blob: 42eefab3e8e1fbc4b898d9e7bd3f4ebd7e05b8a2 [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Marc Zyngier1e947ba2015-01-29 11:59:54 +000031#include <asm/virt.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050032
33#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050034
35extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36
Marc Zyngier5a677ce2013-04-12 19:12:06 +010037static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010038static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000039static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050040static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
Marc Zyngier5a677ce2013-04-12 19:12:06 +010042static unsigned long hyp_idmap_start;
43static unsigned long hyp_idmap_end;
44static phys_addr_t hyp_idmap_vector;
45
Suzuki K Poulose9163ee232016-03-22 17:01:21 +000046#define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
Christoffer Dall38f791a2014-10-10 12:14:28 +020047#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000048
Mario Smarduch15a49a42015-01-15 15:58:58 -080049#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
50#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
51
52static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53{
Mario Smarduch15a49a42015-01-15 15:58:58 -080054 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080055}
56
57/**
58 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59 * @kvm: pointer to kvm structure.
60 *
61 * Interface to HYP function to flush all VM TLB entries
62 */
63void kvm_flush_remote_tlbs(struct kvm *kvm)
64{
65 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080066}
Christoffer Dallad361f02012-11-01 17:14:45 +010067
Marc Zyngier48762762013-01-28 15:27:00 +000068static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050069{
Suzuki K Poulose8684e702016-03-22 17:14:25 +000070 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050071}
72
Marc Zyngier363ef892014-12-19 16:48:06 +000073/*
74 * D-Cache management functions. They take the page table entries by
75 * value, as they are flushing the cache using the kernel mapping (or
76 * kmap on 32bit).
77 */
78static void kvm_flush_dcache_pte(pte_t pte)
79{
80 __kvm_flush_dcache_pte(pte);
81}
82
83static void kvm_flush_dcache_pmd(pmd_t pmd)
84{
85 __kvm_flush_dcache_pmd(pmd);
86}
87
88static void kvm_flush_dcache_pud(pud_t pud)
89{
90 __kvm_flush_dcache_pud(pud);
91}
92
Ard Biesheuvele6fab542015-11-10 15:11:20 +010093static bool kvm_is_device_pfn(unsigned long pfn)
94{
95 return !pfn_valid(pfn);
96}
97
Mario Smarduch15a49a42015-01-15 15:58:58 -080098/**
99 * stage2_dissolve_pmd() - clear and flush huge PMD entry
100 * @kvm: pointer to kvm structure.
101 * @addr: IPA
102 * @pmd: pmd pointer for IPA
103 *
104 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105 * pages in the range dirty.
106 */
107static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108{
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000109 if (!pmd_thp_or_huge(*pmd))
Mario Smarduch15a49a42015-01-15 15:58:58 -0800110 return;
111
112 pmd_clear(pmd);
113 kvm_tlb_flush_vmid_ipa(kvm, addr);
114 put_page(virt_to_page(pmd));
115}
116
Christoffer Dalld5d81842013-01-20 18:28:07 -0500117static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118 int min, int max)
119{
120 void *page;
121
122 BUG_ON(max > KVM_NR_MEM_OBJS);
123 if (cache->nobjs >= min)
124 return 0;
125 while (cache->nobjs < max) {
126 page = (void *)__get_free_page(PGALLOC_GFP);
127 if (!page)
128 return -ENOMEM;
129 cache->objects[cache->nobjs++] = page;
130 }
131 return 0;
132}
133
134static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135{
136 while (mc->nobjs)
137 free_page((unsigned long)mc->objects[--mc->nobjs]);
138}
139
140static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141{
142 void *p;
143
144 BUG_ON(!mc || !mc->nobjs);
145 p = mc->objects[--mc->nobjs];
146 return p;
147}
148
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000149static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100150{
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000151 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152 stage2_pgd_clear(pgd);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200153 kvm_tlb_flush_vmid_ipa(kvm, addr);
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000154 stage2_pud_free(pud_table);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200155 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100156}
157
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000158static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500159{
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000160 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161 VM_BUG_ON(stage2_pud_huge(*pud));
162 stage2_pud_clear(pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200163 kvm_tlb_flush_vmid_ipa(kvm, addr);
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000164 stage2_pmd_free(pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100165 put_page(virt_to_page(pud));
166}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500167
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000168static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100169{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200170 pte_t *pte_table = pte_offset_kernel(pmd, 0);
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000171 VM_BUG_ON(pmd_thp_or_huge(*pmd));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200172 pmd_clear(pmd);
173 kvm_tlb_flush_vmid_ipa(kvm, addr);
174 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100175 put_page(virt_to_page(pmd));
176}
177
Marc Zyngier363ef892014-12-19 16:48:06 +0000178/*
179 * Unmapping vs dcache management:
180 *
181 * If a guest maps certain memory pages as uncached, all writes will
182 * bypass the data cache and go directly to RAM. However, the CPUs
183 * can still speculate reads (not writes) and fill cache lines with
184 * data.
185 *
186 * Those cache lines will be *clean* cache lines though, so a
187 * clean+invalidate operation is equivalent to an invalidate
188 * operation, because no cache lines are marked dirty.
189 *
190 * Those clean cache lines could be filled prior to an uncached write
191 * by the guest, and the cache coherent IO subsystem would therefore
192 * end up writing old data to disk.
193 *
194 * This is why right after unmapping a page/section and invalidating
195 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196 * the IO subsystem will never hit in the cache.
197 */
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000198static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200199 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100200{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200201 phys_addr_t start_addr = addr;
202 pte_t *pte, *start_pte;
203
204 start_pte = pte = pte_offset_kernel(pmd, addr);
205 do {
206 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000207 pte_t old_pte = *pte;
208
Christoffer Dall4f853a72014-05-09 23:31:31 +0200209 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200210 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000211
212 /* No need to invalidate the cache for device mappings */
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100213 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000214 kvm_flush_dcache_pte(old_pte);
215
216 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200217 }
218 } while (pte++, addr += PAGE_SIZE, addr != end);
219
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000220 if (stage2_pte_table_empty(start_pte))
221 clear_stage2_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500222}
223
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000224static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200225 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500226{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200227 phys_addr_t next, start_addr = addr;
228 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000229
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000230 start_pmd = pmd = stage2_pmd_offset(pud, addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200231 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000232 next = stage2_pmd_addr_end(addr, end);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200233 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000234 if (pmd_thp_or_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000235 pmd_t old_pmd = *pmd;
236
Christoffer Dall4f853a72014-05-09 23:31:31 +0200237 pmd_clear(pmd);
238 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000239
240 kvm_flush_dcache_pmd(old_pmd);
241
Christoffer Dall4f853a72014-05-09 23:31:31 +0200242 put_page(virt_to_page(pmd));
243 } else {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000244 unmap_stage2_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100245 }
246 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200247 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100248
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000249 if (stage2_pmd_table_empty(start_pmd))
250 clear_stage2_pud_entry(kvm, pud, start_addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200251}
252
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000253static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
Christoffer Dall4f853a72014-05-09 23:31:31 +0200254 phys_addr_t addr, phys_addr_t end)
255{
256 phys_addr_t next, start_addr = addr;
257 pud_t *pud, *start_pud;
258
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000259 start_pud = pud = stage2_pud_offset(pgd, addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200260 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000261 next = stage2_pud_addr_end(addr, end);
262 if (!stage2_pud_none(*pud)) {
263 if (stage2_pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000264 pud_t old_pud = *pud;
265
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000266 stage2_pud_clear(pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200267 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000268 kvm_flush_dcache_pud(old_pud);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200269 put_page(virt_to_page(pud));
270 } else {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000271 unmap_stage2_pmds(kvm, pud, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200272 }
273 }
274 } while (pud++, addr = next, addr != end);
275
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000276 if (stage2_pud_table_empty(start_pud))
277 clear_stage2_pgd_entry(kvm, pgd, start_addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200278}
279
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000280/**
281 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282 * @kvm: The VM pointer
283 * @start: The intermediate physical base address of the range to unmap
284 * @size: The size of the area to unmap
285 *
286 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
287 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288 * destroying the VM), otherwise another faulting VCPU may come in and mess
289 * with things behind our backs.
