blob: 3233c4c7cbce9d2939d3ae9a7d784e19dd27c2ba [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070092#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070093#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080098#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070099#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700106#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700110#include <linux/rtmutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800176 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700206typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800245 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800246 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800247 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248};
249
250/*
251 * struct array_cache
252 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700267 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274};
275
Andrew Mortona737b3e2006-03-22 00:08:11 -0800276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800283 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284};
285
286/*
Christoph Lametere498be72005-09-09 13:03:32 -0700287 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 */
289struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800294 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800295 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Christoph Lametere498be72005-09-09 13:03:32 -0700303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311
Christoph Lametered11d9e2006-06-30 01:55:45 -0700312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700316static int enable_cpucache(struct kmem_cache *cachep);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700317static void cache_reap(void *unused);
318
Christoph Lametere498be72005-09-09 13:03:32 -0700319/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700322 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700323static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700324{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800325 extern void __bad_size(void);
326
Christoph Lametere498be72005-09-09 13:03:32 -0700327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800337 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700338 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800339 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700340 return 0;
341}
342
Ingo Molnare0a42722006-06-23 02:03:46 -0700343static int slab_early_init = 1;
344
Christoph Lametere498be72005-09-09 13:03:32 -0700345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
Pekka Enberg5295a742006-02-01 03:05:48 -0800348static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800355 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
Andrew Mortona737b3e2006-03-22 00:08:11 -0800361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700365 } while (0)
366
Andrew Mortona737b3e2006-03-22 00:08:11 -0800367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373
374/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800375 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 *
377 * manages a cache.
378 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800379
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800380struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800382 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800387
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800388 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800389/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800390 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391
Andrew Mortona737b3e2006-03-22 00:08:11 -0800392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800395/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800400 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
Andrew Mortona737b3e2006-03-22 00:08:11 -0800402 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800403 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800404 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800405 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800406 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
408 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800414/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800415 const char *name;
416 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800418/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700429 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434#endif
435#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100455 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700490#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700494#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800496#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
Nick Piggin84097512006-03-22 00:08:34 -0800593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700595 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
Nick Piggin84097512006-03-22 00:08:34 -0800606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700608 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800609 return (struct slab *)page->lru.prev;
610}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
Andrew Mortona737b3e2006-03-22 00:08:11 -0800636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800656 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800666static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800670 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800671 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800673 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674#endif
675};
676
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200677#ifdef CONFIG_LOCKDEP
678
679/*
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
685 */
686static struct lock_class_key on_slab_key;
687
688static inline void init_lock_keys(struct cache_sizes *s)
689{
690 int q;
691
692 for (q = 0; q < MAX_NUMNODES; q++) {
693 if (!s->cs_cachep->nodelists[q] || OFF_SLAB(s->cs_cachep))
694 continue;
695 lockdep_set_class(&s->cs_cachep->nodelists[q]->list_lock,
696 &on_slab_key);
697 }
698}
699
700#else
701static inline void init_lock_keys(struct cache_sizes *s)
702{
703}
704#endif
705
706
707
Linus Torvalds1da177e2005-04-16 15:20:36 -0700708/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800709static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710static struct list_head cache_chain;
711
712/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800713 * vm_enough_memory() looks at this to determine how many slab-allocated pages
714 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700715 *
716 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
717 */
718atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719
720/*
721 * chicken and egg problem: delay the per-cpu array allocation
722 * until the general caches are up.
723 */
724static enum {
725 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700726 PARTIAL_AC,
727 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728 FULL
729} g_cpucache_up;
730
Mike Kravetz39d24e62006-05-15 09:44:13 -0700731/*
732 * used by boot code to determine if it can use slab based allocator
733 */
734int slab_is_available(void)
735{
736 return g_cpucache_up == FULL;
737}
738
Linus Torvalds1da177e2005-04-16 15:20:36 -0700739static DEFINE_PER_CPU(struct work_struct, reap_work);
740
Pekka Enberg343e0d72006-02-01 03:05:50 -0800741static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700742{
743 return cachep->array[smp_processor_id()];
744}
745
Andrew Mortona737b3e2006-03-22 00:08:11 -0800746static inline struct kmem_cache *__find_general_cachep(size_t size,
747 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748{
749 struct cache_sizes *csizep = malloc_sizes;
750
751#if DEBUG
752 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800753 * kmem_cache_create(), or __kmalloc(), before
754 * the generic caches are initialized.
755 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700756 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700757#endif
758 while (size > csizep->cs_size)
759 csizep++;
760
761 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700762 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700763 * has cs_{dma,}cachep==NULL. Thus no special case
764 * for large kmalloc calls required.
765 */
766 if (unlikely(gfpflags & GFP_DMA))
767 return csizep->cs_dmacachep;
768 return csizep->cs_cachep;
769}
770
Adrian Bunkb2213852006-09-25 23:31:02 -0700771static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700772{
773 return __find_general_cachep(size, gfpflags);
774}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700775
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800776static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800778 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
779}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700780
Andrew Mortona737b3e2006-03-22 00:08:11 -0800781/*
782 * Calculate the number of objects and left-over bytes for a given buffer size.
