Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1 | /* QLogic qede NIC Driver |
| 2 | * Copyright (c) 2015 QLogic Corporation |
| 3 | * |
| 4 | * This software is available under the terms of the GNU General Public License |
| 5 | * (GPL) Version 2, available from the file COPYING in the main directory of |
| 6 | * this source tree. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/pci.h> |
| 11 | #include <linux/version.h> |
| 12 | #include <linux/device.h> |
| 13 | #include <linux/netdevice.h> |
| 14 | #include <linux/etherdevice.h> |
| 15 | #include <linux/skbuff.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/list.h> |
| 18 | #include <linux/string.h> |
| 19 | #include <linux/dma-mapping.h> |
| 20 | #include <linux/interrupt.h> |
| 21 | #include <asm/byteorder.h> |
| 22 | #include <asm/param.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/netdev_features.h> |
| 25 | #include <linux/udp.h> |
| 26 | #include <linux/tcp.h> |
| 27 | #include <net/vxlan.h> |
| 28 | #include <linux/ip.h> |
| 29 | #include <net/ipv6.h> |
| 30 | #include <net/tcp.h> |
| 31 | #include <linux/if_ether.h> |
| 32 | #include <linux/if_vlan.h> |
| 33 | #include <linux/pkt_sched.h> |
| 34 | #include <linux/ethtool.h> |
| 35 | #include <linux/in.h> |
| 36 | #include <linux/random.h> |
| 37 | #include <net/ip6_checksum.h> |
| 38 | #include <linux/bitops.h> |
| 39 | |
| 40 | #include "qede.h" |
| 41 | |
| 42 | static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede " |
| 43 | DRV_MODULE_VERSION "\n"; |
| 44 | |
| 45 | MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver"); |
| 46 | MODULE_LICENSE("GPL"); |
| 47 | MODULE_VERSION(DRV_MODULE_VERSION); |
| 48 | |
| 49 | static uint debug; |
| 50 | module_param(debug, uint, 0); |
| 51 | MODULE_PARM_DESC(debug, " Default debug msglevel"); |
| 52 | |
| 53 | static const struct qed_eth_ops *qed_ops; |
| 54 | |
| 55 | #define CHIP_NUM_57980S_40 0x1634 |
| 56 | #define CHIP_NUM_57980S_10 0x1635 |
| 57 | #define CHIP_NUM_57980S_MF 0x1636 |
| 58 | #define CHIP_NUM_57980S_100 0x1644 |
| 59 | #define CHIP_NUM_57980S_50 0x1654 |
| 60 | #define CHIP_NUM_57980S_25 0x1656 |
| 61 | |
| 62 | #ifndef PCI_DEVICE_ID_NX2_57980E |
| 63 | #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40 |
| 64 | #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10 |
| 65 | #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF |
| 66 | #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100 |
| 67 | #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50 |
| 68 | #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25 |
| 69 | #endif |
| 70 | |
| 71 | static const struct pci_device_id qede_pci_tbl[] = { |
| 72 | { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 }, |
| 73 | { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 }, |
| 74 | { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 }, |
| 75 | { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 }, |
| 76 | { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 }, |
| 77 | { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 }, |
| 78 | { 0 } |
| 79 | }; |
| 80 | |
| 81 | MODULE_DEVICE_TABLE(pci, qede_pci_tbl); |
| 82 | |
| 83 | static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id); |
| 84 | |
| 85 | #define TX_TIMEOUT (5 * HZ) |
| 86 | |
| 87 | static void qede_remove(struct pci_dev *pdev); |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 88 | static int qede_alloc_rx_buffer(struct qede_dev *edev, |
| 89 | struct qede_rx_queue *rxq); |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 90 | |
| 91 | static struct pci_driver qede_pci_driver = { |
| 92 | .name = "qede", |
| 93 | .id_table = qede_pci_tbl, |
| 94 | .probe = qede_probe, |
| 95 | .remove = qede_remove, |
| 96 | }; |
| 97 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 98 | static int qede_netdev_event(struct notifier_block *this, unsigned long event, |
| 99 | void *ptr) |
| 100 | { |
| 101 | struct net_device *ndev = netdev_notifier_info_to_dev(ptr); |
| 102 | struct ethtool_drvinfo drvinfo; |
| 103 | struct qede_dev *edev; |
| 104 | |
| 105 | /* Currently only support name change */ |
| 106 | if (event != NETDEV_CHANGENAME) |
| 107 | goto done; |
| 108 | |
| 109 | /* Check whether this is a qede device */ |
| 110 | if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo) |
| 111 | goto done; |
| 112 | |
| 113 | memset(&drvinfo, 0, sizeof(drvinfo)); |
| 114 | ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo); |
| 115 | if (strcmp(drvinfo.driver, "qede")) |
| 116 | goto done; |
| 117 | edev = netdev_priv(ndev); |
| 118 | |
| 119 | /* Notify qed of the name change */ |
| 120 | if (!edev->ops || !edev->ops->common) |
| 121 | goto done; |
| 122 | edev->ops->common->set_id(edev->cdev, edev->ndev->name, |
| 123 | "qede"); |
| 124 | |
| 125 | done: |
| 126 | return NOTIFY_DONE; |
| 127 | } |
| 128 | |
| 129 | static struct notifier_block qede_netdev_notifier = { |
| 130 | .notifier_call = qede_netdev_event, |
| 131 | }; |
| 132 | |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 133 | static |
| 134 | int __init qede_init(void) |
| 135 | { |
| 136 | int ret; |
| 137 | u32 qed_ver; |
| 138 | |
| 139 | pr_notice("qede_init: %s\n", version); |
| 140 | |
| 141 | qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH); |
| 142 | if (qed_ver != QEDE_ETH_INTERFACE_VERSION) { |
| 143 | pr_notice("Version mismatch [%08x != %08x]\n", |
| 144 | qed_ver, |
| 145 | QEDE_ETH_INTERFACE_VERSION); |
| 146 | return -EINVAL; |
| 147 | } |
| 148 | |
| 149 | qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION); |
| 150 | if (!qed_ops) { |
| 151 | pr_notice("Failed to get qed ethtool operations\n"); |
| 152 | return -EINVAL; |
| 153 | } |
| 154 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 155 | /* Must register notifier before pci ops, since we might miss |
| 156 | * interface rename after pci probe and netdev registeration. |
| 157 | */ |
| 158 | ret = register_netdevice_notifier(&qede_netdev_notifier); |
| 159 | if (ret) { |
| 160 | pr_notice("Failed to register netdevice_notifier\n"); |
| 161 | qed_put_eth_ops(); |
| 162 | return -EINVAL; |
| 163 | } |
| 164 | |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 165 | ret = pci_register_driver(&qede_pci_driver); |
| 166 | if (ret) { |
| 167 | pr_notice("Failed to register driver\n"); |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 168 | unregister_netdevice_notifier(&qede_netdev_notifier); |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 169 | qed_put_eth_ops(); |
| 170 | return -EINVAL; |
| 171 | } |
| 172 | |
| 173 | return 0; |
| 174 | } |
| 175 | |
| 176 | static void __exit qede_cleanup(void) |
| 177 | { |
| 178 | pr_notice("qede_cleanup called\n"); |
| 179 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 180 | unregister_netdevice_notifier(&qede_netdev_notifier); |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 181 | pci_unregister_driver(&qede_pci_driver); |
| 182 | qed_put_eth_ops(); |
| 183 | } |
| 184 | |
| 185 | module_init(qede_init); |
| 186 | module_exit(qede_cleanup); |
| 187 | |
| 188 | /* ------------------------------------------------------------------------- |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 189 | * START OF FAST-PATH |
| 190 | * ------------------------------------------------------------------------- |
| 191 | */ |
| 192 | |
| 193 | /* Unmap the data and free skb */ |
| 194 | static int qede_free_tx_pkt(struct qede_dev *edev, |
| 195 | struct qede_tx_queue *txq, |
| 196 | int *len) |
| 197 | { |
| 198 | u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX; |
| 199 | struct sk_buff *skb = txq->sw_tx_ring[idx].skb; |
| 200 | struct eth_tx_1st_bd *first_bd; |
| 201 | struct eth_tx_bd *tx_data_bd; |
| 202 | int bds_consumed = 0; |
| 203 | int nbds; |
| 204 | bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD; |
| 205 | int i, split_bd_len = 0; |
| 206 | |
| 207 | if (unlikely(!skb)) { |
| 208 | DP_ERR(edev, |
| 209 | "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n", |
| 210 | idx, txq->sw_tx_cons, txq->sw_tx_prod); |
| 211 | return -1; |
| 212 | } |
| 213 | |
| 214 | *len = skb->len; |
| 215 | |
| 216 | first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl); |
| 217 | |
| 218 | bds_consumed++; |
| 219 | |
| 220 | nbds = first_bd->data.nbds; |
| 221 | |
| 222 | if (data_split) { |
| 223 | struct eth_tx_bd *split = (struct eth_tx_bd *) |
| 224 | qed_chain_consume(&txq->tx_pbl); |
| 225 | split_bd_len = BD_UNMAP_LEN(split); |
| 226 | bds_consumed++; |
| 227 | } |
| 228 | dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), |
| 229 | BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); |
| 230 | |
| 231 | /* Unmap the data of the skb frags */ |
| 232 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) { |
| 233 | tx_data_bd = (struct eth_tx_bd *) |
| 234 | qed_chain_consume(&txq->tx_pbl); |
| 235 | dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), |
| 236 | BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| 237 | } |
| 238 | |
| 239 | while (bds_consumed++ < nbds) |
| 240 | qed_chain_consume(&txq->tx_pbl); |
| 241 | |
| 242 | /* Free skb */ |
| 243 | dev_kfree_skb_any(skb); |
| 244 | txq->sw_tx_ring[idx].skb = NULL; |
| 245 | txq->sw_tx_ring[idx].flags = 0; |
| 246 | |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | /* Unmap the data and free skb when mapping failed during start_xmit */ |
| 251 | static void qede_free_failed_tx_pkt(struct qede_dev *edev, |
| 252 | struct qede_tx_queue *txq, |
| 253 | struct eth_tx_1st_bd *first_bd, |
