Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2013, Kenneth MacKay |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions are |
| 7 | * met: |
| 8 | * * Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * * Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include <linux/random.h> |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/swab.h> |
| 30 | #include <linux/fips.h> |
| 31 | #include <crypto/ecdh.h> |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 32 | #include <crypto/rng.h> |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 33 | |
| 34 | #include "ecc.h" |
| 35 | #include "ecc_curve_defs.h" |
| 36 | |
| 37 | typedef struct { |
| 38 | u64 m_low; |
| 39 | u64 m_high; |
| 40 | } uint128_t; |
| 41 | |
| 42 | static inline const struct ecc_curve *ecc_get_curve(unsigned int curve_id) |
| 43 | { |
| 44 | switch (curve_id) { |
| 45 | /* In FIPS mode only allow P256 and higher */ |
| 46 | case ECC_CURVE_NIST_P192: |
| 47 | return fips_enabled ? NULL : &nist_p192; |
| 48 | case ECC_CURVE_NIST_P256: |
| 49 | return &nist_p256; |
| 50 | default: |
| 51 | return NULL; |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | static u64 *ecc_alloc_digits_space(unsigned int ndigits) |
| 56 | { |
| 57 | size_t len = ndigits * sizeof(u64); |
| 58 | |
| 59 | if (!len) |
| 60 | return NULL; |
| 61 | |
| 62 | return kmalloc(len, GFP_KERNEL); |
| 63 | } |
| 64 | |
| 65 | static void ecc_free_digits_space(u64 *space) |
| 66 | { |
| 67 | kzfree(space); |
| 68 | } |
| 69 | |
| 70 | static struct ecc_point *ecc_alloc_point(unsigned int ndigits) |
| 71 | { |
| 72 | struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL); |
| 73 | |
| 74 | if (!p) |
| 75 | return NULL; |
| 76 | |
| 77 | p->x = ecc_alloc_digits_space(ndigits); |
| 78 | if (!p->x) |
| 79 | goto err_alloc_x; |
| 80 | |
| 81 | p->y = ecc_alloc_digits_space(ndigits); |
| 82 | if (!p->y) |
| 83 | goto err_alloc_y; |
| 84 | |
| 85 | p->ndigits = ndigits; |
| 86 | |
| 87 | return p; |
| 88 | |
| 89 | err_alloc_y: |
| 90 | ecc_free_digits_space(p->x); |
| 91 | err_alloc_x: |
| 92 | kfree(p); |
| 93 | return NULL; |
| 94 | } |
| 95 | |
| 96 | static void ecc_free_point(struct ecc_point *p) |
| 97 | { |
| 98 | if (!p) |
| 99 | return; |
| 100 | |
| 101 | kzfree(p->x); |
| 102 | kzfree(p->y); |
| 103 | kzfree(p); |
| 104 | } |
| 105 | |
| 106 | static void vli_clear(u64 *vli, unsigned int ndigits) |
| 107 | { |
| 108 | int i; |
| 109 | |
| 110 | for (i = 0; i < ndigits; i++) |
| 111 | vli[i] = 0; |
| 112 | } |
| 113 | |
| 114 | /* Returns true if vli == 0, false otherwise. */ |
| 115 | static bool vli_is_zero(const u64 *vli, unsigned int ndigits) |
| 116 | { |
| 117 | int i; |
| 118 | |
| 119 | for (i = 0; i < ndigits; i++) { |
| 120 | if (vli[i]) |
| 121 | return false; |
| 122 | } |
| 123 | |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | /* Returns nonzero if bit bit of vli is set. */ |
| 128 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) |
| 129 | { |
| 130 | return (vli[bit / 64] & ((u64)1 << (bit % 64))); |
| 131 | } |
| 132 | |
| 133 | /* Counts the number of 64-bit "digits" in vli. */ |
| 134 | static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits) |
| 135 | { |
| 136 | int i; |
| 137 | |
| 138 | /* Search from the end until we find a non-zero digit. |
| 139 | * We do it in reverse because we expect that most digits will |
| 140 | * be nonzero. |
| 141 | */ |
| 142 | for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--); |
| 143 | |
| 144 | return (i + 1); |
| 145 | } |
| 146 | |
| 147 | /* Counts the number of bits required for vli. */ |
| 148 | static unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits) |
| 149 | { |
| 150 | unsigned int i, num_digits; |
| 151 | u64 digit; |
| 152 | |
| 153 | num_digits = vli_num_digits(vli, ndigits); |
| 154 | if (num_digits == 0) |
| 155 | return 0; |
| 156 | |
| 157 | digit = vli[num_digits - 1]; |
| 158 | for (i = 0; digit; i++) |
| 159 | digit >>= 1; |
| 160 | |
| 161 | return ((num_digits - 1) * 64 + i); |
| 162 | } |
| 163 | |
| 164 | /* Sets dest = src. */ |
| 165 | static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits) |
| 166 | { |
| 167 | int i; |
| 168 | |
| 169 | for (i = 0; i < ndigits; i++) |
| 170 | dest[i] = src[i]; |
| 171 | } |
| 172 | |
| 173 | /* Returns sign of left - right. */ |
| 174 | static int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits) |
| 175 | { |
| 176 | int i; |
| 177 | |
| 178 | for (i = ndigits - 1; i >= 0; i--) { |
| 179 | if (left[i] > right[i]) |
| 180 | return 1; |
| 181 | else if (left[i] < right[i]) |
| 182 | return -1; |
| 183 | } |
| 184 | |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | /* Computes result = in << c, returning carry. Can modify in place |
| 189 | * (if result == in). 0 < shift < 64. |
| 190 | */ |
| 191 | static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift, |
| 192 | unsigned int ndigits) |