290 */
291static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
Christoffer Dall4f853a72014-05-09 23:31:31 +0200292{
293 pgd_t *pgd;
294 phys_addr_t addr = start, end = start + size;
295 phys_addr_t next;
296
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000297 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200298 do {
Suzuki K Poulose7a1c8312016-03-23 12:08:02 +0000299 next = stage2_pgd_addr_end(addr, end);
300 if (!stage2_pgd_none(*pgd))
301 unmap_stage2_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200302 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000303}
304
Marc Zyngier9d218a12014-01-15 12:50:23 +0000305static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
306 phys_addr_t addr, phys_addr_t end)
307{
308 pte_t *pte;
309
310 pte = pte_offset_kernel(pmd, addr);
311 do {
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100312 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000313 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000314 } while (pte++, addr += PAGE_SIZE, addr != end);
315}
316
317static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
318 phys_addr_t addr, phys_addr_t end)
319{
320 pmd_t *pmd;
321 phys_addr_t next;
322
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000323 pmd = stage2_pmd_offset(pud, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000324 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000325 next = stage2_pmd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000326 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000327 if (pmd_thp_or_huge(*pmd))
Marc Zyngier363ef892014-12-19 16:48:06 +0000328 kvm_flush_dcache_pmd(*pmd);
329 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000330 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000331 }
332 } while (pmd++, addr = next, addr != end);
333}
334
335static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
336 phys_addr_t addr, phys_addr_t end)
337{
338 pud_t *pud;
339 phys_addr_t next;
340
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000341 pud = stage2_pud_offset(pgd, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000342 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000343 next = stage2_pud_addr_end(addr, end);
344 if (!stage2_pud_none(*pud)) {
345 if (stage2_pud_huge(*pud))
Marc Zyngier363ef892014-12-19 16:48:06 +0000346 kvm_flush_dcache_pud(*pud);
347 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000348 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000349 }
350 } while (pud++, addr = next, addr != end);
351}
352
353static void stage2_flush_memslot(struct kvm *kvm,
354 struct kvm_memory_slot *memslot)
355{
356 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
357 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
358 phys_addr_t next;
359 pgd_t *pgd;
360
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000361 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000362 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000363 next = stage2_pgd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000364 stage2_flush_puds(kvm, pgd, addr, next);
365 } while (pgd++, addr = next, addr != end);
366}
367
368/**
369 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
370 * @kvm: The struct kvm pointer
371 *
372 * Go through the stage 2 page tables and invalidate any cache lines
373 * backing memory already mapped to the VM.
374 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000375static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000376{
377 struct kvm_memslots *slots;
378 struct kvm_memory_slot *memslot;
379 int idx;
380
381 idx = srcu_read_lock(&kvm->srcu);
382 spin_lock(&kvm->mmu_lock);
383
384 slots = kvm_memslots(kvm);
385 kvm_for_each_memslot(memslot, slots)
386 stage2_flush_memslot(kvm, memslot);
387
388 spin_unlock(&kvm->mmu_lock);
389 srcu_read_unlock(&kvm->srcu, idx);
390}
391
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000392static void clear_hyp_pgd_entry(pgd_t *pgd)
393{
394 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
395 pgd_clear(pgd);
396 pud_free(NULL, pud_table);
397 put_page(virt_to_page(pgd));
398}
399
400static void clear_hyp_pud_entry(pud_t *pud)
401{
402 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
403 VM_BUG_ON(pud_huge(*pud));
404 pud_clear(pud);
405 pmd_free(NULL, pmd_table);
406 put_page(virt_to_page(pud));
407}
408
409static void clear_hyp_pmd_entry(pmd_t *pmd)
410{
411 pte_t *pte_table = pte_offset_kernel(pmd, 0);
412 VM_BUG_ON(pmd_thp_or_huge(*pmd));
413 pmd_clear(pmd);
414 pte_free_kernel(NULL, pte_table);
415 put_page(virt_to_page(pmd));
416}
417
418static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
419{
420 pte_t *pte, *start_pte;
421
422 start_pte = pte = pte_offset_kernel(pmd, addr);
423 do {
424 if (!pte_none(*pte)) {
425 kvm_set_pte(pte, __pte(0));
426 put_page(virt_to_page(pte));
427 }
428 } while (pte++, addr += PAGE_SIZE, addr != end);
429
430 if (hyp_pte_table_empty(start_pte))
431 clear_hyp_pmd_entry(pmd);
432}
433
434static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
435{
436 phys_addr_t next;
437 pmd_t *pmd, *start_pmd;
438
439 start_pmd = pmd = pmd_offset(pud, addr);
440 do {
441 next = pmd_addr_end(addr, end);
442 /* Hyp doesn't use huge pmds */
443 if (!pmd_none(*pmd))
444 unmap_hyp_ptes(pmd, addr, next);
445 } while (pmd++, addr = next, addr != end);
446
447 if (hyp_pmd_table_empty(start_pmd))
448 clear_hyp_pud_entry(pud);
449}
450
451static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
452{
453 phys_addr_t next;
454 pud_t *pud, *start_pud;
455
456 start_pud = pud = pud_offset(pgd, addr);
457 do {
458 next = pud_addr_end(addr, end);
459 /* Hyp doesn't use huge puds */
460 if (!pud_none(*pud))
461 unmap_hyp_pmds(pud, addr, next);
462 } while (pud++, addr = next, addr != end);
463
464 if (hyp_pud_table_empty(start_pud))
465 clear_hyp_pgd_entry(pgd);
466}
467
468static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
469{
470 pgd_t *pgd;
471 phys_addr_t addr = start, end = start + size;
472 phys_addr_t next;
473
474 /*
475 * We don't unmap anything from HYP, except at the hyp tear down.
476 * Hence, we don't have to invalidate the TLBs here.
477 */
478 pgd = pgdp + pgd_index(addr);
479 do {
480 next = pgd_addr_end(addr, end);
481 if (!pgd_none(*pgd))
482 unmap_hyp_puds(pgd, addr, next);
483 } while (pgd++, addr = next, addr != end);
484}
485
Marc Zyngier000d3992013-03-05 02:43:17 +0000486/**
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100487 * free_boot_hyp_pgd - free HYP boot page tables
488 *
489 * Free the HYP boot page tables. The bounce page is also freed.
490 */
491void free_boot_hyp_pgd(void)
492{
493 mutex_lock(&kvm_hyp_pgd_mutex);
494
495 if (boot_hyp_pgd) {
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000496 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
497 unmap_hyp_range(boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200498 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100499 boot_hyp_pgd = NULL;
500 }
501
502 if (hyp_pgd)
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000503 unmap_hyp_range(hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100504
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100505 mutex_unlock(&kvm_hyp_pgd_mutex);
506}
507
508/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100509 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000510 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100511 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
512 * therefore contains either mappings in the kernel memory area (above
513 * PAGE_OFFSET), or device mappings in the vmalloc range (from
514 * VMALLOC_START to VMALLOC_END).
