blob: 0e0755f0db3fdb0df57d5054568a1253cf7e8c26 [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
Bruce Allan16059272008-11-21 16:51:06 -080030 * 82562G 10/100 Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070031 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070042 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
Bruce Allan16059272008-11-21 16:51:06 -080044 * 82567V Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070045 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
Bruce Allanf4187b52008-08-26 18:36:50 -070048 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
Bruce Allan2f15f9d2008-08-26 18:36:36 -070050 * 82567LM-4 Gigabit Network Connection
Bruce Allana4f58f52009-06-02 11:29:18 +000051 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070055 */
56
57#include <linux/netdevice.h>
58#include <linux/ethtool.h>
59#include <linux/delay.h>
60#include <linux/pci.h>
61
62#include "e1000.h"
63
64#define ICH_FLASH_GFPREG 0x0000
65#define ICH_FLASH_HSFSTS 0x0004
66#define ICH_FLASH_HSFCTL 0x0006
67#define ICH_FLASH_FADDR 0x0008
68#define ICH_FLASH_FDATA0 0x0010
Bruce Allan4a770352008-10-01 17:18:35 -070069#define ICH_FLASH_PR0 0x0074
Auke Kokbc7f75f2007-09-17 12:30:59 -070070
71#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
76
77#define ICH_CYCLE_READ 0
78#define ICH_CYCLE_WRITE 2
79#define ICH_CYCLE_ERASE 3
80
81#define FLASH_GFPREG_BASE_MASK 0x1FFF
82#define FLASH_SECTOR_ADDR_SHIFT 12
83
84#define ICH_FLASH_SEG_SIZE_256 256
85#define ICH_FLASH_SEG_SIZE_4K 4096
86#define ICH_FLASH_SEG_SIZE_8K 8192
87#define ICH_FLASH_SEG_SIZE_64K 65536
88
89
90#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92#define E1000_ICH_MNG_IAMT_MODE 0x2
93
94#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
98
99#define E1000_ICH_NVM_SIG_WORD 0x13
100#define E1000_ICH_NVM_SIG_MASK 0xC000
Bruce Allane2434552008-11-21 17:02:41 -0800101#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102#define E1000_ICH_NVM_SIG_VALUE 0x80
Auke Kokbc7f75f2007-09-17 12:30:59 -0700103
104#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105
106#define E1000_FEXTNVM_SW_CONFIG 1
107#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
110
111#define E1000_ICH_RAR_ENTRIES 7
112
113#define PHY_PAGE_SHIFT 5
114#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
118
119#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
122
Bruce Allana4f58f52009-06-02 11:29:18 +0000123#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
124
Auke Kokbc7f75f2007-09-17 12:30:59 -0700125/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126/* Offset 04h HSFSTS */
127union ich8_hws_flash_status {
128 struct ich8_hsfsts {
129 u16 flcdone :1; /* bit 0 Flash Cycle Done */
130 u16 flcerr :1; /* bit 1 Flash Cycle Error */
131 u16 dael :1; /* bit 2 Direct Access error Log */
132 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
134 u16 reserved1 :2; /* bit 13:6 Reserved */
135 u16 reserved2 :6; /* bit 13:6 Reserved */
136 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
138 } hsf_status;
139 u16 regval;
140};
141
142/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143/* Offset 06h FLCTL */
144union ich8_hws_flash_ctrl {
145 struct ich8_hsflctl {
146 u16 flcgo :1; /* 0 Flash Cycle Go */
147 u16 flcycle :2; /* 2:1 Flash Cycle */
148 u16 reserved :5; /* 7:3 Reserved */
149 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn :6; /* 15:10 Reserved */
151 } hsf_ctrl;
152 u16 regval;
153};
154
155/* ICH Flash Region Access Permissions */
156union ich8_hws_flash_regacc {
157 struct ich8_flracc {
158 u32 grra :8; /* 0:7 GbE region Read Access */
159 u32 grwa :8; /* 8:15 GbE region Write Access */
160 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
162 } hsf_flregacc;
163 u16 regval;
164};
165
Bruce Allan4a770352008-10-01 17:18:35 -0700166/* ICH Flash Protected Region */
167union ich8_flash_protected_range {
168 struct ich8_pr {
169 u32 base:13; /* 0:12 Protected Range Base */
170 u32 reserved1:2; /* 13:14 Reserved */
171 u32 rpe:1; /* 15 Read Protection Enable */
172 u32 limit:13; /* 16:28 Protected Range Limit */
173 u32 reserved2:2; /* 29:30 Reserved */
174 u32 wpe:1; /* 31 Write Protection Enable */
175 } range;
176 u32 regval;
177};
178
Auke Kokbc7f75f2007-09-17 12:30:59 -0700179static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
180static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
181static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
182static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
183static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
184static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
185 u32 offset, u8 byte);
Bruce Allanf4187b52008-08-26 18:36:50 -0700186static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
187 u8 *data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700188static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
189 u16 *data);
190static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
191 u8 size, u16 *data);
192static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
Bruce Allanf4187b52008-08-26 18:36:50 -0700194static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
Bruce Allana4f58f52009-06-02 11:29:18 +0000195static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
196static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
197static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
198static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
199static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
200static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
201static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
202static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700203
204static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
205{
206 return readw(hw->flash_address + reg);
207}
208
209static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
210{
211 return readl(hw->flash_address + reg);
212}
213
214static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
215{
216 writew(val, hw->flash_address + reg);
217}
218
219static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
220{
221 writel(val, hw->flash_address + reg);
222}
223
224#define er16flash(reg) __er16flash(hw, (reg))
225#define er32flash(reg) __er32flash(hw, (reg))
226#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
228
229/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
232 *
233 * Initialize family-specific PHY parameters and function pointers.
234 **/
235static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
236{
237 struct e1000_phy_info *phy = &hw->phy;
238 s32 ret_val = 0;
239
240 phy->addr = 1;
241 phy->reset_delay_us = 100;
242
243 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
244 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
245 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
246 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
247
248 phy->id = e1000_phy_unknown;
249 e1000e_get_phy_id(hw);
250 phy->type = e1000e_get_phy_type_from_id(phy->id);
251
252 if (phy->type == e1000_phy_82577) {
253 phy->ops.check_polarity = e1000_check_polarity_82577;
254 phy->ops.force_speed_duplex =
255 e1000_phy_force_speed_duplex_82577;
256 phy->ops.get_cable_length = e1000_get_cable_length_82577;
257 phy->ops.get_phy_info = e1000_get_phy_info_82577;
258 phy->ops.commit_phy = e1000e_phy_sw_reset;
259 }
260
261 return ret_val;
262}
263
264/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
267 *
268 * Initialize family-specific PHY parameters and function pointers.
269 **/
270static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
271{
272 struct e1000_phy_info *phy = &hw->phy;
273 s32 ret_val;
274 u16 i = 0;
275
276 phy->addr = 1;
277 phy->reset_delay_us = 100;
278
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700279 /*
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
282 */
283 ret_val = e1000e_determine_phy_address(hw);
284 if (ret_val) {
285 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
286 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
287 ret_val = e1000e_determine_phy_address(hw);
288 if (ret_val)
289 return ret_val;
290 }
291
Auke Kokbc7f75f2007-09-17 12:30:59 -0700292 phy->id = 0;
293 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
294 (i++ < 100)) {
295 msleep(1);
296 ret_val = e1000e_get_phy_id(hw);
297 if (ret_val)
298 return ret_val;
299 }
300
301 /* Verify phy id */
302 switch (phy->id) {
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
306 break;
307 case IFE_E_PHY_ID:
308 case IFE_PLUS_E_PHY_ID:
309 case IFE_C_E_PHY_ID:
310 phy->type = e1000_phy_ife;
311 phy->autoneg_mask = E1000_ALL_NOT_GIG;
312 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700313 case BME1000_E_PHY_ID:
314 phy->type = e1000_phy_bm;
315 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
317 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
318 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
319 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700320 default:
321 return -E1000_ERR_PHY;
322 break;
323 }
324
Bruce Allana4f58f52009-06-02 11:29:18 +0000325 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
326
Auke Kokbc7f75f2007-09-17 12:30:59 -0700327 return 0;
328}
329
330/**
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
333 *
334 * Initialize family-specific NVM parameters and function
335 * pointers.
336 **/
337static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
338{
339 struct e1000_nvm_info *nvm = &hw->nvm;
340 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allan28c91952009-07-01 13:28:32 +0000341 union ich8_hws_flash_status hsfsts;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700342 u32 gfpreg;
343 u32 sector_base_addr;
344 u32 sector_end_addr;
345 u16 i;
346
Bruce Allanad680762008-03-28 09:15:03 -0700347 /* Can't read flash registers if the register set isn't mapped. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700348 if (!hw->flash_address) {
349 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
350 return -E1000_ERR_CONFIG;
351 }
352
353 nvm->type = e1000_nvm_flash_sw;
354
355 gfpreg = er32flash(ICH_FLASH_GFPREG);
356
Bruce Allanad680762008-03-28 09:15:03 -0700357 /*
358 * sector_X_addr is a "sector"-aligned address (4096 bytes)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700359 * Add 1 to sector_end_addr since this sector is included in
Bruce Allanad680762008-03-28 09:15:03 -0700360 * the overall size.
361 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700362 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
363 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
364
365 /* flash_base_addr is byte-aligned */
366 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
367
Bruce Allanad680762008-03-28 09:15:03 -0700368 /*
369 * find total size of the NVM, then cut in half since the total
370 * size represents two separate NVM banks.
371 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700372 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
373 << FLASH_SECTOR_ADDR_SHIFT;
374 nvm->flash_bank_size /= 2;
375 /* Adjust to word count */
376 nvm->flash_bank_size /= sizeof(u16);
377
Bruce Allan28c91952009-07-01 13:28:32 +0000378 /*
379 * Make sure the flash bank size does not overwrite the 4k
380 * sector ranges. We may have 64k allotted to us but we only care
381 * about the first 2 4k sectors. Therefore, if we have anything less
382 * than 64k set in the HSFSTS register, we will reduce the bank size
383 * down to 4k and let the rest remain unused. If berasesz == 3, then
384 * we are working in 64k mode. Otherwise we are not.
385 */
386 if (nvm->flash_bank_size > E1000_ICH8_SHADOW_RAM_WORDS) {
387 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
388 if (hsfsts.hsf_status.berasesz != 3)
389 nvm->flash_bank_size = E1000_ICH8_SHADOW_RAM_WORDS;
390 }
391
Auke Kokbc7f75f2007-09-17 12:30:59 -0700392 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
393
394 /* Clear shadow ram */
395 for (i = 0; i < nvm->word_size; i++) {
396 dev_spec->shadow_ram[i].modified = 0;
397 dev_spec->shadow_ram[i].value = 0xFFFF;
398 }
399
400 return 0;
401}
402
403/**
404 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
405 * @hw: pointer to the HW structure
406 *
407 * Initialize family-specific MAC parameters and function
408 * pointers.