| 193 | { |
| 194 | u64 carry = 0; |
| 195 | int i; |
| 196 | |
| 197 | for (i = 0; i < ndigits; i++) { |
| 198 | u64 temp = in[i]; |
| 199 | |
| 200 | result[i] = (temp << shift) | carry; |
| 201 | carry = temp >> (64 - shift); |
| 202 | } |
| 203 | |
| 204 | return carry; |
| 205 | } |
| 206 | |
| 207 | /* Computes vli = vli >> 1. */ |
| 208 | static void vli_rshift1(u64 *vli, unsigned int ndigits) |
| 209 | { |
| 210 | u64 *end = vli; |
| 211 | u64 carry = 0; |
| 212 | |
| 213 | vli += ndigits; |
| 214 | |
| 215 | while (vli-- > end) { |
| 216 | u64 temp = *vli; |
| 217 | *vli = (temp >> 1) | carry; |
| 218 | carry = temp << 63; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | /* Computes result = left + right, returning carry. Can modify in place. */ |
| 223 | static u64 vli_add(u64 *result, const u64 *left, const u64 *right, |
| 224 | unsigned int ndigits) |
| 225 | { |
| 226 | u64 carry = 0; |
| 227 | int i; |
| 228 | |
| 229 | for (i = 0; i < ndigits; i++) { |
| 230 | u64 sum; |
| 231 | |
| 232 | sum = left[i] + right[i] + carry; |
| 233 | if (sum != left[i]) |
| 234 | carry = (sum < left[i]); |
| 235 | |
| 236 | result[i] = sum; |
| 237 | } |
| 238 | |
| 239 | return carry; |
| 240 | } |
| 241 | |
| 242 | /* Computes result = left - right, returning borrow. Can modify in place. */ |
| 243 | static u64 vli_sub(u64 *result, const u64 *left, const u64 *right, |
| 244 | unsigned int ndigits) |
| 245 | { |
| 246 | u64 borrow = 0; |
| 247 | int i; |
| 248 | |
| 249 | for (i = 0; i < ndigits; i++) { |
| 250 | u64 diff; |
| 251 | |
| 252 | diff = left[i] - right[i] - borrow; |
| 253 | if (diff != left[i]) |
| 254 | borrow = (diff > left[i]); |
| 255 | |
| 256 | result[i] = diff; |
| 257 | } |
| 258 | |
| 259 | return borrow; |
| 260 | } |
| 261 | |
| 262 | static uint128_t mul_64_64(u64 left, u64 right) |
| 263 | { |
| 264 | u64 a0 = left & 0xffffffffull; |
| 265 | u64 a1 = left >> 32; |
| 266 | u64 b0 = right & 0xffffffffull; |
| 267 | u64 b1 = right >> 32; |
| 268 | u64 m0 = a0 * b0; |
| 269 | u64 m1 = a0 * b1; |
| 270 | u64 m2 = a1 * b0; |
| 271 | u64 m3 = a1 * b1; |
| 272 | uint128_t result; |
| 273 | |
| 274 | m2 += (m0 >> 32); |
| 275 | m2 += m1; |
| 276 | |
| 277 | /* Overflow */ |
| 278 | if (m2 < m1) |
| 279 | m3 += 0x100000000ull; |
| 280 | |
| 281 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); |
| 282 | result.m_high = m3 + (m2 >> 32); |
| 283 | |
| 284 | return result; |
| 285 | } |
| 286 | |
| 287 | static uint128_t add_128_128(uint128_t a, uint128_t b) |
| 288 | { |
| 289 | uint128_t result; |
| 290 | |
| 291 | result.m_low = a.m_low + b.m_low; |
| 292 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); |
| 293 | |
| 294 | return result; |
| 295 | } |
| 296 | |
| 297 | static void vli_mult(u64 *result, const u64 *left, const u64 *right, |
| 298 | unsigned int ndigits) |
| 299 | { |
| 300 | uint128_t r01 = { 0, 0 }; |
| 301 | u64 r2 = 0; |
| 302 | unsigned int i, k; |
| 303 | |
| 304 | /* Compute each digit of result in sequence, maintaining the |
| 305 | * carries. |
| 306 | */ |
| 307 | for (k = 0; k < ndigits * 2 - 1; k++) { |
| 308 | unsigned int min; |
| 309 | |
| 310 | if (k < ndigits) |
| 311 | min = 0; |
| 312 | else |
| 313 | min = (k + 1) - ndigits; |
| 314 | |
| 315 | for (i = min; i <= k && i < ndigits; i++) { |
| 316 | uint128_t product; |
| 317 | |
| 318 | product = mul_64_64(left[i], right[k - i]); |
| 319 | |
| 320 | r01 = add_128_128(r01, product); |
| 321 | r2 += (r01.m_high < product.m_high); |
| 322 | } |
| 323 | |
| 324 | result[k] = r01.m_low; |
| 325 | r01.m_low = r01.m_high; |
| 326 | r01.m_high = r2; |
| 327 | r2 = 0; |
| 328 | } |
| 329 | |
| 330 | result[ndigits * 2 - 1] = r01.m_low; |
| 331 | } |
| 332 | |
| 333 | static void vli_square(u64 *result, const u64 *left, unsigned int ndigits) |
| 334 | { |
| 335 | uint128_t r01 = { 0, 0 }; |
| 336 | u64 r2 = 0; |
| 337 | int i, k; |
| 338 | |
| 339 | for (k = 0; k < ndigits * 2 - 1; k++) { |
| 340 | unsigned int min; |
| 341 | |
| 342 | if (k < ndigits) |
| 343 | min = 0; |
| 344 | else |
| 345 | min = (k + 1) - ndigits; |
| 346 | |
| 347 | for (i = min; i <= k && i <= k - i; i++) { |
| 348 | uint128_t product; |
| 349 | |
| 350 | product = mul_64_64(left[i], left[k - i]); |
| 351 | |
| 352 | if (i < k - i) { |
| 353 | r2 += product.m_high >> 63; |
| 354 | product.m_high = (product.m_high << 1) | |
| 355 | (product.m_low >> 63); |
| 356 | product.m_low <<= 1; |
| 357 | } |
| 358 | |
| 359 | r01 = add_128_128(r01, product); |
| 360 | r2 += (r01.m_high < product.m_high); |
| 361 | } |
| 362 | |
| 363 | result[k] = r01.m_low; |
| 364 | r01.m_low = r01.m_high; |
| 365 | r01.m_high = r2; |
| 366 | r2 = 0; |
| 367 | } |
| 368 | |
| 369 | result[ndigits * 2 - 1] = r01.m_low; |
| 370 | } |
| 371 | |
| 372 | /* Computes result = (left + right) % mod. |
| 373 | * Assumes that left < mod and right < mod, result != mod. |
| 374 | */ |