515 *
516 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000517 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100518void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000519{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500520 unsigned long addr;
521
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100522 free_boot_hyp_pgd();
Marc Zyngier4f728272013-04-12 19:12:05 +0100523
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100524 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100525
Marc Zyngier4f728272013-04-12 19:12:05 +0100526 if (hyp_pgd) {
527 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000528 unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100529 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Suzuki K Poulose64f32492016-03-22 18:56:21 +0000530 unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100531
Christoffer Dall38f791a2014-10-10 12:14:28 +0200532 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100533 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100534 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000535 if (merged_hyp_pgd) {
536 clear_page(merged_hyp_pgd);
537 free_page((unsigned long)merged_hyp_pgd);
538 merged_hyp_pgd = NULL;
539 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100540
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500541 mutex_unlock(&kvm_hyp_pgd_mutex);
542}
543
544static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100545 unsigned long end, unsigned long pfn,
546 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500547{
548 pte_t *pte;
549 unsigned long addr;
550
Marc Zyngier3562c762013-04-12 19:12:02 +0100551 addr = start;
552 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100553 pte = pte_offset_kernel(pmd, addr);
554 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100555 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100556 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100557 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100558 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500559}
560
561static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100562 unsigned long end, unsigned long pfn,
563 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500564{
565 pmd_t *pmd;
566 pte_t *pte;
567 unsigned long addr, next;
568
Marc Zyngier3562c762013-04-12 19:12:02 +0100569 addr = start;
570 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100571 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500572
573 BUG_ON(pmd_sect(*pmd));
574
575 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100576 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500577 if (!pte) {
578 kvm_err("Cannot allocate Hyp pte\n");
579 return -ENOMEM;
580 }
581 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100582 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100583 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500584 }
585
586 next = pmd_addr_end(addr, end);
587
Marc Zyngier6060df82013-04-12 19:12:01 +0100588 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
589 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100590 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500591
592 return 0;
593}
594
Christoffer Dall38f791a2014-10-10 12:14:28 +0200595static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
596 unsigned long end, unsigned long pfn,
597 pgprot_t prot)
598{
599 pud_t *pud;
600 pmd_t *pmd;
601 unsigned long addr, next;
602 int ret;
603
604 addr = start;
605 do {
606 pud = pud_offset(pgd, addr);
607
608 if (pud_none_or_clear_bad(pud)) {
609 pmd = pmd_alloc_one(NULL, addr);
610 if (!pmd) {
611 kvm_err("Cannot allocate Hyp pmd\n");
612 return -ENOMEM;
613 }
614 pud_populate(NULL, pud, pmd);
615 get_page(virt_to_page(pud));
616 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
617 }
618
619 next = pud_addr_end(addr, end);
620 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
621 if (ret)
622 return ret;
623 pfn += (next - addr) >> PAGE_SHIFT;
624 } while (addr = next, addr != end);
625
626 return 0;
627}
628
Marc Zyngier6060df82013-04-12 19:12:01 +0100629static int __create_hyp_mappings(pgd_t *pgdp,
630 unsigned long start, unsigned long end,
631 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500632{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500633 pgd_t *pgd;
634 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500635 unsigned long addr, next;
636 int err = 0;
637
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500638 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100639 addr = start & PAGE_MASK;
640 end = PAGE_ALIGN(end);
641 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100642 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500643
Christoffer Dall38f791a2014-10-10 12:14:28 +0200644 if (pgd_none(*pgd)) {
645 pud = pud_alloc_one(NULL, addr);
646 if (!pud) {
647 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500648 err = -ENOMEM;
649 goto out;
650 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200651 pgd_populate(NULL, pgd, pud);
652 get_page(virt_to_page(pgd));
653 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500654 }
655
656 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200657 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500658 if (err)
659 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100660 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100661 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500662out:
663 mutex_unlock(&kvm_hyp_pgd_mutex);
664 return err;
665}
666
Christoffer Dall40c27292013-11-15 13:14:12 -0800667static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
668{
669 if (!is_vmalloc_addr(kaddr)) {
670 BUG_ON(!virt_addr_valid(kaddr));
671 return __pa(kaddr);
672 } else {
673 return page_to_phys(vmalloc_to_page(kaddr)) +
674 offset_in_page(kaddr);
675 }
676}
677
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500678/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100679 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500680 * @from: The virtual kernel start address of the range
681 * @to: The virtual kernel end address of the range (exclusive)
682 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100683 * The same virtual address as the kernel virtual address is also used
684 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
685 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500686 */
687int create_hyp_mappings(void *from, void *to)
688{
Christoffer Dall40c27292013-11-15 13:14:12 -0800689 phys_addr_t phys_addr;
690 unsigned long virt_addr;
Marc Zyngier6060df82013-04-12 19:12:01 +0100691 unsigned long start = KERN_TO_HYP((unsigned long)from);
692 unsigned long end = KERN_TO_HYP((unsigned long)to);
693
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000694 if (is_kernel_in_hyp_mode())
695 return 0;
696
Christoffer Dall40c27292013-11-15 13:14:12 -0800697 start = start & PAGE_MASK;
698 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100699
Christoffer Dall40c27292013-11-15 13:14:12 -0800700 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
701 int err;
702
703 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
704 err = __create_hyp_mappings(hyp_pgd, virt_addr,
705 virt_addr + PAGE_SIZE,
706 __phys_to_pfn(phys_addr),
707 PAGE_HYP);
708 if (err)
709 return err;
710 }
711
712 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500713}
714
715/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100716 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
717 * @from: The kernel start VA of the range
718 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100719 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100720 *
721 * The resulting HYP VA is the same as the kernel VA, modulo
722 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500723 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100724int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500725{
Marc Zyngier6060df82013-04-12 19:12:01 +0100726 unsigned long start = KERN_TO_HYP((unsigned long)from);
727 unsigned long end = KERN_TO_HYP((unsigned long)to);
728
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000729 if (is_kernel_in_hyp_mode())
730 return 0;
731
Marc Zyngier6060df82013-04-12 19:12:01 +0100732 /* Check for a valid kernel IO mapping */
733 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
734 return -EINVAL;
735
736 return __create_hyp_mappings(hyp_pgd, start, end,
737 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500738}
739
Christoffer Dalld5d81842013-01-20 18:28:07 -0500740/**
741 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
742 * @kvm: The KVM struct pointer for the VM.
743 *
Vladimir Murzin9d4dc6882015-11-16 11:28:16 +0000744 * Allocates only the stage-2 HW PGD level table(s) (can support either full
745 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
746 * allocated pages.
Christoffer Dalld5d81842013-01-20 18:28:07 -0500747 *
748 * Note we don't need locking here as this is only called when the VM is
749 * created, which can only be done once.
750 */
751int kvm_alloc_stage2_pgd(struct kvm *kvm)
752{
753 pgd_t *pgd;
754
755 if (kvm->arch.pgd != NULL) {
756 kvm_err("kvm_arch already initialized?\n");
757 return -EINVAL;
758 }
759
Suzuki K Poulose9163ee232016-03-22 17:01:21 +0000760 /* Allocate the HW PGD, making sure that each page gets its own refcount */
761 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
762 if (!pgd)
Marc Zyngiera9873702015-03-10 19:06:59 +0000763 return -ENOMEM;
764
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100765 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500766 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500767 return 0;
768}
769
Christoffer Dall957db102014-11-27 10:35:03 +0100770static void stage2_unmap_memslot(struct kvm *kvm,
771 struct kvm_memory_slot *memslot)
772{
773 hva_t hva = memslot->userspace_addr;
774 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
775 phys_addr_t size = PAGE_SIZE * memslot->npages;
776 hva_t reg_end = hva + size;
777
778 /*
779 * A memory region could potentially cover multiple VMAs, and any holes
780 * between them, so iterate over all of them to find out if we should
781 * unmap any of them.