409 **/
410static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 struct e1000_mac_info *mac = &hw->mac;
414
415 /* Set media type function pointer */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700416 hw->phy.media_type = e1000_media_type_copper;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700417
418 /* Set mta register count */
419 mac->mta_reg_count = 32;
420 /* Set rar entry count */
421 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
422 if (mac->type == e1000_ich8lan)
423 mac->rar_entry_count--;
424 /* Set if manageability features are enabled. */
425 mac->arc_subsystem_valid = 1;
426
Bruce Allana4f58f52009-06-02 11:29:18 +0000427 /* LED operations */
428 switch (mac->type) {
429 case e1000_ich8lan:
430 case e1000_ich9lan:
431 case e1000_ich10lan:
432 /* ID LED init */
433 mac->ops.id_led_init = e1000e_id_led_init;
434 /* setup LED */
435 mac->ops.setup_led = e1000e_setup_led_generic;
436 /* cleanup LED */
437 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
438 /* turn on/off LED */
439 mac->ops.led_on = e1000_led_on_ich8lan;
440 mac->ops.led_off = e1000_led_off_ich8lan;
441 break;
442 case e1000_pchlan:
443 /* ID LED init */
444 mac->ops.id_led_init = e1000_id_led_init_pchlan;
445 /* setup LED */
446 mac->ops.setup_led = e1000_setup_led_pchlan;
447 /* cleanup LED */
448 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
449 /* turn on/off LED */
450 mac->ops.led_on = e1000_led_on_pchlan;
451 mac->ops.led_off = e1000_led_off_pchlan;
452 break;
453 default:
454 break;
455 }
456
Auke Kokbc7f75f2007-09-17 12:30:59 -0700457 /* Enable PCS Lock-loss workaround for ICH8 */
458 if (mac->type == e1000_ich8lan)
459 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
460
461 return 0;
462}
463
Jeff Kirsher69e3fd82008-04-02 13:48:18 -0700464static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700465{
466 struct e1000_hw *hw = &adapter->hw;
467 s32 rc;
468
469 rc = e1000_init_mac_params_ich8lan(adapter);
470 if (rc)
471 return rc;
472
473 rc = e1000_init_nvm_params_ich8lan(hw);
474 if (rc)
475 return rc;
476
Bruce Allana4f58f52009-06-02 11:29:18 +0000477 if (hw->mac.type == e1000_pchlan)
478 rc = e1000_init_phy_params_pchlan(hw);
479 else
480 rc = e1000_init_phy_params_ich8lan(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700481 if (rc)
482 return rc;
483
Bruce Allan2adc55c2009-06-02 11:28:58 +0000484 if (adapter->hw.phy.type == e1000_phy_ife) {
485 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
486 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
487 }
488
Auke Kokbc7f75f2007-09-17 12:30:59 -0700489 if ((adapter->hw.mac.type == e1000_ich8lan) &&
490 (adapter->hw.phy.type == e1000_phy_igp_3))
491 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
492
493 return 0;
494}
495
Thomas Gleixner717d4382008-10-02 16:33:40 -0700496static DEFINE_MUTEX(nvm_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700497
Auke Kokbc7f75f2007-09-17 12:30:59 -0700498/**
499 * e1000_acquire_swflag_ich8lan - Acquire software control flag
500 * @hw: pointer to the HW structure
501 *
502 * Acquires the software control flag for performing NVM and PHY
503 * operations. This is a function pointer entry point only called by
504 * read/write routines for the PHY and NVM parts.
505 **/
506static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
507{
508 u32 extcnf_ctrl;
509 u32 timeout = PHY_CFG_TIMEOUT;
510
Linus Torvalds95b866d2008-10-03 09:18:17 -0700511 might_sleep();
Thomas Gleixner717d4382008-10-02 16:33:40 -0700512
dave graham0a834a32009-02-14 23:46:10 -0800513 mutex_lock(&nvm_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700514
Auke Kokbc7f75f2007-09-17 12:30:59 -0700515 while (timeout) {
516 extcnf_ctrl = er32(EXTCNF_CTRL);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700517
Bruce Allana4f58f52009-06-02 11:29:18 +0000518 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) {
519 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
520 ew32(EXTCNF_CTRL, extcnf_ctrl);
521
522 extcnf_ctrl = er32(EXTCNF_CTRL);
523 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
524 break;
525 }
Auke Kokbc7f75f2007-09-17 12:30:59 -0700526 mdelay(1);
527 timeout--;
528 }
529
530 if (!timeout) {
531 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
Bruce Allan2e2e8d52008-09-23 15:46:38 -0700532 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
533 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700534 mutex_unlock(&nvm_mutex);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700535 return -E1000_ERR_CONFIG;
536 }
537
538 return 0;
539}
540
541/**
542 * e1000_release_swflag_ich8lan - Release software control flag
543 * @hw: pointer to the HW structure
544 *
545 * Releases the software control flag for performing NVM and PHY operations.
546 * This is a function pointer entry point only called by read/write
547 * routines for the PHY and NVM parts.
548 **/
549static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
550{
551 u32 extcnf_ctrl;
552
553 extcnf_ctrl = er32(EXTCNF_CTRL);
554 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
555 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700556
Thomas Gleixner717d4382008-10-02 16:33:40 -0700557 mutex_unlock(&nvm_mutex);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700558}
559
560/**
Bruce Allan4662e822008-08-26 18:37:06 -0700561 * e1000_check_mng_mode_ich8lan - Checks management mode
562 * @hw: pointer to the HW structure
563 *
564 * This checks if the adapter has manageability enabled.
565 * This is a function pointer entry point only called by read/write
566 * routines for the PHY and NVM parts.
567 **/
568static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
569{
570 u32 fwsm = er32(FWSM);
571
572 return (fwsm & E1000_FWSM_MODE_MASK) ==
573 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
574}
575
576/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700577 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
578 * @hw: pointer to the HW structure
579 *
580 * Checks if firmware is blocking the reset of the PHY.
581 * This is a function pointer entry point only called by
582 * reset routines.
583 **/
584static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
585{
586 u32 fwsm;
587
588 fwsm = er32(FWSM);
589
590 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
591}
592
593/**
594 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
595 * @hw: pointer to the HW structure
596 *
597 * Forces the speed and duplex settings of the PHY.
598 * This is a function pointer entry point only called by
599 * PHY setup routines.
600 **/
601static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
602{
603 struct e1000_phy_info *phy = &hw->phy;
604 s32 ret_val;
605 u16 data;
606 bool link;
607
608 if (phy->type != e1000_phy_ife) {
609 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
610 return ret_val;
611 }
612
613 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
614 if (ret_val)
615 return ret_val;
616
617 e1000e_phy_force_speed_duplex_setup(hw, &data);
618
619 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
620 if (ret_val)
621 return ret_val;
622
623 /* Disable MDI-X support for 10/100 */
624 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
625 if (ret_val)
626 return ret_val;
627
628 data &= ~IFE_PMC_AUTO_MDIX;
629 data &= ~IFE_PMC_FORCE_MDIX;
630
631 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
632 if (ret_val)
633 return ret_val;
634
635 hw_dbg(hw, "IFE PMC: %X\n", data);
636
637 udelay(1);
638
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700639 if (phy->autoneg_wait_to_complete) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700640 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
641
642 ret_val = e1000e_phy_has_link_generic(hw,
643 PHY_FORCE_LIMIT,
644 100000,
645 &link);
646 if (ret_val)
647 return ret_val;
648
649 if (!link)
650 hw_dbg(hw, "Link taking longer than expected.\n");
651
652 /* Try once more */
653 ret_val = e1000e_phy_has_link_generic(hw,
654 PHY_FORCE_LIMIT,
655 100000,
656 &link);
657 if (ret_val)
658 return ret_val;
659 }
660
661 return 0;
662}
663
664/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000665 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
666 * done after every PHY reset.
667 **/
668static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
669{
670 s32 ret_val = 0;
671
672 if (hw->mac.type != e1000_pchlan)
673 return ret_val;
674
675 if (((hw->phy.type == e1000_phy_82577) &&
676 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
677 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
678 /* Disable generation of early preamble */
679 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
680 if (ret_val)
681 return ret_val;
682
683 /* Preamble tuning for SSC */
684 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
685 if (ret_val)
686 return ret_val;
687 }
688
689 if (hw->phy.type == e1000_phy_82578) {
690 /*
691 * Return registers to default by doing a soft reset then
692 * writing 0x3140 to the control register.
693 */
694 if (hw->phy.revision < 2) {
695 e1000e_phy_sw_reset(hw);
696 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
697 }
698 }
699
700 /* Select page 0 */
701 ret_val = hw->phy.ops.acquire_phy(hw);
702 if (ret_val)
703 return ret_val;
704 hw->phy.addr = 1;
705 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
706 hw->phy.ops.release_phy(hw);
707
708 return ret_val;
709}
710
711/**
Bruce Allanfc0c7762009-07-01 13:27:55 +0000712 * e1000_lan_init_done_ich8lan - Check for PHY config completion
713 * @hw: pointer to the HW structure
714 *
715 * Check the appropriate indication the MAC has finished configuring the
716 * PHY after a software reset.
717 **/
718static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
719{
720 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
721
722 /* Wait for basic configuration completes before proceeding */
723 do {
724 data = er32(STATUS);
725 data &= E1000_STATUS_LAN_INIT_DONE;
726 udelay(100);
727 } while ((!data) && --loop);
728
729 /*
730 * If basic configuration is incomplete before the above loop
731 * count reaches 0, loading the configuration from NVM will
732 * leave the PHY in a bad state possibly resulting in no link.
733 */
734 if (loop == 0)
735 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
736
737 /* Clear the Init Done bit for the next init event */
738 data = er32(STATUS);
739 data &= ~E1000_STATUS_LAN_INIT_DONE;
740 ew32(STATUS, data);
741}
742
743/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700744 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
745 * @hw: pointer to the HW structure
746 *
747 * Resets the PHY
748 * This is a function pointer entry point called by drivers
749 * or other shared routines.
750 **/
751static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
752{
753 struct e1000_phy_info *phy = &hw->phy;
754 u32 i;
755 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
756 s32 ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700757 u16 word_addr, reg_data, reg_addr, phy_page = 0;
758
759 ret_val = e1000e_phy_hw_reset_generic(hw);
760 if (ret_val)
761 return ret_val;
762
Bruce Allanfc0c7762009-07-01 13:27:55 +0000763 /* Allow time for h/w to get to a quiescent state after reset */
764 mdelay(10);
765
Bruce Allana4f58f52009-06-02 11:29:18 +0000766 if (hw->mac.type == e1000_pchlan) {
767 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
768 if (ret_val)
769 return ret_val;
770 }
771
Bruce Allanad680762008-03-28 09:15:03 -0700772 /*
773 * Initialize the PHY from the NVM on ICH platforms. This
Auke Kokbc7f75f2007-09-17 12:30:59 -0700774 * is needed due to an issue where the NVM configuration is
775 * not properly autoloaded after power transitions.
776 * Therefore, after each PHY reset, we will load the
777 * configuration data out of the NVM manually.
778 */
779 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
780 struct e1000_adapter *adapter = hw->adapter;
781
782 /* Check if SW needs configure the PHY */
783 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
784 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
785 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
786 else
787 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
788
789 data = er32(FEXTNVM);
790 if (!(data & sw_cfg_mask))
791 return 0;
792
Bruce Allanfc0c7762009-07-01 13:27:55 +0000793 /* Wait for basic configuration completes before proceeding */
794 e1000_lan_init_done_ich8lan(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700795
Bruce Allanad680762008-03-28 09:15:03 -0700796 /*
797 * Make sure HW does not configure LCD from PHY
798 * extended configuration before SW configuration
799 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700800 data = er32(EXTCNF_CTRL);
801 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
802 return 0;
803
804 cnf_size = er32(EXTCNF_SIZE);
805 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
806 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
807 if (!cnf_size)
808 return 0;
809
810 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
811 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
812
Bruce Allanad680762008-03-28 09:15:03 -0700813 /* Configure LCD from extended configuration region. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700814
815 /* cnf_base_addr is in DWORD */
816 word_addr = (u16)(cnf_base_addr << 1);
817
818 for (i = 0; i < cnf_size; i++) {
819 ret_val = e1000_read_nvm(hw,
820 (word_addr + i * 2),
821 1,
822 &reg_data);
823 if (ret_val)
824 return ret_val;
825
826 ret_val = e1000_read_nvm(hw,
827 (word_addr + i * 2 + 1),
828 1,
829 &reg_addr);
830 if (ret_val)
831 return ret_val;
832
833 /* Save off the PHY page for future writes. */
834 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
835 phy_page = reg_data;
836 continue;
837 }
838
839 reg_addr |= phy_page;
840
841 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
842 if (ret_val)
843 return ret_val;
844 }
845 }
846
847 return 0;
848}
849
850/**
851 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
852 * @hw: pointer to the HW structure
853 *
854 * Populates "phy" structure with various feature states.
855 * This function is only called by other family-specific
856 * routines.
