd)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001128 if (!kvm_s2pmd_readonly(pmd))
1129 kvm_set_s2pmd_readonly(pmd);
1130 } else {
1131 stage2_wp_ptes(pmd, addr, next);
1132 }
1133 }
1134 } while (pmd++, addr = next, addr != end);
1135}
1136
1137/**
1138 * stage2_wp_puds - write protect PGD range
1139 * @pgd: pointer to pgd entry
1140 * @addr: range start address
1141 * @end: range end address
1142 *
1143 * Process PUD entries, for a huge PUD we cause a panic.
1144 */
1145static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1146{
1147 pud_t *pud;
1148 phys_addr_t next;
1149
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001150 pud = stage2_pud_offset(pgd, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001151 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001152 next = stage2_pud_addr_end(addr, end);
1153 if (!stage2_pud_none(*pud)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001154 /* TODO:PUD not supported, revisit later if supported */
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001155 BUG_ON(stage2_pud_huge(*pud));
Mario Smarduchc6473552015-01-15 15:58:56 -08001156 stage2_wp_pmds(pud, addr, next);
1157 }
1158 } while (pud++, addr = next, addr != end);
1159}
1160
1161/**
1162 * stage2_wp_range() - write protect stage2 memory region range
1163 * @kvm: The KVM pointer
1164 * @addr: Start address of range
1165 * @end: End address of range
1166 */
1167static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1168{
1169 pgd_t *pgd;
1170 phys_addr_t next;
1171
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001172 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001173 do {
1174 /*
1175 * Release kvm_mmu_lock periodically if the memory region is
1176 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea812015-01-23 10:49:31 +01001177 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1178 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001179 * will also starve other vCPUs.
1180 */
1181 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1182 cond_resched_lock(&kvm->mmu_lock);
1183
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001184 next = stage2_pgd_addr_end(addr, end);
1185 if (stage2_pgd_present(*pgd))
Mario Smarduchc6473552015-01-15 15:58:56 -08001186 stage2_wp_puds(pgd, addr, next);
1187 } while (pgd++, addr = next, addr != end);
1188}
1189
1190/**
1191 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1192 * @kvm: The KVM pointer
1193 * @slot: The memory slot to write protect
1194 *
1195 * Called to start logging dirty pages after memory region
1196 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1197 * all present PMD and PTEs are write protected in the memory region.
1198 * Afterwards read of dirty page log can be called.
1199 *
1200 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1201 * serializing operations for VM memory regions.
1202 */
1203void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1204{
Paolo Bonzini9f6b8022015-05-17 16:20:07 +02001205 struct kvm_memslots *slots = kvm_memslots(kvm);
1206 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
Mario Smarduchc6473552015-01-15 15:58:56 -08001207 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1208 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1209
1210 spin_lock(&kvm->mmu_lock);
1211 stage2_wp_range(kvm, start, end);
1212 spin_unlock(&kvm->mmu_lock);
1213 kvm_flush_remote_tlbs(kvm);
1214}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001215
1216/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001217 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001218 * @kvm: The KVM pointer
1219 * @slot: The memory slot associated with mask
1220 * @gfn_offset: The gfn offset in memory slot
1221 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1222 * slot to be write protected
1223 *
1224 * Walks bits set in mask write protects the associated pte's. Caller must
1225 * acquire kvm_mmu_lock.
1226 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001227static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001228 struct kvm_memory_slot *slot,
1229 gfn_t gfn_offset, unsigned long mask)
1230{
1231 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1232 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1233 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1234
1235 stage2_wp_range(kvm, start, end);
1236}
Mario Smarduchc6473552015-01-15 15:58:56 -08001237
Kai Huang3b0f1d02015-01-28 10:54:23 +08001238/*
1239 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1240 * dirty pages.
1241 *
1242 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1243 * enable dirty logging for them.