782 *
783 * +--------------------------------------------+
784 * +---------------+----------------+ +----------------+
785 * | : VMA 1 | VMA 2 | | VMA 3 : |
786 * +---------------+----------------+ +----------------+
787 * | memory region |
788 * +--------------------------------------------+
789 */
790 do {
791 struct vm_area_struct *vma = find_vma(current->mm, hva);
792 hva_t vm_start, vm_end;
793
794 if (!vma || vma->vm_start >= reg_end)
795 break;
796
797 /*
798 * Take the intersection of this VMA with the memory region
799 */
800 vm_start = max(hva, vma->vm_start);
801 vm_end = min(reg_end, vma->vm_end);
802
803 if (!(vma->vm_flags & VM_PFNMAP)) {
804 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
805 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
806 }
807 hva = vm_end;
808 } while (hva < reg_end);
809}
810
811/**
812 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
813 * @kvm: The struct kvm pointer
814 *
815 * Go through the memregions and unmap any reguler RAM
816 * backing memory already mapped to the VM.
817 */
818void stage2_unmap_vm(struct kvm *kvm)
819{
820 struct kvm_memslots *slots;
821 struct kvm_memory_slot *memslot;
822 int idx;
823
824 idx = srcu_read_lock(&kvm->srcu);
825 spin_lock(&kvm->mmu_lock);
826
827 slots = kvm_memslots(kvm);
828 kvm_for_each_memslot(memslot, slots)
829 stage2_unmap_memslot(kvm, memslot);
830
831 spin_unlock(&kvm->mmu_lock);
832 srcu_read_unlock(&kvm->srcu, idx);
833}
834
Christoffer Dalld5d81842013-01-20 18:28:07 -0500835/**
836 * kvm_free_stage2_pgd - free all stage-2 tables
837 * @kvm: The KVM struct pointer for the VM.
838 *
839 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
840 * underlying level-2 and level-3 tables before freeing the actual level-1 table
841 * and setting the struct pointer to NULL.
842 *
843 * Note we don't need locking here as this is only called when the VM is
844 * destroyed, which can only be done once.
845 */
846void kvm_free_stage2_pgd(struct kvm *kvm)
847{
848 if (kvm->arch.pgd == NULL)
849 return;
850
851 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Suzuki K Poulose9163ee232016-03-22 17:01:21 +0000852 /* Free the HW pgd, one page at a time */
853 free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500854 kvm->arch.pgd = NULL;
855}
856
Christoffer Dall38f791a2014-10-10 12:14:28 +0200857static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858 phys_addr_t addr)
859{
860 pgd_t *pgd;
861 pud_t *pud;
862
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000863 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
864 if (WARN_ON(stage2_pgd_none(*pgd))) {
Christoffer Dall38f791a2014-10-10 12:14:28 +0200865 if (!cache)
866 return NULL;
867 pud = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000868 stage2_pgd_populate(pgd, pud);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200869 get_page(virt_to_page(pgd));
870 }
871
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000872 return stage2_pud_offset(pgd, addr);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200873}
874
Christoffer Dallad361f02012-11-01 17:14:45 +0100875static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
876 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500877{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500878 pud_t *pud;
879 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500880
Christoffer Dall38f791a2014-10-10 12:14:28 +0200881 pud = stage2_get_pud(kvm, cache, addr);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000882 if (stage2_pud_none(*pud)) {
Christoffer Dalld5d81842013-01-20 18:28:07 -0500883 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100884 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500885 pmd = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000886 stage2_pud_populate(pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500887 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100888 }
889
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000890 return stage2_pmd_offset(pud, addr);
Christoffer Dallad361f02012-11-01 17:14:45 +0100891}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500892
Christoffer Dallad361f02012-11-01 17:14:45 +0100893static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
894 *cache, phys_addr_t addr, const pmd_t *new_pmd)
895{
896 pmd_t *pmd, old_pmd;
897
898 pmd = stage2_get_pmd(kvm, cache, addr);
899 VM_BUG_ON(!pmd);
900
901 /*
902 * Mapping in huge pages should only happen through a fault. If a
903 * page is merged into a transparent huge page, the individual
904 * subpages of that huge page should be unmapped through MMU
905 * notifiers before we get here.
906 *
907 * Merging of CompoundPages is not supported; they should become
908 * splitting first, unmapped, merged, and mapped back in on-demand.
909 */
910 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
911
912 old_pmd = *pmd;
913 kvm_set_pmd(pmd, *new_pmd);
914 if (pmd_present(old_pmd))
915 kvm_tlb_flush_vmid_ipa(kvm, addr);
916 else
917 get_page(virt_to_page(pmd));
918 return 0;
919}
920
921static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800922 phys_addr_t addr, const pte_t *new_pte,
923 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100924{
925 pmd_t *pmd;
926 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800927 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
928 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
929
930 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100931
Christoffer Dall38f791a2014-10-10 12:14:28 +0200932 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100933 pmd = stage2_get_pmd(kvm, cache, addr);
934 if (!pmd) {
935 /*
936 * Ignore calls from kvm_set_spte_hva for unallocated
937 * address ranges.
938 */
939 return 0;
940 }
941
Mario Smarduch15a49a42015-01-15 15:58:58 -0800942 /*
943 * While dirty page logging - dissolve huge PMD, then continue on to
944 * allocate page.
945 */
946 if (logging_active)
947 stage2_dissolve_pmd(kvm, addr, pmd);
948
Christoffer Dallad361f02012-11-01 17:14:45 +0100949 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500950 if (pmd_none(*pmd)) {
951 if (!cache)
952 return 0; /* ignore calls from kvm_set_spte_hva */
953 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100954 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500955 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500956 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100957 }
958
959 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500960
961 if (iomap && pte_present(*pte))
962 return -EFAULT;
963
964 /* Create 2nd stage page table mapping - Level 3 */
965 old_pte = *pte;
966 kvm_set_pte(pte, *new_pte);
967 if (pte_present(old_pte))
Marc Zyngier48762762013-01-28 15:27:00 +0000968 kvm_tlb_flush_vmid_ipa(kvm, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500969 else
970 get_page(virt_to_page(pte));
971
972 return 0;
973}
974
975/**
976 * kvm_phys_addr_ioremap - map a device range to guest IPA
977 *
978 * @kvm: The KVM pointer
979 * @guest_ipa: The IPA at which to insert the mapping
980 * @pa: The physical address of the device
981 * @size: The size of the mapping
982 */
983int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700984 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500985{
986 phys_addr_t addr, end;
987 int ret = 0;
988 unsigned long pfn;
989 struct kvm_mmu_memory_cache cache = { 0, };
990
991 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
992 pfn = __phys_to_pfn(pa);
993
994 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100995 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500996
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700997 if (writable)
998 kvm_set_s2pte_writable(&pte);
999
Christoffer Dall38f791a2014-10-10 12:14:28 +02001000 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1001 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001002 if (ret)
1003 goto out;
1004 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001005 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1006 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001007 spin_unlock(&kvm->mmu_lock);
1008 if (ret)
1009 goto out;
1010
1011 pfn++;
1012 }
1013
1014out:
1015 mmu_free_memory_cache(&cache);
1016 return ret;
1017}
1018
Dan Williamsba049e92016-01-15 16:56:11 -08001019static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001020{
Dan Williamsba049e92016-01-15 16:56:11 -08001021 kvm_pfn_t pfn = *pfnp;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001022 gfn_t gfn = *ipap >> PAGE_SHIFT;
1023
1024 if (PageTransCompound(pfn_to_page(pfn))) {
1025 unsigned long mask;
1026 /*
1027 * The address we faulted on is backed by a transparent huge
1028 * page. However, because we map the compound huge page and
1029 * not the individual tail page, we need to transfer the
1030 * refcount to the head page. We have to be careful that the
1031 * THP doesn't start to split while we are adjusting the
1032 * refcounts.