| 375 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, |
| 376 | const u64 *mod, unsigned int ndigits) |
| 377 | { |
| 378 | u64 carry; |
| 379 | |
| 380 | carry = vli_add(result, left, right, ndigits); |
| 381 | |
| 382 | /* result > mod (result = mod + remainder), so subtract mod to |
| 383 | * get remainder. |
| 384 | */ |
| 385 | if (carry || vli_cmp(result, mod, ndigits) >= 0) |
| 386 | vli_sub(result, result, mod, ndigits); |
| 387 | } |
| 388 | |
| 389 | /* Computes result = (left - right) % mod. |
| 390 | * Assumes that left < mod and right < mod, result != mod. |
| 391 | */ |
| 392 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, |
| 393 | const u64 *mod, unsigned int ndigits) |
| 394 | { |
| 395 | u64 borrow = vli_sub(result, left, right, ndigits); |
| 396 | |
| 397 | /* In this case, p_result == -diff == (max int) - diff. |
| 398 | * Since -x % d == d - x, we can get the correct result from |
| 399 | * result + mod (with overflow). |
| 400 | */ |
| 401 | if (borrow) |
| 402 | vli_add(result, result, mod, ndigits); |
| 403 | } |
| 404 | |
| 405 | /* Computes p_result = p_product % curve_p. |
| 406 | * See algorithm 5 and 6 from |
| 407 | * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf |
| 408 | */ |
| 409 | static void vli_mmod_fast_192(u64 *result, const u64 *product, |
| 410 | const u64 *curve_prime, u64 *tmp) |
| 411 | { |
| 412 | const unsigned int ndigits = 3; |
| 413 | int carry; |
| 414 | |
| 415 | vli_set(result, product, ndigits); |
| 416 | |
| 417 | vli_set(tmp, &product[3], ndigits); |
| 418 | carry = vli_add(result, result, tmp, ndigits); |
| 419 | |
| 420 | tmp[0] = 0; |
| 421 | tmp[1] = product[3]; |
| 422 | tmp[2] = product[4]; |
| 423 | carry += vli_add(result, result, tmp, ndigits); |
| 424 | |
| 425 | tmp[0] = tmp[1] = product[5]; |
| 426 | tmp[2] = 0; |
| 427 | carry += vli_add(result, result, tmp, ndigits); |
| 428 | |
| 429 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 430 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 431 | } |
| 432 | |
| 433 | /* Computes result = product % curve_prime |
| 434 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf |
| 435 | */ |
| 436 | static void vli_mmod_fast_256(u64 *result, const u64 *product, |
| 437 | const u64 *curve_prime, u64 *tmp) |
| 438 | { |
| 439 | int carry; |
| 440 | const unsigned int ndigits = 4; |
| 441 | |
| 442 | /* t */ |
| 443 | vli_set(result, product, ndigits); |
| 444 | |
| 445 | /* s1 */ |
| 446 | tmp[0] = 0; |
| 447 | tmp[1] = product[5] & 0xffffffff00000000ull; |
| 448 | tmp[2] = product[6]; |
| 449 | tmp[3] = product[7]; |
| 450 | carry = vli_lshift(tmp, tmp, 1, ndigits); |
| 451 | carry += vli_add(result, result, tmp, ndigits); |
| 452 | |
| 453 | /* s2 */ |
| 454 | tmp[1] = product[6] << 32; |
| 455 | tmp[2] = (product[6] >> 32) | (product[7] << 32); |
| 456 | tmp[3] = product[7] >> 32; |
| 457 | carry += vli_lshift(tmp, tmp, 1, ndigits); |
| 458 | carry += vli_add(result, result, tmp, ndigits); |
| 459 | |
| 460 | /* s3 */ |
| 461 | tmp[0] = product[4]; |
| 462 | tmp[1] = product[5] & 0xffffffff; |
| 463 | tmp[2] = 0; |
| 464 | tmp[3] = product[7]; |
| 465 | carry += vli_add(result, result, tmp, ndigits); |
| 466 | |
| 467 | /* s4 */ |
| 468 | tmp[0] = (product[4] >> 32) | (product[5] << 32); |
| 469 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); |
| 470 | tmp[2] = product[7]; |
| 471 | tmp[3] = (product[6] >> 32) | (product[4] << 32); |
| 472 | carry += vli_add(result, result, tmp, ndigits); |
| 473 | |
| 474 | /* d1 */ |
| 475 | tmp[0] = (product[5] >> 32) | (product[6] << 32); |
| 476 | tmp[1] = (product[6] >> 32); |
| 477 | tmp[2] = 0; |
| 478 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); |
| 479 | carry -= vli_sub(result, result, tmp, ndigits); |
| 480 | |
| 481 | /* d2 */ |
| 482 | tmp[0] = product[6]; |
| 483 | tmp[1] = product[7]; |
| 484 | tmp[2] = 0; |
| 485 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); |
| 486 | carry -= vli_sub(result, result, tmp, ndigits); |
| 487 | |
| 488 | /* d3 */ |
| 489 | tmp[0] = (product[6] >> 32) | (product[7] << 32); |
| 490 | tmp[1] = (product[7] >> 32) | (product[4] << 32); |
| 491 | tmp[2] = (product[4] >> 32) | (product[5] << 32); |
| 492 | tmp[3] = (product[6] << 32); |
| 493 | carry -= vli_sub(result, result, tmp, ndigits); |
| 494 | |
| 495 | /* d4 */ |
| 496 | tmp[0] = product[7]; |
| 497 | tmp[1] = product[4] & 0xffffffff00000000ull; |
| 498 | tmp[2] = product[5]; |
| 499 | tmp[3] = product[6] & 0xffffffff00000000ull; |
| 500 | carry -= vli_sub(result, result, tmp, ndigits); |
| 501 | |
| 502 | if (carry < 0) { |
| 503 | do { |
| 504 | carry += vli_add(result, result, curve_prime, ndigits); |
| 505 | } while (carry < 0); |
| 506 | } else { |
| 507 | while (carry || vli_cmp(curve_prime, result, ndigits) != 1) |
| 508 | carry -= vli_sub(result, result, curve_prime, ndigits); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | /* Computes result = product % curve_prime |