783 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800784static void cache_estimate(unsigned long gfporder, size_t buffer_size,
785 size_t align, int flags, size_t *left_over,
786 unsigned int *num)
787{
788 int nr_objs;
789 size_t mgmt_size;
790 size_t slab_size = PAGE_SIZE << gfporder;
791
792 /*
793 * The slab management structure can be either off the slab or
794 * on it. For the latter case, the memory allocated for a
795 * slab is used for:
796 *
797 * - The struct slab
798 * - One kmem_bufctl_t for each object
799 * - Padding to respect alignment of @align
800 * - @buffer_size bytes for each object
801 *
802 * If the slab management structure is off the slab, then the
803 * alignment will already be calculated into the size. Because
804 * the slabs are all pages aligned, the objects will be at the
805 * correct alignment when allocated.
806 */
807 if (flags & CFLGS_OFF_SLAB) {
808 mgmt_size = 0;
809 nr_objs = slab_size / buffer_size;
810
811 if (nr_objs > SLAB_LIMIT)
812 nr_objs = SLAB_LIMIT;
813 } else {
814 /*
815 * Ignore padding for the initial guess. The padding
816 * is at most @align-1 bytes, and @buffer_size is at
817 * least @align. In the worst case, this result will
818 * be one greater than the number of objects that fit
819 * into the memory allocation when taking the padding
820 * into account.
821 */
822 nr_objs = (slab_size - sizeof(struct slab)) /
823 (buffer_size + sizeof(kmem_bufctl_t));
824
825 /*
826 * This calculated number will be either the right
827 * amount, or one greater than what we want.
828 */
829 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
830 > slab_size)
831 nr_objs--;
832
833 if (nr_objs > SLAB_LIMIT)
834 nr_objs = SLAB_LIMIT;
835
836 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800838 *num = nr_objs;
839 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840}
841
842#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
843
Andrew Mortona737b3e2006-03-22 00:08:11 -0800844static void __slab_error(const char *function, struct kmem_cache *cachep,
845 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700846{
847 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800848 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849 dump_stack();
850}
851
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800852#ifdef CONFIG_NUMA
853/*
854 * Special reaping functions for NUMA systems called from cache_reap().
855 * These take care of doing round robin flushing of alien caches (containing
856 * objects freed on different nodes from which they were allocated) and the
857 * flushing of remote pcps by calling drain_node_pages.
858 */
859static DEFINE_PER_CPU(unsigned long, reap_node);
860
861static void init_reap_node(int cpu)
862{
863 int node;
864
865 node = next_node(cpu_to_node(cpu), node_online_map);
866 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800867 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800868
869 __get_cpu_var(reap_node) = node;
870}
871
872static void next_reap_node(void)
873{
874 int node = __get_cpu_var(reap_node);
875
876 /*
877 * Also drain per cpu pages on remote zones
878 */
879 if (node != numa_node_id())
880 drain_node_pages(node);
881
882 node = next_node(node, node_online_map);
883 if (unlikely(node >= MAX_NUMNODES))
884 node = first_node(node_online_map);
885 __get_cpu_var(reap_node) = node;
886}
887
888#else
889#define init_reap_node(cpu) do { } while (0)
890#define next_reap_node(void) do { } while (0)
891#endif
892
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893/*
894 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
895 * via the workqueue/eventd.
896 * Add the CPU number into the expiration time to minimize the possibility of
897 * the CPUs getting into lockstep and contending for the global cache chain
898 * lock.
899 */
900static void __devinit start_cpu_timer(int cpu)
901{
902 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
903
904 /*
905 * When this gets called from do_initcalls via cpucache_init(),
906 * init_workqueues() has already run, so keventd will be setup
907 * at that time.
908 */
909 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800910 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911 INIT_WORK(reap_work, cache_reap, NULL);
912 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
913 }
914}
915
Christoph Lametere498be72005-09-09 13:03:32 -0700916static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800917 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800919 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700920 struct array_cache *nc = NULL;
921
Christoph Lametere498be72005-09-09 13:03:32 -0700922 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700923 if (nc) {
924 nc->avail = 0;
925 nc->limit = entries;
926 nc->batchcount = batchcount;
927 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700928 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 }
930 return nc;
931}
932
Christoph Lameter3ded1752006-03-25 03:06:44 -0800933/*
934 * Transfer objects in one arraycache to another.
935 * Locking must be handled by the caller.
936 *
937 * Return the number of entries transferred.