857 **/
858static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
859{
860 struct e1000_phy_info *phy = &hw->phy;
861 s32 ret_val;
862 u16 data;
863 bool link;
864
865 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
866 if (ret_val)
867 return ret_val;
868
869 if (!link) {
870 hw_dbg(hw, "Phy info is only valid if link is up\n");
871 return -E1000_ERR_CONFIG;
872 }
873
874 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
875 if (ret_val)
876 return ret_val;
877 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
878
879 if (phy->polarity_correction) {
Bruce Allana4f58f52009-06-02 11:29:18 +0000880 ret_val = phy->ops.check_polarity(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700881 if (ret_val)
882 return ret_val;
883 } else {
884 /* Polarity is forced */
885 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
886 ? e1000_rev_polarity_reversed
887 : e1000_rev_polarity_normal;
888 }
889
890 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
891 if (ret_val)
892 return ret_val;
893
894 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
895
896 /* The following parameters are undefined for 10/100 operation. */
897 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
898 phy->local_rx = e1000_1000t_rx_status_undefined;
899 phy->remote_rx = e1000_1000t_rx_status_undefined;
900
901 return 0;
902}
903
904/**
905 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
906 * @hw: pointer to the HW structure
907 *
908 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
909 * This is a function pointer entry point called by drivers
910 * or other shared routines.
911 **/
912static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
913{
914 switch (hw->phy.type) {
915 case e1000_phy_ife:
916 return e1000_get_phy_info_ife_ich8lan(hw);
917 break;
918 case e1000_phy_igp_3:
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700919 case e1000_phy_bm:
Bruce Allana4f58f52009-06-02 11:29:18 +0000920 case e1000_phy_82578:
921 case e1000_phy_82577:
Auke Kokbc7f75f2007-09-17 12:30:59 -0700922 return e1000e_get_phy_info_igp(hw);
923 break;
924 default:
925 break;
926 }
927
928 return -E1000_ERR_PHY_TYPE;
929}
930
931/**
932 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
933 * @hw: pointer to the HW structure
934 *
Auke Kok489815c2008-02-21 15:11:07 -0800935 * Polarity is determined on the polarity reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700936 * This function is only called by other family-specific
937 * routines.
938 **/
939static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
940{
941 struct e1000_phy_info *phy = &hw->phy;
942 s32 ret_val;
943 u16 phy_data, offset, mask;
944
Bruce Allanad680762008-03-28 09:15:03 -0700945 /*
946 * Polarity is determined based on the reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700947 */
948 if (phy->polarity_correction) {
949 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
950 mask = IFE_PESC_POLARITY_REVERSED;
951 } else {
952 offset = IFE_PHY_SPECIAL_CONTROL;
953 mask = IFE_PSC_FORCE_POLARITY;
954 }
955
956 ret_val = e1e_rphy(hw, offset, &phy_data);
957
958 if (!ret_val)
959 phy->cable_polarity = (phy_data & mask)
960 ? e1000_rev_polarity_reversed
961 : e1000_rev_polarity_normal;
962
963 return ret_val;
964}
965
966/**
967 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
968 * @hw: pointer to the HW structure
969 * @active: TRUE to enable LPLU, FALSE to disable
970 *
971 * Sets the LPLU D0 state according to the active flag. When
972 * activating LPLU this function also disables smart speed
973 * and vice versa. LPLU will not be activated unless the
974 * device autonegotiation advertisement meets standards of
975 * either 10 or 10/100 or 10/100/1000 at all duplexes.
976 * This is a function pointer entry point only called by
977 * PHY setup routines.
978 **/
979static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
980{
981 struct e1000_phy_info *phy = &hw->phy;
982 u32 phy_ctrl;
983 s32 ret_val = 0;
984 u16 data;
985
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700986 if (phy->type == e1000_phy_ife)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700987 return ret_val;
988
989 phy_ctrl = er32(PHY_CTRL);
990
991 if (active) {
992 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
993 ew32(PHY_CTRL, phy_ctrl);
994
Bruce Allan60f12922009-07-01 13:28:14 +0000995 if (phy->type != e1000_phy_igp_3)
996 return 0;
997
Bruce Allanad680762008-03-28 09:15:03 -0700998 /*
999 * Call gig speed drop workaround on LPLU before accessing
1000 * any PHY registers
1001 */
Bruce Allan60f12922009-07-01 13:28:14 +00001002 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001003 e1000e_gig_downshift_workaround_ich8lan(hw);
1004
1005 /* When LPLU is enabled, we should disable SmartSpeed */
1006 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1007 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1008 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1009 if (ret_val)
1010 return ret_val;
1011 } else {
1012 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1013 ew32(PHY_CTRL, phy_ctrl);
1014
Bruce Allan60f12922009-07-01 13:28:14 +00001015 if (phy->type != e1000_phy_igp_3)
1016 return 0;
1017
Bruce Allanad680762008-03-28 09:15:03 -07001018 /*
1019 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001020 * during Dx states where the power conservation is most
1021 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001022 * SmartSpeed, so performance is maintained.
1023 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001024 if (phy->smart_speed == e1000_smart_speed_on) {
1025 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001026 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001027 if (ret_val)
1028 return ret_val;
1029
1030 data |= IGP01E1000_PSCFR_SMART_SPEED;
1031 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001032 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001033 if (ret_val)
1034 return ret_val;
1035 } else if (phy->smart_speed == e1000_smart_speed_off) {
1036 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001037 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001038 if (ret_val)
1039 return ret_val;
1040
1041 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1042 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001043 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001044 if (ret_val)
1045 return ret_val;
1046 }
1047 }
1048
1049 return 0;
1050}
1051
1052/**
1053 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1054 * @hw: pointer to the HW structure
1055 * @active: TRUE to enable LPLU, FALSE to disable
1056 *
1057 * Sets the LPLU D3 state according to the active flag. When
1058 * activating LPLU this function also disables smart speed
1059 * and vice versa. LPLU will not be activated unless the
1060 * device autonegotiation advertisement meets standards of
1061 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1062 * This is a function pointer entry point only called by
1063 * PHY setup routines.
1064 **/
1065static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1066{
1067 struct e1000_phy_info *phy = &hw->phy;
1068 u32 phy_ctrl;
1069 s32 ret_val;
1070 u16 data;
1071
1072 phy_ctrl = er32(PHY_CTRL);
1073
1074 if (!active) {
1075 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1076 ew32(PHY_CTRL, phy_ctrl);
Bruce Allan60f12922009-07-01 13:28:14 +00001077
1078 if (phy->type != e1000_phy_igp_3)
1079 return 0;
1080
Bruce Allanad680762008-03-28 09:15:03 -07001081 /*
1082 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001083 * during Dx states where the power conservation is most
1084 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001085 * SmartSpeed, so performance is maintained.
1086 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001087 if (phy->smart_speed == e1000_smart_speed_on) {
Bruce Allanad680762008-03-28 09:15:03 -07001088 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1089 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001090 if (ret_val)
1091 return ret_val;
1092
1093 data |= IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001094 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1095 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001096 if (ret_val)
1097 return ret_val;
1098 } else if (phy->smart_speed == e1000_smart_speed_off) {
Bruce Allanad680762008-03-28 09:15:03 -07001099 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1100 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001101 if (ret_val)
1102 return ret_val;
1103
1104 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001105 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1106 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001107 if (ret_val)
1108 return ret_val;
1109 }
1110 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1111 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1112 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1113 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1114 ew32(PHY_CTRL, phy_ctrl);
1115
Bruce Allan60f12922009-07-01 13:28:14 +00001116 if (phy->type != e1000_phy_igp_3)
1117 return 0;
1118
Bruce Allanad680762008-03-28 09:15:03 -07001119 /*
1120 * Call gig speed drop workaround on LPLU before accessing
1121 * any PHY registers
1122 */
Bruce Allan60f12922009-07-01 13:28:14 +00001123 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001124 e1000e_gig_downshift_workaround_ich8lan(hw);
1125
1126 /* When LPLU is enabled, we should disable SmartSpeed */
Bruce Allanad680762008-03-28 09:15:03 -07001127 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001128 if (ret_val)
1129 return ret_val;
1130
1131 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001132 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001133 }
1134
1135 return 0;
1136}
1137
1138/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001139 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1140 * @hw: pointer to the HW structure
1141 * @bank: pointer to the variable that returns the active bank
1142 *
1143 * Reads signature byte from the NVM using the flash access registers.
Bruce Allane2434552008-11-21 17:02:41 -08001144 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
Bruce Allanf4187b52008-08-26 18:36:50 -07001145 **/
1146static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1147{
Bruce Allane2434552008-11-21 17:02:41 -08001148 u32 eecd;
Bruce Allanf4187b52008-08-26 18:36:50 -07001149 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allanf4187b52008-08-26 18:36:50 -07001150 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1151 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
Bruce Allane2434552008-11-21 17:02:41 -08001152 u8 sig_byte = 0;
1153 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001154
Bruce Allane2434552008-11-21 17:02:41 -08001155 switch (hw->mac.type) {
1156 case e1000_ich8lan:
1157 case e1000_ich9lan:
1158 eecd = er32(EECD);
1159 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1160 E1000_EECD_SEC1VAL_VALID_MASK) {
1161 if (eecd & E1000_EECD_SEC1VAL)
Bruce Allanf4187b52008-08-26 18:36:50 -07001162 *bank = 1;
Bruce Allane2434552008-11-21 17:02:41 -08001163 else
1164 *bank = 0;
1165
1166 return 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001167 }
Bruce Allane2434552008-11-21 17:02:41 -08001168 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1169 "reading flash signature\n");
1170 /* fall-thru */
1171 default:
1172 /* set bank to 0 in case flash read fails */
1173 *bank = 0;
1174
1175 /* Check bank 0 */
1176 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1177 &sig_byte);
1178 if (ret_val)
1179 return ret_val;
1180 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1181 E1000_ICH_NVM_SIG_VALUE) {
1182 *bank = 0;
1183 return 0;
1184 }
1185
1186 /* Check bank 1 */
1187 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1188 bank1_offset,
1189 &sig_byte);
1190 if (ret_val)
1191 return ret_val;
1192 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1193 E1000_ICH_NVM_SIG_VALUE) {
1194 *bank = 1;
1195 return 0;
1196 }
1197
1198 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1199 return -E1000_ERR_NVM;
Bruce Allanf4187b52008-08-26 18:36:50 -07001200 }
1201
1202 return 0;
1203}
1204
1205/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001206 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1207 * @hw: pointer to the HW structure
1208 * @offset: The offset (in bytes) of the word(s) to read.
1209 * @words: Size of data to read in words
1210 * @data: Pointer to the word(s) to read at offset.
1211 *
1212 * Reads a word(s) from the NVM using the flash access registers.
1213 **/
1214static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1215 u16 *data)
1216{
1217 struct e1000_nvm_info *nvm = &hw->nvm;
1218 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1219 u32 act_offset;
1220 s32 ret_val;
Bruce Allanf4187b52008-08-26 18:36:50 -07001221 u32 bank = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001222 u16 i, word;
1223
1224 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1225 (words == 0)) {
1226 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1227 return -E1000_ERR_NVM;
1228 }
1229
1230 ret_val = e1000_acquire_swflag_ich8lan(hw);
1231 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001232 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001233
Bruce Allanf4187b52008-08-26 18:36:50 -07001234 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1235 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001236 goto release;
Bruce Allanf4187b52008-08-26 18:36:50 -07001237
1238 act_offset = (bank) ? nvm->flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001239 act_offset += offset;
1240
1241 for (i = 0; i < words; i++) {
1242 if ((dev_spec->shadow_ram) &&
1243 (dev_spec->shadow_ram[offset+i].modified)) {
1244 data[i] = dev_spec->shadow_ram[offset+i].value;
1245 } else {
1246 ret_val = e1000_read_flash_word_ich8lan(hw,
1247 act_offset + i,
1248 &word);
1249 if (ret_val)
1250 break;
1251 data[i] = word;
1252 }
1253 }
1254
Bruce Allane2434552008-11-21 17:02:41 -08001255release:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001256 e1000_release_swflag_ich8lan(hw);
1257
Bruce Allane2434552008-11-21 17:02:41 -08001258out:
1259 if (ret_val)
1260 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1261
Auke Kokbc7f75f2007-09-17 12:30:59 -07001262 return ret_val;
1263}
1264
1265/**
1266 * e1000_flash_cycle_init_ich8lan - Initialize flash
1267 * @hw: pointer to the HW structure
1268 *
1269 * This function does initial flash setup so that a new read/write/erase cycle
1270 * can be started.