| 254 | int nbd, |
| 255 | bool data_split) |
| 256 | { |
| 257 | u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; |
| 258 | struct sk_buff *skb = txq->sw_tx_ring[idx].skb; |
| 259 | struct eth_tx_bd *tx_data_bd; |
| 260 | int i, split_bd_len = 0; |
| 261 | |
| 262 | /* Return prod to its position before this skb was handled */ |
| 263 | qed_chain_set_prod(&txq->tx_pbl, |
| 264 | le16_to_cpu(txq->tx_db.data.bd_prod), |
| 265 | first_bd); |
| 266 | |
| 267 | first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl); |
| 268 | |
| 269 | if (data_split) { |
| 270 | struct eth_tx_bd *split = (struct eth_tx_bd *) |
| 271 | qed_chain_produce(&txq->tx_pbl); |
| 272 | split_bd_len = BD_UNMAP_LEN(split); |
| 273 | nbd--; |
| 274 | } |
| 275 | |
| 276 | dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd), |
| 277 | BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE); |
| 278 | |
| 279 | /* Unmap the data of the skb frags */ |
| 280 | for (i = 0; i < nbd; i++) { |
| 281 | tx_data_bd = (struct eth_tx_bd *) |
| 282 | qed_chain_produce(&txq->tx_pbl); |
| 283 | if (tx_data_bd->nbytes) |
| 284 | dma_unmap_page(&edev->pdev->dev, |
| 285 | BD_UNMAP_ADDR(tx_data_bd), |
| 286 | BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); |
| 287 | } |
| 288 | |
| 289 | /* Return again prod to its position before this skb was handled */ |
| 290 | qed_chain_set_prod(&txq->tx_pbl, |
| 291 | le16_to_cpu(txq->tx_db.data.bd_prod), |
| 292 | first_bd); |
| 293 | |
| 294 | /* Free skb */ |
| 295 | dev_kfree_skb_any(skb); |
| 296 | txq->sw_tx_ring[idx].skb = NULL; |
| 297 | txq->sw_tx_ring[idx].flags = 0; |
| 298 | } |
| 299 | |
| 300 | static u32 qede_xmit_type(struct qede_dev *edev, |
| 301 | struct sk_buff *skb, |
| 302 | int *ipv6_ext) |
| 303 | { |
| 304 | u32 rc = XMIT_L4_CSUM; |
| 305 | __be16 l3_proto; |
| 306 | |
| 307 | if (skb->ip_summed != CHECKSUM_PARTIAL) |
| 308 | return XMIT_PLAIN; |
| 309 | |
| 310 | l3_proto = vlan_get_protocol(skb); |
| 311 | if (l3_proto == htons(ETH_P_IPV6) && |
| 312 | (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) |
| 313 | *ipv6_ext = 1; |
| 314 | |
| 315 | if (skb_is_gso(skb)) |
| 316 | rc |= XMIT_LSO; |
| 317 | |
| 318 | return rc; |
| 319 | } |
| 320 | |
| 321 | static void qede_set_params_for_ipv6_ext(struct sk_buff *skb, |
| 322 | struct eth_tx_2nd_bd *second_bd, |
| 323 | struct eth_tx_3rd_bd *third_bd) |
| 324 | { |
| 325 | u8 l4_proto; |
| 326 | u16 bd2_bits = 0, bd2_bits2 = 0; |
| 327 | |
| 328 | bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT); |
| 329 | |
| 330 | bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) & |
| 331 | ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) |
| 332 | << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT; |
| 333 | |
| 334 | bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH << |
| 335 | ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT); |
| 336 | |
| 337 | if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) |
| 338 | l4_proto = ipv6_hdr(skb)->nexthdr; |
| 339 | else |
| 340 | l4_proto = ip_hdr(skb)->protocol; |
| 341 | |
| 342 | if (l4_proto == IPPROTO_UDP) |
| 343 | bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT; |
| 344 | |
| 345 | if (third_bd) { |
| 346 | third_bd->data.bitfields |= |
| 347 | ((tcp_hdrlen(skb) / 4) & |
| 348 | ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) << |
| 349 | ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT; |
| 350 | } |
| 351 | |
| 352 | second_bd->data.bitfields = cpu_to_le16(bd2_bits); |
| 353 | second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2); |
| 354 | } |
| 355 | |
| 356 | static int map_frag_to_bd(struct qede_dev *edev, |
| 357 | skb_frag_t *frag, |
| 358 | struct eth_tx_bd *bd) |
| 359 | { |
| 360 | dma_addr_t mapping; |
| 361 | |
| 362 | /* Map skb non-linear frag data for DMA */ |
| 363 | mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0, |
| 364 | skb_frag_size(frag), |
| 365 | DMA_TO_DEVICE); |
| 366 | if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| 367 | DP_NOTICE(edev, "Unable to map frag - dropping packet\n"); |
| 368 | return -ENOMEM; |
| 369 | } |
| 370 | |
| 371 | /* Setup the data pointer of the frag data */ |
| 372 | BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag)); |
| 373 | |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | /* Main transmit function */ |
| 378 | static |
| 379 | netdev_tx_t qede_start_xmit(struct sk_buff *skb, |
| 380 | struct net_device *ndev) |
| 381 | { |
| 382 | struct qede_dev *edev = netdev_priv(ndev); |
| 383 | struct netdev_queue *netdev_txq; |
| 384 | struct qede_tx_queue *txq; |
| 385 | struct eth_tx_1st_bd *first_bd; |
| 386 | struct eth_tx_2nd_bd *second_bd = NULL; |
| 387 | struct eth_tx_3rd_bd *third_bd = NULL; |
| 388 | struct eth_tx_bd *tx_data_bd = NULL; |
| 389 | u16 txq_index; |
| 390 | u8 nbd = 0; |
| 391 | dma_addr_t mapping; |
| 392 | int rc, frag_idx = 0, ipv6_ext = 0; |
| 393 | u8 xmit_type; |
| 394 | u16 idx; |
| 395 | u16 hlen; |
| 396 | bool data_split; |
| 397 | |
| 398 | /* Get tx-queue context and netdev index */ |
| 399 | txq_index = skb_get_queue_mapping(skb); |
| 400 | WARN_ON(txq_index >= QEDE_TSS_CNT(edev)); |
| 401 | txq = QEDE_TX_QUEUE(edev, txq_index); |
| 402 | netdev_txq = netdev_get_tx_queue(ndev, txq_index); |
| 403 | |
| 404 | /* Current code doesn't support SKB linearization, since the max number |
| 405 | * of skb frags can be passed in the FW HSI. |
| 406 | */ |
| 407 | BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET); |
| 408 | |
| 409 | WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) < |
| 410 | (MAX_SKB_FRAGS + 1)); |
| 411 | |
| 412 | xmit_type = qede_xmit_type(edev, skb, &ipv6_ext); |
| 413 | |
| 414 | /* Fill the entry in the SW ring and the BDs in the FW ring */ |
| 415 | idx = txq->sw_tx_prod & NUM_TX_BDS_MAX; |
| 416 | txq->sw_tx_ring[idx].skb = skb; |
| 417 | first_bd = (struct eth_tx_1st_bd *) |
| 418 | qed_chain_produce(&txq->tx_pbl); |
| 419 | memset(first_bd, 0, sizeof(*first_bd)); |
| 420 | first_bd->data.bd_flags.bitfields = |
| 421 | 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT; |
| 422 | |
| 423 | /* Map skb linear data for DMA and set in the first BD */ |
| 424 | mapping = dma_map_single(&edev->pdev->dev, skb->data, |
| 425 | skb_headlen(skb), DMA_TO_DEVICE); |
| 426 | if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| 427 | DP_NOTICE(edev, "SKB mapping failed\n"); |
| 428 | qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false); |
| 429 | return NETDEV_TX_OK; |
| 430 | } |
| 431 | nbd++; |
| 432 | BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb)); |
| 433 | |
| 434 | /* In case there is IPv6 with extension headers or LSO we need 2nd and |
| 435 | * 3rd BDs. |
| 436 | */ |
| 437 | if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) { |
| 438 | second_bd = (struct eth_tx_2nd_bd *) |
| 439 | qed_chain_produce(&txq->tx_pbl); |
| 440 | memset(second_bd, 0, sizeof(*second_bd)); |
| 441 | |
| 442 | nbd++; |
| 443 | third_bd = (struct eth_tx_3rd_bd *) |
| 444 | qed_chain_produce(&txq->tx_pbl); |
| 445 | memset(third_bd, 0, sizeof(*third_bd)); |
| 446 | |
| 447 | nbd++; |
| 448 | /* We need to fill in additional data in second_bd... */ |
| 449 | tx_data_bd = (struct eth_tx_bd *)second_bd; |
| 450 | } |
| 451 | |
| 452 | if (skb_vlan_tag_present(skb)) { |
| 453 | first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb)); |
| 454 | first_bd->data.bd_flags.bitfields |= |
| 455 | 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT; |
| 456 | } |
| 457 | |
| 458 | /* Fill the parsing flags & params according to the requested offload */ |
| 459 | if (xmit_type & XMIT_L4_CSUM) { |
| 460 | /* We don't re-calculate IP checksum as it is already done by |
| 461 | * the upper stack |
| 462 | */ |
| 463 | first_bd->data.bd_flags.bitfields |= |
| 464 | 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT; |
| 465 | |
| 466 | /* If the packet is IPv6 with extension header, indicate that |
| 467 | * to FW and pass few params, since the device cracker doesn't |
| 468 | * support parsing IPv6 with extension header/s. |
| 469 | */ |
| 470 | if (unlikely(ipv6_ext)) |
| 471 | qede_set_params_for_ipv6_ext(skb, second_bd, third_bd); |
| 472 | } |
| 473 | |
| 474 | if (xmit_type & XMIT_LSO) { |
| 475 | first_bd->data.bd_flags.bitfields |= |
| 476 | (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT); |
| 477 | third_bd->data.lso_mss = |
| 478 | cpu_to_le16(skb_shinfo(skb)->gso_size); |
| 479 | |
| 480 | first_bd->data.bd_flags.bitfields |= |
| 481 | 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT; |
| 482 | hlen = skb_transport_header(skb) + |
| 483 | tcp_hdrlen(skb) - skb->data; |
| 484 | |
| 485 | /* @@@TBD - if will not be removed need to check */ |
| 486 | third_bd->data.bitfields |= |
| 487 | (1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT); |
| 488 | |
| 489 | /* Make life easier for FW guys who can't deal with header and |
| 490 | * data on same BD. If we need to split, use the second bd... |
| 491 | */ |
| 492 | if (unlikely(skb_headlen(skb) > hlen)) { |
| 493 | DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| 494 | "TSO split header size is %d (%x:%x)\n", |
| 495 | first_bd->nbytes, first_bd->addr.hi, |
| 496 | first_bd->addr.lo); |
| 497 | |
| 498 | mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi), |
| 499 | le32_to_cpu(first_bd->addr.lo)) + |
| 500 | hlen; |
| 501 | |
| 502 | BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping, |