938 */
939static int transfer_objects(struct array_cache *to,
940 struct array_cache *from, unsigned int max)
941{
942 /* Figure out how many entries to transfer */
943 int nr = min(min(from->avail, max), to->limit - to->avail);
944
945 if (!nr)
946 return 0;
947
948 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
949 sizeof(void *) *nr);
950
951 from->avail -= nr;
952 to->avail += nr;
953 to->touched = 1;
954 return nr;
955}
956
Christoph Lametere498be72005-09-09 13:03:32 -0700957#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800958static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -0800959static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800960
Pekka Enberg5295a742006-02-01 03:05:48 -0800961static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700962{
963 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800964 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700965 int i;
966
967 if (limit > 1)
968 limit = 12;
969 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
970 if (ac_ptr) {
971 for_each_node(i) {
972 if (i == node || !node_online(i)) {
973 ac_ptr[i] = NULL;
974 continue;
975 }
976 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
977 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800978 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700979 kfree(ac_ptr[i]);
980 kfree(ac_ptr);
981 return NULL;
982 }
983 }
984 }
985 return ac_ptr;
986}
987
Pekka Enberg5295a742006-02-01 03:05:48 -0800988static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700989{
990 int i;
991
992 if (!ac_ptr)
993 return;
Christoph Lametere498be72005-09-09 13:03:32 -0700994 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800995 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700996 kfree(ac_ptr);
997}
998
Pekka Enberg343e0d72006-02-01 03:05:50 -0800999static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001000 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001001{
1002 struct kmem_list3 *rl3 = cachep->nodelists[node];
1003
1004 if (ac->avail) {
1005 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001006 /*
1007 * Stuff objects into the remote nodes shared array first.
1008 * That way we could avoid the overhead of putting the objects
1009 * into the free lists and getting them back later.
1010 */
shin, jacob693f7d32006-04-28 10:54:37 -05001011 if (rl3->shared)
1012 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001013
Christoph Lameterff694162005-09-22 21:44:02 -07001014 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001015 ac->avail = 0;
1016 spin_unlock(&rl3->list_lock);
1017 }
1018}
1019
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001020/*
1021 * Called from cache_reap() to regularly drain alien caches round robin.
1022 */
1023static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1024{
1025 int node = __get_cpu_var(reap_node);
1026
1027 if (l3->alien) {
1028 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001029
1030 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001031 __drain_alien_cache(cachep, ac, node);
1032 spin_unlock_irq(&ac->lock);
1033 }
1034 }
1035}
1036
Andrew Mortona737b3e2006-03-22 00:08:11 -08001037static void drain_alien_cache(struct kmem_cache *cachep,
1038 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001039{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001040 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001041 struct array_cache *ac;
1042 unsigned long flags;
1043
1044 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001045 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001046 if (ac) {
1047 spin_lock_irqsave(&ac->lock, flags);
1048 __drain_alien_cache(cachep, ac, i);
1049 spin_unlock_irqrestore(&ac->lock, flags);
1050 }
1051 }
1052}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001053
Ingo Molnar873623d2006-07-13 14:44:38 +02001054static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001055{
1056 struct slab *slabp = virt_to_slab(objp);
1057 int nodeid = slabp->nodeid;
1058 struct kmem_list3 *l3;
1059 struct array_cache *alien = NULL;
1060
1061 /*
1062 * Make sure we are not freeing a object from another node to the array
1063 * cache on this cpu.
1064 */
1065 if (likely(slabp->nodeid == numa_node_id()))
1066 return 0;
1067
1068 l3 = cachep->nodelists[numa_node_id()];
1069 STATS_INC_NODEFREES(cachep);
1070 if (l3->alien && l3->alien[nodeid]) {
1071 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001072 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001073 if (unlikely(alien->avail == alien->limit)) {
1074 STATS_INC_ACOVERFLOW(cachep);
1075 __drain_alien_cache(cachep, alien, nodeid);
1076 }
1077 alien->entry[alien->avail++] = objp;
1078 spin_unlock(&alien->lock);
1079 } else {
1080 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1081 free_block(cachep, &objp, 1, nodeid);
1082 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1083 }
1084 return 1;
1085}
1086
Christoph Lametere498be72005-09-09 13:03:32 -07001087#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001088
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001089#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001090#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001091
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001092static inline struct array_cache **alloc_alien_cache(int node, int limit)
1093{
1094 return (struct array_cache **) 0x01020304ul;
1095}
1096
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001097static inline void free_alien_cache(struct array_cache **ac_ptr)
1098{
1099}
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001100
Ingo Molnar873623d2006-07-13 14:44:38 +02001101static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001102{
1103 return 0;
1104}
1105
Christoph Lametere498be72005-09-09 13:03:32 -07001106#endif
1107
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001108static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001109 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110{
1111 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001112 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001113 struct kmem_list3 *l3 = NULL;
1114 int node = cpu_to_node(cpu);
1115 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116
1117 switch (action) {
1118 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001119 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001120 /*
1121 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001122 * alloc_arraycache's are going to use this list.
1123 * kmalloc_node allows us to add the slab to the right
1124 * kmem_list3 and not this cpu's kmem_list3
1125 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126
Christoph Lametere498be72005-09-09 13:03:32 -07001127 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001128 /*
1129 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001130 * begin anything. Make sure some other cpu on this
1131 * node has not already allocated this
1132 */
1133 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001134 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1135 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001136 goto bad;
1137 kmem_list3_init(l3);
1138 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001139 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001140
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001141 /*
1142 * The l3s don't come and go as CPUs come and
1143 * go. cache_chain_mutex is sufficient
1144 * protection here.