| 513 | * from http://www.nsa.gov/ia/_files/nist-routines.pdf |
| 514 | */ |
| 515 | static bool vli_mmod_fast(u64 *result, u64 *product, |
| 516 | const u64 *curve_prime, unsigned int ndigits) |
| 517 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 518 | u64 tmp[2 * ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 519 | |
| 520 | switch (ndigits) { |
| 521 | case 3: |
| 522 | vli_mmod_fast_192(result, product, curve_prime, tmp); |
| 523 | break; |
| 524 | case 4: |
| 525 | vli_mmod_fast_256(result, product, curve_prime, tmp); |
| 526 | break; |
| 527 | default: |
| 528 | pr_err("unsupports digits size!\n"); |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | return true; |
| 533 | } |
| 534 | |
| 535 | /* Computes result = (left * right) % curve_prime. */ |
| 536 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right, |
| 537 | const u64 *curve_prime, unsigned int ndigits) |
| 538 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 539 | u64 product[2 * ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 540 | |
| 541 | vli_mult(product, left, right, ndigits); |
| 542 | vli_mmod_fast(result, product, curve_prime, ndigits); |
| 543 | } |
| 544 | |
| 545 | /* Computes result = left^2 % curve_prime. */ |
| 546 | static void vli_mod_square_fast(u64 *result, const u64 *left, |
| 547 | const u64 *curve_prime, unsigned int ndigits) |
| 548 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 549 | u64 product[2 * ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 550 | |
| 551 | vli_square(product, left, ndigits); |
| 552 | vli_mmod_fast(result, product, curve_prime, ndigits); |
| 553 | } |
| 554 | |
| 555 | #define EVEN(vli) (!(vli[0] & 1)) |
| 556 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. |
| 557 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" |
| 558 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf |
| 559 | */ |
| 560 | static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod, |
| 561 | unsigned int ndigits) |
| 562 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 563 | u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS]; |
| 564 | u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 565 | u64 carry; |
| 566 | int cmp_result; |
| 567 | |
| 568 | if (vli_is_zero(input, ndigits)) { |
| 569 | vli_clear(result, ndigits); |
| 570 | return; |
| 571 | } |
| 572 | |
| 573 | vli_set(a, input, ndigits); |
| 574 | vli_set(b, mod, ndigits); |
| 575 | vli_clear(u, ndigits); |
| 576 | u[0] = 1; |
| 577 | vli_clear(v, ndigits); |
| 578 | |
| 579 | while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) { |
| 580 | carry = 0; |
| 581 | |
| 582 | if (EVEN(a)) { |
| 583 | vli_rshift1(a, ndigits); |
| 584 | |
| 585 | if (!EVEN(u)) |
| 586 | carry = vli_add(u, u, mod, ndigits); |
| 587 | |
| 588 | vli_rshift1(u, ndigits); |
| 589 | if (carry) |
| 590 | u[ndigits - 1] |= 0x8000000000000000ull; |
| 591 | } else if (EVEN(b)) { |
| 592 | vli_rshift1(b, ndigits); |
| 593 | |
| 594 | if (!EVEN(v)) |
| 595 | carry = vli_add(v, v, mod, ndigits); |
| 596 | |
| 597 | vli_rshift1(v, ndigits); |
| 598 | if (carry) |
| 599 | v[ndigits - 1] |= 0x8000000000000000ull; |
| 600 | } else if (cmp_result > 0) { |
| 601 | vli_sub(a, a, b, ndigits); |
| 602 | vli_rshift1(a, ndigits); |
| 603 | |
| 604 | if (vli_cmp(u, v, ndigits) < 0) |
| 605 | vli_add(u, u, mod, ndigits); |
| 606 | |
| 607 | vli_sub(u, u, v, ndigits); |
| 608 | if (!EVEN(u)) |
| 609 | carry = vli_add(u, u, mod, ndigits); |
| 610 | |
| 611 | vli_rshift1(u, ndigits); |
| 612 | if (carry) |
| 613 | u[ndigits - 1] |= 0x8000000000000000ull; |
| 614 | } else { |
| 615 | vli_sub(b, b, a, ndigits); |
| 616 | vli_rshift1(b, ndigits); |
| 617 | |
| 618 | if (vli_cmp(v, u, ndigits) < 0) |
| 619 | vli_add(v, v, mod, ndigits); |
| 620 | |
| 621 | vli_sub(v, v, u, ndigits); |
| 622 | if (!EVEN(v)) |
| 623 | carry = vli_add(v, v, mod, ndigits); |
| 624 | |
| 625 | vli_rshift1(v, ndigits); |
| 626 | if (carry) |
| 627 | v[ndigits - 1] |= 0x8000000000000000ull; |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | vli_set(result, u, ndigits); |
| 632 | } |
| 633 | |
| 634 | /* ------ Point operations ------ */ |
| 635 | |
| 636 | /* Returns true if p_point is the point at infinity, false otherwise. */ |
| 637 | static bool ecc_point_is_zero(const struct ecc_point *point) |
| 638 | { |
| 639 | return (vli_is_zero(point->x, point->ndigits) && |
| 640 | vli_is_zero(point->y, point->ndigits)); |
| 641 | } |
| 642 | |
| 643 | /* Point multiplication algorithm using Montgomery's ladder with co-Z |
| 644 | * coordinates. From http://eprint.iacr.org/2011/338.pdf |
| 645 | */ |
| 646 | |
| 647 | /* Double in place */ |
| 648 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1, |
| 649 | u64 *curve_prime, unsigned int ndigits) |
| 650 | { |
| 651 | /* t1 = x, t2 = y, t3 = z */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 652 | u64 t4[ECC_MAX_DIGITS]; |