1271 **/
1272static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1273{
1274 union ich8_hws_flash_status hsfsts;
1275 s32 ret_val = -E1000_ERR_NVM;
1276 s32 i = 0;
1277
1278 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1279
1280 /* Check if the flash descriptor is valid */
1281 if (hsfsts.hsf_status.fldesvalid == 0) {
1282 hw_dbg(hw, "Flash descriptor invalid. "
1283 "SW Sequencing must be used.");
1284 return -E1000_ERR_NVM;
1285 }
1286
1287 /* Clear FCERR and DAEL in hw status by writing 1 */
1288 hsfsts.hsf_status.flcerr = 1;
1289 hsfsts.hsf_status.dael = 1;
1290
1291 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1292
Bruce Allanad680762008-03-28 09:15:03 -07001293 /*
1294 * Either we should have a hardware SPI cycle in progress
Auke Kokbc7f75f2007-09-17 12:30:59 -07001295 * bit to check against, in order to start a new cycle or
1296 * FDONE bit should be changed in the hardware so that it
Auke Kok489815c2008-02-21 15:11:07 -08001297 * is 1 after hardware reset, which can then be used as an
Auke Kokbc7f75f2007-09-17 12:30:59 -07001298 * indication whether a cycle is in progress or has been
1299 * completed.
1300 */
1301
1302 if (hsfsts.hsf_status.flcinprog == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001303 /*
1304 * There is no cycle running at present,
1305 * so we can start a cycle
1306 * Begin by setting Flash Cycle Done.
1307 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001308 hsfsts.hsf_status.flcdone = 1;
1309 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1310 ret_val = 0;
1311 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001312 /*
1313 * otherwise poll for sometime so the current
1314 * cycle has a chance to end before giving up.
1315 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001316 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1317 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1318 if (hsfsts.hsf_status.flcinprog == 0) {
1319 ret_val = 0;
1320 break;
1321 }
1322 udelay(1);
1323 }
1324 if (ret_val == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001325 /*
1326 * Successful in waiting for previous cycle to timeout,
1327 * now set the Flash Cycle Done.
1328 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001329 hsfsts.hsf_status.flcdone = 1;
1330 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1331 } else {
1332 hw_dbg(hw, "Flash controller busy, cannot get access");
1333 }
1334 }
1335
1336 return ret_val;
1337}
1338
1339/**
1340 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1341 * @hw: pointer to the HW structure
1342 * @timeout: maximum time to wait for completion
1343 *
1344 * This function starts a flash cycle and waits for its completion.
1345 **/
1346static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1347{
1348 union ich8_hws_flash_ctrl hsflctl;
1349 union ich8_hws_flash_status hsfsts;
1350 s32 ret_val = -E1000_ERR_NVM;
1351 u32 i = 0;
1352
1353 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1354 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1355 hsflctl.hsf_ctrl.flcgo = 1;
1356 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1357
1358 /* wait till FDONE bit is set to 1 */
1359 do {
1360 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1361 if (hsfsts.hsf_status.flcdone == 1)
1362 break;
1363 udelay(1);
1364 } while (i++ < timeout);
1365
1366 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1367 return 0;
1368
1369 return ret_val;
1370}
1371
1372/**
1373 * e1000_read_flash_word_ich8lan - Read word from flash
1374 * @hw: pointer to the HW structure
1375 * @offset: offset to data location
1376 * @data: pointer to the location for storing the data
1377 *
1378 * Reads the flash word at offset into data. Offset is converted
1379 * to bytes before read.
1380 **/
1381static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1382 u16 *data)
1383{
1384 /* Must convert offset into bytes. */
1385 offset <<= 1;
1386
1387 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1388}
1389
1390/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001391 * e1000_read_flash_byte_ich8lan - Read byte from flash
1392 * @hw: pointer to the HW structure
1393 * @offset: The offset of the byte to read.
1394 * @data: Pointer to a byte to store the value read.
1395 *
1396 * Reads a single byte from the NVM using the flash access registers.
1397 **/
1398static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1399 u8 *data)
1400{
1401 s32 ret_val;
1402 u16 word = 0;
1403
1404 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1405 if (ret_val)
1406 return ret_val;
1407
1408 *data = (u8)word;
1409
1410 return 0;
1411}
1412
1413/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001414 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1415 * @hw: pointer to the HW structure
1416 * @offset: The offset (in bytes) of the byte or word to read.
1417 * @size: Size of data to read, 1=byte 2=word
1418 * @data: Pointer to the word to store the value read.
1419 *
1420 * Reads a byte or word from the NVM using the flash access registers.
1421 **/
1422static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1423 u8 size, u16 *data)
1424{
1425 union ich8_hws_flash_status hsfsts;
1426 union ich8_hws_flash_ctrl hsflctl;
1427 u32 flash_linear_addr;
1428 u32 flash_data = 0;
1429 s32 ret_val = -E1000_ERR_NVM;
1430 u8 count = 0;
1431
1432 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1433 return -E1000_ERR_NVM;
1434
1435 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1436 hw->nvm.flash_base_addr;
1437
1438 do {
1439 udelay(1);
1440 /* Steps */
1441 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1442 if (ret_val != 0)
1443 break;
1444
1445 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1446 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1447 hsflctl.hsf_ctrl.fldbcount = size - 1;
1448 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1449 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1450
1451 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1452
1453 ret_val = e1000_flash_cycle_ich8lan(hw,
1454 ICH_FLASH_READ_COMMAND_TIMEOUT);
1455
Bruce Allanad680762008-03-28 09:15:03 -07001456 /*
1457 * Check if FCERR is set to 1, if set to 1, clear it
Auke Kokbc7f75f2007-09-17 12:30:59 -07001458 * and try the whole sequence a few more times, else
1459 * read in (shift in) the Flash Data0, the order is
Bruce Allanad680762008-03-28 09:15:03 -07001460 * least significant byte first msb to lsb
1461 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001462 if (ret_val == 0) {
1463 flash_data = er32flash(ICH_FLASH_FDATA0);
1464 if (size == 1) {
1465 *data = (u8)(flash_data & 0x000000FF);
1466 } else if (size == 2) {
1467 *data = (u16)(flash_data & 0x0000FFFF);
1468 }
1469 break;
1470 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001471 /*
1472 * If we've gotten here, then things are probably
Auke Kokbc7f75f2007-09-17 12:30:59 -07001473 * completely hosed, but if the error condition is
1474 * detected, it won't hurt to give it another try...
1475 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1476 */
1477 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1478 if (hsfsts.hsf_status.flcerr == 1) {
1479 /* Repeat for some time before giving up. */
1480 continue;
1481 } else if (hsfsts.hsf_status.flcdone == 0) {
1482 hw_dbg(hw, "Timeout error - flash cycle "
1483 "did not complete.");
1484 break;
1485 }
1486 }
1487 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1488
1489 return ret_val;
1490}
1491
1492/**
1493 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1494 * @hw: pointer to the HW structure
1495 * @offset: The offset (in bytes) of the word(s) to write.
1496 * @words: Size of data to write in words
1497 * @data: Pointer to the word(s) to write at offset.
1498 *
1499 * Writes a byte or word to the NVM using the flash access registers.
1500 **/
1501static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1502 u16 *data)
1503{
1504 struct e1000_nvm_info *nvm = &hw->nvm;
1505 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1506 s32 ret_val;
1507 u16 i;
1508
1509 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1510 (words == 0)) {
1511 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1512 return -E1000_ERR_NVM;
1513 }
1514
1515 ret_val = e1000_acquire_swflag_ich8lan(hw);
1516 if (ret_val)
1517 return ret_val;
1518
1519 for (i = 0; i < words; i++) {
1520 dev_spec->shadow_ram[offset+i].modified = 1;
1521 dev_spec->shadow_ram[offset+i].value = data[i];
1522 }
1523
1524 e1000_release_swflag_ich8lan(hw);
1525
1526 return 0;
1527}
1528
1529/**
1530 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1531 * @hw: pointer to the HW structure
1532 *
1533 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1534 * which writes the checksum to the shadow ram. The changes in the shadow
1535 * ram are then committed to the EEPROM by processing each bank at a time
1536 * checking for the modified bit and writing only the pending changes.
Auke Kok489815c2008-02-21 15:11:07 -08001537 * After a successful commit, the shadow ram is cleared and is ready for
Auke Kokbc7f75f2007-09-17 12:30:59 -07001538 * future writes.
1539 **/
1540static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1541{
1542 struct e1000_nvm_info *nvm = &hw->nvm;
1543 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allanf4187b52008-08-26 18:36:50 -07001544 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001545 s32 ret_val;
1546 u16 data;
1547
1548 ret_val = e1000e_update_nvm_checksum_generic(hw);
1549 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001550 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001551
1552 if (nvm->type != e1000_nvm_flash_sw)
Bruce Allane2434552008-11-21 17:02:41 -08001553 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001554
1555 ret_val = e1000_acquire_swflag_ich8lan(hw);
1556 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001557 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001558
Bruce Allanad680762008-03-28 09:15:03 -07001559 /*
1560 * We're writing to the opposite bank so if we're on bank 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001561 * write to bank 0 etc. We also need to erase the segment that
Bruce Allanad680762008-03-28 09:15:03 -07001562 * is going to be written
1563 */
Bruce Allanf4187b52008-08-26 18:36:50 -07001564 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allane2434552008-11-21 17:02:41 -08001565 if (ret_val) {
1566 e1000_release_swflag_ich8lan(hw);
1567 goto out;
1568 }
Bruce Allanf4187b52008-08-26 18:36:50 -07001569
1570 if (bank == 0) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001571 new_bank_offset = nvm->flash_bank_size;
1572 old_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001573 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1574 if (ret_val) {
1575 e1000_release_swflag_ich8lan(hw);
1576 goto out;
1577 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001578 } else {
1579 old_bank_offset = nvm->flash_bank_size;
1580 new_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001581 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1582 if (ret_val) {
1583 e1000_release_swflag_ich8lan(hw);
1584 goto out;
1585 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001586 }
1587
1588 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
Bruce Allanad680762008-03-28 09:15:03 -07001589 /*
1590 * Determine whether to write the value stored
Auke Kokbc7f75f2007-09-17 12:30:59 -07001591 * in the other NVM bank or a modified value stored
Bruce Allanad680762008-03-28 09:15:03 -07001592 * in the shadow RAM
1593 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001594 if (dev_spec->shadow_ram[i].modified) {
1595 data = dev_spec->shadow_ram[i].value;
1596 } else {
Bruce Allane2434552008-11-21 17:02:41 -08001597 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1598 old_bank_offset,
1599 &data);
1600 if (ret_val)
1601 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001602 }
1603
Bruce Allanad680762008-03-28 09:15:03 -07001604 /*
1605 * If the word is 0x13, then make sure the signature bits
Auke Kokbc7f75f2007-09-17 12:30:59 -07001606 * (15:14) are 11b until the commit has completed.
1607 * This will allow us to write 10b which indicates the
1608 * signature is valid. We want to do this after the write
1609 * has completed so that we don't mark the segment valid
Bruce Allanad680762008-03-28 09:15:03 -07001610 * while the write is still in progress
1611 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001612 if (i == E1000_ICH_NVM_SIG_WORD)
1613 data |= E1000_ICH_NVM_SIG_MASK;
1614
1615 /* Convert offset to bytes. */
1616 act_offset = (i + new_bank_offset) << 1;
1617
1618 udelay(100);
1619 /* Write the bytes to the new bank. */
1620 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1621 act_offset,
1622 (u8)data);
1623 if (ret_val)
1624 break;
1625
1626 udelay(100);
1627 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1628 act_offset + 1,
1629 (u8)(data >> 8));
1630 if (ret_val)
1631 break;
1632 }
1633
Bruce Allanad680762008-03-28 09:15:03 -07001634 /*
1635 * Don't bother writing the segment valid bits if sector
1636 * programming failed.