1145 */
Christoph Lametere498be72005-09-09 13:03:32 -07001146 cachep->nodelists[node] = l3;
1147 }
1148
1149 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1150 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001151 (1 + nr_cpus_node(node)) *
1152 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001153 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1154 }
1155
Andrew Mortona737b3e2006-03-22 00:08:11 -08001156 /*
1157 * Now we can go ahead with allocating the shared arrays and
1158 * array caches
1159 */
Christoph Lametere498be72005-09-09 13:03:32 -07001160 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001161 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001162 struct array_cache *shared;
1163 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001164
Christoph Lametere498be72005-09-09 13:03:32 -07001165 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001166 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 if (!nc)
1168 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001169 shared = alloc_arraycache(node,
1170 cachep->shared * cachep->batchcount,
1171 0xbaadf00d);
1172 if (!shared)
1173 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001174
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001175 alien = alloc_alien_cache(node, cachep->limit);
1176 if (!alien)
1177 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001179 l3 = cachep->nodelists[node];
1180 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001181
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001182 spin_lock_irq(&l3->list_lock);
1183 if (!l3->shared) {
1184 /*
1185 * We are serialised from CPU_DEAD or
1186 * CPU_UP_CANCELLED by the cpucontrol lock
1187 */
1188 l3->shared = shared;
1189 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001190 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001191#ifdef CONFIG_NUMA
1192 if (!l3->alien) {
1193 l3->alien = alien;
1194 alien = NULL;
1195 }
1196#endif
1197 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001198 kfree(shared);
1199 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001201 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 break;
1203 case CPU_ONLINE:
1204 start_cpu_timer(cpu);
1205 break;
1206#ifdef CONFIG_HOTPLUG_CPU
1207 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001208 /*
1209 * Even if all the cpus of a node are down, we don't free the
1210 * kmem_list3 of any cache. This to avoid a race between
1211 * cpu_down, and a kmalloc allocation from another cpu for
1212 * memory from the node of the cpu going down. The list3
1213 * structure is usually allocated from kmem_cache_create() and
1214 * gets destroyed at kmem_cache_destroy().
1215 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 /* fall thru */
1217 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001218 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 list_for_each_entry(cachep, &cache_chain, next) {
1220 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001221 struct array_cache *shared;
1222 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001223 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224
Christoph Lametere498be72005-09-09 13:03:32 -07001225 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226 /* cpu is dead; no one can alloc from it. */
1227 nc = cachep->array[cpu];
1228 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001229 l3 = cachep->nodelists[node];
1230
1231 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001232 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001233
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001234 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001235
1236 /* Free limit for this kmem_list3 */
1237 l3->free_limit -= cachep->batchcount;
1238 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001239 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001240
1241 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001242 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001243 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001244 }
Christoph Lametere498be72005-09-09 13:03:32 -07001245
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001246 shared = l3->shared;
1247 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001248 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001249 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001250 l3->shared = NULL;
1251 }
Christoph Lametere498be72005-09-09 13:03:32 -07001252
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001253 alien = l3->alien;
1254 l3->alien = NULL;
1255
1256 spin_unlock_irq(&l3->list_lock);
1257
1258 kfree(shared);
1259 if (alien) {
1260 drain_alien_cache(cachep, alien);
1261 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001262 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001263free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264 kfree(nc);
1265 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001266 /*
1267 * In the previous loop, all the objects were freed to
1268 * the respective cache's slabs, now we can go ahead and
1269 * shrink each nodelist to its limit.
1270 */
1271 list_for_each_entry(cachep, &cache_chain, next) {
1272 l3 = cachep->nodelists[node];
1273 if (!l3)
1274 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001275 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001276 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001277 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 break;
1279#endif
1280 }
1281 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001282bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001283 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 return NOTIFY_BAD;
1285}
1286
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001287static struct notifier_block __cpuinitdata cpucache_notifier = {
1288 &cpuup_callback, NULL, 0
1289};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001290
Christoph Lametere498be72005-09-09 13:03:32 -07001291/*
1292 * swap the static kmem_list3 with kmalloced memory
1293 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001294static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1295 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001296{
1297 struct kmem_list3 *ptr;
1298
1299 BUG_ON(cachep->nodelists[nodeid] != list);
1300 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1301 BUG_ON(!ptr);
1302
1303 local_irq_disable();
1304 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001305 /*
1306 * Do not assume that spinlocks can be initialized via memcpy:
1307 */
1308 spin_lock_init(&ptr->list_lock);
1309
Christoph Lametere498be72005-09-09 13:03:32 -07001310 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1311 cachep->nodelists[nodeid] = ptr;
1312 local_irq_enable();
1313}
1314
Andrew Mortona737b3e2006-03-22 00:08:11 -08001315/*
1316 * Initialisation. Called after the page allocator have been initialised and
1317 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 */
1319void __init kmem_cache_init(void)
1320{
1321 size_t left_over;
1322 struct cache_sizes *sizes;
1323 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001324 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001325 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001326
1327 for (i = 0; i < NUM_INIT_LISTS; i++) {
1328 kmem_list3_init(&initkmem_list3[i]);
1329 if (i < MAX_NUMNODES)
1330 cache_cache.nodelists[i] = NULL;
1331 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001332
1333 /*
1334 * Fragmentation resistance on low memory - only use bigger
1335 * page orders on machines with more than 32MB of memory.
