Mathieu Desnoyers | 2e155fb | 2018-06-02 08:44:04 -0400 | [diff] [blame] | 1 | /* SPDX-License-Identifier: LGPL-2.1 OR MIT */ |
| 2 | /* |
| 3 | * rseq.h |
| 4 | * |
| 5 | * (C) Copyright 2016-2018 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com> |
| 6 | */ |
| 7 | |
| 8 | #ifndef RSEQ_H |
| 9 | #define RSEQ_H |
| 10 | |
| 11 | #include <stdint.h> |
| 12 | #include <stdbool.h> |
| 13 | #include <pthread.h> |
| 14 | #include <signal.h> |
| 15 | #include <sched.h> |
| 16 | #include <errno.h> |
| 17 | #include <stdio.h> |
| 18 | #include <stdlib.h> |
| 19 | #include <sched.h> |
| 20 | #include <linux/rseq.h> |
| 21 | |
| 22 | /* |
| 23 | * Empty code injection macros, override when testing. |
| 24 | * It is important to consider that the ASM injection macros need to be |
| 25 | * fully reentrant (e.g. do not modify the stack). |
| 26 | */ |
| 27 | #ifndef RSEQ_INJECT_ASM |
| 28 | #define RSEQ_INJECT_ASM(n) |
| 29 | #endif |
| 30 | |
| 31 | #ifndef RSEQ_INJECT_C |
| 32 | #define RSEQ_INJECT_C(n) |
| 33 | #endif |
| 34 | |
| 35 | #ifndef RSEQ_INJECT_INPUT |
| 36 | #define RSEQ_INJECT_INPUT |
| 37 | #endif |
| 38 | |
| 39 | #ifndef RSEQ_INJECT_CLOBBER |
| 40 | #define RSEQ_INJECT_CLOBBER |
| 41 | #endif |
| 42 | |
| 43 | #ifndef RSEQ_INJECT_FAILED |
| 44 | #define RSEQ_INJECT_FAILED |
| 45 | #endif |
| 46 | |
| 47 | extern __thread volatile struct rseq __rseq_abi; |
| 48 | |
| 49 | #define rseq_likely(x) __builtin_expect(!!(x), 1) |
| 50 | #define rseq_unlikely(x) __builtin_expect(!!(x), 0) |
| 51 | #define rseq_barrier() __asm__ __volatile__("" : : : "memory") |
| 52 | |
| 53 | #define RSEQ_ACCESS_ONCE(x) (*(__volatile__ __typeof__(x) *)&(x)) |
| 54 | #define RSEQ_WRITE_ONCE(x, v) __extension__ ({ RSEQ_ACCESS_ONCE(x) = (v); }) |
| 55 | #define RSEQ_READ_ONCE(x) RSEQ_ACCESS_ONCE(x) |
| 56 | |
| 57 | #define __rseq_str_1(x) #x |
| 58 | #define __rseq_str(x) __rseq_str_1(x) |
| 59 | |
| 60 | #define rseq_log(fmt, args...) \ |
| 61 | fprintf(stderr, fmt "(in %s() at " __FILE__ ":" __rseq_str(__LINE__)"\n", \ |
| 62 | ## args, __func__) |
| 63 | |
| 64 | #define rseq_bug(fmt, args...) \ |
| 65 | do { \ |
| 66 | rseq_log(fmt, ##args); \ |
| 67 | abort(); \ |
| 68 | } while (0) |
| 69 | |
| 70 | #if defined(__x86_64__) || defined(__i386__) |
| 71 | #include <rseq-x86.h> |
| 72 | #elif defined(__ARMEL__) |
| 73 | #include <rseq-arm.h> |
| 74 | #elif defined(__PPC__) |
| 75 | #include <rseq-ppc.h> |
Paul Burton | 744f4be | 2018-06-14 11:06:22 -0700 | [diff] [blame] | 76 | #elif defined(__mips__) |
| 77 | #include <rseq-mips.h> |
Mathieu Desnoyers | 2e155fb | 2018-06-02 08:44:04 -0400 | [diff] [blame] | 78 | #else |
| 79 | #error unsupported target |
| 80 | #endif |
| 81 | |
| 82 | /* |
| 83 | * Register rseq for the current thread. This needs to be called once |
| 84 | * by any thread which uses restartable sequences, before they start |
| 85 | * using restartable sequences, to ensure restartable sequences |
| 86 | * succeed. A restartable sequence executed from a non-registered |
| 87 | * thread will always fail. |
| 88 | */ |
| 89 | int rseq_register_current_thread(void); |
| 90 | |
| 91 | /* |
| 92 | * Unregister rseq for current thread. |
| 93 | */ |
| 94 | int rseq_unregister_current_thread(void); |
| 95 | |
| 96 | /* |
| 97 | * Restartable sequence fallback for reading the current CPU number. |
| 98 | */ |
| 99 | int32_t rseq_fallback_current_cpu(void); |
| 100 | |
| 101 | /* |
| 102 | * Values returned can be either the current CPU number, -1 (rseq is |
| 103 | * uninitialized), or -2 (rseq initialization has failed). |
| 104 | */ |
| 105 | static inline int32_t rseq_current_cpu_raw(void) |
| 106 | { |
| 107 | return RSEQ_ACCESS_ONCE(__rseq_abi.cpu_id); |
| 108 | } |
| 109 | |
| 110 | /* |
| 111 | * Returns a possible CPU number, which is typically the current CPU. |
| 112 | * The returned CPU number can be used to prepare for an rseq critical |
| 113 | * section, which will confirm whether the cpu number is indeed the |
| 114 | * current one, and whether rseq is initialized. |
| 115 | * |
| 116 | * The CPU number returned by rseq_cpu_start should always be validated |
| 117 | * by passing it to a rseq asm sequence, or by comparing it to the |
| 118 | * return value of rseq_current_cpu_raw() if the rseq asm sequence |
| 119 | * does not need to be invoked. |
| 120 | */ |
| 121 | static inline uint32_t rseq_cpu_start(void) |
| 122 | { |
| 123 | return RSEQ_ACCESS_ONCE(__rseq_abi.cpu_id_start); |
| 124 | } |
| 125 | |
| 126 | static inline uint32_t rseq_current_cpu(void) |
| 127 | { |
| 128 | int32_t cpu; |
| 129 | |
| 130 | cpu = rseq_current_cpu_raw(); |
| 131 | if (rseq_unlikely(cpu < 0)) |
| 132 | cpu = rseq_fallback_current_cpu(); |
| 133 | return cpu; |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * rseq_prepare_unload() should be invoked by each thread using rseq_finish*() |
| 138 | * at least once between their last rseq_finish*() and library unload of the |
| 139 | * library defining the rseq critical section (struct rseq_cs). This also |
| 140 | * applies to use of rseq in code generated by JIT: rseq_prepare_unload() |
| 141 | * should be invoked at least once by each thread using rseq_finish*() before |
| 142 | * reclaim of the memory holding the struct rseq_cs. |
| 143 | */ |
| 144 | static inline void rseq_prepare_unload(void) |
| 145 | { |
| 146 | __rseq_abi.rseq_cs = 0; |
| 147 | } |
| 148 | |
| 149 | #endif /* RSEQ_H_ */ |