1637 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001638 if (ret_val) {
Bruce Allan4a770352008-10-01 17:18:35 -07001639 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001640 hw_dbg(hw, "Flash commit failed.\n");
1641 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001642 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001643 }
1644
Bruce Allanad680762008-03-28 09:15:03 -07001645 /*
1646 * Finally validate the new segment by setting bit 15:14
Auke Kokbc7f75f2007-09-17 12:30:59 -07001647 * to 10b in word 0x13 , this can be done without an
1648 * erase as well since these bits are 11 to start with
Bruce Allanad680762008-03-28 09:15:03 -07001649 * and we need to change bit 14 to 0b
1650 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001651 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
Bruce Allane2434552008-11-21 17:02:41 -08001652 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1653 if (ret_val) {
1654 e1000_release_swflag_ich8lan(hw);
1655 goto out;
1656 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001657 data &= 0xBFFF;
1658 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1659 act_offset * 2 + 1,
1660 (u8)(data >> 8));
1661 if (ret_val) {
1662 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001663 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001664 }
1665
Bruce Allanad680762008-03-28 09:15:03 -07001666 /*
1667 * And invalidate the previously valid segment by setting
Auke Kokbc7f75f2007-09-17 12:30:59 -07001668 * its signature word (0x13) high_byte to 0b. This can be
1669 * done without an erase because flash erase sets all bits
Bruce Allanad680762008-03-28 09:15:03 -07001670 * to 1's. We can write 1's to 0's without an erase
1671 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001672 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1673 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1674 if (ret_val) {
1675 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001676 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001677 }
1678
1679 /* Great! Everything worked, we can now clear the cached entries. */
1680 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1681 dev_spec->shadow_ram[i].modified = 0;
1682 dev_spec->shadow_ram[i].value = 0xFFFF;
1683 }
1684
1685 e1000_release_swflag_ich8lan(hw);
1686
Bruce Allanad680762008-03-28 09:15:03 -07001687 /*
1688 * Reload the EEPROM, or else modifications will not appear
Auke Kokbc7f75f2007-09-17 12:30:59 -07001689 * until after the next adapter reset.
1690 */
1691 e1000e_reload_nvm(hw);
1692 msleep(10);
1693
Bruce Allane2434552008-11-21 17:02:41 -08001694out:
1695 if (ret_val)
1696 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1697
Auke Kokbc7f75f2007-09-17 12:30:59 -07001698 return ret_val;
1699}
1700
1701/**
1702 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1703 * @hw: pointer to the HW structure
1704 *
1705 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1706 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1707 * calculated, in which case we need to calculate the checksum and set bit 6.
1708 **/
1709static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1710{
1711 s32 ret_val;
1712 u16 data;
1713
Bruce Allanad680762008-03-28 09:15:03 -07001714 /*
1715 * Read 0x19 and check bit 6. If this bit is 0, the checksum
Auke Kokbc7f75f2007-09-17 12:30:59 -07001716 * needs to be fixed. This bit is an indication that the NVM
1717 * was prepared by OEM software and did not calculate the
1718 * checksum...a likely scenario.
1719 */
1720 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1721 if (ret_val)
1722 return ret_val;
1723
1724 if ((data & 0x40) == 0) {
1725 data |= 0x40;
1726 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1727 if (ret_val)
1728 return ret_val;
1729 ret_val = e1000e_update_nvm_checksum(hw);
1730 if (ret_val)
1731 return ret_val;
1732 }
1733
1734 return e1000e_validate_nvm_checksum_generic(hw);
1735}
1736
1737/**
Bruce Allan4a770352008-10-01 17:18:35 -07001738 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1739 * @hw: pointer to the HW structure
1740 *
1741 * To prevent malicious write/erase of the NVM, set it to be read-only
1742 * so that the hardware ignores all write/erase cycles of the NVM via
1743 * the flash control registers. The shadow-ram copy of the NVM will
1744 * still be updated, however any updates to this copy will not stick
1745 * across driver reloads.
1746 **/
1747void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1748{
1749 union ich8_flash_protected_range pr0;
1750 union ich8_hws_flash_status hsfsts;
1751 u32 gfpreg;
1752 s32 ret_val;
1753
1754 ret_val = e1000_acquire_swflag_ich8lan(hw);
1755 if (ret_val)
1756 return;
1757
1758 gfpreg = er32flash(ICH_FLASH_GFPREG);
1759
1760 /* Write-protect GbE Sector of NVM */
1761 pr0.regval = er32flash(ICH_FLASH_PR0);
1762 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1763 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1764 pr0.range.wpe = true;
1765 ew32flash(ICH_FLASH_PR0, pr0.regval);
1766
1767 /*
1768 * Lock down a subset of GbE Flash Control Registers, e.g.
1769 * PR0 to prevent the write-protection from being lifted.
1770 * Once FLOCKDN is set, the registers protected by it cannot
1771 * be written until FLOCKDN is cleared by a hardware reset.
1772 */
1773 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1774 hsfsts.hsf_status.flockdn = true;
1775 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1776
1777 e1000_release_swflag_ich8lan(hw);
1778}
1779
1780/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001781 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1782 * @hw: pointer to the HW structure
1783 * @offset: The offset (in bytes) of the byte/word to read.
1784 * @size: Size of data to read, 1=byte 2=word
1785 * @data: The byte(s) to write to the NVM.
1786 *
1787 * Writes one/two bytes to the NVM using the flash access registers.
1788 **/
1789static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1790 u8 size, u16 data)
1791{
1792 union ich8_hws_flash_status hsfsts;
1793 union ich8_hws_flash_ctrl hsflctl;
1794 u32 flash_linear_addr;
1795 u32 flash_data = 0;
1796 s32 ret_val;
1797 u8 count = 0;
1798
1799 if (size < 1 || size > 2 || data > size * 0xff ||
1800 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1801 return -E1000_ERR_NVM;
1802
1803 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1804 hw->nvm.flash_base_addr;
1805
1806 do {
1807 udelay(1);
1808 /* Steps */
1809 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1810 if (ret_val)
1811 break;
1812
1813 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1814 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1815 hsflctl.hsf_ctrl.fldbcount = size -1;
1816 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1817 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1818
1819 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1820
1821 if (size == 1)
1822 flash_data = (u32)data & 0x00FF;
1823 else
1824 flash_data = (u32)data;
1825
1826 ew32flash(ICH_FLASH_FDATA0, flash_data);
1827
Bruce Allanad680762008-03-28 09:15:03 -07001828 /*
1829 * check if FCERR is set to 1 , if set to 1, clear it
1830 * and try the whole sequence a few more times else done
1831 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001832 ret_val = e1000_flash_cycle_ich8lan(hw,
1833 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1834 if (!ret_val)
1835 break;
1836
Bruce Allanad680762008-03-28 09:15:03 -07001837 /*
1838 * If we're here, then things are most likely
Auke Kokbc7f75f2007-09-17 12:30:59 -07001839 * completely hosed, but if the error condition
1840 * is detected, it won't hurt to give it another
1841 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1842 */
1843 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1844 if (hsfsts.hsf_status.flcerr == 1)
1845 /* Repeat for some time before giving up. */
1846 continue;
1847 if (hsfsts.hsf_status.flcdone == 0) {
1848 hw_dbg(hw, "Timeout error - flash cycle "
1849 "did not complete.");
1850 break;
1851 }
1852 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1853
1854 return ret_val;
1855}
1856
1857/**
1858 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1859 * @hw: pointer to the HW structure
1860 * @offset: The index of the byte to read.
1861 * @data: The byte to write to the NVM.
1862 *
1863 * Writes a single byte to the NVM using the flash access registers.
1864 **/
1865static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1866 u8 data)
1867{
1868 u16 word = (u16)data;
1869
1870 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1871}
1872
1873/**
1874 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1875 * @hw: pointer to the HW structure
1876 * @offset: The offset of the byte to write.
1877 * @byte: The byte to write to the NVM.
1878 *
1879 * Writes a single byte to the NVM using the flash access registers.
1880 * Goes through a retry algorithm before giving up.
1881 **/
1882static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1883 u32 offset, u8 byte)
1884{
1885 s32 ret_val;
1886 u16 program_retries;
1887
1888 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1889 if (!ret_val)
1890 return ret_val;
1891
1892 for (program_retries = 0; program_retries < 100; program_retries++) {
1893 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1894 udelay(100);
1895 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1896 if (!ret_val)
1897 break;
1898 }
1899 if (program_retries == 100)
1900 return -E1000_ERR_NVM;
1901
1902 return 0;
1903}
1904
1905/**
1906 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1907 * @hw: pointer to the HW structure
1908 * @bank: 0 for first bank, 1 for second bank, etc.
1909 *
1910 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1911 * bank N is 4096 * N + flash_reg_addr.
1912 **/
1913static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1914{
1915 struct e1000_nvm_info *nvm = &hw->nvm;
1916 union ich8_hws_flash_status hsfsts;
1917 union ich8_hws_flash_ctrl hsflctl;
1918 u32 flash_linear_addr;
1919 /* bank size is in 16bit words - adjust to bytes */
1920 u32 flash_bank_size = nvm->flash_bank_size * 2;
1921 s32 ret_val;
1922 s32 count = 0;
1923 s32 iteration;
1924 s32 sector_size;
1925 s32 j;
1926
1927 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1928
Bruce Allanad680762008-03-28 09:15:03 -07001929 /*
1930 * Determine HW Sector size: Read BERASE bits of hw flash status
1931 * register
1932 * 00: The Hw sector is 256 bytes, hence we need to erase 16
Auke Kokbc7f75f2007-09-17 12:30:59 -07001933 * consecutive sectors. The start index for the nth Hw sector
1934 * can be calculated as = bank * 4096 + n * 256
1935 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1936 * The start index for the nth Hw sector can be calculated
1937 * as = bank * 4096
1938 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1939 * (ich9 only, otherwise error condition)
1940 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1941 */
1942 switch (hsfsts.hsf_status.berasesz) {
1943 case 0:
1944 /* Hw sector size 256 */
1945 sector_size = ICH_FLASH_SEG_SIZE_256;
1946 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1947 break;
1948 case 1:
1949 sector_size = ICH_FLASH_SEG_SIZE_4K;
Bruce Allan28c91952009-07-01 13:28:32 +00001950 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001951 break;
1952 case 2:
1953 if (hw->mac.type == e1000_ich9lan) {
1954 sector_size = ICH_FLASH_SEG_SIZE_8K;
1955 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1956 } else {
1957 return -E1000_ERR_NVM;
1958 }
1959 break;
1960 case 3:
1961 sector_size = ICH_FLASH_SEG_SIZE_64K;
Bruce Allan28c91952009-07-01 13:28:32 +00001962 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001963 break;
1964 default:
1965 return -E1000_ERR_NVM;
1966 }
1967
1968 /* Start with the base address, then add the sector offset. */
1969 flash_linear_addr = hw->nvm.flash_base_addr;
1970 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1971
1972 for (j = 0; j < iteration ; j++) {
1973 do {
1974 /* Steps */
1975 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1976 if (ret_val)
1977 return ret_val;
1978
Bruce Allanad680762008-03-28 09:15:03 -07001979 /*
1980 * Write a value 11 (block Erase) in Flash
1981 * Cycle field in hw flash control
1982 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001983 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1984 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1985 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1986
Bruce Allanad680762008-03-28 09:15:03 -07001987 /*
1988 * Write the last 24 bits of an index within the
Auke Kokbc7f75f2007-09-17 12:30:59 -07001989 * block into Flash Linear address field in Flash
1990 * Address.
1991 */
1992 flash_linear_addr += (j * sector_size);
1993 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1994
1995 ret_val = e1000_flash_cycle_ich8lan(hw,
1996 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1997 if (ret_val == 0)
1998 break;
1999
Bruce Allanad680762008-03-28 09:15:03 -07002000 /*
2001 * Check if FCERR is set to 1. If 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002002 * clear it and try the whole sequence
Bruce Allanad680762008-03-28 09:15:03 -07002003 * a few more times else Done
2004 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002005 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2006 if (hsfsts.hsf_status.flcerr == 1)
Bruce Allanad680762008-03-28 09:15:03 -07002007 /* repeat for some time before giving up */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002008 continue;
2009 else if (hsfsts.hsf_status.flcdone == 0)
2010 return ret_val;
2011 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2012 }
2013
2014 return 0;
2015}
2016
2017/**
2018 * e1000_valid_led_default_ich8lan - Set the default LED settings
2019 * @hw: pointer to the HW structure
2020 * @data: Pointer to the LED settings
2021 *
2022 * Reads the LED default settings from the NVM to data. If the NVM LED
2023 * settings is all 0's or F's, set the LED default to a valid LED default
2024 * setting.