1336 */
1337 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1338 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1339
Linus Torvalds1da177e2005-04-16 15:20:36 -07001340 /* Bootstrap is tricky, because several objects are allocated
1341 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001342 * 1) initialize the cache_cache cache: it contains the struct
1343 * kmem_cache structures of all caches, except cache_cache itself:
1344 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001345 * Initially an __init data area is used for the head array and the
1346 * kmem_list3 structures, it's replaced with a kmalloc allocated
1347 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001348 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001349 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001350 * An __init data area is used for the head array.
1351 * 3) Create the remaining kmalloc caches, with minimally sized
1352 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001353 * 4) Replace the __init data head arrays for cache_cache and the first
1354 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001355 * 5) Replace the __init data for kmem_list3 for cache_cache and
1356 * the other cache's with kmalloc allocated memory.
1357 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001358 */
1359
1360 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001361 INIT_LIST_HEAD(&cache_chain);
1362 list_add(&cache_cache.next, &cache_chain);
1363 cache_cache.colour_off = cache_line_size();
1364 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001365 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366
Andrew Mortona737b3e2006-03-22 00:08:11 -08001367 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1368 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369
Jack Steiner07ed76b2006-03-07 21:55:46 -08001370 for (order = 0; order < MAX_ORDER; order++) {
1371 cache_estimate(order, cache_cache.buffer_size,
1372 cache_line_size(), 0, &left_over, &cache_cache.num);
1373 if (cache_cache.num)
1374 break;
1375 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001376 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001377 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001378 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001379 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1380 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001381
1382 /* 2+3) create the kmalloc caches */
1383 sizes = malloc_sizes;
1384 names = cache_names;
1385
Andrew Mortona737b3e2006-03-22 00:08:11 -08001386 /*
1387 * Initialize the caches that provide memory for the array cache and the
1388 * kmem_list3 structures first. Without this, further allocations will
1389 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001390 */
1391
1392 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001393 sizes[INDEX_AC].cs_size,
1394 ARCH_KMALLOC_MINALIGN,
1395 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1396 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001397
Andrew Mortona737b3e2006-03-22 00:08:11 -08001398 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001399 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001400 kmem_cache_create(names[INDEX_L3].name,
1401 sizes[INDEX_L3].cs_size,
1402 ARCH_KMALLOC_MINALIGN,
1403 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1404 NULL, NULL);
1405 }
Christoph Lametere498be72005-09-09 13:03:32 -07001406
Ingo Molnare0a42722006-06-23 02:03:46 -07001407 slab_early_init = 0;
1408
Linus Torvalds1da177e2005-04-16 15:20:36 -07001409 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001410 /*
1411 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412 * This should be particularly beneficial on SMP boxes, as it
1413 * eliminates "false sharing".
1414 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001415 * allow tighter packing of the smaller caches.
1416 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001417 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001418 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001419 sizes->cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
1423 }
Arjan van de Venf1aaee52006-07-13 14:46:03 +02001424 init_lock_keys(sizes);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001425
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001427 sizes->cs_size,
1428 ARCH_KMALLOC_MINALIGN,
1429 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1430 SLAB_PANIC,
1431 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 sizes++;
1433 names++;
1434 }
1435 /* 4) Replace the bootstrap head arrays */
1436 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001437 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001438
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001440
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441 local_irq_disable();
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08001442 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1443 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001444 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001445 /*
1446 * Do not assume that spinlocks can be initialized via memcpy:
1447 */
1448 spin_lock_init(&ptr->lock);
1449
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 cache_cache.array[smp_processor_id()] = ptr;
1451 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001452
Linus Torvalds1da177e2005-04-16 15:20:36 -07001453 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001454
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 local_irq_disable();
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08001456 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001457 != &initarray_generic.cache);
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08001458 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001459 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001460 /*
1461 * Do not assume that spinlocks can be initialized via memcpy:
1462 */
1463 spin_lock_init(&ptr->lock);
1464
Christoph Lametere498be72005-09-09 13:03:32 -07001465 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001466 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001467 local_irq_enable();
1468 }
Christoph Lametere498be72005-09-09 13:03:32 -07001469 /* 5) Replace the bootstrap kmem_list3's */
1470 {
1471 int node;
1472 /* Replace the static kmem_list3 structures for the boot cpu */
1473 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001474 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475
Christoph Lametere498be72005-09-09 13:03:32 -07001476 for_each_online_node(node) {
1477 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001478 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001479
1480 if (INDEX_AC != INDEX_L3) {
1481 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001482 &initkmem_list3[SIZE_L3 + node],
1483 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001484 }
1485 }
1486 }
1487
1488 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001490 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001491 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001493 if (enable_cpucache(cachep))
1494 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001495 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001496 }
1497
1498 /* Done! */
1499 g_cpucache_up = FULL;
1500
Andrew Mortona737b3e2006-03-22 00:08:11 -08001501 /*
1502 * Register a cpu startup notifier callback that initializes
1503 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001504 */
1505 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506
Andrew Mortona737b3e2006-03-22 00:08:11 -08001507 /*
1508 * The reap timers are started later, with a module init call: That part
1509 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510 */
1511}
1512
1513static int __init cpucache_init(void)
1514{
1515 int cpu;
1516
Andrew Mortona737b3e2006-03-22 00:08:11 -08001517 /*
1518 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 */
Christoph Lametere498be72005-09-09 13:03:32 -07001520 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001521 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522 return 0;
1523}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001524__initcall(cpucache_init);
1525
1526/*
1527 * Interface to system's page allocator. No need to hold the cache-lock.