| 503 | le16_to_cpu(first_bd->nbytes) - |
| 504 | hlen); |
| 505 | |
| 506 | /* this marks the BD as one that has no |
| 507 | * individual mapping |
| 508 | */ |
| 509 | txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD; |
| 510 | |
| 511 | first_bd->nbytes = cpu_to_le16(hlen); |
| 512 | |
| 513 | tx_data_bd = (struct eth_tx_bd *)third_bd; |
| 514 | data_split = true; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | /* Handle fragmented skb */ |
| 519 | /* special handle for frags inside 2nd and 3rd bds.. */ |
| 520 | while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) { |
| 521 | rc = map_frag_to_bd(edev, |
| 522 | &skb_shinfo(skb)->frags[frag_idx], |
| 523 | tx_data_bd); |
| 524 | if (rc) { |
| 525 | qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, |
| 526 | data_split); |
| 527 | return NETDEV_TX_OK; |
| 528 | } |
| 529 | |
| 530 | if (tx_data_bd == (struct eth_tx_bd *)second_bd) |
| 531 | tx_data_bd = (struct eth_tx_bd *)third_bd; |
| 532 | else |
| 533 | tx_data_bd = NULL; |
| 534 | |
| 535 | frag_idx++; |
| 536 | } |
| 537 | |
| 538 | /* map last frags into 4th, 5th .... */ |
| 539 | for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) { |
| 540 | tx_data_bd = (struct eth_tx_bd *) |
| 541 | qed_chain_produce(&txq->tx_pbl); |
| 542 | |
| 543 | memset(tx_data_bd, 0, sizeof(*tx_data_bd)); |
| 544 | |
| 545 | rc = map_frag_to_bd(edev, |
| 546 | &skb_shinfo(skb)->frags[frag_idx], |
| 547 | tx_data_bd); |
| 548 | if (rc) { |
| 549 | qede_free_failed_tx_pkt(edev, txq, first_bd, nbd, |
| 550 | data_split); |
| 551 | return NETDEV_TX_OK; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* update the first BD with the actual num BDs */ |
| 556 | first_bd->data.nbds = nbd; |
| 557 | |
| 558 | netdev_tx_sent_queue(netdev_txq, skb->len); |
| 559 | |
| 560 | skb_tx_timestamp(skb); |
| 561 | |
| 562 | /* Advance packet producer only before sending the packet since mapping |
| 563 | * of pages may fail. |
| 564 | */ |
| 565 | txq->sw_tx_prod++; |
| 566 | |
| 567 | /* 'next page' entries are counted in the producer value */ |
| 568 | txq->tx_db.data.bd_prod = |
| 569 | cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl)); |
| 570 | |
| 571 | /* wmb makes sure that the BDs data is updated before updating the |
| 572 | * producer, otherwise FW may read old data from the BDs. |
| 573 | */ |
| 574 | wmb(); |
| 575 | barrier(); |
| 576 | writel(txq->tx_db.raw, txq->doorbell_addr); |
| 577 | |
| 578 | /* mmiowb is needed to synchronize doorbell writes from more than one |
| 579 | * processor. It guarantees that the write arrives to the device before |
| 580 | * the queue lock is released and another start_xmit is called (possibly |
| 581 | * on another CPU). Without this barrier, the next doorbell can bypass |
| 582 | * this doorbell. This is applicable to IA64/Altix systems. |
| 583 | */ |
| 584 | mmiowb(); |
| 585 | |
| 586 | if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl) |
| 587 | < (MAX_SKB_FRAGS + 1))) { |
| 588 | netif_tx_stop_queue(netdev_txq); |
| 589 | DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| 590 | "Stop queue was called\n"); |
| 591 | /* paired memory barrier is in qede_tx_int(), we have to keep |
| 592 | * ordering of set_bit() in netif_tx_stop_queue() and read of |
| 593 | * fp->bd_tx_cons |
| 594 | */ |
| 595 | smp_mb(); |
| 596 | |
| 597 | if (qed_chain_get_elem_left(&txq->tx_pbl) |
| 598 | >= (MAX_SKB_FRAGS + 1) && |
| 599 | (edev->state == QEDE_STATE_OPEN)) { |
| 600 | netif_tx_wake_queue(netdev_txq); |
| 601 | DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED, |
| 602 | "Wake queue was called\n"); |
| 603 | } |
| 604 | } |
| 605 | |
| 606 | return NETDEV_TX_OK; |
| 607 | } |
| 608 | |
| 609 | static int qede_txq_has_work(struct qede_tx_queue *txq) |
| 610 | { |
| 611 | u16 hw_bd_cons; |
| 612 | |
| 613 | /* Tell compiler that consumer and producer can change */ |
| 614 | barrier(); |
| 615 | hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| 616 | if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1) |
| 617 | return 0; |
| 618 | |
| 619 | return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl); |
| 620 | } |
| 621 | |
| 622 | static int qede_tx_int(struct qede_dev *edev, |
| 623 | struct qede_tx_queue *txq) |
| 624 | { |
| 625 | struct netdev_queue *netdev_txq; |
| 626 | u16 hw_bd_cons; |
| 627 | unsigned int pkts_compl = 0, bytes_compl = 0; |
| 628 | int rc; |
| 629 | |
| 630 | netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index); |
| 631 | |
| 632 | hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr); |
| 633 | barrier(); |
| 634 | |
| 635 | while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) { |
| 636 | int len = 0; |
| 637 | |
| 638 | rc = qede_free_tx_pkt(edev, txq, &len); |
| 639 | if (rc) { |
| 640 | DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n", |
| 641 | hw_bd_cons, |
| 642 | qed_chain_get_cons_idx(&txq->tx_pbl)); |
| 643 | break; |
| 644 | } |
| 645 | |
| 646 | bytes_compl += len; |
| 647 | pkts_compl++; |
| 648 | txq->sw_tx_cons++; |
| 649 | } |
| 650 | |
| 651 | netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl); |
| 652 | |
| 653 | /* Need to make the tx_bd_cons update visible to start_xmit() |
| 654 | * before checking for netif_tx_queue_stopped(). Without the |
| 655 | * memory barrier, there is a small possibility that |
| 656 | * start_xmit() will miss it and cause the queue to be stopped |
| 657 | * forever. |
| 658 | * On the other hand we need an rmb() here to ensure the proper |
| 659 | * ordering of bit testing in the following |
| 660 | * netif_tx_queue_stopped(txq) call. |
| 661 | */ |
| 662 | smp_mb(); |
| 663 | |
| 664 | if (unlikely(netif_tx_queue_stopped(netdev_txq))) { |
| 665 | /* Taking tx_lock is needed to prevent reenabling the queue |
| 666 | * while it's empty. This could have happen if rx_action() gets |
| 667 | * suspended in qede_tx_int() after the condition before |
| 668 | * netif_tx_wake_queue(), while tx_action (qede_start_xmit()): |
| 669 | * |
| 670 | * stops the queue->sees fresh tx_bd_cons->releases the queue-> |
| 671 | * sends some packets consuming the whole queue again-> |
| 672 | * stops the queue |
| 673 | */ |
| 674 | |
| 675 | __netif_tx_lock(netdev_txq, smp_processor_id()); |
| 676 | |
| 677 | if ((netif_tx_queue_stopped(netdev_txq)) && |
| 678 | (edev->state == QEDE_STATE_OPEN) && |
| 679 | (qed_chain_get_elem_left(&txq->tx_pbl) |
| 680 | >= (MAX_SKB_FRAGS + 1))) { |
| 681 | netif_tx_wake_queue(netdev_txq); |
| 682 | DP_VERBOSE(edev, NETIF_MSG_TX_DONE, |
| 683 | "Wake queue was called\n"); |
| 684 | } |
| 685 | |
| 686 | __netif_tx_unlock(netdev_txq); |
| 687 | } |
| 688 | |
| 689 | return 0; |
| 690 | } |
| 691 | |
| 692 | static bool qede_has_rx_work(struct qede_rx_queue *rxq) |
| 693 | { |
| 694 | u16 hw_comp_cons, sw_comp_cons; |
| 695 | |
| 696 | /* Tell compiler that status block fields can change */ |
| 697 | barrier(); |
| 698 | |
| 699 | hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); |
| 700 | sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| 701 | |
| 702 | return hw_comp_cons != sw_comp_cons; |
| 703 | } |
| 704 | |
| 705 | static bool qede_has_tx_work(struct qede_fastpath *fp) |
| 706 | { |
| 707 | u8 tc; |
| 708 | |
| 709 | for (tc = 0; tc < fp->edev->num_tc; tc++) |
| 710 | if (qede_txq_has_work(&fp->txqs[tc])) |
| 711 | return true; |
| 712 | return false; |
| 713 | } |
| 714 | |
| 715 | /* This function copies the Rx buffer from the CONS position to the PROD |
| 716 | * position, since we failed to allocate a new Rx buffer. |
| 717 | */ |
| 718 | static void qede_reuse_rx_data(struct qede_rx_queue *rxq) |
| 719 | { |
| 720 | struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring); |
| 721 | struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring); |
| 722 | struct sw_rx_data *sw_rx_data_cons = |
| 723 | &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX]; |
| 724 | struct sw_rx_data *sw_rx_data_prod = |
| 725 | &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| 726 | |
| 727 | dma_unmap_addr_set(sw_rx_data_prod, mapping, |
| 728 | dma_unmap_addr(sw_rx_data_cons, mapping)); |
| 729 | |
| 730 | sw_rx_data_prod->data = sw_rx_data_cons->data; |
| 731 | memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd)); |
| 732 | |
| 733 | rxq->sw_rx_cons++; |
| 734 | rxq->sw_rx_prod++; |
| 735 | } |
| 736 | |
| 737 | static inline void qede_update_rx_prod(struct qede_dev *edev, |
| 738 | struct qede_rx_queue *rxq) |
| 739 | { |
| 740 | u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring); |
| 741 | u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring); |
| 742 | struct eth_rx_prod_data rx_prods = {0}; |
| 743 | |
| 744 | /* Update producers */ |
| 745 | rx_prods.bd_prod = cpu_to_le16(bd_prod); |
| 746 | rx_prods.cqe_prod = cpu_to_le16(cqe_prod); |
| 747 | |
| 748 | /* Make sure that the BD and SGE data is updated before updating the |
| 749 | * producers since FW might read the BD/SGE right after the producer |
| 750 | * is updated. |
| 751 | */ |
| 752 | wmb(); |
| 753 | |
| 754 | internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods), |
| 755 | (u32 *)&rx_prods); |
| 756 | |
| 757 | /* mmiowb is needed to synchronize doorbell writes from more than one |
| 758 | * processor. It guarantees that the write arrives to the device before |
| 759 | * the napi lock is released and another qede_poll is called (possibly |
| 760 | * on another CPU). Without this barrier, the next doorbell can bypass |