2025 **/
2026static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2027{
2028 s32 ret_val;
2029
2030 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2031 if (ret_val) {
2032 hw_dbg(hw, "NVM Read Error\n");
2033 return ret_val;
2034 }
2035
2036 if (*data == ID_LED_RESERVED_0000 ||
2037 *data == ID_LED_RESERVED_FFFF)
2038 *data = ID_LED_DEFAULT_ICH8LAN;
2039
2040 return 0;
2041}
2042
2043/**
Bruce Allana4f58f52009-06-02 11:29:18 +00002044 * e1000_id_led_init_pchlan - store LED configurations
2045 * @hw: pointer to the HW structure
2046 *
2047 * PCH does not control LEDs via the LEDCTL register, rather it uses
2048 * the PHY LED configuration register.
2049 *
2050 * PCH also does not have an "always on" or "always off" mode which
2051 * complicates the ID feature. Instead of using the "on" mode to indicate
2052 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2053 * use "link_up" mode. The LEDs will still ID on request if there is no
2054 * link based on logic in e1000_led_[on|off]_pchlan().
2055 **/
2056static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2057{
2058 struct e1000_mac_info *mac = &hw->mac;
2059 s32 ret_val;
2060 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2061 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2062 u16 data, i, temp, shift;
2063
2064 /* Get default ID LED modes */
2065 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2066 if (ret_val)
2067 goto out;
2068
2069 mac->ledctl_default = er32(LEDCTL);
2070 mac->ledctl_mode1 = mac->ledctl_default;
2071 mac->ledctl_mode2 = mac->ledctl_default;
2072
2073 for (i = 0; i < 4; i++) {
2074 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2075 shift = (i * 5);
2076 switch (temp) {
2077 case ID_LED_ON1_DEF2:
2078 case ID_LED_ON1_ON2:
2079 case ID_LED_ON1_OFF2:
2080 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2081 mac->ledctl_mode1 |= (ledctl_on << shift);
2082 break;
2083 case ID_LED_OFF1_DEF2:
2084 case ID_LED_OFF1_ON2:
2085 case ID_LED_OFF1_OFF2:
2086 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2087 mac->ledctl_mode1 |= (ledctl_off << shift);
2088 break;
2089 default:
2090 /* Do nothing */
2091 break;
2092 }
2093 switch (temp) {
2094 case ID_LED_DEF1_ON2:
2095 case ID_LED_ON1_ON2:
2096 case ID_LED_OFF1_ON2:
2097 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2098 mac->ledctl_mode2 |= (ledctl_on << shift);
2099 break;
2100 case ID_LED_DEF1_OFF2:
2101 case ID_LED_ON1_OFF2:
2102 case ID_LED_OFF1_OFF2:
2103 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2104 mac->ledctl_mode2 |= (ledctl_off << shift);
2105 break;
2106 default:
2107 /* Do nothing */
2108 break;
2109 }
2110 }
2111
2112out:
2113 return ret_val;
2114}
2115
2116/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002117 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2118 * @hw: pointer to the HW structure
2119 *
2120 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2121 * register, so the the bus width is hard coded.
2122 **/
2123static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2124{
2125 struct e1000_bus_info *bus = &hw->bus;
2126 s32 ret_val;
2127
2128 ret_val = e1000e_get_bus_info_pcie(hw);
2129
Bruce Allanad680762008-03-28 09:15:03 -07002130 /*
2131 * ICH devices are "PCI Express"-ish. They have
Auke Kokbc7f75f2007-09-17 12:30:59 -07002132 * a configuration space, but do not contain
2133 * PCI Express Capability registers, so bus width
2134 * must be hardcoded.
2135 */
2136 if (bus->width == e1000_bus_width_unknown)
2137 bus->width = e1000_bus_width_pcie_x1;
2138
2139 return ret_val;
2140}
2141
2142/**
2143 * e1000_reset_hw_ich8lan - Reset the hardware
2144 * @hw: pointer to the HW structure
2145 *
2146 * Does a full reset of the hardware which includes a reset of the PHY and
2147 * MAC.
2148 **/
2149static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2150{
2151 u32 ctrl, icr, kab;
2152 s32 ret_val;
2153
Bruce Allanad680762008-03-28 09:15:03 -07002154 /*
2155 * Prevent the PCI-E bus from sticking if there is no TLP connection
Auke Kokbc7f75f2007-09-17 12:30:59 -07002156 * on the last TLP read/write transaction when MAC is reset.
2157 */
2158 ret_val = e1000e_disable_pcie_master(hw);
2159 if (ret_val) {
2160 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2161 }
2162
2163 hw_dbg(hw, "Masking off all interrupts\n");
2164 ew32(IMC, 0xffffffff);
2165
Bruce Allanad680762008-03-28 09:15:03 -07002166 /*
2167 * Disable the Transmit and Receive units. Then delay to allow
Auke Kokbc7f75f2007-09-17 12:30:59 -07002168 * any pending transactions to complete before we hit the MAC
2169 * with the global reset.
2170 */
2171 ew32(RCTL, 0);
2172 ew32(TCTL, E1000_TCTL_PSP);
2173 e1e_flush();
2174
2175 msleep(10);
2176
2177 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2178 if (hw->mac.type == e1000_ich8lan) {
2179 /* Set Tx and Rx buffer allocation to 8k apiece. */
2180 ew32(PBA, E1000_PBA_8K);
2181 /* Set Packet Buffer Size to 16k. */
2182 ew32(PBS, E1000_PBS_16K);
2183 }
2184
2185 ctrl = er32(CTRL);
2186
2187 if (!e1000_check_reset_block(hw)) {
Bruce Allanfc0c7762009-07-01 13:27:55 +00002188 /* Clear PHY Reset Asserted bit */
2189 if (hw->mac.type >= e1000_pchlan) {
2190 u32 status = er32(STATUS);
2191 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2192 }
2193
Bruce Allanad680762008-03-28 09:15:03 -07002194 /*
2195 * PHY HW reset requires MAC CORE reset at the same
Auke Kokbc7f75f2007-09-17 12:30:59 -07002196 * time to make sure the interface between MAC and the
2197 * external PHY is reset.
2198 */
2199 ctrl |= E1000_CTRL_PHY_RST;
2200 }
2201 ret_val = e1000_acquire_swflag_ich8lan(hw);
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002202 /* Whether or not the swflag was acquired, we need to reset the part */
Bruce Allan0285c8d2008-11-21 16:59:54 -08002203 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002204 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2205 msleep(20);
2206
Bruce Allanfc0c7762009-07-01 13:27:55 +00002207 if (!ret_val)
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002208 e1000_release_swflag_ich8lan(hw);
Jesse Brandeburg37f40232008-10-02 16:33:20 -07002209
Bruce Allanfc0c7762009-07-01 13:27:55 +00002210 if (ctrl & E1000_CTRL_PHY_RST)
2211 ret_val = hw->phy.ops.get_cfg_done(hw);
2212
2213 if (hw->mac.type >= e1000_ich10lan) {
2214 e1000_lan_init_done_ich8lan(hw);
2215 } else {
2216 ret_val = e1000e_get_auto_rd_done(hw);
2217 if (ret_val) {
2218 /*
2219 * When auto config read does not complete, do not
2220 * return with an error. This can happen in situations
2221 * where there is no eeprom and prevents getting link.
2222 */
2223 hw_dbg(hw, "Auto Read Done did not complete\n");
2224 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002225 }
2226
2227 ew32(IMC, 0xffffffff);
2228 icr = er32(ICR);
2229
2230 kab = er32(KABGTXD);
2231 kab |= E1000_KABGTXD_BGSQLBIAS;
2232 ew32(KABGTXD, kab);
2233
Bruce Allana4f58f52009-06-02 11:29:18 +00002234 if (hw->mac.type == e1000_pchlan)
2235 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2236
Auke Kokbc7f75f2007-09-17 12:30:59 -07002237 return ret_val;
2238}
2239
2240/**
2241 * e1000_init_hw_ich8lan - Initialize the hardware
2242 * @hw: pointer to the HW structure
2243 *
2244 * Prepares the hardware for transmit and receive by doing the following:
2245 * - initialize hardware bits
2246 * - initialize LED identification
2247 * - setup receive address registers
2248 * - setup flow control
Auke Kok489815c2008-02-21 15:11:07 -08002249 * - setup transmit descriptors
Auke Kokbc7f75f2007-09-17 12:30:59 -07002250 * - clear statistics
2251 **/
2252static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2253{
2254 struct e1000_mac_info *mac = &hw->mac;
2255 u32 ctrl_ext, txdctl, snoop;
2256 s32 ret_val;
2257 u16 i;
2258
2259 e1000_initialize_hw_bits_ich8lan(hw);
2260
2261 /* Initialize identification LED */
Bruce Allana4f58f52009-06-02 11:29:18 +00002262 ret_val = mac->ops.id_led_init(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002263 if (ret_val) {
2264 hw_dbg(hw, "Error initializing identification LED\n");
2265 return ret_val;
2266 }
2267
2268 /* Setup the receive address. */
2269 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2270
2271 /* Zero out the Multicast HASH table */
2272 hw_dbg(hw, "Zeroing the MTA\n");
2273 for (i = 0; i < mac->mta_reg_count; i++)
2274 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2275
Bruce Allanfc0c7762009-07-01 13:27:55 +00002276 /*
2277 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2278 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2279 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2280 */
2281 if (hw->phy.type == e1000_phy_82578) {
2282 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2283 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2284 if (ret_val)
2285 return ret_val;
2286 }
2287
Auke Kokbc7f75f2007-09-17 12:30:59 -07002288 /* Setup link and flow control */
2289 ret_val = e1000_setup_link_ich8lan(hw);
2290
2291 /* Set the transmit descriptor write-back policy for both queues */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002292 txdctl = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002293 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2294 E1000_TXDCTL_FULL_TX_DESC_WB;
2295 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2296 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002297 ew32(TXDCTL(0), txdctl);
2298 txdctl = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002299 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2300 E1000_TXDCTL_FULL_TX_DESC_WB;
2301 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2302 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002303 ew32(TXDCTL(1), txdctl);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002304
Bruce Allanad680762008-03-28 09:15:03 -07002305 /*
2306 * ICH8 has opposite polarity of no_snoop bits.
2307 * By default, we should use snoop behavior.
2308 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002309 if (mac->type == e1000_ich8lan)
2310 snoop = PCIE_ICH8_SNOOP_ALL;
2311 else
2312 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2313 e1000e_set_pcie_no_snoop(hw, snoop);
2314
2315 ctrl_ext = er32(CTRL_EXT);
2316 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2317 ew32(CTRL_EXT, ctrl_ext);
2318
Bruce Allanad680762008-03-28 09:15:03 -07002319 /*
2320 * Clear all of the statistics registers (clear on read). It is
Auke Kokbc7f75f2007-09-17 12:30:59 -07002321 * important that we do this after we have tried to establish link
2322 * because the symbol error count will increment wildly if there
2323 * is no link.
2324 */
2325 e1000_clear_hw_cntrs_ich8lan(hw);
2326
2327 return 0;
2328}
2329/**
2330 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2331 * @hw: pointer to the HW structure
2332 *
2333 * Sets/Clears required hardware bits necessary for correctly setting up the
2334 * hardware for transmit and receive.
2335 **/
2336static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2337{
2338 u32 reg;
2339
2340 /* Extended Device Control */
2341 reg = er32(CTRL_EXT);
2342 reg |= (1 << 22);
Bruce Allana4f58f52009-06-02 11:29:18 +00002343 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2344 if (hw->mac.type >= e1000_pchlan)
2345 reg |= E1000_CTRL_EXT_PHYPDEN;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002346 ew32(CTRL_EXT, reg);
2347
2348 /* Transmit Descriptor Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002349 reg = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002350 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002351 ew32(TXDCTL(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002352
2353 /* Transmit Descriptor Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002354 reg = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002355 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002356 ew32(TXDCTL(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002357
2358 /* Transmit Arbitration Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002359 reg = er32(TARC(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002360 if (hw->mac.type == e1000_ich8lan)
2361 reg |= (1 << 28) | (1 << 29);
2362 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002363 ew32(TARC(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002364
2365 /* Transmit Arbitration Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002366 reg = er32(TARC(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002367 if (er32(TCTL) & E1000_TCTL_MULR)
2368 reg &= ~(1 << 28);
2369 else
2370 reg |= (1 << 28);
2371 reg |= (1 << 24) | (1 << 26) | (1 << 30);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002372 ew32(TARC(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002373
2374 /* Device Status */
2375 if (hw->mac.type == e1000_ich8lan) {
2376 reg = er32(STATUS);
2377 reg &= ~(1 << 31);
2378 ew32(STATUS, reg);
2379 }
2380}
2381
2382/**
2383 * e1000_setup_link_ich8lan - Setup flow control and link settings
2384 * @hw: pointer to the HW structure
2385 *
2386 * Determines which flow control settings to use, then configures flow
2387 * control. Calls the appropriate media-specific link configuration
2388 * function. Assuming the adapter has a valid link partner, a valid link
2389 * should be established. Assumes the hardware has previously been reset
2390 * and the transmitter and receiver are not enabled.