1528 *
1529 * If we requested dmaable memory, we will get it. Even if we
1530 * did not request dmaable memory, we might get it, but that
1531 * would be relatively rare and ignorable.
1532 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001533static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534{
1535 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001536 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537 int i;
1538
Luke Yangd6fef9d2006-04-10 22:52:56 -07001539#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001540 /*
1541 * Nommu uses slab's for process anonymous memory allocations, and thus
1542 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001543 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001544 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001545#endif
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001546 flags |= cachep->gfpflags;
1547
1548 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 if (!page)
1550 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001552 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001554 atomic_add(nr_pages, &slab_reclaim_pages);
Christoph Lameter9a865ff2006-06-30 01:55:38 -07001555 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001556 for (i = 0; i < nr_pages; i++)
1557 __SetPageSlab(page + i);
1558 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559}
1560
1561/*
1562 * Interface to system's page release.
1563 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001564static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001566 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 struct page *page = virt_to_page(addr);
1568 const unsigned long nr_freed = i;
1569
Christoph Lameter9a865ff2006-06-30 01:55:38 -07001570 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001571 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001572 BUG_ON(!PageSlab(page));
1573 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574 page++;
1575 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576 if (current->reclaim_state)
1577 current->reclaim_state->reclaimed_slab += nr_freed;
1578 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001579 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1580 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001581}
1582
1583static void kmem_rcu_free(struct rcu_head *head)
1584{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001585 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001586 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587
1588 kmem_freepages(cachep, slab_rcu->addr);
1589 if (OFF_SLAB(cachep))
1590 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1591}
1592
1593#if DEBUG
1594
1595#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001596static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001597 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001599 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001601 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001602
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001603 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001604 return;
1605
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001606 *addr++ = 0x12345678;
1607 *addr++ = caller;
1608 *addr++ = smp_processor_id();
1609 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001610 {
1611 unsigned long *sptr = &caller;
1612 unsigned long svalue;
1613
1614 while (!kstack_end(sptr)) {
1615 svalue = *sptr++;
1616 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001617 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 size -= sizeof(unsigned long);
1619 if (size <= sizeof(unsigned long))
1620 break;
1621 }
1622 }
1623
1624 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001625 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001626}
1627#endif
1628
Pekka Enberg343e0d72006-02-01 03:05:50 -08001629static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001630{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001631 int size = obj_size(cachep);
1632 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633
1634 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001635 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001636}
1637
1638static void dump_line(char *data, int offset, int limit)
1639{
1640 int i;
1641 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001642 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001643 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644 printk("\n");
1645}
1646#endif
1647
1648#if DEBUG
1649
Pekka Enberg343e0d72006-02-01 03:05:50 -08001650static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001651{
1652 int i, size;
1653 char *realobj;
1654
1655 if (cachep->flags & SLAB_RED_ZONE) {
1656 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001657 *dbg_redzone1(cachep, objp),
1658 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659 }
1660
1661 if (cachep->flags & SLAB_STORE_USER) {
1662 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001663 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001665 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666 printk("\n");
1667 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001668 realobj = (char *)objp + obj_offset(cachep);
1669 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001670 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 int limit;
1672 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001673 if (i + limit > size)
1674 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675 dump_line(realobj, i, limit);
1676 }
1677}
1678
Pekka Enberg343e0d72006-02-01 03:05:50 -08001679static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680{
1681 char *realobj;
1682 int size, i;
1683 int lines = 0;
1684
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001685 realobj = (char *)objp + obj_offset(cachep);
1686 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001688 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001689 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001690 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691 exp = POISON_END;
1692 if (realobj[i] != exp) {
1693 int limit;
1694 /* Mismatch ! */
1695 /* Print header */
1696 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001697 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001698 "Slab corruption: start=%p, len=%d\n",
1699 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700 print_objinfo(cachep, objp, 0);
1701 }
1702 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001703 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001704 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001705 if (i + limit > size)
1706 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707 dump_line(realobj, i, limit);
1708 i += 16;
1709 lines++;
1710 /* Limit to 5 lines */
1711 if (lines > 5)
1712 break;
1713 }
1714 }
1715 if (lines != 0) {
1716 /* Print some data about the neighboring objects, if they
1717 * exist:
1718 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001719 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001720 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001722 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001723 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001724 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001725 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001726 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001727 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001728 print_objinfo(cachep, objp, 2);