| 761 | * this doorbell. This is applicable to IA64/Altix systems. |
| 762 | */ |
| 763 | mmiowb(); |
| 764 | } |
| 765 | |
| 766 | static u32 qede_get_rxhash(struct qede_dev *edev, |
| 767 | u8 bitfields, |
| 768 | __le32 rss_hash, |
| 769 | enum pkt_hash_types *rxhash_type) |
| 770 | { |
| 771 | enum rss_hash_type htype; |
| 772 | |
| 773 | htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE); |
| 774 | |
| 775 | if ((edev->ndev->features & NETIF_F_RXHASH) && htype) { |
| 776 | *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) || |
| 777 | (htype == RSS_HASH_TYPE_IPV6)) ? |
| 778 | PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4; |
| 779 | return le32_to_cpu(rss_hash); |
| 780 | } |
| 781 | *rxhash_type = PKT_HASH_TYPE_NONE; |
| 782 | return 0; |
| 783 | } |
| 784 | |
| 785 | static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag) |
| 786 | { |
| 787 | skb_checksum_none_assert(skb); |
| 788 | |
| 789 | if (csum_flag & QEDE_CSUM_UNNECESSARY) |
| 790 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 791 | } |
| 792 | |
| 793 | static inline void qede_skb_receive(struct qede_dev *edev, |
| 794 | struct qede_fastpath *fp, |
| 795 | struct sk_buff *skb, |
| 796 | u16 vlan_tag) |
| 797 | { |
| 798 | if (vlan_tag) |
| 799 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| 800 | vlan_tag); |
| 801 | |
| 802 | napi_gro_receive(&fp->napi, skb); |
| 803 | } |
| 804 | |
| 805 | static u8 qede_check_csum(u16 flag) |
| 806 | { |
| 807 | u16 csum_flag = 0; |
| 808 | u8 csum = 0; |
| 809 | |
| 810 | if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK << |
| 811 | PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) { |
| 812 | csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK << |
| 813 | PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT; |
| 814 | csum = QEDE_CSUM_UNNECESSARY; |
| 815 | } |
| 816 | |
| 817 | csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK << |
| 818 | PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT; |
| 819 | |
| 820 | if (csum_flag & flag) |
| 821 | return QEDE_CSUM_ERROR; |
| 822 | |
| 823 | return csum; |
| 824 | } |
| 825 | |
| 826 | static int qede_rx_int(struct qede_fastpath *fp, int budget) |
| 827 | { |
| 828 | struct qede_dev *edev = fp->edev; |
| 829 | struct qede_rx_queue *rxq = fp->rxq; |
| 830 | |
| 831 | u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag; |
| 832 | int rx_pkt = 0; |
| 833 | u8 csum_flag; |
| 834 | |
| 835 | hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr); |
| 836 | sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| 837 | |
| 838 | /* Memory barrier to prevent the CPU from doing speculative reads of CQE |
| 839 | * / BD in the while-loop before reading hw_comp_cons. If the CQE is |
| 840 | * read before it is written by FW, then FW writes CQE and SB, and then |
| 841 | * the CPU reads the hw_comp_cons, it will use an old CQE. |
| 842 | */ |
| 843 | rmb(); |
| 844 | |
| 845 | /* Loop to complete all indicated BDs */ |
| 846 | while (sw_comp_cons != hw_comp_cons) { |
| 847 | struct eth_fast_path_rx_reg_cqe *fp_cqe; |
| 848 | enum pkt_hash_types rxhash_type; |
| 849 | enum eth_rx_cqe_type cqe_type; |
| 850 | struct sw_rx_data *sw_rx_data; |
| 851 | union eth_rx_cqe *cqe; |
| 852 | struct sk_buff *skb; |
| 853 | u16 len, pad; |
| 854 | u32 rx_hash; |
| 855 | u8 *data; |
| 856 | |
| 857 | /* Get the CQE from the completion ring */ |
| 858 | cqe = (union eth_rx_cqe *) |
| 859 | qed_chain_consume(&rxq->rx_comp_ring); |
| 860 | cqe_type = cqe->fast_path_regular.type; |
| 861 | |
| 862 | if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) { |
| 863 | edev->ops->eth_cqe_completion( |
| 864 | edev->cdev, fp->rss_id, |
| 865 | (struct eth_slow_path_rx_cqe *)cqe); |
| 866 | goto next_cqe; |
| 867 | } |
| 868 | |
| 869 | /* Get the data from the SW ring */ |
| 870 | sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX; |
| 871 | sw_rx_data = &rxq->sw_rx_ring[sw_rx_index]; |
| 872 | data = sw_rx_data->data; |
| 873 | |
| 874 | fp_cqe = &cqe->fast_path_regular; |
| 875 | len = le16_to_cpu(fp_cqe->pkt_len); |
| 876 | pad = fp_cqe->placement_offset; |
| 877 | |
| 878 | /* For every Rx BD consumed, we allocate a new BD so the BD ring |
| 879 | * is always with a fixed size. If allocation fails, we take the |
| 880 | * consumed BD and return it to the ring in the PROD position. |
| 881 | * The packet that was received on that BD will be dropped (and |
| 882 | * not passed to the upper stack). |
| 883 | */ |
| 884 | if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) { |
| 885 | dma_unmap_single(&edev->pdev->dev, |
| 886 | dma_unmap_addr(sw_rx_data, mapping), |
| 887 | rxq->rx_buf_size, DMA_FROM_DEVICE); |
| 888 | |
| 889 | /* If this is an error packet then drop it */ |
| 890 | parse_flag = |
| 891 | le16_to_cpu(cqe->fast_path_regular.pars_flags.flags); |
| 892 | csum_flag = qede_check_csum(parse_flag); |
| 893 | if (csum_flag == QEDE_CSUM_ERROR) { |
| 894 | DP_NOTICE(edev, |
| 895 | "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n", |
| 896 | sw_comp_cons, parse_flag); |
| 897 | rxq->rx_hw_errors++; |
| 898 | kfree(data); |
| 899 | goto next_rx; |
| 900 | } |
| 901 | |
| 902 | skb = build_skb(data, 0); |
| 903 | |
| 904 | if (unlikely(!skb)) { |
| 905 | DP_NOTICE(edev, |
| 906 | "Build_skb failed, dropping incoming packet\n"); |
| 907 | kfree(data); |
| 908 | rxq->rx_alloc_errors++; |
| 909 | goto next_rx; |
| 910 | } |
| 911 | |
| 912 | skb_reserve(skb, pad); |
| 913 | |
| 914 | } else { |
| 915 | DP_NOTICE(edev, |
| 916 | "New buffer allocation failed, dropping incoming packet and reusing its buffer\n"); |
| 917 | qede_reuse_rx_data(rxq); |
| 918 | rxq->rx_alloc_errors++; |
| 919 | goto next_cqe; |
| 920 | } |
| 921 | |
| 922 | sw_rx_data->data = NULL; |
| 923 | |
| 924 | skb_put(skb, len); |
| 925 | |
| 926 | skb->protocol = eth_type_trans(skb, edev->ndev); |
| 927 | |
| 928 | rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields, |
| 929 | fp_cqe->rss_hash, |
| 930 | &rxhash_type); |
| 931 | |
| 932 | skb_set_hash(skb, rx_hash, rxhash_type); |
| 933 | |
| 934 | qede_set_skb_csum(skb, csum_flag); |
| 935 | |
| 936 | skb_record_rx_queue(skb, fp->rss_id); |
| 937 | |
| 938 | qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag)); |
| 939 | |
| 940 | qed_chain_consume(&rxq->rx_bd_ring); |
| 941 | |
| 942 | next_rx: |
| 943 | rxq->sw_rx_cons++; |
| 944 | rx_pkt++; |
| 945 | |
| 946 | next_cqe: /* don't consume bd rx buffer */ |
| 947 | qed_chain_recycle_consumed(&rxq->rx_comp_ring); |
| 948 | sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring); |
| 949 | /* CR TPA - revisit how to handle budget in TPA perhaps |
| 950 | * increase on "end" |
| 951 | */ |
| 952 | if (rx_pkt == budget) |
| 953 | break; |
| 954 | } /* repeat while sw_comp_cons != hw_comp_cons... */ |
| 955 | |
| 956 | /* Update producers */ |
| 957 | qede_update_rx_prod(edev, rxq); |
| 958 | |
| 959 | return rx_pkt; |
| 960 | } |
| 961 | |
| 962 | static int qede_poll(struct napi_struct *napi, int budget) |
| 963 | { |
| 964 | int work_done = 0; |
| 965 | struct qede_fastpath *fp = container_of(napi, struct qede_fastpath, |
| 966 | napi); |
| 967 | struct qede_dev *edev = fp->edev; |
| 968 | |
| 969 | while (1) { |
| 970 | u8 tc; |
| 971 | |
| 972 | for (tc = 0; tc < edev->num_tc; tc++) |
| 973 | if (qede_txq_has_work(&fp->txqs[tc])) |
| 974 | qede_tx_int(edev, &fp->txqs[tc]); |
| 975 | |
| 976 | if (qede_has_rx_work(fp->rxq)) { |
| 977 | work_done += qede_rx_int(fp, budget - work_done); |
| 978 | |
| 979 | /* must not complete if we consumed full budget */ |
| 980 | if (work_done >= budget) |
| 981 | break; |
| 982 | } |
| 983 | |
| 984 | /* Fall out from the NAPI loop if needed */ |
| 985 | if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) { |
| 986 | qed_sb_update_sb_idx(fp->sb_info); |
| 987 | /* *_has_*_work() reads the status block, |
| 988 | * thus we need to ensure that status block indices |
| 989 | * have been actually read (qed_sb_update_sb_idx) |
| 990 | * prior to this check (*_has_*_work) so that |
| 991 | * we won't write the "newer" value of the status block |
| 992 | * to HW (if there was a DMA right after |
| 993 | * qede_has_rx_work and if there is no rmb, the memory |
| 994 | * reading (qed_sb_update_sb_idx) may be postponed |
| 995 | * to right before *_ack_sb). In this case there |
| 996 | * will never be another interrupt until there is |
| 997 | * another update of the status block, while there |
| 998 | * is still unhandled work. |
| 999 | */ |
| 1000 | rmb(); |
| 1001 | |
| 1002 | if (!(qede_has_rx_work(fp->rxq) || |
| 1003 | qede_has_tx_work(fp))) { |
| 1004 | napi_complete(napi); |
| 1005 | /* Update and reenable interrupts */ |
| 1006 | qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, |
| 1007 | 1 /*update*/); |
| 1008 | break; |
| 1009 | } |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | return work_done; |
| 1014 | } |
| 1015 | |
| 1016 | static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie) |
| 1017 | { |
| 1018 | struct qede_fastpath *fp = fp_cookie; |
| 1019 | |
| 1020 | qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/); |
| 1021 | |
| 1022 | napi_schedule_irqoff(&fp->napi); |
| 1023 | return IRQ_HANDLED; |
| 1024 | } |
| 1025 | |
| 1026 | /* ------------------------------------------------------------------------- |
| 1027 | * END OF FAST-PATH |
| 1028 | * ------------------------------------------------------------------------- |
| 1029 | */ |
| 1030 | |
| 1031 | static int qede_open(struct net_device *ndev); |