| 653 | u64 t5[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 654 | |
| 655 | if (vli_is_zero(z1, ndigits)) |
| 656 | return; |
| 657 | |
| 658 | /* t4 = y1^2 */ |
| 659 | vli_mod_square_fast(t4, y1, curve_prime, ndigits); |
| 660 | /* t5 = x1*y1^2 = A */ |
| 661 | vli_mod_mult_fast(t5, x1, t4, curve_prime, ndigits); |
| 662 | /* t4 = y1^4 */ |
| 663 | vli_mod_square_fast(t4, t4, curve_prime, ndigits); |
| 664 | /* t2 = y1*z1 = z3 */ |
| 665 | vli_mod_mult_fast(y1, y1, z1, curve_prime, ndigits); |
| 666 | /* t3 = z1^2 */ |
| 667 | vli_mod_square_fast(z1, z1, curve_prime, ndigits); |
| 668 | |
| 669 | /* t1 = x1 + z1^2 */ |
| 670 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); |
| 671 | /* t3 = 2*z1^2 */ |
| 672 | vli_mod_add(z1, z1, z1, curve_prime, ndigits); |
| 673 | /* t3 = x1 - z1^2 */ |
| 674 | vli_mod_sub(z1, x1, z1, curve_prime, ndigits); |
| 675 | /* t1 = x1^2 - z1^4 */ |
| 676 | vli_mod_mult_fast(x1, x1, z1, curve_prime, ndigits); |
| 677 | |
| 678 | /* t3 = 2*(x1^2 - z1^4) */ |
| 679 | vli_mod_add(z1, x1, x1, curve_prime, ndigits); |
| 680 | /* t1 = 3*(x1^2 - z1^4) */ |
| 681 | vli_mod_add(x1, x1, z1, curve_prime, ndigits); |
| 682 | if (vli_test_bit(x1, 0)) { |
| 683 | u64 carry = vli_add(x1, x1, curve_prime, ndigits); |
| 684 | |
| 685 | vli_rshift1(x1, ndigits); |
| 686 | x1[ndigits - 1] |= carry << 63; |
| 687 | } else { |
| 688 | vli_rshift1(x1, ndigits); |
| 689 | } |
| 690 | /* t1 = 3/2*(x1^2 - z1^4) = B */ |
| 691 | |
| 692 | /* t3 = B^2 */ |
| 693 | vli_mod_square_fast(z1, x1, curve_prime, ndigits); |
| 694 | /* t3 = B^2 - A */ |
| 695 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); |
| 696 | /* t3 = B^2 - 2A = x3 */ |
| 697 | vli_mod_sub(z1, z1, t5, curve_prime, ndigits); |
| 698 | /* t5 = A - x3 */ |
| 699 | vli_mod_sub(t5, t5, z1, curve_prime, ndigits); |
| 700 | /* t1 = B * (A - x3) */ |
| 701 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); |
| 702 | /* t4 = B * (A - x3) - y1^4 = y3 */ |
| 703 | vli_mod_sub(t4, x1, t4, curve_prime, ndigits); |
| 704 | |
| 705 | vli_set(x1, z1, ndigits); |
| 706 | vli_set(z1, y1, ndigits); |
| 707 | vli_set(y1, t4, ndigits); |
| 708 | } |
| 709 | |
| 710 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ |
| 711 | static void apply_z(u64 *x1, u64 *y1, u64 *z, u64 *curve_prime, |
| 712 | unsigned int ndigits) |
| 713 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 714 | u64 t1[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 715 | |
| 716 | vli_mod_square_fast(t1, z, curve_prime, ndigits); /* z^2 */ |
| 717 | vli_mod_mult_fast(x1, x1, t1, curve_prime, ndigits); /* x1 * z^2 */ |
| 718 | vli_mod_mult_fast(t1, t1, z, curve_prime, ndigits); /* z^3 */ |
| 719 | vli_mod_mult_fast(y1, y1, t1, curve_prime, ndigits); /* y1 * z^3 */ |
| 720 | } |
| 721 | |
| 722 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ |
| 723 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, |
| 724 | u64 *p_initial_z, u64 *curve_prime, |
| 725 | unsigned int ndigits) |
| 726 | { |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 727 | u64 z[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 728 | |
| 729 | vli_set(x2, x1, ndigits); |
| 730 | vli_set(y2, y1, ndigits); |
| 731 | |
| 732 | vli_clear(z, ndigits); |
| 733 | z[0] = 1; |
| 734 | |
| 735 | if (p_initial_z) |
| 736 | vli_set(z, p_initial_z, ndigits); |
| 737 | |
| 738 | apply_z(x1, y1, z, curve_prime, ndigits); |
| 739 | |
| 740 | ecc_point_double_jacobian(x1, y1, z, curve_prime, ndigits); |
| 741 | |
| 742 | apply_z(x2, y2, z, curve_prime, ndigits); |
| 743 | } |
| 744 | |
| 745 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 746 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) |
| 747 | * or P => P', Q => P + Q |
| 748 | */ |
| 749 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, |
| 750 | unsigned int ndigits) |
| 751 | { |
| 752 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 753 | u64 t5[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 754 | |
| 755 | /* t5 = x2 - x1 */ |
| 756 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); |
| 757 | /* t5 = (x2 - x1)^2 = A */ |
| 758 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); |
| 759 | /* t1 = x1*A = B */ |
| 760 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); |
| 761 | /* t3 = x2*A = C */ |
| 762 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); |
| 763 | /* t4 = y2 - y1 */ |
| 764 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 765 | /* t5 = (y2 - y1)^2 = D */ |
| 766 | vli_mod_square_fast(t5, y2, curve_prime, ndigits); |
| 767 | |
| 768 | /* t5 = D - B */ |
| 769 | vli_mod_sub(t5, t5, x1, curve_prime, ndigits); |
| 770 | /* t5 = D - B - C = x3 */ |
| 771 | vli_mod_sub(t5, t5, x2, curve_prime, ndigits); |
| 772 | /* t3 = C - B */ |
| 773 | vli_mod_sub(x2, x2, x1, curve_prime, ndigits); |
| 774 | /* t2 = y1*(C - B) */ |
| 775 | vli_mod_mult_fast(y1, y1, x2, curve_prime, ndigits); |