1244 */
1245void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1246 struct kvm_memory_slot *slot,
1247 gfn_t gfn_offset, unsigned long mask)
1248{
1249 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1250}
1251
Dan Williamsba049e92016-01-15 16:56:11 -08001252static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001253 unsigned long size, bool uncached)
1254{
1255 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1256}
1257
Christoffer Dall94f8e642013-01-20 18:28:12 -05001258static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001259 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001260 unsigned long fault_status)
1261{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001262 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001263 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001264 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001265 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001266 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001267 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001268 struct vm_area_struct *vma;
Dan Williamsba049e92016-01-15 16:56:11 -08001269 kvm_pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001270 pgprot_t mem_type = PAGE_S2;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001271 bool fault_ipa_uncached;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001272 bool logging_active = memslot_is_logging(memslot);
1273 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001274
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001275 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001276 if (fault_status == FSC_PERM && !write_fault) {
1277 kvm_err("Unexpected L2 read permission error\n");
1278 return -EFAULT;
1279 }
1280
Christoffer Dallad361f02012-11-01 17:14:45 +01001281 /* Let's check if we will get back a huge page backed by hugetlbfs */
1282 down_read(&current->mm->mmap_sem);
1283 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001284 if (unlikely(!vma)) {
1285 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1286 up_read(&current->mm->mmap_sem);
1287 return -EFAULT;
1288 }
1289
Mario Smarduch15a49a42015-01-15 15:58:58 -08001290 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001291 hugetlb = true;
1292 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001293 } else {
1294 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001295 * Pages belonging to memslots that don't have the same
1296 * alignment for userspace and IPA cannot be mapped using
1297 * block descriptors even if the pages belong to a THP for
1298 * the process, because the stage-2 block descriptor will
1299 * cover more than a single THP and we loose atomicity for
1300 * unmapping, updates, and splits of the THP or other pages
1301 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001302 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001303 if ((memslot->userspace_addr & ~PMD_MASK) !=
1304 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001305 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001306 }
1307 up_read(&current->mm->mmap_sem);
1308
Christoffer Dall94f8e642013-01-20 18:28:12 -05001309 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001310 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1311 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001312 if (ret)
1313 return ret;
1314
1315 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1316 /*
1317 * Ensure the read of mmu_notifier_seq happens before we call
1318 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1319 * the page we just got a reference to gets unmapped before we have a
1320 * chance to grab the mmu_lock, which ensure that if the page gets
1321 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1322 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1323 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1324 */
1325 smp_rmb();
1326
Christoffer Dallad361f02012-11-01 17:14:45 +01001327 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001328 if (is_error_pfn(pfn))
1329 return -EFAULT;
1330
Mario Smarduch15a49a42015-01-15 15:58:58 -08001331 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001332 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001333 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1334 } else if (logging_active) {
1335 /*
1336 * Faults on pages in a memslot with logging enabled
1337 * should not be mapped with huge pages (it introduces churn
1338 * and performance degradation), so force a pte mapping.
1339 */
1340 force_pte = true;
1341 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1342
1343 /*
1344 * Only actually map the page as writable if this was a write
1345 * fault.
1346 */
1347 if (!write_fault)
1348 writable = false;
1349 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001350
Christoffer Dallad361f02012-11-01 17:14:45 +01001351 spin_lock(&kvm->mmu_lock);
1352 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001353 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001354
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001355 if (!hugetlb && !force_pte)
1356 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001357
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001358 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001359
Christoffer Dallad361f02012-11-01 17:14:45 +01001360 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001361 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001362 new_pmd = pmd_mkhuge(new_pmd);
1363 if (writable) {
Catalin Marinas06485052016-04-13 17:57:37 +01001364 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
Christoffer Dallad361f02012-11-01 17:14:45 +01001365 kvm_set_pfn_dirty(pfn);
1366 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001367 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
Christoffer Dallad361f02012-11-01 17:14:45 +01001368 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1369 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001370 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001371
Christoffer Dallad361f02012-11-01 17:14:45 +01001372 if (writable) {
Catalin Marinas06485052016-04-13 17:57:37 +01001373 new_pte = kvm_s2pte_mkwrite(new_pte);
Christoffer Dallad361f02012-11-01 17:14:45 +01001374 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001375 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001376 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001377 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001378 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001379 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001380
Christoffer Dall94f8e642013-01-20 18:28:12 -05001381out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001382 spin_unlock(&kvm->mmu_lock);
Marc Zyngier35307b92015-03-12 18:16:51 +00001383 kvm_set_pfn_accessed(pfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001384 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001385 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001386}
1387
Marc Zyngieraeda9132015-03-12 18:16:52 +00001388/*
1389 * Resolve the access fault by making the page young again.