2391 **/
2392static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2393{
Auke Kokbc7f75f2007-09-17 12:30:59 -07002394 s32 ret_val;
2395
2396 if (e1000_check_reset_block(hw))
2397 return 0;
2398
Bruce Allanad680762008-03-28 09:15:03 -07002399 /*
2400 * ICH parts do not have a word in the NVM to determine
Auke Kokbc7f75f2007-09-17 12:30:59 -07002401 * the default flow control setting, so we explicitly
2402 * set it to full.
2403 */
Bruce Allan37289d92009-06-02 11:29:37 +00002404 if (hw->fc.requested_mode == e1000_fc_default) {
2405 /* Workaround h/w hang when Tx flow control enabled */
2406 if (hw->mac.type == e1000_pchlan)
2407 hw->fc.requested_mode = e1000_fc_rx_pause;
2408 else
2409 hw->fc.requested_mode = e1000_fc_full;
2410 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002411
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002412 /*
2413 * Save off the requested flow control mode for use later. Depending
2414 * on the link partner's capabilities, we may or may not use this mode.
2415 */
2416 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002417
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002418 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2419 hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002420
2421 /* Continue to configure the copper link. */
2422 ret_val = e1000_setup_copper_link_ich8lan(hw);
2423 if (ret_val)
2424 return ret_val;
2425
Jeff Kirsher318a94d2008-03-28 09:15:16 -07002426 ew32(FCTTV, hw->fc.pause_time);
Bruce Allana4f58f52009-06-02 11:29:18 +00002427 if ((hw->phy.type == e1000_phy_82578) ||
2428 (hw->phy.type == e1000_phy_82577)) {
2429 ret_val = hw->phy.ops.write_phy_reg(hw,
2430 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2431 hw->fc.pause_time);
2432 if (ret_val)
2433 return ret_val;
2434 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002435
2436 return e1000e_set_fc_watermarks(hw);
2437}
2438
2439/**
2440 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2441 * @hw: pointer to the HW structure
2442 *
2443 * Configures the kumeran interface to the PHY to wait the appropriate time
2444 * when polling the PHY, then call the generic setup_copper_link to finish
2445 * configuring the copper link.
2446 **/
2447static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2448{
2449 u32 ctrl;
2450 s32 ret_val;
2451 u16 reg_data;
2452
2453 ctrl = er32(CTRL);
2454 ctrl |= E1000_CTRL_SLU;
2455 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2456 ew32(CTRL, ctrl);
2457
Bruce Allanad680762008-03-28 09:15:03 -07002458 /*
2459 * Set the mac to wait the maximum time between each iteration
Auke Kokbc7f75f2007-09-17 12:30:59 -07002460 * and increase the max iterations when polling the phy;
Bruce Allanad680762008-03-28 09:15:03 -07002461 * this fixes erroneous timeouts at 10Mbps.
2462 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002463 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2464 if (ret_val)
2465 return ret_val;
2466 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2467 if (ret_val)
2468 return ret_val;
2469 reg_data |= 0x3F;
2470 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2471 if (ret_val)
2472 return ret_val;
2473
Bruce Allana4f58f52009-06-02 11:29:18 +00002474 switch (hw->phy.type) {
2475 case e1000_phy_igp_3:
Auke Kokbc7f75f2007-09-17 12:30:59 -07002476 ret_val = e1000e_copper_link_setup_igp(hw);
2477 if (ret_val)
2478 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002479 break;
2480 case e1000_phy_bm:
2481 case e1000_phy_82578:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002482 ret_val = e1000e_copper_link_setup_m88(hw);
2483 if (ret_val)
2484 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002485 break;
2486 case e1000_phy_82577:
2487 ret_val = e1000_copper_link_setup_82577(hw);
2488 if (ret_val)
2489 return ret_val;
2490 break;
2491 case e1000_phy_ife:
2492 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2493 &reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002494 if (ret_val)
2495 return ret_val;
2496
2497 reg_data &= ~IFE_PMC_AUTO_MDIX;
2498
2499 switch (hw->phy.mdix) {
2500 case 1:
2501 reg_data &= ~IFE_PMC_FORCE_MDIX;
2502 break;
2503 case 2:
2504 reg_data |= IFE_PMC_FORCE_MDIX;
2505 break;
2506 case 0:
2507 default:
2508 reg_data |= IFE_PMC_AUTO_MDIX;
2509 break;
2510 }
Bruce Allana4f58f52009-06-02 11:29:18 +00002511 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2512 reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002513 if (ret_val)
2514 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002515 break;
2516 default:
2517 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002518 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002519 return e1000e_setup_copper_link(hw);
2520}
2521
2522/**
2523 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2524 * @hw: pointer to the HW structure
2525 * @speed: pointer to store current link speed
2526 * @duplex: pointer to store the current link duplex
2527 *
Bruce Allanad680762008-03-28 09:15:03 -07002528 * Calls the generic get_speed_and_duplex to retrieve the current link
Auke Kokbc7f75f2007-09-17 12:30:59 -07002529 * information and then calls the Kumeran lock loss workaround for links at
2530 * gigabit speeds.
2531 **/
2532static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2533 u16 *duplex)
2534{
2535 s32 ret_val;
2536
2537 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2538 if (ret_val)
2539 return ret_val;
2540
2541 if ((hw->mac.type == e1000_ich8lan) &&
2542 (hw->phy.type == e1000_phy_igp_3) &&
2543 (*speed == SPEED_1000)) {
2544 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2545 }
2546
2547 return ret_val;
2548}
2549
2550/**
2551 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2552 * @hw: pointer to the HW structure
2553 *
2554 * Work-around for 82566 Kumeran PCS lock loss:
2555 * On link status change (i.e. PCI reset, speed change) and link is up and
2556 * speed is gigabit-
2557 * 0) if workaround is optionally disabled do nothing
2558 * 1) wait 1ms for Kumeran link to come up
2559 * 2) check Kumeran Diagnostic register PCS lock loss bit
2560 * 3) if not set the link is locked (all is good), otherwise...
2561 * 4) reset the PHY
2562 * 5) repeat up to 10 times
2563 * Note: this is only called for IGP3 copper when speed is 1gb.
2564 **/
2565static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2566{
2567 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2568 u32 phy_ctrl;
2569 s32 ret_val;
2570 u16 i, data;
2571 bool link;
2572
2573 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2574 return 0;
2575
Bruce Allanad680762008-03-28 09:15:03 -07002576 /*
2577 * Make sure link is up before proceeding. If not just return.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002578 * Attempting this while link is negotiating fouled up link
Bruce Allanad680762008-03-28 09:15:03 -07002579 * stability
2580 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002581 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2582 if (!link)
2583 return 0;
2584
2585 for (i = 0; i < 10; i++) {
2586 /* read once to clear */
2587 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2588 if (ret_val)
2589 return ret_val;
2590 /* and again to get new status */
2591 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2592 if (ret_val)
2593 return ret_val;
2594
2595 /* check for PCS lock */
2596 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2597 return 0;
2598
2599 /* Issue PHY reset */
2600 e1000_phy_hw_reset(hw);
2601 mdelay(5);
2602 }
2603 /* Disable GigE link negotiation */
2604 phy_ctrl = er32(PHY_CTRL);
2605 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2606 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2607 ew32(PHY_CTRL, phy_ctrl);
2608
Bruce Allanad680762008-03-28 09:15:03 -07002609 /*
2610 * Call gig speed drop workaround on Gig disable before accessing
2611 * any PHY registers
2612 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002613 e1000e_gig_downshift_workaround_ich8lan(hw);
2614
2615 /* unable to acquire PCS lock */
2616 return -E1000_ERR_PHY;
2617}
2618
2619/**
Bruce Allanad680762008-03-28 09:15:03 -07002620 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002621 * @hw: pointer to the HW structure
Auke Kok489815c2008-02-21 15:11:07 -08002622 * @state: boolean value used to set the current Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002623 *
2624 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2625 * /disabled - FALSE).
2626 **/
2627void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2628 bool state)
2629{
2630 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2631
2632 if (hw->mac.type != e1000_ich8lan) {
2633 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2634 return;
2635 }
2636
2637 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2638}
2639
2640/**
2641 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2642 * @hw: pointer to the HW structure
2643 *
2644 * Workaround for 82566 power-down on D3 entry:
2645 * 1) disable gigabit link
2646 * 2) write VR power-down enable
2647 * 3) read it back
2648 * Continue if successful, else issue LCD reset and repeat
2649 **/
2650void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2651{
2652 u32 reg;
2653 u16 data;
2654 u8 retry = 0;
2655
2656 if (hw->phy.type != e1000_phy_igp_3)
2657 return;
2658
2659 /* Try the workaround twice (if needed) */
2660 do {
2661 /* Disable link */
2662 reg = er32(PHY_CTRL);
2663 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2664 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2665 ew32(PHY_CTRL, reg);
2666
Bruce Allanad680762008-03-28 09:15:03 -07002667 /*
2668 * Call gig speed drop workaround on Gig disable before
2669 * accessing any PHY registers
2670 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002671 if (hw->mac.type == e1000_ich8lan)
2672 e1000e_gig_downshift_workaround_ich8lan(hw);
2673
2674 /* Write VR power-down enable */
2675 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2676 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2677 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2678
2679 /* Read it back and test */
2680 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2681 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2682 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2683 break;
2684
2685 /* Issue PHY reset and repeat at most one more time */
2686 reg = er32(CTRL);
2687 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2688 retry++;
2689 } while (retry);
2690}
2691
2692/**
2693 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2694 * @hw: pointer to the HW structure
2695 *
2696 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
Auke Kok489815c2008-02-21 15:11:07 -08002697 * LPLU, Gig disable, MDIC PHY reset):
Auke Kokbc7f75f2007-09-17 12:30:59 -07002698 * 1) Set Kumeran Near-end loopback
2699 * 2) Clear Kumeran Near-end loopback
2700 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2701 **/
2702void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2703{
2704 s32 ret_val;
2705 u16 reg_data;
2706
2707 if ((hw->mac.type != e1000_ich8lan) ||
2708 (hw->phy.type != e1000_phy_igp_3))
2709 return;
2710
2711 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2712 &reg_data);
2713 if (ret_val)
2714 return;
2715 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2716 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2717 reg_data);
2718 if (ret_val)
2719 return;
2720 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2721 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2722 reg_data);
2723}
2724
2725/**
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002726 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2727 * @hw: pointer to the HW structure
2728 *
2729 * During S0 to Sx transition, it is possible the link remains at gig
2730 * instead of negotiating to a lower speed. Before going to Sx, set
2731 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2732 * to a lower speed.
2733 *
Bruce Allana4f58f52009-06-02 11:29:18 +00002734 * Should only be called for applicable parts.
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002735 **/
2736void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2737{
2738 u32 phy_ctrl;
2739
Bruce Allana4f58f52009-06-02 11:29:18 +00002740 switch (hw->mac.type) {
2741 case e1000_ich9lan:
2742 case e1000_ich10lan:
2743 case e1000_pchlan:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002744 phy_ctrl = er32(PHY_CTRL);
2745 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2746 E1000_PHY_CTRL_GBE_DISABLE;
2747 ew32(PHY_CTRL, phy_ctrl);
Bruce Allana4f58f52009-06-02 11:29:18 +00002748
2749 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2750 if (hw->mac.type == e1000_pchlan)
2751 udelay(500);
2752 default:
2753 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002754 }
2755
2756 return;
2757}
2758
2759/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002760 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2761 * @hw: pointer to the HW structure
2762 *
2763 * Return the LED back to the default configuration.