| 1032 | static int qede_close(struct net_device *ndev); |
| 1033 | static const struct net_device_ops qede_netdev_ops = { |
| 1034 | .ndo_open = qede_open, |
| 1035 | .ndo_stop = qede_close, |
| 1036 | .ndo_start_xmit = qede_start_xmit, |
| 1037 | .ndo_validate_addr = eth_validate_addr, |
| 1038 | }; |
| 1039 | |
| 1040 | /* ------------------------------------------------------------------------- |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1041 | * START OF PROBE / REMOVE |
| 1042 | * ------------------------------------------------------------------------- |
| 1043 | */ |
| 1044 | |
| 1045 | static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev, |
| 1046 | struct pci_dev *pdev, |
| 1047 | struct qed_dev_eth_info *info, |
| 1048 | u32 dp_module, |
| 1049 | u8 dp_level) |
| 1050 | { |
| 1051 | struct net_device *ndev; |
| 1052 | struct qede_dev *edev; |
| 1053 | |
| 1054 | ndev = alloc_etherdev_mqs(sizeof(*edev), |
| 1055 | info->num_queues, |
| 1056 | info->num_queues); |
| 1057 | if (!ndev) { |
| 1058 | pr_err("etherdev allocation failed\n"); |
| 1059 | return NULL; |
| 1060 | } |
| 1061 | |
| 1062 | edev = netdev_priv(ndev); |
| 1063 | edev->ndev = ndev; |
| 1064 | edev->cdev = cdev; |
| 1065 | edev->pdev = pdev; |
| 1066 | edev->dp_module = dp_module; |
| 1067 | edev->dp_level = dp_level; |
| 1068 | edev->ops = qed_ops; |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1069 | edev->q_num_rx_buffers = NUM_RX_BDS_DEF; |
| 1070 | edev->q_num_tx_buffers = NUM_TX_BDS_DEF; |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1071 | |
| 1072 | DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n"); |
| 1073 | |
| 1074 | SET_NETDEV_DEV(ndev, &pdev->dev); |
| 1075 | |
| 1076 | memcpy(&edev->dev_info, info, sizeof(*info)); |
| 1077 | |
| 1078 | edev->num_tc = edev->dev_info.num_tc; |
| 1079 | |
| 1080 | return edev; |
| 1081 | } |
| 1082 | |
| 1083 | static void qede_init_ndev(struct qede_dev *edev) |
| 1084 | { |
| 1085 | struct net_device *ndev = edev->ndev; |
| 1086 | struct pci_dev *pdev = edev->pdev; |
| 1087 | u32 hw_features; |
| 1088 | |
| 1089 | pci_set_drvdata(pdev, ndev); |
| 1090 | |
| 1091 | ndev->mem_start = edev->dev_info.common.pci_mem_start; |
| 1092 | ndev->base_addr = ndev->mem_start; |
| 1093 | ndev->mem_end = edev->dev_info.common.pci_mem_end; |
| 1094 | ndev->irq = edev->dev_info.common.pci_irq; |
| 1095 | |
| 1096 | ndev->watchdog_timeo = TX_TIMEOUT; |
| 1097 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1098 | ndev->netdev_ops = &qede_netdev_ops; |
| 1099 | |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1100 | /* user-changeble features */ |
| 1101 | hw_features = NETIF_F_GRO | NETIF_F_SG | |
| 1102 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | |
| 1103 | NETIF_F_TSO | NETIF_F_TSO6; |
| 1104 | |
| 1105 | ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | |
| 1106 | NETIF_F_HIGHDMA; |
| 1107 | ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM | |
| 1108 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA | |
| 1109 | NETIF_F_HW_VLAN_CTAG_TX; |
| 1110 | |
| 1111 | ndev->hw_features = hw_features; |
| 1112 | |
| 1113 | /* Set network device HW mac */ |
| 1114 | ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac); |
| 1115 | } |
| 1116 | |
| 1117 | /* This function converts from 32b param to two params of level and module |
| 1118 | * Input 32b decoding: |
| 1119 | * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the |
| 1120 | * 'happy' flow, e.g. memory allocation failed. |
| 1121 | * b30 - enable all INFO prints. INFO prints are for major steps in the flow |
| 1122 | * and provide important parameters. |
| 1123 | * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that |
| 1124 | * module. VERBOSE prints are for tracking the specific flow in low level. |
| 1125 | * |
| 1126 | * Notice that the level should be that of the lowest required logs. |
| 1127 | */ |
| 1128 | static void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level) |
| 1129 | { |
| 1130 | *p_dp_level = QED_LEVEL_NOTICE; |
| 1131 | *p_dp_module = 0; |
| 1132 | |
| 1133 | if (debug & QED_LOG_VERBOSE_MASK) { |
| 1134 | *p_dp_level = QED_LEVEL_VERBOSE; |
| 1135 | *p_dp_module = (debug & 0x3FFFFFFF); |
| 1136 | } else if (debug & QED_LOG_INFO_MASK) { |
| 1137 | *p_dp_level = QED_LEVEL_INFO; |
| 1138 | } else if (debug & QED_LOG_NOTICE_MASK) { |
| 1139 | *p_dp_level = QED_LEVEL_NOTICE; |
| 1140 | } |
| 1141 | } |
| 1142 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1143 | static void qede_free_fp_array(struct qede_dev *edev) |
| 1144 | { |
| 1145 | if (edev->fp_array) { |
| 1146 | struct qede_fastpath *fp; |
| 1147 | int i; |
| 1148 | |
| 1149 | for_each_rss(i) { |
| 1150 | fp = &edev->fp_array[i]; |
| 1151 | |
| 1152 | kfree(fp->sb_info); |
| 1153 | kfree(fp->rxq); |
| 1154 | kfree(fp->txqs); |
| 1155 | } |
| 1156 | kfree(edev->fp_array); |
| 1157 | } |
| 1158 | edev->num_rss = 0; |
| 1159 | } |
| 1160 | |
| 1161 | static int qede_alloc_fp_array(struct qede_dev *edev) |
| 1162 | { |
| 1163 | struct qede_fastpath *fp; |
| 1164 | int i; |
| 1165 | |
| 1166 | edev->fp_array = kcalloc(QEDE_RSS_CNT(edev), |
| 1167 | sizeof(*edev->fp_array), GFP_KERNEL); |
| 1168 | if (!edev->fp_array) { |
| 1169 | DP_NOTICE(edev, "fp array allocation failed\n"); |
| 1170 | goto err; |
| 1171 | } |
| 1172 | |
| 1173 | for_each_rss(i) { |
| 1174 | fp = &edev->fp_array[i]; |
| 1175 | |
| 1176 | fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL); |
| 1177 | if (!fp->sb_info) { |
| 1178 | DP_NOTICE(edev, "sb info struct allocation failed\n"); |
| 1179 | goto err; |
| 1180 | } |
| 1181 | |
| 1182 | fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL); |
| 1183 | if (!fp->rxq) { |
| 1184 | DP_NOTICE(edev, "RXQ struct allocation failed\n"); |
| 1185 | goto err; |
| 1186 | } |
| 1187 | |
| 1188 | fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL); |
| 1189 | if (!fp->txqs) { |
| 1190 | DP_NOTICE(edev, "TXQ array allocation failed\n"); |
| 1191 | goto err; |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | return 0; |
| 1196 | err: |
| 1197 | qede_free_fp_array(edev); |
| 1198 | return -ENOMEM; |
| 1199 | } |
| 1200 | |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1201 | static void qede_update_pf_params(struct qed_dev *cdev) |
| 1202 | { |
| 1203 | struct qed_pf_params pf_params; |
| 1204 | |
| 1205 | /* 16 rx + 16 tx */ |
| 1206 | memset(&pf_params, 0, sizeof(struct qed_pf_params)); |
| 1207 | pf_params.eth_pf_params.num_cons = 32; |
| 1208 | qed_ops->common->update_pf_params(cdev, &pf_params); |
| 1209 | } |
| 1210 | |
| 1211 | enum qede_probe_mode { |
| 1212 | QEDE_PROBE_NORMAL, |
| 1213 | }; |
| 1214 | |
| 1215 | static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level, |
| 1216 | enum qede_probe_mode mode) |
| 1217 | { |
| 1218 | struct qed_slowpath_params params; |
| 1219 | struct qed_dev_eth_info dev_info; |
| 1220 | struct qede_dev *edev; |
| 1221 | struct qed_dev *cdev; |
| 1222 | int rc; |
| 1223 | |
| 1224 | if (unlikely(dp_level & QED_LEVEL_INFO)) |
| 1225 | pr_notice("Starting qede probe\n"); |
| 1226 | |
| 1227 | cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH, |
| 1228 | dp_module, dp_level); |
| 1229 | if (!cdev) { |
| 1230 | rc = -ENODEV; |
| 1231 | goto err0; |
| 1232 | } |
| 1233 | |
| 1234 | qede_update_pf_params(cdev); |
| 1235 | |
| 1236 | /* Start the Slowpath-process */ |
| 1237 | memset(¶ms, 0, sizeof(struct qed_slowpath_params)); |
| 1238 | params.int_mode = QED_INT_MODE_MSIX; |
| 1239 | params.drv_major = QEDE_MAJOR_VERSION; |
| 1240 | params.drv_minor = QEDE_MINOR_VERSION; |
| 1241 | params.drv_rev = QEDE_REVISION_VERSION; |
| 1242 | params.drv_eng = QEDE_ENGINEERING_VERSION; |
| 1243 | strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE); |
| 1244 | rc = qed_ops->common->slowpath_start(cdev, ¶ms); |
| 1245 | if (rc) { |
| 1246 | pr_notice("Cannot start slowpath\n"); |
| 1247 | goto err1; |
| 1248 | } |
| 1249 | |
| 1250 | /* Learn information crucial for qede to progress */ |
| 1251 | rc = qed_ops->fill_dev_info(cdev, &dev_info); |
| 1252 | if (rc) |
| 1253 | goto err2; |
| 1254 | |
| 1255 | edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module, |
| 1256 | dp_level); |
| 1257 | if (!edev) { |
| 1258 | rc = -ENOMEM; |
| 1259 | goto err2; |
| 1260 | } |
| 1261 | |
| 1262 | qede_init_ndev(edev); |
| 1263 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1264 | rc = register_netdev(edev->ndev); |
| 1265 | if (rc) { |
| 1266 | DP_NOTICE(edev, "Cannot register net-device\n"); |
| 1267 | goto err3; |
| 1268 | } |
| 1269 | |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1270 | edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION); |
| 1271 | |
| 1272 | DP_INFO(edev, "Ending successfully qede probe\n"); |
| 1273 | |
| 1274 | return 0; |
| 1275 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1276 | err3: |
| 1277 | free_netdev(edev->ndev); |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1278 | err2: |
| 1279 | qed_ops->common->slowpath_stop(cdev); |
| 1280 | err1: |
| 1281 | qed_ops->common->remove(cdev); |
| 1282 | err0: |
| 1283 | return rc; |
| 1284 | } |
| 1285 | |
| 1286 | static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| 1287 | { |
| 1288 | u32 dp_module = 0; |
| 1289 | u8 dp_level = 0; |
| 1290 | |
| 1291 | qede_config_debug(debug, &dp_module, &dp_level); |
| 1292 | |
| 1293 | return __qede_probe(pdev, dp_module, dp_level, |
| 1294 | QEDE_PROBE_NORMAL); |
| 1295 | } |
| 1296 | |
| 1297 | enum qede_remove_mode { |