1729 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001730 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001731 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001732 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001734 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001735 print_objinfo(cachep, objp, 2);
1736 }
1737 }
1738}
1739#endif
1740
Linus Torvalds1da177e2005-04-16 15:20:36 -07001741#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001742/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001743 * slab_destroy_objs - destroy a slab and its objects
1744 * @cachep: cache pointer being destroyed
1745 * @slabp: slab pointer being destroyed
1746 *
1747 * Call the registered destructor for each object in a slab that is being
1748 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001749 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001750static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001751{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001752 int i;
1753 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001754 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755
1756 if (cachep->flags & SLAB_POISON) {
1757#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001758 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1759 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001760 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001761 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762 else
1763 check_poison_obj(cachep, objp);
1764#else
1765 check_poison_obj(cachep, objp);
1766#endif
1767 }
1768 if (cachep->flags & SLAB_RED_ZONE) {
1769 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1770 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001771 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1773 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001774 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775 }
1776 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001777 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001779}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001781static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001782{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 if (cachep->dtor) {
1784 int i;
1785 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001786 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001787 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788 }
1789 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001790}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791#endif
1792
Randy Dunlap911851e2006-03-22 00:08:14 -08001793/**
1794 * slab_destroy - destroy and release all objects in a slab
1795 * @cachep: cache pointer being destroyed
1796 * @slabp: slab pointer being destroyed
1797 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001798 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001799 * Before calling the slab must have been unlinked from the cache. The
1800 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001801 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001802static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001803{
1804 void *addr = slabp->s_mem - slabp->colouroff;
1805
1806 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1808 struct slab_rcu *slab_rcu;
1809
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001810 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811 slab_rcu->cachep = cachep;
1812 slab_rcu->addr = addr;
1813 call_rcu(&slab_rcu->head, kmem_rcu_free);
1814 } else {
1815 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001816 if (OFF_SLAB(cachep))
1817 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001818 }
1819}
1820
Andrew Mortona737b3e2006-03-22 00:08:11 -08001821/*
1822 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1823 * size of kmem_list3.
1824 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001825static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001826{
1827 int node;
1828
1829 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001830 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001831 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001832 REAPTIMEOUT_LIST3 +
1833 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001834 }
1835}
1836
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001837static void __kmem_cache_destroy(struct kmem_cache *cachep)
1838{
1839 int i;
1840 struct kmem_list3 *l3;
1841
1842 for_each_online_cpu(i)
1843 kfree(cachep->array[i]);
1844
1845 /* NUMA: free the list3 structures */
1846 for_each_online_node(i) {
1847 l3 = cachep->nodelists[i];
1848 if (l3) {
1849 kfree(l3->shared);
1850 free_alien_cache(l3->alien);
1851 kfree(l3);
1852 }
1853 }
1854 kmem_cache_free(&cache_cache, cachep);
1855}
1856
1857
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001859 * calculate_slab_order - calculate size (page order) of slabs
1860 * @cachep: pointer to the cache that is being created
1861 * @size: size of objects to be created in this cache.
1862 * @align: required alignment for the objects.
1863 * @flags: slab allocation flags
1864 *
1865 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001866 *
1867 * This could be made much more intelligent. For now, try to avoid using
1868 * high order pages for slabs. When the gfp() functions are more friendly
1869 * towards high-order requests, this should be changed.
1870 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001871static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001872 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001873{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001874 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001875 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001876 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001877
Andrew Mortona737b3e2006-03-22 00:08:11 -08001878 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001879 unsigned int num;
1880 size_t remainder;
1881
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001882 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001883 if (!num)
1884 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001885
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001886 if (flags & CFLGS_OFF_SLAB) {
1887 /*
1888 * Max number of objs-per-slab for caches which
1889 * use off-slab slabs. Needed to avoid a possible
1890 * looping condition in cache_grow().
1891 */
1892 offslab_limit = size - sizeof(struct slab);
1893 offslab_limit /= sizeof(kmem_bufctl_t);
1894
1895 if (num > offslab_limit)
1896 break;
1897 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001898
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001899 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001900 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001901 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001902 left_over = remainder;
1903
1904 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001905 * A VFS-reclaimable slab tends to have most allocations
1906 * as GFP_NOFS and we really don't want to have to be allocating
1907 * higher-order pages when we are unable to shrink dcache.
1908 */
1909 if (flags & SLAB_RECLAIM_ACCOUNT)
1910 break;
1911
1912 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001913 * Large number of objects is good, but very large slabs are
1914 * currently bad for the gfp()s.