1390 * Note that because the faulting entry is guaranteed not to be
1391 * cached in the TLB, we don't need to invalidate anything.
Catalin Marinas06485052016-04-13 17:57:37 +01001392 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1393 * so there is no need for atomic (pte|pmd)_mkyoung operations.
Marc Zyngieraeda9132015-03-12 18:16:52 +00001394 */
1395static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1396{
1397 pmd_t *pmd;
1398 pte_t *pte;
Dan Williamsba049e92016-01-15 16:56:11 -08001399 kvm_pfn_t pfn;
Marc Zyngieraeda9132015-03-12 18:16:52 +00001400 bool pfn_valid = false;
1401
1402 trace_kvm_access_fault(fault_ipa);
1403
1404 spin_lock(&vcpu->kvm->mmu_lock);
1405
1406 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1407 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1408 goto out;
1409
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001410 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
Marc Zyngieraeda9132015-03-12 18:16:52 +00001411 *pmd = pmd_mkyoung(*pmd);
1412 pfn = pmd_pfn(*pmd);
1413 pfn_valid = true;
1414 goto out;
1415 }
1416
1417 pte = pte_offset_kernel(pmd, fault_ipa);
1418 if (pte_none(*pte)) /* Nothing there either */
1419 goto out;
1420
1421 *pte = pte_mkyoung(*pte); /* Just a page... */
1422 pfn = pte_pfn(*pte);
1423 pfn_valid = true;
1424out:
1425 spin_unlock(&vcpu->kvm->mmu_lock);
1426 if (pfn_valid)
1427 kvm_set_pfn_accessed(pfn);
1428}
1429
Christoffer Dall94f8e642013-01-20 18:28:12 -05001430/**
1431 * kvm_handle_guest_abort - handles all 2nd stage aborts
1432 * @vcpu: the VCPU pointer
1433 * @run: the kvm_run structure
1434 *
1435 * Any abort that gets to the host is almost guaranteed to be caused by a
1436 * missing second stage translation table entry, which can mean that either the
1437 * guest simply needs more memory and we must allocate an appropriate page or it
1438 * can mean that the guest tried to access I/O memory, which is emulated by user
1439 * space. The distinction is based on the IPA causing the fault and whether this
1440 * memory region has been registered as standard RAM by user space.
1441 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001442int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1443{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001444 unsigned long fault_status;
1445 phys_addr_t fault_ipa;
1446 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001447 unsigned long hva;
1448 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001449 gfn_t gfn;
1450 int ret, idx;
1451
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001452 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +01001453 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001454
Marc Zyngier7393b592012-09-17 19:27:09 +01001455 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1456 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001457
1458 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001459 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Marc Zyngier35307b92015-03-12 18:16:51 +00001460 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1461 fault_status != FSC_ACCESS) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001462 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1463 kvm_vcpu_trap_get_class(vcpu),
1464 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1465 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001466 return -EFAULT;
1467 }
1468
1469 idx = srcu_read_lock(&vcpu->kvm->srcu);
1470
1471 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001472 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1473 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001474 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001475 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001476 if (is_iabt) {
1477 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001478 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001479 ret = 1;
1480 goto out_unlock;
1481 }
1482
Marc Zyngiercfe39502012-12-12 14:42:09 +00001483 /*
Marc Zyngier57c841f2016-01-29 15:01:28 +00001484 * Check for a cache maintenance operation. Since we
1485 * ended-up here, we know it is outside of any memory
1486 * slot. But we can't find out if that is for a device,
1487 * or if the guest is just being stupid. The only thing
1488 * we know for sure is that this range cannot be cached.