1033 *
1034 * We are sure this doesn't happen, because mmu_notifier_retry
1035 * was successful and we are holding the mmu_lock, so if this
1036 * THP is trying to split, it will be blocked in the mmu
1037 * notifier before touching any of the pages, specifically
1038 * before being able to call __split_huge_page_refcount().
1039 *
1040 * We can therefore safely transfer the refcount from PG_tail
1041 * to PG_head and switch the pfn from a tail page to the head
1042 * page accordingly.
1043 */
1044 mask = PTRS_PER_PMD - 1;
1045 VM_BUG_ON((gfn & mask) != (pfn & mask));
1046 if (pfn & mask) {
1047 *ipap &= PMD_MASK;
1048 kvm_release_pfn_clean(pfn);
1049 pfn &= ~mask;
1050 kvm_get_pfn(pfn);
1051 *pfnp = pfn;
1052 }
1053
1054 return true;
1055 }
1056
1057 return false;
1058}
1059
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001060static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1061{
1062 if (kvm_vcpu_trap_is_iabt(vcpu))
1063 return false;
1064
1065 return kvm_vcpu_dabt_iswrite(vcpu);
1066}
1067
Mario Smarduchc6473552015-01-15 15:58:56 -08001068/**
1069 * stage2_wp_ptes - write protect PMD range
1070 * @pmd: pointer to pmd entry
1071 * @addr: range start address
1072 * @end: range end address
1073 */
1074static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1075{
1076 pte_t *pte;
1077
1078 pte = pte_offset_kernel(pmd, addr);
1079 do {
1080 if (!pte_none(*pte)) {
1081 if (!kvm_s2pte_readonly(pte))
1082 kvm_set_s2pte_readonly(pte);
1083 }
1084 } while (pte++, addr += PAGE_SIZE, addr != end);
1085}
1086
1087/**
1088 * stage2_wp_pmds - write protect PUD range
1089 * @pud: pointer to pud entry
1090 * @addr: range start address
1091 * @end: range end address
1092 */
1093static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1094{
1095 pmd_t *pmd;
1096 phys_addr_t next;
1097
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001098 pmd = stage2_pmd_offset(pud, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001099
1100 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001101 next = stage2_pmd_addr_end(addr, end);
Mario Smarduchc6473552015-01-15 15:58:56 -08001102 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001103 if (pmd_thp_or_huge(*pmd)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001104 if (!kvm_s2pmd_readonly(pmd))
1105 kvm_set_s2pmd_readonly(pmd);
1106 } else {
1107 stage2_wp_ptes(pmd, addr, next);
1108 }
1109 }
1110 } while (pmd++, addr = next, addr != end);
1111}
1112
1113/**
1114 * stage2_wp_puds - write protect PGD range
1115 * @pgd: pointer to pgd entry
1116 * @addr: range start address
1117 * @end: range end address
1118 *
1119 * Process PUD entries, for a huge PUD we cause a panic.
1120 */
1121static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1122{
1123 pud_t *pud;
1124 phys_addr_t next;
1125
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001126 pud = stage2_pud_offset(pgd, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001127 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001128 next = stage2_pud_addr_end(addr, end);
1129 if (!stage2_pud_none(*pud)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001130 /* TODO:PUD not supported, revisit later if supported */
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001131 BUG_ON(stage2_pud_huge(*pud));
Mario Smarduchc6473552015-01-15 15:58:56 -08001132 stage2_wp_pmds(pud, addr, next);
1133 }
1134 } while (pud++, addr = next, addr != end);
1135}
1136
1137/**
1138 * stage2_wp_range() - write protect stage2 memory region range
1139 * @kvm: The KVM pointer
1140 * @addr: Start address of range
1141 * @end: End address of range
1142 */
1143static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1144{
1145 pgd_t *pgd;
1146 phys_addr_t next;
1147
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001148 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001149 do {
1150 /*
1151 * Release kvm_mmu_lock periodically if the memory region is
1152 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea812015-01-23 10:49:31 +01001153 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1154 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001155 * will also starve other vCPUs.
1156 */
1157 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1158 cond_resched_lock(&kvm->mmu_lock);
1159
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001160 next = stage2_pgd_addr_end(addr, end);
1161 if (stage2_pgd_present(*pgd))
Mario Smarduchc6473552015-01-15 15:58:56 -08001162 stage2_wp_puds(pgd, addr, next);
1163 } while (pgd++, addr = next, addr != end);
1164}
1165
1166/**
1167 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1168 * @kvm: The KVM pointer
1169 * @slot: The memory slot to write protect
1170 *
1171 * Called to start logging dirty pages after memory region
1172 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1173 * all present PMD and PTEs are write protected in the memory region.
1174 * Afterwards read of dirty page log can be called.
1175 *
1176 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1177 * serializing operations for VM memory regions.
1178 */
1179void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1180{
Paolo Bonzini9f6b8022015-05-17 16:20:07 +02001181 struct kvm_memslots *slots = kvm_memslots(kvm);
1182 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
Mario Smarduchc6473552015-01-15 15:58:56 -08001183 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1184 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1185
1186 spin_lock(&kvm->mmu_lock);
1187 stage2_wp_range(kvm, start, end);
1188 spin_unlock(&kvm->mmu_lock);
1189 kvm_flush_remote_tlbs(kvm);
1190}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001191
1192/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001193 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001194 * @kvm: The KVM pointer
1195 * @slot: The memory slot associated with mask
1196 * @gfn_offset: The gfn offset in memory slot
1197 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1198 * slot to be write protected
1199 *
1200 * Walks bits set in mask write protects the associated pte's. Caller must
1201 * acquire kvm_mmu_lock.
1202 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001203static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001204 struct kvm_memory_slot *slot,
1205 gfn_t gfn_offset, unsigned long mask)
1206{
1207 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1208 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1209 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1210
1211 stage2_wp_range(kvm, start, end);
1212}
Mario Smarduchc6473552015-01-15 15:58:56 -08001213
Kai Huang3b0f1d02015-01-28 10:54:23 +08001214/*
1215 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1216 * dirty pages.
1217 *
1218 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1219 * enable dirty logging for them.