| 1298 | QEDE_REMOVE_NORMAL, |
| 1299 | }; |
| 1300 | |
| 1301 | static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode) |
| 1302 | { |
| 1303 | struct net_device *ndev = pci_get_drvdata(pdev); |
| 1304 | struct qede_dev *edev = netdev_priv(ndev); |
| 1305 | struct qed_dev *cdev = edev->cdev; |
| 1306 | |
| 1307 | DP_INFO(edev, "Starting qede_remove\n"); |
| 1308 | |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1309 | unregister_netdev(ndev); |
| 1310 | |
Yuval Mintz | e712d52 | 2015-10-26 11:02:27 +0200 | [diff] [blame] | 1311 | edev->ops->common->set_power_state(cdev, PCI_D0); |
| 1312 | |
| 1313 | pci_set_drvdata(pdev, NULL); |
| 1314 | |
| 1315 | free_netdev(ndev); |
| 1316 | |
| 1317 | /* Use global ops since we've freed edev */ |
| 1318 | qed_ops->common->slowpath_stop(cdev); |
| 1319 | qed_ops->common->remove(cdev); |
| 1320 | |
| 1321 | pr_notice("Ending successfully qede_remove\n"); |
| 1322 | } |
| 1323 | |
| 1324 | static void qede_remove(struct pci_dev *pdev) |
| 1325 | { |
| 1326 | __qede_remove(pdev, QEDE_REMOVE_NORMAL); |
| 1327 | } |
Yuval Mintz | 2950219 | 2015-10-26 11:02:29 +0200 | [diff] [blame^] | 1328 | |
| 1329 | /* ------------------------------------------------------------------------- |
| 1330 | * START OF LOAD / UNLOAD |
| 1331 | * ------------------------------------------------------------------------- |
| 1332 | */ |
| 1333 | |
| 1334 | static int qede_set_num_queues(struct qede_dev *edev) |
| 1335 | { |
| 1336 | int rc; |
| 1337 | u16 rss_num; |
| 1338 | |
| 1339 | /* Setup queues according to possible resources*/ |
| 1340 | rss_num = netif_get_num_default_rss_queues() * |
| 1341 | edev->dev_info.common.num_hwfns; |
| 1342 | |
| 1343 | rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num); |
| 1344 | |
| 1345 | rc = edev->ops->common->set_fp_int(edev->cdev, rss_num); |
| 1346 | if (rc > 0) { |
| 1347 | /* Managed to request interrupts for our queues */ |
| 1348 | edev->num_rss = rc; |
| 1349 | DP_INFO(edev, "Managed %d [of %d] RSS queues\n", |
| 1350 | QEDE_RSS_CNT(edev), rss_num); |
| 1351 | rc = 0; |
| 1352 | } |
| 1353 | return rc; |
| 1354 | } |
| 1355 | |
| 1356 | static void qede_free_mem_sb(struct qede_dev *edev, |
| 1357 | struct qed_sb_info *sb_info) |
| 1358 | { |
| 1359 | if (sb_info->sb_virt) |
| 1360 | dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt), |
| 1361 | (void *)sb_info->sb_virt, sb_info->sb_phys); |
| 1362 | } |
| 1363 | |
| 1364 | /* This function allocates fast-path status block memory */ |
| 1365 | static int qede_alloc_mem_sb(struct qede_dev *edev, |
| 1366 | struct qed_sb_info *sb_info, |
| 1367 | u16 sb_id) |
| 1368 | { |
| 1369 | struct status_block *sb_virt; |
| 1370 | dma_addr_t sb_phys; |
| 1371 | int rc; |
| 1372 | |
| 1373 | sb_virt = dma_alloc_coherent(&edev->pdev->dev, |
| 1374 | sizeof(*sb_virt), |
| 1375 | &sb_phys, GFP_KERNEL); |
| 1376 | if (!sb_virt) { |
| 1377 | DP_ERR(edev, "Status block allocation failed\n"); |
| 1378 | return -ENOMEM; |
| 1379 | } |
| 1380 | |
| 1381 | rc = edev->ops->common->sb_init(edev->cdev, sb_info, |
| 1382 | sb_virt, sb_phys, sb_id, |
| 1383 | QED_SB_TYPE_L2_QUEUE); |
| 1384 | if (rc) { |
| 1385 | DP_ERR(edev, "Status block initialization failed\n"); |
| 1386 | dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt), |
| 1387 | sb_virt, sb_phys); |
| 1388 | return rc; |
| 1389 | } |
| 1390 | |
| 1391 | return 0; |
| 1392 | } |
| 1393 | |
| 1394 | static void qede_free_rx_buffers(struct qede_dev *edev, |
| 1395 | struct qede_rx_queue *rxq) |
| 1396 | { |
| 1397 | u16 i; |
| 1398 | |
| 1399 | for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) { |
| 1400 | struct sw_rx_data *rx_buf; |
| 1401 | u8 *data; |
| 1402 | |
| 1403 | rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX]; |
| 1404 | data = rx_buf->data; |
| 1405 | |
| 1406 | dma_unmap_single(&edev->pdev->dev, |
| 1407 | dma_unmap_addr(rx_buf, mapping), |
| 1408 | rxq->rx_buf_size, DMA_FROM_DEVICE); |
| 1409 | |
| 1410 | rx_buf->data = NULL; |
| 1411 | kfree(data); |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | static void qede_free_mem_rxq(struct qede_dev *edev, |
| 1416 | struct qede_rx_queue *rxq) |
| 1417 | { |
| 1418 | /* Free rx buffers */ |
| 1419 | qede_free_rx_buffers(edev, rxq); |
| 1420 | |
| 1421 | /* Free the parallel SW ring */ |
| 1422 | kfree(rxq->sw_rx_ring); |
| 1423 | |
| 1424 | /* Free the real RQ ring used by FW */ |
| 1425 | edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring); |
| 1426 | edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring); |
| 1427 | } |
| 1428 | |
| 1429 | static int qede_alloc_rx_buffer(struct qede_dev *edev, |
| 1430 | struct qede_rx_queue *rxq) |
| 1431 | { |
| 1432 | struct sw_rx_data *sw_rx_data; |
| 1433 | struct eth_rx_bd *rx_bd; |
| 1434 | dma_addr_t mapping; |
| 1435 | u16 rx_buf_size; |
| 1436 | u8 *data; |
| 1437 | |
| 1438 | rx_buf_size = rxq->rx_buf_size; |
| 1439 | |
| 1440 | data = kmalloc(rx_buf_size, GFP_ATOMIC); |
| 1441 | if (unlikely(!data)) { |
| 1442 | DP_NOTICE(edev, "Failed to allocate Rx data\n"); |
| 1443 | return -ENOMEM; |
| 1444 | } |
| 1445 | |
| 1446 | mapping = dma_map_single(&edev->pdev->dev, data, |
| 1447 | rx_buf_size, DMA_FROM_DEVICE); |
| 1448 | if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) { |
| 1449 | kfree(data); |
| 1450 | DP_NOTICE(edev, "Failed to map Rx buffer\n"); |
| 1451 | return -ENOMEM; |
| 1452 | } |
| 1453 | |
| 1454 | sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX]; |
| 1455 | sw_rx_data->data = data; |
| 1456 | |
| 1457 | dma_unmap_addr_set(sw_rx_data, mapping, mapping); |
| 1458 | |
| 1459 | /* Advance PROD and get BD pointer */ |
| 1460 | rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring); |
| 1461 | WARN_ON(!rx_bd); |
| 1462 | rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping)); |
| 1463 | rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping)); |
| 1464 | |
| 1465 | rxq->sw_rx_prod++; |
| 1466 | |
| 1467 | return 0; |
| 1468 | } |
| 1469 | |
| 1470 | /* This function allocates all memory needed per Rx queue */ |
| 1471 | static int qede_alloc_mem_rxq(struct qede_dev *edev, |
| 1472 | struct qede_rx_queue *rxq) |
| 1473 | { |
| 1474 | int i, rc, size, num_allocated; |
| 1475 | |
| 1476 | rxq->num_rx_buffers = edev->q_num_rx_buffers; |
| 1477 | |
| 1478 | rxq->rx_buf_size = NET_IP_ALIGN + |
| 1479 | ETH_OVERHEAD + |
| 1480 | edev->ndev->mtu + |
| 1481 | QEDE_FW_RX_ALIGN_END; |
| 1482 | |
| 1483 | /* Allocate the parallel driver ring for Rx buffers */ |
| 1484 | size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX; |
| 1485 | rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL); |
| 1486 | if (!rxq->sw_rx_ring) { |
| 1487 | DP_ERR(edev, "Rx buffers ring allocation failed\n"); |
| 1488 | goto err; |
| 1489 | } |
| 1490 | |
| 1491 | /* Allocate FW Rx ring */ |
| 1492 | rc = edev->ops->common->chain_alloc(edev->cdev, |
| 1493 | QED_CHAIN_USE_TO_CONSUME_PRODUCE, |
| 1494 | QED_CHAIN_MODE_NEXT_PTR, |
| 1495 | NUM_RX_BDS_MAX, |
| 1496 | sizeof(struct eth_rx_bd), |
| 1497 | &rxq->rx_bd_ring); |
| 1498 | |
| 1499 | if (rc) |
| 1500 | goto err; |
| 1501 | |
| 1502 | /* Allocate FW completion ring */ |
| 1503 | rc = edev->ops->common->chain_alloc(edev->cdev, |
| 1504 | QED_CHAIN_USE_TO_CONSUME, |
| 1505 | QED_CHAIN_MODE_PBL, |
| 1506 | NUM_RX_BDS_MAX, |
| 1507 | sizeof(union eth_rx_cqe), |
| 1508 | &rxq->rx_comp_ring); |
| 1509 | if (rc) |
| 1510 | goto err; |
| 1511 | |
| 1512 | /* Allocate buffers for the Rx ring */ |
| 1513 | for (i = 0; i < rxq->num_rx_buffers; i++) { |
| 1514 | rc = qede_alloc_rx_buffer(edev, rxq); |
| 1515 | if (rc) |
| 1516 | break; |
| 1517 | } |
| 1518 | num_allocated = i; |
| 1519 | if (!num_allocated) { |
| 1520 | DP_ERR(edev, "Rx buffers allocation failed\n"); |
| 1521 | goto err; |
| 1522 | } else if (num_allocated < rxq->num_rx_buffers) { |
| 1523 | DP_NOTICE(edev, |
| 1524 | "Allocated less buffers than desired (%d allocated)\n", |
| 1525 | num_allocated); |
| 1526 | } |
| 1527 | |
| 1528 | return 0; |
| 1529 | |
| 1530 | err: |
| 1531 | qede_free_mem_rxq(edev, rxq); |
| 1532 | return -ENOMEM; |
| 1533 | } |
| 1534 | |
| 1535 | static void qede_free_mem_txq(struct qede_dev *edev, |
| 1536 | struct qede_tx_queue *txq) |
| 1537 | { |
| 1538 | /* Free the parallel SW ring */ |
| 1539 | kfree(txq->sw_tx_ring); |
| 1540 | |
| 1541 | /* Free the real RQ ring used by FW */ |
| 1542 | edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl); |
| 1543 | } |
| 1544 | |
| 1545 | /* This function allocates all memory needed per Tx queue */ |
| 1546 | static int qede_alloc_mem_txq(struct qede_dev *edev, |
| 1547 | struct qede_tx_queue *txq) |
| 1548 | { |
| 1549 | int size, rc; |
| 1550 | union eth_tx_bd_types *p_virt; |
| 1551 | |
| 1552 | txq->num_tx_buffers = edev->q_num_tx_buffers; |
| 1553 | |
| 1554 | /* Allocate the parallel driver ring for Tx buffers */ |
| 1555 | size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX; |
| 1556 | txq->sw_tx_ring = kzalloc(size, GFP_KERNEL); |
| 1557 | if (!txq->sw_tx_ring) { |
| 1558 | DP_NOTICE(edev, "Tx buffers ring allocation failed\n"); |
| 1559 | goto err; |
| 1560 | } |
| 1561 | |
| 1562 | rc = edev->ops->common->chain_alloc(edev->cdev, |
| 1563 | QED_CHAIN_USE_TO_CONSUME_PRODUCE, |
| 1564 | QED_CHAIN_MODE_PBL, |
| 1565 | NUM_TX_BDS_MAX, |
| 1566 | sizeof(*p_virt), |
| 1567 | &txq->tx_pbl); |
| 1568 | if (rc) |
| 1569 | goto err; |
| 1570 | |
| 1571 | return 0; |
| 1572 | |
| 1573 | err: |
| 1574 | qede_free_mem_txq(edev, txq); |