1489 *
1490 * So let's assume that the guest is just being
1491 * cautious, and skip the instruction.
1492 */
1493 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1494 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1495 ret = 1;
1496 goto out_unlock;
1497 }
1498
1499 /*
Marc Zyngiercfe39502012-12-12 14:42:09 +00001500 * The IPA is reported as [MAX:12], so we need to
1501 * complement it with the bottom 12 bits from the
1502 * faulting VA. This is always 12 bits, irrespective
1503 * of the page size.
1504 */
1505 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001506 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001507 goto out_unlock;
1508 }
1509
Christoffer Dallc3058d52014-10-10 12:14:29 +02001510 /* Userspace should not be able to register out-of-bounds IPAs */
1511 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1512
Marc Zyngieraeda9132015-03-12 18:16:52 +00001513 if (fault_status == FSC_ACCESS) {
1514 handle_access_fault(vcpu, fault_ipa);
1515 ret = 1;
1516 goto out_unlock;
1517 }
1518
Christoffer Dall98047882014-08-19 12:18:04 +02001519 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001520 if (ret == 0)
1521 ret = 1;
1522out_unlock:
1523 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1524 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001525}
1526
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001527static int handle_hva_to_gpa(struct kvm *kvm,
1528 unsigned long start,
1529 unsigned long end,
1530 int (*handler)(struct kvm *kvm,
1531 gpa_t gpa, void *data),
1532 void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001533{
1534 struct kvm_memslots *slots;
1535 struct kvm_memory_slot *memslot;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001536 int ret = 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001537
1538 slots = kvm_memslots(kvm);
1539
1540 /* we only care about the pages that the guest sees */
1541 kvm_for_each_memslot(memslot, slots) {
1542 unsigned long hva_start, hva_end;
1543 gfn_t gfn, gfn_end;
1544
1545 hva_start = max(start, memslot->userspace_addr);
1546 hva_end = min(end, memslot->userspace_addr +
1547 (memslot->npages << PAGE_SHIFT));
1548 if (hva_start >= hva_end)
1549 continue;
1550
1551 /*
1552 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1553 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1554 */
1555 gfn = hva_to_gfn_memslot(hva_start, memslot);
1556 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1557
1558 for (; gfn < gfn_end; ++gfn) {
1559 gpa_t gpa = gfn << PAGE_SHIFT;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001560 ret |= handler(kvm, gpa, data);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001561 }
1562 }
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001563
1564 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001565}
1566
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001567static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001568{
1569 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001570 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001571}
1572
1573int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1574{
1575 unsigned long end = hva + PAGE_SIZE;
1576
1577 if (!kvm->arch.pgd)
1578 return 0;
1579
1580 trace_kvm_unmap_hva(hva);
1581 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1582 return 0;
1583}
1584
1585int kvm_unmap_hva_range(struct kvm *kvm,
1586 unsigned long start, unsigned long end)
1587{
1588 if (!kvm->arch.pgd)
1589 return 0;
1590
1591 trace_kvm_unmap_hva_range(start, end);
1592 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1593 return 0;
1594}
1595
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001596static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001597{
1598 pte_t *pte = (pte_t *)data;
1599
Mario Smarduch15a49a42015-01-15 15:58:58 -08001600 /*
1601 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1602 * flag clear because MMU notifiers will have unmapped a huge PMD before
1603 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1604 * therefore stage2_set_pte() never needs to clear out a huge PMD
1605 * through this calling path.