1220 */
1221void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1222 struct kvm_memory_slot *slot,
1223 gfn_t gfn_offset, unsigned long mask)
1224{
1225 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1226}
1227
Dan Williamsba049e92016-01-15 16:56:11 -08001228static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001229 unsigned long size, bool uncached)
1230{
1231 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1232}
1233
Christoffer Dall94f8e642013-01-20 18:28:12 -05001234static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001235 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001236 unsigned long fault_status)
1237{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001238 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001239 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001240 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001241 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001242 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001243 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001244 struct vm_area_struct *vma;
Dan Williamsba049e92016-01-15 16:56:11 -08001245 kvm_pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001246 pgprot_t mem_type = PAGE_S2;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001247 bool fault_ipa_uncached;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001248 bool logging_active = memslot_is_logging(memslot);
1249 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001250
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001251 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001252 if (fault_status == FSC_PERM && !write_fault) {
1253 kvm_err("Unexpected L2 read permission error\n");
1254 return -EFAULT;
1255 }
1256
Christoffer Dallad361f02012-11-01 17:14:45 +01001257 /* Let's check if we will get back a huge page backed by hugetlbfs */
1258 down_read(&current->mm->mmap_sem);
1259 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001260 if (unlikely(!vma)) {
1261 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1262 up_read(&current->mm->mmap_sem);
1263 return -EFAULT;
1264 }
1265
Mario Smarduch15a49a42015-01-15 15:58:58 -08001266 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001267 hugetlb = true;
1268 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001269 } else {
1270 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001271 * Pages belonging to memslots that don't have the same
1272 * alignment for userspace and IPA cannot be mapped using
1273 * block descriptors even if the pages belong to a THP for
1274 * the process, because the stage-2 block descriptor will
1275 * cover more than a single THP and we loose atomicity for
1276 * unmapping, updates, and splits of the THP or other pages
1277 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001278 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001279 if ((memslot->userspace_addr & ~PMD_MASK) !=
1280 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001281 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001282 }
1283 up_read(&current->mm->mmap_sem);
1284
Christoffer Dall94f8e642013-01-20 18:28:12 -05001285 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001286 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1287 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001288 if (ret)
1289 return ret;
1290
1291 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1292 /*
1293 * Ensure the read of mmu_notifier_seq happens before we call
1294 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1295 * the page we just got a reference to gets unmapped before we have a
1296 * chance to grab the mmu_lock, which ensure that if the page gets
1297 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1298 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1299 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1300 */
1301 smp_rmb();
1302
Christoffer Dallad361f02012-11-01 17:14:45 +01001303 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001304 if (is_error_pfn(pfn))
1305 return -EFAULT;
1306
Mario Smarduch15a49a42015-01-15 15:58:58 -08001307 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001308 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001309 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1310 } else if (logging_active) {
1311 /*
1312 * Faults on pages in a memslot with logging enabled
1313 * should not be mapped with huge pages (it introduces churn
1314 * and performance degradation), so force a pte mapping.
1315 */
1316 force_pte = true;
1317 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1318
1319 /*
1320 * Only actually map the page as writable if this was a write
1321 * fault.
1322 */
1323 if (!write_fault)
1324 writable = false;
1325 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001326
Christoffer Dallad361f02012-11-01 17:14:45 +01001327 spin_lock(&kvm->mmu_lock);
1328 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001329 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001330
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001331 if (!hugetlb && !force_pte)
1332 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001333
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001334 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001335
Christoffer Dallad361f02012-11-01 17:14:45 +01001336 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001337 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001338 new_pmd = pmd_mkhuge(new_pmd);
1339 if (writable) {
1340 kvm_set_s2pmd_writable(&new_pmd);
1341 kvm_set_pfn_dirty(pfn);
1342 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001343 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
Christoffer Dallad361f02012-11-01 17:14:45 +01001344 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1345 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001346 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001347
Christoffer Dallad361f02012-11-01 17:14:45 +01001348 if (writable) {
1349 kvm_set_s2pte_writable(&new_pte);
1350 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001351 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001352 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001353 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001354 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001355 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001356
Christoffer Dall94f8e642013-01-20 18:28:12 -05001357out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001358 spin_unlock(&kvm->mmu_lock);
Marc Zyngier35307b92015-03-12 18:16:51 +00001359 kvm_set_pfn_accessed(pfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001360 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001361 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001362}
1363
Marc Zyngieraeda9132015-03-12 18:16:52 +00001364/*
1365 * Resolve the access fault by making the page young again.
1366 * Note that because the faulting entry is guaranteed not to be
1367 * cached in the TLB, we don't need to invalidate anything.
1368 */
1369static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1370{
1371 pmd_t *pmd;
1372 pte_t *pte;
Dan Williamsba049e92016-01-15 16:56:11 -08001373 kvm_pfn_t pfn;
Marc Zyngieraeda9132015-03-12 18:16:52 +00001374 bool pfn_valid = false;
1375
1376 trace_kvm_access_fault(fault_ipa);
1377
1378 spin_lock(&vcpu->kvm->mmu_lock);
1379
1380 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1381 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1382 goto out;
1383
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001384 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
Marc Zyngieraeda9132015-03-12 18:16:52 +00001385 *pmd = pmd_mkyoung(*pmd);
1386 pfn = pmd_pfn(*pmd);
1387 pfn_valid = true;
1388 goto out;
1389 }
1390
1391 pte = pte_offset_kernel(pmd, fault_ipa);
1392 if (pte_none(*pte)) /* Nothing there either */
1393 goto out;
1394
1395 *pte = pte_mkyoung(*pte); /* Just a page... */
1396 pfn = pte_pfn(*pte);
1397 pfn_valid = true;
1398out:
1399 spin_unlock(&vcpu->kvm->mmu_lock);
1400 if (pfn_valid)
1401 kvm_set_pfn_accessed(pfn);
1402}
1403
Christoffer Dall94f8e642013-01-20 18:28:12 -05001404/**
1405 * kvm_handle_guest_abort - handles all 2nd stage aborts
1406 * @vcpu: the VCPU pointer
1407 * @run: the kvm_run structure
1408 *
1409 * Any abort that gets to the host is almost guaranteed to be caused by a
1410 * missing second stage translation table entry, which can mean that either the
1411 * guest simply needs more memory and we must allocate an appropriate page or it
1412 * can mean that the guest tried to access I/O memory, which is emulated by user
1413 * space. The distinction is based on the IPA causing the fault and whether this
1414 * memory region has been registered as standard RAM by user space.
1415 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001416int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1417{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001418 unsigned long fault_status;
1419 phys_addr_t fault_ipa;
1420 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001421 unsigned long hva;
1422 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001423 gfn_t gfn;
1424 int ret, idx;
1425
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001426 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +01001427 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001428
Marc Zyngier7393b592012-09-17 19:27:09 +01001429 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1430 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001431
1432 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001433 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Marc Zyngier35307b92015-03-12 18:16:51 +00001434 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1435 fault_status != FSC_ACCESS) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001436 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1437 kvm_vcpu_trap_get_class(vcpu),
1438 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1439 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001440 return -EFAULT;
1441 }
1442
1443 idx = srcu_read_lock(&vcpu->kvm->srcu);
1444
1445 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001446 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1447 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001448 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001449 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001450 if (is_iabt) {
1451 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001452 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001453 ret = 1;
1454 goto out_unlock;
1455 }
1456
Marc Zyngiercfe39502012-12-12 14:42:09 +00001457 /*
Marc Zyngier57c841f2016-01-29 15:01:28 +00001458 * Check for a cache maintenance operation. Since we
1459 * ended-up here, we know it is outside of any memory
1460 * slot. But we can't find out if that is for a device,
1461 * or if the guest is just being stupid. The only thing
1462 * we know for sure is that this range cannot be cached.
1463 *
1464 * So let's assume that the guest is just being
1465 * cautious, and skip the instruction.