| 1575 | return -ENOMEM; |
| 1576 | } |
| 1577 | |
| 1578 | /* This function frees all memory of a single fp */ |
| 1579 | static void qede_free_mem_fp(struct qede_dev *edev, |
| 1580 | struct qede_fastpath *fp) |
| 1581 | { |
| 1582 | int tc; |
| 1583 | |
| 1584 | qede_free_mem_sb(edev, fp->sb_info); |
| 1585 | |
| 1586 | qede_free_mem_rxq(edev, fp->rxq); |
| 1587 | |
| 1588 | for (tc = 0; tc < edev->num_tc; tc++) |
| 1589 | qede_free_mem_txq(edev, &fp->txqs[tc]); |
| 1590 | } |
| 1591 | |
| 1592 | /* This function allocates all memory needed for a single fp (i.e. an entity |
| 1593 | * which contains status block, one rx queue and multiple per-TC tx queues. |
| 1594 | */ |
| 1595 | static int qede_alloc_mem_fp(struct qede_dev *edev, |
| 1596 | struct qede_fastpath *fp) |
| 1597 | { |
| 1598 | int rc, tc; |
| 1599 | |
| 1600 | rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id); |
| 1601 | if (rc) |
| 1602 | goto err; |
| 1603 | |
| 1604 | rc = qede_alloc_mem_rxq(edev, fp->rxq); |
| 1605 | if (rc) |
| 1606 | goto err; |
| 1607 | |
| 1608 | for (tc = 0; tc < edev->num_tc; tc++) { |
| 1609 | rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]); |
| 1610 | if (rc) |
| 1611 | goto err; |
| 1612 | } |
| 1613 | |
| 1614 | return 0; |
| 1615 | |
| 1616 | err: |
| 1617 | qede_free_mem_fp(edev, fp); |
| 1618 | return -ENOMEM; |
| 1619 | } |
| 1620 | |
| 1621 | static void qede_free_mem_load(struct qede_dev *edev) |
| 1622 | { |
| 1623 | int i; |
| 1624 | |
| 1625 | for_each_rss(i) { |
| 1626 | struct qede_fastpath *fp = &edev->fp_array[i]; |
| 1627 | |
| 1628 | qede_free_mem_fp(edev, fp); |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | /* This function allocates all qede memory at NIC load. */ |
| 1633 | static int qede_alloc_mem_load(struct qede_dev *edev) |
| 1634 | { |
| 1635 | int rc = 0, rss_id; |
| 1636 | |
| 1637 | for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) { |
| 1638 | struct qede_fastpath *fp = &edev->fp_array[rss_id]; |
| 1639 | |
| 1640 | rc = qede_alloc_mem_fp(edev, fp); |
| 1641 | if (rc) |
| 1642 | break; |
| 1643 | } |
| 1644 | |
| 1645 | if (rss_id != QEDE_RSS_CNT(edev)) { |
| 1646 | /* Failed allocating memory for all the queues */ |
| 1647 | if (!rss_id) { |
| 1648 | DP_ERR(edev, |
| 1649 | "Failed to allocate memory for the leading queue\n"); |
| 1650 | rc = -ENOMEM; |
| 1651 | } else { |
| 1652 | DP_NOTICE(edev, |
| 1653 | "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n", |
| 1654 | QEDE_RSS_CNT(edev), rss_id); |
| 1655 | } |
| 1656 | edev->num_rss = rss_id; |
| 1657 | } |
| 1658 | |
| 1659 | return 0; |
| 1660 | } |
| 1661 | |
| 1662 | /* This function inits fp content and resets the SB, RXQ and TXQ structures */ |
| 1663 | static void qede_init_fp(struct qede_dev *edev) |
| 1664 | { |
| 1665 | int rss_id, txq_index, tc; |
| 1666 | struct qede_fastpath *fp; |
| 1667 | |
| 1668 | for_each_rss(rss_id) { |
| 1669 | fp = &edev->fp_array[rss_id]; |
| 1670 | |
| 1671 | fp->edev = edev; |
| 1672 | fp->rss_id = rss_id; |
| 1673 | |
| 1674 | memset((void *)&fp->napi, 0, sizeof(fp->napi)); |
| 1675 | |
| 1676 | memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info)); |
| 1677 | |
| 1678 | memset((void *)fp->rxq, 0, sizeof(*fp->rxq)); |
| 1679 | fp->rxq->rxq_id = rss_id; |
| 1680 | |
| 1681 | memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs))); |
| 1682 | for (tc = 0; tc < edev->num_tc; tc++) { |
| 1683 | txq_index = tc * QEDE_RSS_CNT(edev) + rss_id; |
| 1684 | fp->txqs[tc].index = txq_index; |
| 1685 | } |
| 1686 | |
| 1687 | snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", |
| 1688 | edev->ndev->name, rss_id); |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | static int qede_set_real_num_queues(struct qede_dev *edev) |
| 1693 | { |
| 1694 | int rc = 0; |
| 1695 | |
| 1696 | rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev)); |
| 1697 | if (rc) { |
| 1698 | DP_NOTICE(edev, "Failed to set real number of Tx queues\n"); |
| 1699 | return rc; |
| 1700 | } |
| 1701 | rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev)); |
| 1702 | if (rc) { |
| 1703 | DP_NOTICE(edev, "Failed to set real number of Rx queues\n"); |
| 1704 | return rc; |
| 1705 | } |
| 1706 | |
| 1707 | return 0; |
| 1708 | } |
| 1709 | |
| 1710 | static void qede_napi_disable_remove(struct qede_dev *edev) |
| 1711 | { |
| 1712 | int i; |
| 1713 | |
| 1714 | for_each_rss(i) { |
| 1715 | napi_disable(&edev->fp_array[i].napi); |
| 1716 | |
| 1717 | netif_napi_del(&edev->fp_array[i].napi); |
| 1718 | } |
| 1719 | } |
| 1720 | |
| 1721 | static void qede_napi_add_enable(struct qede_dev *edev) |
| 1722 | { |
| 1723 | int i; |
| 1724 | |
| 1725 | /* Add NAPI objects */ |
| 1726 | for_each_rss(i) { |
| 1727 | netif_napi_add(edev->ndev, &edev->fp_array[i].napi, |
| 1728 | qede_poll, NAPI_POLL_WEIGHT); |
| 1729 | napi_enable(&edev->fp_array[i].napi); |
| 1730 | } |
| 1731 | } |
| 1732 | |
| 1733 | static void qede_sync_free_irqs(struct qede_dev *edev) |
| 1734 | { |
| 1735 | int i; |
| 1736 | |
| 1737 | for (i = 0; i < edev->int_info.used_cnt; i++) { |
| 1738 | if (edev->int_info.msix_cnt) { |
| 1739 | synchronize_irq(edev->int_info.msix[i].vector); |
| 1740 | free_irq(edev->int_info.msix[i].vector, |
| 1741 | &edev->fp_array[i]); |
| 1742 | } else { |
| 1743 | edev->ops->common->simd_handler_clean(edev->cdev, i); |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | edev->int_info.used_cnt = 0; |
| 1748 | } |
| 1749 | |
| 1750 | static int qede_req_msix_irqs(struct qede_dev *edev) |
| 1751 | { |
| 1752 | int i, rc; |
| 1753 | |
| 1754 | /* Sanitize number of interrupts == number of prepared RSS queues */ |
| 1755 | if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) { |
| 1756 | DP_ERR(edev, |
| 1757 | "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n", |
| 1758 | QEDE_RSS_CNT(edev), edev->int_info.msix_cnt); |
| 1759 | return -EINVAL; |
| 1760 | } |
| 1761 | |
| 1762 | for (i = 0; i < QEDE_RSS_CNT(edev); i++) { |
| 1763 | rc = request_irq(edev->int_info.msix[i].vector, |
| 1764 | qede_msix_fp_int, 0, edev->fp_array[i].name, |
| 1765 | &edev->fp_array[i]); |
| 1766 | if (rc) { |
| 1767 | DP_ERR(edev, "Request fp %d irq failed\n", i); |
| 1768 | qede_sync_free_irqs(edev); |
| 1769 | return rc; |
| 1770 | } |
| 1771 | DP_VERBOSE(edev, NETIF_MSG_INTR, |
| 1772 | "Requested fp irq for %s [entry %d]. Cookie is at %p\n", |
| 1773 | edev->fp_array[i].name, i, |
| 1774 | &edev->fp_array[i]); |
| 1775 | edev->int_info.used_cnt++; |
| 1776 | } |
| 1777 | |
| 1778 | return 0; |
| 1779 | } |
| 1780 | |
| 1781 | static void qede_simd_fp_handler(void *cookie) |
| 1782 | { |
| 1783 | struct qede_fastpath *fp = (struct qede_fastpath *)cookie; |
| 1784 | |
| 1785 | napi_schedule_irqoff(&fp->napi); |
| 1786 | } |
| 1787 | |
| 1788 | static int qede_setup_irqs(struct qede_dev *edev) |
| 1789 | { |
| 1790 | int i, rc = 0; |
| 1791 | |
| 1792 | /* Learn Interrupt configuration */ |
| 1793 | rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info); |
| 1794 | if (rc) |
| 1795 | return rc; |
| 1796 | |
| 1797 | if (edev->int_info.msix_cnt) { |
| 1798 | rc = qede_req_msix_irqs(edev); |
| 1799 | if (rc) |
| 1800 | return rc; |
| 1801 | edev->ndev->irq = edev->int_info.msix[0].vector; |
| 1802 | } else { |
| 1803 | const struct qed_common_ops *ops; |
| 1804 | |
| 1805 | /* qed should learn receive the RSS ids and callbacks */ |
| 1806 | ops = edev->ops->common; |
| 1807 | for (i = 0; i < QEDE_RSS_CNT(edev); i++) |
| 1808 | ops->simd_handler_config(edev->cdev, |
| 1809 | &edev->fp_array[i], i, |
| 1810 | qede_simd_fp_handler); |
| 1811 | edev->int_info.used_cnt = QEDE_RSS_CNT(edev); |
| 1812 | } |
| 1813 | return 0; |
| 1814 | } |
| 1815 | |
| 1816 | static int qede_drain_txq(struct qede_dev *edev, |
| 1817 | struct qede_tx_queue *txq, |
| 1818 | bool allow_drain) |
| 1819 | { |
| 1820 | int rc, cnt = 1000; |
| 1821 | |
| 1822 | while (txq->sw_tx_cons != txq->sw_tx_prod) { |
| 1823 | if (!cnt) { |
| 1824 | if (allow_drain) { |
| 1825 | DP_NOTICE(edev, |
| 1826 | "Tx queue[%d] is stuck, requesting MCP to drain\n", |
| 1827 | txq->index); |
| 1828 | rc = edev->ops->common->drain(edev->cdev); |
| 1829 | if (rc) |
| 1830 | return rc; |
| 1831 | return qede_drain_txq(edev, txq, false); |
| 1832 | } |
| 1833 | DP_NOTICE(edev, |
| 1834 | "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n", |
| 1835 | txq->index, txq->sw_tx_prod, |
| 1836 | txq->sw_tx_cons); |
| 1837 | return -ENODEV; |
| 1838 | } |
| 1839 | cnt--; |
| 1840 | usleep_range(1000, 2000); |
| 1841 | barrier(); |
| 1842 | } |
| 1843 | |
| 1844 | /* FW finished processing, wait for HW to transmit all tx packets */ |
| 1845 | usleep_range(1000, 2000); |
| 1846 | |
| 1847 | return 0; |
| 1848 | } |
| 1849 | |
| 1850 | static int qede_stop_queues(struct qede_dev *edev) |
| 1851 | { |
| 1852 | struct qed_update_vport_params vport_update_params; |
| 1853 | struct qed_dev *cdev = edev->cdev; |
| 1854 | int rc, tc, i; |
| 1855 | |
| 1856 | /* Disable the vport */ |
| 1857 | memset(&vport_update_params, 0, sizeof(vport_update_params)); |
| 1858 | vport_update_params.vport_id = 0; |
| 1859 | vport_update_params.update_vport_active_flg = 1; |
| 1860 | vport_update_params.vport_active_flg = 0; |
| 1861 | vport_update_params.update_rss_flg = 0; |
| 1862 | |
| 1863 | rc = edev->ops->vport_update(cdev, &vport_update_params); |
| 1864 | if (rc) { |
| 1865 | DP_ERR(edev, "Failed to update vport\n"); |
| 1866 | return rc; |
| 1867 | } |
| 1868 | |
| 1869 | /* Flush Tx queues. If needed, request drain from MCP */ |