| 776 | /* t3 = B - x3 */ |
| 777 | vli_mod_sub(x2, x1, t5, curve_prime, ndigits); |
| 778 | /* t4 = (y2 - y1)*(B - x3) */ |
| 779 | vli_mod_mult_fast(y2, y2, x2, curve_prime, ndigits); |
| 780 | /* t4 = y3 */ |
| 781 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 782 | |
| 783 | vli_set(x2, t5, ndigits); |
| 784 | } |
| 785 | |
| 786 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) |
| 787 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) |
| 788 | * or P => P - Q, Q => P + Q |
| 789 | */ |
| 790 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *curve_prime, |
| 791 | unsigned int ndigits) |
| 792 | { |
| 793 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 794 | u64 t5[ECC_MAX_DIGITS]; |
| 795 | u64 t6[ECC_MAX_DIGITS]; |
| 796 | u64 t7[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 797 | |
| 798 | /* t5 = x2 - x1 */ |
| 799 | vli_mod_sub(t5, x2, x1, curve_prime, ndigits); |
| 800 | /* t5 = (x2 - x1)^2 = A */ |
| 801 | vli_mod_square_fast(t5, t5, curve_prime, ndigits); |
| 802 | /* t1 = x1*A = B */ |
| 803 | vli_mod_mult_fast(x1, x1, t5, curve_prime, ndigits); |
| 804 | /* t3 = x2*A = C */ |
| 805 | vli_mod_mult_fast(x2, x2, t5, curve_prime, ndigits); |
| 806 | /* t4 = y2 + y1 */ |
| 807 | vli_mod_add(t5, y2, y1, curve_prime, ndigits); |
| 808 | /* t4 = y2 - y1 */ |
| 809 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 810 | |
| 811 | /* t6 = C - B */ |
| 812 | vli_mod_sub(t6, x2, x1, curve_prime, ndigits); |
| 813 | /* t2 = y1 * (C - B) */ |
| 814 | vli_mod_mult_fast(y1, y1, t6, curve_prime, ndigits); |
| 815 | /* t6 = B + C */ |
| 816 | vli_mod_add(t6, x1, x2, curve_prime, ndigits); |
| 817 | /* t3 = (y2 - y1)^2 */ |
| 818 | vli_mod_square_fast(x2, y2, curve_prime, ndigits); |
| 819 | /* t3 = x3 */ |
| 820 | vli_mod_sub(x2, x2, t6, curve_prime, ndigits); |
| 821 | |
| 822 | /* t7 = B - x3 */ |
| 823 | vli_mod_sub(t7, x1, x2, curve_prime, ndigits); |
| 824 | /* t4 = (y2 - y1)*(B - x3) */ |
| 825 | vli_mod_mult_fast(y2, y2, t7, curve_prime, ndigits); |
| 826 | /* t4 = y3 */ |
| 827 | vli_mod_sub(y2, y2, y1, curve_prime, ndigits); |
| 828 | |
| 829 | /* t7 = (y2 + y1)^2 = F */ |
| 830 | vli_mod_square_fast(t7, t5, curve_prime, ndigits); |
| 831 | /* t7 = x3' */ |
| 832 | vli_mod_sub(t7, t7, t6, curve_prime, ndigits); |
| 833 | /* t6 = x3' - B */ |
| 834 | vli_mod_sub(t6, t7, x1, curve_prime, ndigits); |
| 835 | /* t6 = (y2 + y1)*(x3' - B) */ |
| 836 | vli_mod_mult_fast(t6, t6, t5, curve_prime, ndigits); |
| 837 | /* t2 = y3' */ |
| 838 | vli_mod_sub(y1, t6, y1, curve_prime, ndigits); |
| 839 | |
| 840 | vli_set(x1, t7, ndigits); |
| 841 | } |
| 842 | |
| 843 | static void ecc_point_mult(struct ecc_point *result, |
| 844 | const struct ecc_point *point, const u64 *scalar, |
| 845 | u64 *initial_z, u64 *curve_prime, |
| 846 | unsigned int ndigits) |
| 847 | { |
| 848 | /* R0 and R1 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 849 | u64 rx[2][ECC_MAX_DIGITS]; |
| 850 | u64 ry[2][ECC_MAX_DIGITS]; |
| 851 | u64 z[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 852 | int i, nb; |
| 853 | int num_bits = vli_num_bits(scalar, ndigits); |
| 854 | |
| 855 | vli_set(rx[1], point->x, ndigits); |
| 856 | vli_set(ry[1], point->y, ndigits); |
| 857 | |
| 858 | xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve_prime, |
| 859 | ndigits); |
| 860 | |
| 861 | for (i = num_bits - 2; i > 0; i--) { |
| 862 | nb = !vli_test_bit(scalar, i); |
| 863 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, |
| 864 | ndigits); |
| 865 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, |
| 866 | ndigits); |
| 867 | } |
| 868 | |
| 869 | nb = !vli_test_bit(scalar, 0); |
| 870 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve_prime, |
| 871 | ndigits); |
| 872 | |
| 873 | /* Find final 1/Z value. */ |
| 874 | /* X1 - X0 */ |
| 875 | vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits); |
| 876 | /* Yb * (X1 - X0) */ |
| 877 | vli_mod_mult_fast(z, z, ry[1 - nb], curve_prime, ndigits); |
| 878 | /* xP * Yb * (X1 - X0) */ |
| 879 | vli_mod_mult_fast(z, z, point->x, curve_prime, ndigits); |
| 880 | |
| 881 | /* 1 / (xP * Yb * (X1 - X0)) */ |
| 882 | vli_mod_inv(z, z, curve_prime, point->ndigits); |
| 883 | |
| 884 | /* yP / (xP * Yb * (X1 - X0)) */ |
| 885 | vli_mod_mult_fast(z, z, point->y, curve_prime, ndigits); |
| 886 | /* Xb * yP / (xP * Yb * (X1 - X0)) */ |
| 887 | vli_mod_mult_fast(z, z, rx[1 - nb], curve_prime, ndigits); |
| 888 | /* End 1/Z calculation */ |
| 889 | |
| 890 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve_prime, ndigits); |
| 891 | |
| 892 | apply_z(rx[0], ry[0], z, curve_prime, ndigits); |
| 893 | |
| 894 | vli_set(result->x, rx[0], ndigits); |
| 895 | vli_set(result->y, ry[0], ndigits); |
| 896 | } |
| 897 | |
| 898 | static inline void ecc_swap_digits(const u64 *in, u64 *out, |
| 899 | unsigned int ndigits) |
| 900 | { |
| 901 | int i; |
| 902 | |