1606 */
1607 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001608 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001609}
1610
1611
1612void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1613{
1614 unsigned long end = hva + PAGE_SIZE;
1615 pte_t stage2_pte;
1616
1617 if (!kvm->arch.pgd)
1618 return;
1619
1620 trace_kvm_set_spte_hva(hva);
1621 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1622 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1623}
1624
Marc Zyngier35307b92015-03-12 18:16:51 +00001625static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1626{
1627 pmd_t *pmd;
1628 pte_t *pte;
1629
1630 pmd = stage2_get_pmd(kvm, NULL, gpa);
1631 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1632 return 0;
1633
Catalin Marinas06485052016-04-13 17:57:37 +01001634 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1635 return stage2_pmdp_test_and_clear_young(pmd);
Marc Zyngier35307b92015-03-12 18:16:51 +00001636
1637 pte = pte_offset_kernel(pmd, gpa);
1638 if (pte_none(*pte))
1639 return 0;
1640
Catalin Marinas06485052016-04-13 17:57:37 +01001641 return stage2_ptep_test_and_clear_young(pte);
Marc Zyngier35307b92015-03-12 18:16:51 +00001642}
1643
1644static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1645{
1646 pmd_t *pmd;
1647 pte_t *pte;
1648
1649 pmd = stage2_get_pmd(kvm, NULL, gpa);
1650 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1651 return 0;
1652
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001653 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
Marc Zyngier35307b92015-03-12 18:16:51 +00001654 return pmd_young(*pmd);
1655
1656 pte = pte_offset_kernel(pmd, gpa);
1657 if (!pte_none(*pte)) /* Just a page... */
1658 return pte_young(*pte);
1659
1660 return 0;
1661}
1662
1663int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1664{
1665 trace_kvm_age_hva(start, end);
1666 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1667}
1668
1669int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1670{
1671 trace_kvm_test_age_hva(hva);
1672 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1673}
1674
Christoffer Dalld5d81842013-01-20 18:28:07 -05001675void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1676{
1677 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1678}
1679
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001680phys_addr_t kvm_mmu_get_httbr(void)
1681{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001682 if (__kvm_cpu_uses_extended_idmap())
1683 return virt_to_phys(merged_hyp_pgd);
1684 else
1685 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001686}
1687
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001688phys_addr_t kvm_get_idmap_vector(void)
1689{
1690 return hyp_idmap_vector;
1691}
1692
AKASHI Takahiro67f69192016-04-27 17:47:05 +01001693phys_addr_t kvm_get_idmap_start(void)
1694{
1695 return hyp_idmap_start;
1696}
1697
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001698static int kvm_map_idmap_text(pgd_t *pgd)
1699{
1700 int err;
1701
1702 /* Create the idmap in the boot page tables */
1703 err = __create_hyp_mappings(pgd,
1704 hyp_idmap_start, hyp_idmap_end,
1705 __phys_to_pfn(hyp_idmap_start),
1706 PAGE_HYP_EXEC);
1707 if (err)
1708 kvm_err("Failed to idmap %lx-%lx\n",
1709 hyp_idmap_start, hyp_idmap_end);
1710
1711 return err;
1712}
1713
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001714int kvm_mmu_init(void)
1715{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001716 int err;
1717
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001718 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1719 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1720 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001721
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001722 /*
1723 * We rely on the linker script to ensure at build time that the HYP
1724 * init code does not cross a page boundary.