| 1870 | for_each_rss(i) { |
| 1871 | struct qede_fastpath *fp = &edev->fp_array[i]; |
| 1872 | |
| 1873 | for (tc = 0; tc < edev->num_tc; tc++) { |
| 1874 | struct qede_tx_queue *txq = &fp->txqs[tc]; |
| 1875 | |
| 1876 | rc = qede_drain_txq(edev, txq, true); |
| 1877 | if (rc) |
| 1878 | return rc; |
| 1879 | } |
| 1880 | } |
| 1881 | |
| 1882 | /* Stop all Queues in reverse order*/ |
| 1883 | for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) { |
| 1884 | struct qed_stop_rxq_params rx_params; |
| 1885 | |
| 1886 | /* Stop the Tx Queue(s)*/ |
| 1887 | for (tc = 0; tc < edev->num_tc; tc++) { |
| 1888 | struct qed_stop_txq_params tx_params; |
| 1889 | |
| 1890 | tx_params.rss_id = i; |
| 1891 | tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i; |
| 1892 | rc = edev->ops->q_tx_stop(cdev, &tx_params); |
| 1893 | if (rc) { |
| 1894 | DP_ERR(edev, "Failed to stop TXQ #%d\n", |
| 1895 | tx_params.tx_queue_id); |
| 1896 | return rc; |
| 1897 | } |
| 1898 | } |
| 1899 | |
| 1900 | /* Stop the Rx Queue*/ |
| 1901 | memset(&rx_params, 0, sizeof(rx_params)); |
| 1902 | rx_params.rss_id = i; |
| 1903 | rx_params.rx_queue_id = i; |
| 1904 | |
| 1905 | rc = edev->ops->q_rx_stop(cdev, &rx_params); |
| 1906 | if (rc) { |
| 1907 | DP_ERR(edev, "Failed to stop RXQ #%d\n", i); |
| 1908 | return rc; |
| 1909 | } |
| 1910 | } |
| 1911 | |
| 1912 | /* Stop the vport */ |
| 1913 | rc = edev->ops->vport_stop(cdev, 0); |
| 1914 | if (rc) |
| 1915 | DP_ERR(edev, "Failed to stop VPORT\n"); |
| 1916 | |
| 1917 | return rc; |
| 1918 | } |
| 1919 | |
| 1920 | static int qede_start_queues(struct qede_dev *edev) |
| 1921 | { |
| 1922 | int rc, tc, i; |
| 1923 | int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1; |
| 1924 | struct qed_dev *cdev = edev->cdev; |
| 1925 | struct qed_update_vport_rss_params *rss_params = &edev->rss_params; |
| 1926 | struct qed_update_vport_params vport_update_params; |
| 1927 | struct qed_queue_start_common_params q_params; |
| 1928 | |
| 1929 | if (!edev->num_rss) { |
| 1930 | DP_ERR(edev, |
| 1931 | "Cannot update V-VPORT as active as there are no Rx queues\n"); |
| 1932 | return -EINVAL; |
| 1933 | } |
| 1934 | |
| 1935 | rc = edev->ops->vport_start(cdev, vport_id, |
| 1936 | edev->ndev->mtu, |
| 1937 | drop_ttl0_flg, |
| 1938 | vlan_removal_en); |
| 1939 | |
| 1940 | if (rc) { |
| 1941 | DP_ERR(edev, "Start V-PORT failed %d\n", rc); |
| 1942 | return rc; |
| 1943 | } |
| 1944 | |
| 1945 | DP_VERBOSE(edev, NETIF_MSG_IFUP, |
| 1946 | "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n", |
| 1947 | vport_id, edev->ndev->mtu + 0xe, vlan_removal_en); |
| 1948 | |
| 1949 | for_each_rss(i) { |
| 1950 | struct qede_fastpath *fp = &edev->fp_array[i]; |
| 1951 | dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table; |
| 1952 | |
| 1953 | memset(&q_params, 0, sizeof(q_params)); |
| 1954 | q_params.rss_id = i; |
| 1955 | q_params.queue_id = i; |
| 1956 | q_params.vport_id = 0; |
| 1957 | q_params.sb = fp->sb_info->igu_sb_id; |
| 1958 | q_params.sb_idx = RX_PI; |
| 1959 | |
| 1960 | rc = edev->ops->q_rx_start(cdev, &q_params, |
| 1961 | fp->rxq->rx_buf_size, |
| 1962 | fp->rxq->rx_bd_ring.p_phys_addr, |
| 1963 | phys_table, |
| 1964 | fp->rxq->rx_comp_ring.page_cnt, |
| 1965 | &fp->rxq->hw_rxq_prod_addr); |
| 1966 | if (rc) { |
| 1967 | DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc); |
| 1968 | return rc; |
| 1969 | } |
| 1970 | |
| 1971 | fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI]; |
| 1972 | |
| 1973 | qede_update_rx_prod(edev, fp->rxq); |
| 1974 | |
| 1975 | for (tc = 0; tc < edev->num_tc; tc++) { |
| 1976 | struct qede_tx_queue *txq = &fp->txqs[tc]; |
| 1977 | int txq_index = tc * QEDE_RSS_CNT(edev) + i; |
| 1978 | |
| 1979 | memset(&q_params, 0, sizeof(q_params)); |
| 1980 | q_params.rss_id = i; |
| 1981 | q_params.queue_id = txq_index; |
| 1982 | q_params.vport_id = 0; |
| 1983 | q_params.sb = fp->sb_info->igu_sb_id; |
| 1984 | q_params.sb_idx = TX_PI(tc); |
| 1985 | |
| 1986 | rc = edev->ops->q_tx_start(cdev, &q_params, |
| 1987 | txq->tx_pbl.pbl.p_phys_table, |
| 1988 | txq->tx_pbl.page_cnt, |
| 1989 | &txq->doorbell_addr); |
| 1990 | if (rc) { |
| 1991 | DP_ERR(edev, "Start TXQ #%d failed %d\n", |
| 1992 | txq_index, rc); |
| 1993 | return rc; |
| 1994 | } |
| 1995 | |
| 1996 | txq->hw_cons_ptr = |
| 1997 | &fp->sb_info->sb_virt->pi_array[TX_PI(tc)]; |
| 1998 | SET_FIELD(txq->tx_db.data.params, |
| 1999 | ETH_DB_DATA_DEST, DB_DEST_XCM); |
| 2000 | SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, |
| 2001 | DB_AGG_CMD_SET); |
| 2002 | SET_FIELD(txq->tx_db.data.params, |
| 2003 | ETH_DB_DATA_AGG_VAL_SEL, |
| 2004 | DQ_XCM_ETH_TX_BD_PROD_CMD); |
| 2005 | |
| 2006 | txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD; |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | /* Prepare and send the vport enable */ |
| 2011 | memset(&vport_update_params, 0, sizeof(vport_update_params)); |
| 2012 | vport_update_params.vport_id = vport_id; |
| 2013 | vport_update_params.update_vport_active_flg = 1; |
| 2014 | vport_update_params.vport_active_flg = 1; |
| 2015 | |
| 2016 | /* Fill struct with RSS params */ |
| 2017 | if (QEDE_RSS_CNT(edev) > 1) { |
| 2018 | vport_update_params.update_rss_flg = 1; |
| 2019 | for (i = 0; i < 128; i++) |
| 2020 | rss_params->rss_ind_table[i] = |
| 2021 | ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev)); |
| 2022 | netdev_rss_key_fill(rss_params->rss_key, |
| 2023 | sizeof(rss_params->rss_key)); |
| 2024 | } else { |
| 2025 | memset(rss_params, 0, sizeof(*rss_params)); |
| 2026 | } |
| 2027 | memcpy(&vport_update_params.rss_params, rss_params, |
| 2028 | sizeof(*rss_params)); |
| 2029 | |
| 2030 | rc = edev->ops->vport_update(cdev, &vport_update_params); |
| 2031 | if (rc) { |
| 2032 | DP_ERR(edev, "Update V-PORT failed %d\n", rc); |
| 2033 | return rc; |
| 2034 | } |
| 2035 | |
| 2036 | return 0; |
| 2037 | } |
| 2038 | |
| 2039 | enum qede_unload_mode { |
| 2040 | QEDE_UNLOAD_NORMAL, |
| 2041 | }; |
| 2042 | |
| 2043 | static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode) |
| 2044 | { |
| 2045 | int rc; |
| 2046 | |
| 2047 | DP_INFO(edev, "Starting qede unload\n"); |
| 2048 | |
| 2049 | /* Close OS Tx */ |
| 2050 | netif_tx_disable(edev->ndev); |
| 2051 | netif_carrier_off(edev->ndev); |
| 2052 | |
| 2053 | rc = qede_stop_queues(edev); |
| 2054 | if (rc) { |
| 2055 | qede_sync_free_irqs(edev); |
| 2056 | goto out; |
| 2057 | } |
| 2058 | |
| 2059 | DP_INFO(edev, "Stopped Queues\n"); |
| 2060 | |
| 2061 | edev->ops->fastpath_stop(edev->cdev); |
| 2062 | |
| 2063 | /* Release the interrupts */ |
| 2064 | qede_sync_free_irqs(edev); |
| 2065 | edev->ops->common->set_fp_int(edev->cdev, 0); |
| 2066 | |
| 2067 | qede_napi_disable_remove(edev); |
| 2068 | |
| 2069 | qede_free_mem_load(edev); |
| 2070 | qede_free_fp_array(edev); |
| 2071 | |
| 2072 | out: |
| 2073 | mutex_unlock(&edev->qede_lock); |
| 2074 | DP_INFO(edev, "Ending qede unload\n"); |
| 2075 | } |
| 2076 | |
| 2077 | enum qede_load_mode { |
| 2078 | QEDE_LOAD_NORMAL, |
| 2079 | }; |
| 2080 | |
| 2081 | static int qede_load(struct qede_dev *edev, enum qede_load_mode mode) |
| 2082 | { |
| 2083 | int rc; |
| 2084 | |
| 2085 | DP_INFO(edev, "Starting qede load\n"); |
| 2086 | |
| 2087 | rc = qede_set_num_queues(edev); |
| 2088 | if (rc) |
| 2089 | goto err0; |
| 2090 | |
| 2091 | rc = qede_alloc_fp_array(edev); |
| 2092 | if (rc) |
| 2093 | goto err0; |
| 2094 | |
| 2095 | qede_init_fp(edev); |
| 2096 | |
| 2097 | rc = qede_alloc_mem_load(edev); |
| 2098 | if (rc) |
| 2099 | goto err1; |
| 2100 | DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n", |
| 2101 | QEDE_RSS_CNT(edev), edev->num_tc); |
| 2102 | |
| 2103 | rc = qede_set_real_num_queues(edev); |
| 2104 | if (rc) |
| 2105 | goto err2; |
| 2106 | |
| 2107 | qede_napi_add_enable(edev); |
| 2108 | DP_INFO(edev, "Napi added and enabled\n"); |
| 2109 | |
| 2110 | rc = qede_setup_irqs(edev); |
| 2111 | if (rc) |
| 2112 | goto err3; |
| 2113 | DP_INFO(edev, "Setup IRQs succeeded\n"); |
| 2114 | |
| 2115 | rc = qede_start_queues(edev); |
| 2116 | if (rc) |
| 2117 | goto err4; |
| 2118 | DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n"); |
| 2119 | |
| 2120 | /* Add primary mac and set Rx filters */ |
| 2121 | ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr); |
| 2122 | |
| 2123 | DP_INFO(edev, "Ending successfully qede load\n"); |
| 2124 | |
| 2125 | return 0; |
| 2126 | |
| 2127 | err4: |
| 2128 | qede_sync_free_irqs(edev); |
| 2129 | memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info)); |
| 2130 | err3: |
| 2131 | qede_napi_disable_remove(edev); |
| 2132 | err2: |
| 2133 | qede_free_mem_load(edev); |
| 2134 | err1: |
| 2135 | edev->ops->common->set_fp_int(edev->cdev, 0); |
| 2136 | qede_free_fp_array(edev); |
| 2137 | edev->num_rss = 0; |
| 2138 | err0: |
| 2139 | return rc; |
| 2140 | } |
| 2141 | |
| 2142 | /* called with rtnl_lock */ |
| 2143 | static int qede_open(struct net_device *ndev) |
| 2144 | { |
| 2145 | struct qede_dev *edev = netdev_priv(ndev); |
| 2146 | |
| 2147 | netif_carrier_off(ndev); |
| 2148 | |
| 2149 | edev->ops->common->set_power_state(edev->cdev, PCI_D0); |
| 2150 | |
| 2151 | return qede_load(edev, QEDE_LOAD_NORMAL); |
| 2152 | } |
| 2153 | |
| 2154 | static int qede_close(struct net_device *ndev) |
| 2155 | { |
| 2156 | struct qede_dev *edev = netdev_priv(ndev); |
| 2157 | |
| 2158 | qede_unload(edev, QEDE_UNLOAD_NORMAL); |
| 2159 | |
| 2160 | return 0; |
| 2161 | } |