1466 */
1467 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1468 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1469 ret = 1;
1470 goto out_unlock;
1471 }
1472
1473 /*
Marc Zyngiercfe39502012-12-12 14:42:09 +00001474 * The IPA is reported as [MAX:12], so we need to
1475 * complement it with the bottom 12 bits from the
1476 * faulting VA. This is always 12 bits, irrespective
1477 * of the page size.
1478 */
1479 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001480 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001481 goto out_unlock;
1482 }
1483
Christoffer Dallc3058d52014-10-10 12:14:29 +02001484 /* Userspace should not be able to register out-of-bounds IPAs */
1485 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1486
Marc Zyngieraeda9132015-03-12 18:16:52 +00001487 if (fault_status == FSC_ACCESS) {
1488 handle_access_fault(vcpu, fault_ipa);
1489 ret = 1;
1490 goto out_unlock;
1491 }
1492
Christoffer Dall98047882014-08-19 12:18:04 +02001493 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001494 if (ret == 0)
1495 ret = 1;
1496out_unlock:
1497 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1498 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001499}
1500
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001501static int handle_hva_to_gpa(struct kvm *kvm,
1502 unsigned long start,
1503 unsigned long end,
1504 int (*handler)(struct kvm *kvm,
1505 gpa_t gpa, void *data),
1506 void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001507{
1508 struct kvm_memslots *slots;
1509 struct kvm_memory_slot *memslot;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001510 int ret = 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001511
1512 slots = kvm_memslots(kvm);
1513
1514 /* we only care about the pages that the guest sees */
1515 kvm_for_each_memslot(memslot, slots) {
1516 unsigned long hva_start, hva_end;
1517 gfn_t gfn, gfn_end;
1518
1519 hva_start = max(start, memslot->userspace_addr);
1520 hva_end = min(end, memslot->userspace_addr +
1521 (memslot->npages << PAGE_SHIFT));
1522 if (hva_start >= hva_end)
1523 continue;
1524
1525 /*
1526 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1527 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1528 */
1529 gfn = hva_to_gfn_memslot(hva_start, memslot);
1530 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1531
1532 for (; gfn < gfn_end; ++gfn) {
1533 gpa_t gpa = gfn << PAGE_SHIFT;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001534 ret |= handler(kvm, gpa, data);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001535 }
1536 }
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001537
1538 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001539}
1540
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001541static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001542{
1543 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001544 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001545}
1546
1547int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1548{
1549 unsigned long end = hva + PAGE_SIZE;
1550
1551 if (!kvm->arch.pgd)
1552 return 0;
1553
1554 trace_kvm_unmap_hva(hva);
1555 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1556 return 0;
1557}
1558
1559int kvm_unmap_hva_range(struct kvm *kvm,
1560 unsigned long start, unsigned long end)
1561{
1562 if (!kvm->arch.pgd)
1563 return 0;
1564
1565 trace_kvm_unmap_hva_range(start, end);
1566 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1567 return 0;
1568}
1569
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001570static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001571{
1572 pte_t *pte = (pte_t *)data;
1573
Mario Smarduch15a49a42015-01-15 15:58:58 -08001574 /*
1575 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1576 * flag clear because MMU notifiers will have unmapped a huge PMD before
1577 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1578 * therefore stage2_set_pte() never needs to clear out a huge PMD
1579 * through this calling path.
1580 */
1581 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001582 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001583}
1584
1585
1586void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1587{
1588 unsigned long end = hva + PAGE_SIZE;
1589 pte_t stage2_pte;
1590
1591 if (!kvm->arch.pgd)
1592 return;
1593
1594 trace_kvm_set_spte_hva(hva);
1595 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1596 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1597}
1598
Marc Zyngier35307b92015-03-12 18:16:51 +00001599static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1600{
1601 pmd_t *pmd;
1602 pte_t *pte;
1603
1604 pmd = stage2_get_pmd(kvm, NULL, gpa);
1605 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1606 return 0;
1607
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001608 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
Marc Zyngier35307b92015-03-12 18:16:51 +00001609 if (pmd_young(*pmd)) {
1610 *pmd = pmd_mkold(*pmd);
1611 return 1;
1612 }
1613
1614 return 0;
1615 }
1616
1617 pte = pte_offset_kernel(pmd, gpa);
1618 if (pte_none(*pte))
1619 return 0;
1620
1621 if (pte_young(*pte)) {
1622 *pte = pte_mkold(*pte); /* Just a page... */
1623 return 1;
1624 }
1625
1626 return 0;
1627}
1628
1629static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1630{
1631 pmd_t *pmd;
1632 pte_t *pte;
1633
1634 pmd = stage2_get_pmd(kvm, NULL, gpa);
1635 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1636 return 0;
1637
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001638 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
Marc Zyngier35307b92015-03-12 18:16:51 +00001639 return pmd_young(*pmd);
1640
1641 pte = pte_offset_kernel(pmd, gpa);
1642 if (!pte_none(*pte)) /* Just a page... */
1643 return pte_young(*pte);
1644
1645 return 0;
1646}
1647
1648int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1649{
1650 trace_kvm_age_hva(start, end);
1651 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1652}
1653
1654int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1655{
1656 trace_kvm_test_age_hva(hva);
1657 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1658}
1659
Christoffer Dalld5d81842013-01-20 18:28:07 -05001660void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1661{
1662 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1663}
1664
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001665phys_addr_t kvm_mmu_get_httbr(void)
1666{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001667 if (__kvm_cpu_uses_extended_idmap())
1668 return virt_to_phys(merged_hyp_pgd);
1669 else
1670 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001671}
1672
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001673phys_addr_t kvm_mmu_get_boot_httbr(void)
1674{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001675 if (__kvm_cpu_uses_extended_idmap())
1676 return virt_to_phys(merged_hyp_pgd);
1677 else
1678 return virt_to_phys(boot_hyp_pgd);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001679}
1680
1681phys_addr_t kvm_get_idmap_vector(void)
1682{
1683 return hyp_idmap_vector;
1684}
1685
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001686int kvm_mmu_init(void)
1687{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001688 int err;
1689
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001690 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1691 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1692 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001693
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001694 /*
1695 * We rely on the linker script to ensure at build time that the HYP
1696 * init code does not cross a page boundary.
1697 */
1698 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001699
Christoffer Dall38f791a2014-10-10 12:14:28 +02001700 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1701 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Mark Salter5d4e08c2014-03-28 14:25:19 +00001702
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001703 if (!hyp_pgd || !boot_hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001704 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001705 err = -ENOMEM;
1706 goto out;
1707 }
1708
1709 /* Create the idmap in the boot page tables */
1710 err = __create_hyp_mappings(boot_hyp_pgd,
1711 hyp_idmap_start, hyp_idmap_end,
1712 __phys_to_pfn(hyp_idmap_start),
1713 PAGE_HYP);
1714
1715 if (err) {
1716 kvm_err("Failed to idmap %lx-%lx\n",
1717 hyp_idmap_start, hyp_idmap_end);
1718 goto out;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001719 }
1720
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001721 if (__kvm_cpu_uses_extended_idmap()) {
1722 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1723 if (!merged_hyp_pgd) {
1724 kvm_err("Failed to allocate extra HYP pgd\n");
1725 goto out;
1726 }
1727 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1728 hyp_idmap_start);
1729 return 0;
1730 }
1731
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001732 /* Map the very same page at the trampoline VA */
1733 err = __create_hyp_mappings(boot_hyp_pgd,
1734 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1735 __phys_to_pfn(hyp_idmap_start),
1736 PAGE_HYP);
1737 if (err) {
1738 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1739 TRAMPOLINE_VA);
1740 goto out;
1741 }
1742
1743 /* Map the same page again into the runtime page tables */
1744 err = __create_hyp_mappings(hyp_pgd,
1745 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1746 __phys_to_pfn(hyp_idmap_start),
1747 PAGE_HYP);
1748 if (err) {
1749 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1750 TRAMPOLINE_VA);
1751 goto out;
1752 }
1753
Christoffer Dalld5d81842013-01-20 18:28:07 -05001754 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001755out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001756 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001757 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001758}
Eric Augerdf6ce242014-06-06 11:10:23 +02001759
1760void kvm_arch_commit_memory_region(struct kvm *kvm,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001761 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001762 const struct kvm_memory_slot *old,
Paolo Bonzinif36f3f22015-05-18 13:20:23 +02001763 const struct kvm_memory_slot *new,
Eric Augerdf6ce242014-06-06 11:10:23 +02001764 enum kvm_mr_change change)
1765{
Mario Smarduchc6473552015-01-15 15:58:56 -08001766 /*
1767 * At this point memslot has been committed and there is an
1768 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1769 * memory slot is write protected.