| 903 | for (i = 0; i < ndigits; i++) |
| 904 | out[i] = __swab64(in[ndigits - 1 - i]); |
| 905 | } |
| 906 | |
Vitaly Chikunov | 2eb4942 | 2018-11-05 11:36:18 +0300 | [diff] [blame^] | 907 | static int __ecc_is_key_valid(const struct ecc_curve *curve, |
| 908 | const u64 *private_key, unsigned int ndigits) |
| 909 | { |
| 910 | u64 one[ECC_MAX_DIGITS] = { 1, }; |
| 911 | u64 res[ECC_MAX_DIGITS]; |
| 912 | |
| 913 | if (!private_key) |
| 914 | return -EINVAL; |
| 915 | |
| 916 | if (curve->g.ndigits != ndigits) |
| 917 | return -EINVAL; |
| 918 | |
| 919 | /* Make sure the private key is in the range [2, n-3]. */ |
| 920 | if (vli_cmp(one, private_key, ndigits) != -1) |
| 921 | return -EINVAL; |
| 922 | vli_sub(res, curve->n, one, ndigits); |
| 923 | vli_sub(res, res, one, ndigits); |
| 924 | if (vli_cmp(res, private_key, ndigits) != 1) |
| 925 | return -EINVAL; |
| 926 | |
| 927 | return 0; |
| 928 | } |
| 929 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 930 | int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits, |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 931 | const u64 *private_key, unsigned int private_key_len) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 932 | { |
| 933 | int nbytes; |
| 934 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 935 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 936 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 937 | |
| 938 | if (private_key_len != nbytes) |
| 939 | return -EINVAL; |
| 940 | |
Vitaly Chikunov | 2eb4942 | 2018-11-05 11:36:18 +0300 | [diff] [blame^] | 941 | return __ecc_is_key_valid(curve, private_key, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 942 | } |
| 943 | |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 944 | /* |
| 945 | * ECC private keys are generated using the method of extra random bits, |
| 946 | * equivalent to that described in FIPS 186-4, Appendix B.4.1. |
| 947 | * |
| 948 | * d = (c mod(n–1)) + 1 where c is a string of random bits, 64 bits longer |
| 949 | * than requested |
| 950 | * 0 <= c mod(n-1) <= n-2 and implies that |
| 951 | * 1 <= d <= n-1 |
| 952 | * |
| 953 | * This method generates a private key uniformly distributed in the range |
| 954 | * [1, n-1]. |
| 955 | */ |
| 956 | int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey) |
| 957 | { |
| 958 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 959 | u64 priv[ECC_MAX_DIGITS]; |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 960 | unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
| 961 | unsigned int nbits = vli_num_bits(curve->n, ndigits); |
| 962 | int err; |
| 963 | |
| 964 | /* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */ |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 965 | if (nbits < 160 || ndigits > ARRAY_SIZE(priv)) |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 966 | return -EINVAL; |
| 967 | |
| 968 | /* |
| 969 | * FIPS 186-4 recommends that the private key should be obtained from a |
| 970 | * RBG with a security strength equal to or greater than the security |
| 971 | * strength associated with N. |
| 972 | * |
| 973 | * The maximum security strength identified by NIST SP800-57pt1r4 for |
| 974 | * ECC is 256 (N >= 512). |
| 975 | * |
| 976 | * This condition is met by the default RNG because it selects a favored |
| 977 | * DRBG with a security strength of 256. |
| 978 | */ |
| 979 | if (crypto_get_default_rng()) |
Pierre | 4c0e22c | 2017-11-12 15:24:32 +0100 | [diff] [blame] | 980 | return -EFAULT; |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 981 | |
| 982 | err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes); |
| 983 | crypto_put_default_rng(); |
| 984 | if (err) |
| 985 | return err; |
| 986 | |
Vitaly Chikunov | 2eb4942 | 2018-11-05 11:36:18 +0300 | [diff] [blame^] | 987 | /* Make sure the private key is in the valid range. */ |
| 988 | if (__ecc_is_key_valid(curve, priv, ndigits)) |
Tudor-Dan Ambarus | 6755fd2 | 2017-05-30 17:52:48 +0300 | [diff] [blame] | 989 | return -EINVAL; |
| 990 | |
| 991 | ecc_swap_digits(priv, privkey, ndigits); |
| 992 | |
| 993 | return 0; |
| 994 | } |
| 995 | |
Tudor-Dan Ambarus | 7380c56 | 2017-05-30 15:37:56 +0300 | [diff] [blame] | 996 | int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits, |
| 997 | const u64 *private_key, u64 *public_key) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 998 | { |
| 999 | int ret = 0; |
| 1000 | struct ecc_point *pk; |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1001 | u64 priv[ECC_MAX_DIGITS]; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1002 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1003 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1004 | if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) { |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1005 | ret = -EINVAL; |
| 1006 | goto out; |
| 1007 | } |