1725 */
1726 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001727
Christoffer Dall38f791a2014-10-10 12:14:28 +02001728 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001729 if (!hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001730 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001731 err = -ENOMEM;
1732 goto out;
1733 }
1734
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001735 if (__kvm_cpu_uses_extended_idmap()) {
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001736 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1737 hyp_pgd_order);
1738 if (!boot_hyp_pgd) {
1739 kvm_err("Hyp boot PGD not allocated\n");
1740 err = -ENOMEM;
1741 goto out;
1742 }
1743
1744 err = kvm_map_idmap_text(boot_hyp_pgd);
1745 if (err)
1746 goto out;
1747
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001748 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1749 if (!merged_hyp_pgd) {
1750 kvm_err("Failed to allocate extra HYP pgd\n");
1751 goto out;
1752 }
1753 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1754 hyp_idmap_start);
Marc Zyngier0535a3e2016-06-30 18:40:43 +01001755 } else {
1756 err = kvm_map_idmap_text(hyp_pgd);
1757 if (err)
1758 goto out;
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001759 }
1760
Christoffer Dalld5d81842013-01-20 18:28:07 -05001761 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001762out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001763 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001764 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001765}
Eric Augerdf6ce242014-06-06 11:10:23 +02001766
1767void kvm_arch_commit_memory_region(struct kvm *kvm,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001768 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001769 const struct kvm_memory_slot *old,
Paolo Bonzinif36f3f22015-05-18 13:20:23 +02001770 const struct kvm_memory_slot *new,
Eric Augerdf6ce242014-06-06 11:10:23 +02001771 enum kvm_mr_change change)
1772{
Mario Smarduchc6473552015-01-15 15:58:56 -08001773 /*
1774 * At this point memslot has been committed and there is an
1775 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1776 * memory slot is write protected.
1777 */
1778 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1779 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001780}
1781
1782int kvm_arch_prepare_memory_region(struct kvm *kvm,
1783 struct kvm_memory_slot *memslot,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001784 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001785 enum kvm_mr_change change)
1786{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001787 hva_t hva = mem->userspace_addr;
1788 hva_t reg_end = hva + mem->memory_size;
1789 bool writable = !(mem->flags & KVM_MEM_READONLY);
1790 int ret = 0;
1791
Mario Smarduch15a49a42015-01-15 15:58:58 -08001792 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1793 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001794 return 0;
1795
1796 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001797 * Prevent userspace from creating a memory region outside of the IPA
1798 * space addressable by the KVM guest IPA space.
1799 */
1800 if (memslot->base_gfn + memslot->npages >=
1801 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1802 return -EFAULT;
1803
1804 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001805 * A memory region could potentially cover multiple VMAs, and any holes
1806 * between them, so iterate over all of them to find out if we can map
1807 * any of them right now.
1808 *
1809 * +--------------------------------------------+
1810 * +---------------+----------------+ +----------------+
1811 * | : VMA 1 | VMA 2 | | VMA 3 : |
1812 * +---------------+----------------+ +----------------+
1813 * | memory region |
1814 * +--------------------------------------------+
1815 */
1816 do {
1817 struct vm_area_struct *vma = find_vma(current->mm, hva);
1818 hva_t vm_start, vm_end;
1819
1820 if (!vma || vma->vm_start >= reg_end)
1821 break;
1822
1823 /*
1824 * Mapping a read-only VMA is only allowed if the
1825 * memory region is configured as read-only.
1826 */
1827 if (writable && !(vma->vm_flags & VM_WRITE)) {
1828 ret = -EPERM;
1829 break;
1830 }
1831
1832 /*
1833 * Take the intersection of this VMA with the memory region
1834 */
1835 vm_start = max(hva, vma->vm_start);
1836 vm_end = min(reg_end, vma->vm_end);
1837
1838 if (vma->vm_flags & VM_PFNMAP) {
1839 gpa_t gpa = mem->guest_phys_addr +
1840 (vm_start - mem->userspace_addr);
Marek Majtykaca09f022015-09-16 12:04:55 +02001841 phys_addr_t pa;
1842
1843 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1844 pa += vm_start - vma->vm_start;
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001845
Mario Smarduch15a49a42015-01-15 15:58:58 -08001846 /* IO region dirty page logging not allowed */
1847 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1848 return -EINVAL;
1849
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001850 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1851 vm_end - vm_start,
1852 writable);
1853 if (ret)
1854 break;
1855 }
1856 hva = vm_end;
1857 } while (hva < reg_end);
1858
Mario Smarduch15a49a42015-01-15 15:58:58 -08001859 if (change == KVM_MR_FLAGS_ONLY)
1860 return ret;
1861
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001862 spin_lock(&kvm->mmu_lock);
1863 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001864 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001865 else
1866 stage2_flush_memslot(kvm, memslot);
1867 spin_unlock(&kvm->mmu_lock);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001868 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001869}
1870
1871void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1872 struct kvm_memory_slot *dont)
1873{
1874}
1875
1876int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1877 unsigned long npages)
1878{
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001879 /*
1880 * Readonly memslots are not incoherent with the caches by definition,
1881 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1882 * that the guest may consider devices and hence map as uncached.