1770 */
1771 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1772 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001773}
1774
1775int kvm_arch_prepare_memory_region(struct kvm *kvm,
1776 struct kvm_memory_slot *memslot,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001777 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001778 enum kvm_mr_change change)
1779{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001780 hva_t hva = mem->userspace_addr;
1781 hva_t reg_end = hva + mem->memory_size;
1782 bool writable = !(mem->flags & KVM_MEM_READONLY);
1783 int ret = 0;
1784
Mario Smarduch15a49a42015-01-15 15:58:58 -08001785 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1786 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001787 return 0;
1788
1789 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001790 * Prevent userspace from creating a memory region outside of the IPA
1791 * space addressable by the KVM guest IPA space.
1792 */
1793 if (memslot->base_gfn + memslot->npages >=
1794 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1795 return -EFAULT;
1796
1797 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001798 * A memory region could potentially cover multiple VMAs, and any holes
1799 * between them, so iterate over all of them to find out if we can map
1800 * any of them right now.
1801 *
1802 * +--------------------------------------------+
1803 * +---------------+----------------+ +----------------+
1804 * | : VMA 1 | VMA 2 | | VMA 3 : |
1805 * +---------------+----------------+ +----------------+
1806 * | memory region |
1807 * +--------------------------------------------+
1808 */
1809 do {
1810 struct vm_area_struct *vma = find_vma(current->mm, hva);
1811 hva_t vm_start, vm_end;
1812
1813 if (!vma || vma->vm_start >= reg_end)
1814 break;
1815
1816 /*
1817 * Mapping a read-only VMA is only allowed if the
1818 * memory region is configured as read-only.
1819 */
1820 if (writable && !(vma->vm_flags & VM_WRITE)) {
1821 ret = -EPERM;
1822 break;
1823 }
1824
1825 /*
1826 * Take the intersection of this VMA with the memory region
1827 */
1828 vm_start = max(hva, vma->vm_start);
1829 vm_end = min(reg_end, vma->vm_end);
1830
1831 if (vma->vm_flags & VM_PFNMAP) {
1832 gpa_t gpa = mem->guest_phys_addr +
1833 (vm_start - mem->userspace_addr);
Marek Majtykaca09f022015-09-16 12:04:55 +02001834 phys_addr_t pa;
1835
1836 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1837 pa += vm_start - vma->vm_start;
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001838
Mario Smarduch15a49a42015-01-15 15:58:58 -08001839 /* IO region dirty page logging not allowed */
1840 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1841 return -EINVAL;
1842
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001843 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1844 vm_end - vm_start,
1845 writable);
1846 if (ret)
1847 break;
1848 }
1849 hva = vm_end;
1850 } while (hva < reg_end);
1851
Mario Smarduch15a49a42015-01-15 15:58:58 -08001852 if (change == KVM_MR_FLAGS_ONLY)
1853 return ret;
1854
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001855 spin_lock(&kvm->mmu_lock);
1856 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001857 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001858 else
1859 stage2_flush_memslot(kvm, memslot);
1860 spin_unlock(&kvm->mmu_lock);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001861 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001862}
1863
1864void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1865 struct kvm_memory_slot *dont)
1866{
1867}
1868
1869int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1870 unsigned long npages)
1871{
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001872 /*
1873 * Readonly memslots are not incoherent with the caches by definition,
1874 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1875 * that the guest may consider devices and hence map as uncached.
1876 * To prevent incoherency issues in these cases, tag all readonly
1877 * regions as incoherent.
1878 */
1879 if (slot->flags & KVM_MEM_READONLY)
1880 slot->flags |= KVM_MEMSLOT_INCOHERENT;
Eric Augerdf6ce242014-06-06 11:10:23 +02001881 return 0;
1882}
1883
Paolo Bonzini15f46012015-05-17 21:26:08 +02001884void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
Eric Augerdf6ce242014-06-06 11:10:23 +02001885{
1886}
1887
1888void kvm_arch_flush_shadow_all(struct kvm *kvm)
1889{
1890}
1891
1892void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1893 struct kvm_memory_slot *slot)
1894{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001895 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1896 phys_addr_t size = slot->npages << PAGE_SHIFT;
1897
1898 spin_lock(&kvm->mmu_lock);
1899 unmap_stage2_range(kvm, gpa, size);
1900 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001901}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001902
1903/*
1904 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1905 *
1906 * Main problems:
1907 * - S/W ops are local to a CPU (not broadcast)
1908 * - We have line migration behind our back (speculation)
1909 * - System caches don't support S/W at all (damn!)
1910 *
1911 * In the face of the above, the best we can do is to try and convert
1912 * S/W ops to VA ops. Because the guest is not allowed to infer the
1913 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1914 * which is a rather good thing for us.
1915 *
1916 * Also, it is only used when turning caches on/off ("The expected
1917 * usage of the cache maintenance instructions that operate by set/way
1918 * is associated with the cache maintenance instructions associated
1919 * with the powerdown and powerup of caches, if this is required by
1920 * the implementation.").
1921 *
1922 * We use the following policy:
1923 *
1924 * - If we trap a S/W operation, we enable VM trapping to detect
1925 * caches being turned on/off, and do a full clean.
1926 *
1927 * - We flush the caches on both caches being turned on and off.
1928 *
1929 * - Once the caches are enabled, we stop trapping VM ops.
1930 */
1931void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1932{
1933 unsigned long hcr = vcpu_get_hcr(vcpu);
1934
1935 /*
1936 * If this is the first time we do a S/W operation
1937 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1938 * VM trapping.
1939 *
1940 * Otherwise, rely on the VM trapping to wait for the MMU +
1941 * Caches to be turned off. At that point, we'll be able to
1942 * clean the caches again.
1943 */
1944 if (!(hcr & HCR_TVM)) {
1945 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1946 vcpu_has_cache_enabled(vcpu));
1947 stage2_flush_vm(vcpu->kvm);
1948 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1949 }
1950}
1951
1952void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1953{
1954 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1955
1956 /*
1957 * If switching the MMU+caches on, need to invalidate the caches.
1958 * If switching it off, need to clean the caches.
1959 * Clean + invalidate does the trick always.
1960 */
1961 if (now_enabled != was_enabled)
1962 stage2_flush_vm(vcpu->kvm);
1963
1964 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1965 if (now_enabled)
1966 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1967
1968 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1969}