2764 **/
2765static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2766{
2767 if (hw->phy.type == e1000_phy_ife)
2768 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2769
2770 ew32(LEDCTL, hw->mac.ledctl_default);
2771 return 0;
2772}
2773
2774/**
Auke Kok489815c2008-02-21 15:11:07 -08002775 * e1000_led_on_ich8lan - Turn LEDs on
Auke Kokbc7f75f2007-09-17 12:30:59 -07002776 * @hw: pointer to the HW structure
2777 *
Auke Kok489815c2008-02-21 15:11:07 -08002778 * Turn on the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002779 **/
2780static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2781{
2782 if (hw->phy.type == e1000_phy_ife)
2783 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2784 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2785
2786 ew32(LEDCTL, hw->mac.ledctl_mode2);
2787 return 0;
2788}
2789
2790/**
Auke Kok489815c2008-02-21 15:11:07 -08002791 * e1000_led_off_ich8lan - Turn LEDs off
Auke Kokbc7f75f2007-09-17 12:30:59 -07002792 * @hw: pointer to the HW structure
2793 *
Auke Kok489815c2008-02-21 15:11:07 -08002794 * Turn off the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002795 **/
2796static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2797{
2798 if (hw->phy.type == e1000_phy_ife)
2799 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2800 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2801
2802 ew32(LEDCTL, hw->mac.ledctl_mode1);
2803 return 0;
2804}
2805
2806/**
Bruce Allana4f58f52009-06-02 11:29:18 +00002807 * e1000_setup_led_pchlan - Configures SW controllable LED
2808 * @hw: pointer to the HW structure
2809 *
2810 * This prepares the SW controllable LED for use.
2811 **/
2812static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2813{
2814 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2815 (u16)hw->mac.ledctl_mode1);
2816}
2817
2818/**
2819 * e1000_cleanup_led_pchlan - Restore the default LED operation
2820 * @hw: pointer to the HW structure
2821 *
2822 * Return the LED back to the default configuration.
2823 **/
2824static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2825{
2826 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2827 (u16)hw->mac.ledctl_default);
2828}
2829
2830/**
2831 * e1000_led_on_pchlan - Turn LEDs on
2832 * @hw: pointer to the HW structure
2833 *
2834 * Turn on the LEDs.
2835 **/
2836static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2837{
2838 u16 data = (u16)hw->mac.ledctl_mode2;
2839 u32 i, led;
2840
2841 /*
2842 * If no link, then turn LED on by setting the invert bit
2843 * for each LED that's mode is "link_up" in ledctl_mode2.
2844 */
2845 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2846 for (i = 0; i < 3; i++) {
2847 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2848 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2849 E1000_LEDCTL_MODE_LINK_UP)
2850 continue;
2851 if (led & E1000_PHY_LED0_IVRT)
2852 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2853 else
2854 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2855 }
2856 }
2857
2858 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2859}
2860
2861/**
2862 * e1000_led_off_pchlan - Turn LEDs off
2863 * @hw: pointer to the HW structure
2864 *
2865 * Turn off the LEDs.
2866 **/
2867static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
2868{
2869 u16 data = (u16)hw->mac.ledctl_mode1;
2870 u32 i, led;
2871
2872 /*
2873 * If no link, then turn LED off by clearing the invert bit
2874 * for each LED that's mode is "link_up" in ledctl_mode1.
2875 */
2876 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2877 for (i = 0; i < 3; i++) {
2878 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2879 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2880 E1000_LEDCTL_MODE_LINK_UP)
2881 continue;
2882 if (led & E1000_PHY_LED0_IVRT)
2883 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2884 else
2885 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2886 }
2887 }
2888
2889 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2890}
2891
2892/**
Bruce Allanf4187b52008-08-26 18:36:50 -07002893 * e1000_get_cfg_done_ich8lan - Read config done bit
2894 * @hw: pointer to the HW structure
2895 *
2896 * Read the management control register for the config done bit for
2897 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2898 * to read the config done bit, so an error is *ONLY* logged and returns
Bruce Allana4f58f52009-06-02 11:29:18 +00002899 * 0. If we were to return with error, EEPROM-less silicon
Bruce Allanf4187b52008-08-26 18:36:50 -07002900 * would not be able to be reset or change link.
2901 **/
2902static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2903{
2904 u32 bank = 0;
2905
Bruce Allanfc0c7762009-07-01 13:27:55 +00002906 if (hw->mac.type >= e1000_pchlan) {
2907 u32 status = er32(STATUS);
2908
2909 if (status & E1000_STATUS_PHYRA)
2910 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2911 else
2912 hw_dbg(hw,
2913 "PHY Reset Asserted not set - needs delay\n");
2914 }
2915
Bruce Allanf4187b52008-08-26 18:36:50 -07002916 e1000e_get_cfg_done(hw);
2917
2918 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
Bruce Allana4f58f52009-06-02 11:29:18 +00002919 if ((hw->mac.type != e1000_ich10lan) &&
2920 (hw->mac.type != e1000_pchlan)) {
Bruce Allanf4187b52008-08-26 18:36:50 -07002921 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2922 (hw->phy.type == e1000_phy_igp_3)) {
2923 e1000e_phy_init_script_igp3(hw);
2924 }
2925 } else {
2926 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2927 /* Maybe we should do a basic PHY config */
2928 hw_dbg(hw, "EEPROM not present\n");
2929 return -E1000_ERR_CONFIG;
2930 }
2931 }
2932
2933 return 0;
2934}
2935
2936/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002937 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2938 * @hw: pointer to the HW structure
2939 *
2940 * Clears hardware counters specific to the silicon family and calls
2941 * clear_hw_cntrs_generic to clear all general purpose counters.
2942 **/
2943static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2944{
2945 u32 temp;
Bruce Allana4f58f52009-06-02 11:29:18 +00002946 u16 phy_data;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002947
2948 e1000e_clear_hw_cntrs_base(hw);
2949
2950 temp = er32(ALGNERRC);
2951 temp = er32(RXERRC);
2952 temp = er32(TNCRS);
2953 temp = er32(CEXTERR);
2954 temp = er32(TSCTC);
2955 temp = er32(TSCTFC);
2956
2957 temp = er32(MGTPRC);
2958 temp = er32(MGTPDC);
2959 temp = er32(MGTPTC);
2960
2961 temp = er32(IAC);
2962 temp = er32(ICRXOC);
2963
Bruce Allana4f58f52009-06-02 11:29:18 +00002964 /* Clear PHY statistics registers */
2965 if ((hw->phy.type == e1000_phy_82578) ||
2966 (hw->phy.type == e1000_phy_82577)) {
2967 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
2968 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
2969 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
2970 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
2971 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
2972 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
2973 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
2974 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
2975 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
2976 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
2977 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
2978 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
2979 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
2980 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
2981 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002982}
2983
2984static struct e1000_mac_operations ich8_mac_ops = {
Bruce Allana4f58f52009-06-02 11:29:18 +00002985 .id_led_init = e1000e_id_led_init,
Bruce Allan4662e822008-08-26 18:37:06 -07002986 .check_mng_mode = e1000_check_mng_mode_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002987 .check_for_link = e1000e_check_for_copper_link,
Bruce Allana4f58f52009-06-02 11:29:18 +00002988 /* cleanup_led dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002989 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2990 .get_bus_info = e1000_get_bus_info_ich8lan,
2991 .get_link_up_info = e1000_get_link_up_info_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00002992 /* led_on dependent on mac type */
2993 /* led_off dependent on mac type */
Jeff Kirshere2de3eb2008-03-28 09:15:11 -07002994 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002995 .reset_hw = e1000_reset_hw_ich8lan,
2996 .init_hw = e1000_init_hw_ich8lan,
2997 .setup_link = e1000_setup_link_ich8lan,
2998 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00002999 /* id_led_init dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003000};
3001
3002static struct e1000_phy_operations ich8_phy_ops = {
3003 .acquire_phy = e1000_acquire_swflag_ich8lan,
3004 .check_reset_block = e1000_check_reset_block_ich8lan,
3005 .commit_phy = NULL,
3006 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
Bruce Allanf4187b52008-08-26 18:36:50 -07003007 .get_cfg_done = e1000_get_cfg_done_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003008 .get_cable_length = e1000e_get_cable_length_igp_2,
3009 .get_phy_info = e1000_get_phy_info_ich8lan,
3010 .read_phy_reg = e1000e_read_phy_reg_igp,
3011 .release_phy = e1000_release_swflag_ich8lan,
3012 .reset_phy = e1000_phy_hw_reset_ich8lan,
3013 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3014 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3015 .write_phy_reg = e1000e_write_phy_reg_igp,
3016};
3017
3018static struct e1000_nvm_operations ich8_nvm_ops = {
3019 .acquire_nvm = e1000_acquire_swflag_ich8lan,
3020 .read_nvm = e1000_read_nvm_ich8lan,
3021 .release_nvm = e1000_release_swflag_ich8lan,
3022 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3023 .valid_led_default = e1000_valid_led_default_ich8lan,
3024 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3025 .write_nvm = e1000_write_nvm_ich8lan,
3026};
3027
3028struct e1000_info e1000_ich8_info = {
3029 .mac = e1000_ich8lan,
3030 .flags = FLAG_HAS_WOL
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003031 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003032 | FLAG_RX_CSUM_ENABLED
3033 | FLAG_HAS_CTRLEXT_ON_LOAD
3034 | FLAG_HAS_AMT
3035 | FLAG_HAS_FLASH
3036 | FLAG_APME_IN_WUC,
3037 .pba = 8,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003038 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003039 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003040 .mac_ops = &ich8_mac_ops,
3041 .phy_ops = &ich8_phy_ops,
3042 .nvm_ops = &ich8_nvm_ops,
3043};
3044
3045struct e1000_info e1000_ich9_info = {
3046 .mac = e1000_ich9lan,
3047 .flags = FLAG_HAS_JUMBO_FRAMES
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003048 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003049 | FLAG_HAS_WOL
3050 | FLAG_RX_CSUM_ENABLED
3051 | FLAG_HAS_CTRLEXT_ON_LOAD
3052 | FLAG_HAS_AMT
3053 | FLAG_HAS_ERT
3054 | FLAG_HAS_FLASH
3055 | FLAG_APME_IN_WUC,
3056 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003057 .max_hw_frame_size = DEFAULT_JUMBO,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003058 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003059 .mac_ops = &ich8_mac_ops,
3060 .phy_ops = &ich8_phy_ops,
3061 .nvm_ops = &ich8_nvm_ops,
3062};
3063
Bruce Allanf4187b52008-08-26 18:36:50 -07003064struct e1000_info e1000_ich10_info = {
3065 .mac = e1000_ich10lan,
3066 .flags = FLAG_HAS_JUMBO_FRAMES
3067 | FLAG_IS_ICH
3068 | FLAG_HAS_WOL
3069 | FLAG_RX_CSUM_ENABLED
3070 | FLAG_HAS_CTRLEXT_ON_LOAD
3071 | FLAG_HAS_AMT
3072 | FLAG_HAS_ERT
3073 | FLAG_HAS_FLASH
3074 | FLAG_APME_IN_WUC,
3075 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003076 .max_hw_frame_size = DEFAULT_JUMBO,
Bruce Allanf4187b52008-08-26 18:36:50 -07003077 .get_variants = e1000_get_variants_ich8lan,
3078 .mac_ops = &ich8_mac_ops,
3079 .phy_ops = &ich8_phy_ops,
3080 .nvm_ops = &ich8_nvm_ops,
3081};
Bruce Allana4f58f52009-06-02 11:29:18 +00003082
3083struct e1000_info e1000_pch_info = {
3084 .mac = e1000_pchlan,
3085 .flags = FLAG_IS_ICH
3086 | FLAG_HAS_WOL
3087 | FLAG_RX_CSUM_ENABLED
3088 | FLAG_HAS_CTRLEXT_ON_LOAD
3089 | FLAG_HAS_AMT
3090 | FLAG_HAS_FLASH
3091 | FLAG_HAS_JUMBO_FRAMES
3092 | FLAG_APME_IN_WUC,
3093 .pba = 26,
3094 .max_hw_frame_size = 4096,
3095 .get_variants = e1000_get_variants_ich8lan,
3096 .mac_ops = &ich8_mac_ops,
3097 .phy_ops = &ich8_phy_ops,
3098 .nvm_ops = &ich8_nvm_ops,
3099};