| 1008 | |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1009 | ecc_swap_digits(private_key, priv, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1010 | |
| 1011 | pk = ecc_alloc_point(ndigits); |
| 1012 | if (!pk) { |
| 1013 | ret = -ENOMEM; |
| 1014 | goto out; |
| 1015 | } |
| 1016 | |
| 1017 | ecc_point_mult(pk, &curve->g, priv, NULL, curve->p, ndigits); |
| 1018 | if (ecc_point_is_zero(pk)) { |
| 1019 | ret = -EAGAIN; |
| 1020 | goto err_free_point; |
| 1021 | } |
| 1022 | |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1023 | ecc_swap_digits(pk->x, public_key, ndigits); |
| 1024 | ecc_swap_digits(pk->y, &public_key[ndigits], ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1025 | |
| 1026 | err_free_point: |
| 1027 | ecc_free_point(pk); |
| 1028 | out: |
| 1029 | return ret; |
| 1030 | } |
| 1031 | |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1032 | /* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */ |
| 1033 | static int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve, |
| 1034 | struct ecc_point *pk) |
| 1035 | { |
| 1036 | u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS]; |
| 1037 | |
| 1038 | /* Check 1: Verify key is not the zero point. */ |
| 1039 | if (ecc_point_is_zero(pk)) |
| 1040 | return -EINVAL; |
| 1041 | |
| 1042 | /* Check 2: Verify key is in the range [1, p-1]. */ |
| 1043 | if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1) |
| 1044 | return -EINVAL; |
| 1045 | if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1) |
| 1046 | return -EINVAL; |
| 1047 | |
| 1048 | /* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */ |
| 1049 | vli_mod_square_fast(yy, pk->y, curve->p, pk->ndigits); /* y^2 */ |
| 1050 | vli_mod_square_fast(xxx, pk->x, curve->p, pk->ndigits); /* x^2 */ |
| 1051 | vli_mod_mult_fast(xxx, xxx, pk->x, curve->p, pk->ndigits); /* x^3 */ |
| 1052 | vli_mod_mult_fast(w, curve->a, pk->x, curve->p, pk->ndigits); /* a·x */ |
| 1053 | vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */ |
| 1054 | vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */ |
| 1055 | if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */ |
| 1056 | return -EINVAL; |
| 1057 | |
| 1058 | return 0; |
| 1059 | |
| 1060 | } |
| 1061 | |
Stephen Rothwell | 8f44df1 | 2016-06-24 16:20:22 +1000 | [diff] [blame] | 1062 | int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits, |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1063 | const u64 *private_key, const u64 *public_key, |
| 1064 | u64 *secret) |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1065 | { |
| 1066 | int ret = 0; |
| 1067 | struct ecc_point *product, *pk; |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1068 | u64 priv[ECC_MAX_DIGITS]; |
| 1069 | u64 rand_z[ECC_MAX_DIGITS]; |
| 1070 | unsigned int nbytes; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1071 | const struct ecc_curve *curve = ecc_get_curve(curve_id); |
| 1072 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1073 | if (!private_key || !public_key || !curve || |
| 1074 | ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) { |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1075 | ret = -EINVAL; |
| 1076 | goto out; |
| 1077 | } |
| 1078 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1079 | nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1080 | |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1081 | get_random_bytes(rand_z, nbytes); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1082 | |
| 1083 | pk = ecc_alloc_point(ndigits); |
| 1084 | if (!pk) { |
| 1085 | ret = -ENOMEM; |
Kees Cook | d5c3b17 | 2018-03-30 09:55:44 -0700 | [diff] [blame] | 1086 | goto out; |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1087 | } |
| 1088 | |
Stephan Mueller | ea169a3 | 2018-06-25 12:00:18 +0200 | [diff] [blame] | 1089 | ecc_swap_digits(public_key, pk->x, ndigits); |
| 1090 | ecc_swap_digits(&public_key[ndigits], pk->y, ndigits); |
| 1091 | ret = ecc_is_pubkey_valid_partial(curve, pk); |
| 1092 | if (ret) |
| 1093 | goto err_alloc_product; |
| 1094 | |
| 1095 | ecc_swap_digits(private_key, priv, ndigits); |
| 1096 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1097 | product = ecc_alloc_point(ndigits); |
| 1098 | if (!product) { |
| 1099 | ret = -ENOMEM; |
| 1100 | goto err_alloc_product; |
| 1101 | } |
| 1102 | |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1103 | ecc_point_mult(product, pk, priv, rand_z, curve->p, ndigits); |
| 1104 | |
Tudor-Dan Ambarus | ad26959 | 2017-05-25 10:18:05 +0300 | [diff] [blame] | 1105 | ecc_swap_digits(product->x, secret, ndigits); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1106 | |
| 1107 | if (ecc_point_is_zero(product)) |
| 1108 | ret = -EFAULT; |
| 1109 | |
| 1110 | ecc_free_point(product); |
| 1111 | err_alloc_product: |
| 1112 | ecc_free_point(pk); |
Salvatore Benedetto | 3c4b239 | 2016-06-22 17:49:15 +0100 | [diff] [blame] | 1113 | out: |
| 1114 | return ret; |
| 1115 | } |