1883 * To prevent incoherency issues in these cases, tag all readonly
1884 * regions as incoherent.
1885 */
1886 if (slot->flags & KVM_MEM_READONLY)
1887 slot->flags |= KVM_MEMSLOT_INCOHERENT;
Eric Augerdf6ce242014-06-06 11:10:23 +02001888 return 0;
1889}
1890
Paolo Bonzini15f46012015-05-17 21:26:08 +02001891void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
Eric Augerdf6ce242014-06-06 11:10:23 +02001892{
1893}
1894
1895void kvm_arch_flush_shadow_all(struct kvm *kvm)
1896{
1897}
1898
1899void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1900 struct kvm_memory_slot *slot)
1901{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001902 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1903 phys_addr_t size = slot->npages << PAGE_SHIFT;
1904
1905 spin_lock(&kvm->mmu_lock);
1906 unmap_stage2_range(kvm, gpa, size);
1907 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001908}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001909
1910/*
1911 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1912 *
1913 * Main problems:
1914 * - S/W ops are local to a CPU (not broadcast)
1915 * - We have line migration behind our back (speculation)
1916 * - System caches don't support S/W at all (damn!)
1917 *
1918 * In the face of the above, the best we can do is to try and convert
1919 * S/W ops to VA ops. Because the guest is not allowed to infer the
1920 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1921 * which is a rather good thing for us.
1922 *
1923 * Also, it is only used when turning caches on/off ("The expected
1924 * usage of the cache maintenance instructions that operate by set/way
1925 * is associated with the cache maintenance instructions associated
1926 * with the powerdown and powerup of caches, if this is required by
1927 * the implementation.").
1928 *
1929 * We use the following policy:
1930 *
1931 * - If we trap a S/W operation, we enable VM trapping to detect
1932 * caches being turned on/off, and do a full clean.
1933 *
1934 * - We flush the caches on both caches being turned on and off.
1935 *
1936 * - Once the caches are enabled, we stop trapping VM ops.
1937 */
1938void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1939{
1940 unsigned long hcr = vcpu_get_hcr(vcpu);
1941
1942 /*
1943 * If this is the first time we do a S/W operation
1944 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1945 * VM trapping.
1946 *
1947 * Otherwise, rely on the VM trapping to wait for the MMU +
1948 * Caches to be turned off. At that point, we'll be able to
1949 * clean the caches again.
1950 */
1951 if (!(hcr & HCR_TVM)) {
1952 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1953 vcpu_has_cache_enabled(vcpu));
1954 stage2_flush_vm(vcpu->kvm);
1955 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1956 }
1957}
1958
1959void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1960{
1961 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1962
1963 /*
1964 * If switching the MMU+caches on, need to invalidate the caches.
1965 * If switching it off, need to clean the caches.
1966 * Clean + invalidate does the trick always.
1967 */
1968 if (now_enabled != was_enabled)
1969 stage2_flush_vm(vcpu->kvm);
1970
1971 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1972 if (now_enabled)
1973 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1974
1975 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1976}