1915 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001916 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001917 break;
1918
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001919 /*
1920 * Acceptable internal fragmentation?
1921 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001922 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001923 break;
1924 }
1925 return left_over;
1926}
1927
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001928static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001929{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001930 if (g_cpucache_up == FULL)
1931 return enable_cpucache(cachep);
1932
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001933 if (g_cpucache_up == NONE) {
1934 /*
1935 * Note: the first kmem_cache_create must create the cache
1936 * that's used by kmalloc(24), otherwise the creation of
1937 * further caches will BUG().
1938 */
1939 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1940
1941 /*
1942 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1943 * the first cache, then we need to set up all its list3s,
1944 * otherwise the creation of further caches will BUG().
1945 */
1946 set_up_list3s(cachep, SIZE_AC);
1947 if (INDEX_AC == INDEX_L3)
1948 g_cpucache_up = PARTIAL_L3;
1949 else
1950 g_cpucache_up = PARTIAL_AC;
1951 } else {
1952 cachep->array[smp_processor_id()] =
1953 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1954
1955 if (g_cpucache_up == PARTIAL_AC) {
1956 set_up_list3s(cachep, SIZE_L3);
1957 g_cpucache_up = PARTIAL_L3;
1958 } else {
1959 int node;
1960 for_each_online_node(node) {
1961 cachep->nodelists[node] =
1962 kmalloc_node(sizeof(struct kmem_list3),
1963 GFP_KERNEL, node);
1964 BUG_ON(!cachep->nodelists[node]);
1965 kmem_list3_init(cachep->nodelists[node]);
1966 }
1967 }
1968 }
1969 cachep->nodelists[numa_node_id()]->next_reap =
1970 jiffies + REAPTIMEOUT_LIST3 +
1971 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1972
1973 cpu_cache_get(cachep)->avail = 0;
1974 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1975 cpu_cache_get(cachep)->batchcount = 1;
1976 cpu_cache_get(cachep)->touched = 0;
1977 cachep->batchcount = 1;
1978 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001979 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001980}
1981
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001982/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983 * kmem_cache_create - Create a cache.
1984 * @name: A string which is used in /proc/slabinfo to identify this cache.
1985 * @size: The size of objects to be created in this cache.
1986 * @align: The required alignment for the objects.
1987 * @flags: SLAB flags
1988 * @ctor: A constructor for the objects.
1989 * @dtor: A destructor for the objects.
1990 *
1991 * Returns a ptr to the cache on success, NULL on failure.
1992 * Cannot be called within a int, but can be interrupted.
1993 * The @ctor is run when new pages are allocated by the cache
1994 * and the @dtor is run before the pages are handed back.
1995 *
1996 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08001997 * the module calling this has to destroy the cache before getting unloaded.
1998 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001999 * The flags are
2000 *
2001 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2002 * to catch references to uninitialised memory.
2003 *
2004 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2005 * for buffer overruns.
2006 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2008 * cacheline. This can be beneficial if you're counting cycles as closely
2009 * as davem.
2010 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002011struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002013 unsigned long flags,
2014 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002015 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016{
2017 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002018 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002019
2020 /*
2021 * Sanity checks... these are all serious usage bugs.
2022 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002023 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002024 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002025 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2026 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002027 BUG();
2028 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002030 /*
2031 * Prevent CPUs from coming and going.
2032 * lock_cpu_hotplug() nests outside cache_chain_mutex
2033 */
2034 lock_cpu_hotplug();
2035
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002036 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002037
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002038 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002039 mm_segment_t old_fs = get_fs();
2040 char tmp;
2041 int res;
2042
2043 /*
2044 * This happens when the module gets unloaded and doesn't
2045 * destroy its slab cache and no-one else reuses the vmalloc
2046 * area of the module. Print a warning.
2047 */
2048 set_fs(KERNEL_DS);
2049 res = __get_user(tmp, pc->name);
2050 set_fs(old_fs);
2051 if (res) {
2052 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002053 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002054 continue;
2055 }
2056
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002057 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002058 printk("kmem_cache_create: duplicate cache %s\n", name);
2059 dump_stack();
2060 goto oops;
2061 }
2062 }
2063
Linus Torvalds1da177e2005-04-16 15:20:36 -07002064#if DEBUG
2065 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2066 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2067 /* No constructor, but inital state check requested */
2068 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002069 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002070 flags &= ~SLAB_DEBUG_INITIAL;
2071 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072#if FORCED_DEBUG
2073 /*
2074 * Enable redzoning and last user accounting, except for caches with
2075 * large objects, if the increased size would increase the object size
2076 * above the next power of two: caches with object sizes just above a
2077 * power of two have a significant amount of internal fragmentation.
2078 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002079 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002080 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081 if (!(flags & SLAB_DESTROY_BY_RCU))
2082 flags |= SLAB_POISON;
2083#endif
2084 if (flags & SLAB_DESTROY_BY_RCU)
2085 BUG_ON(flags & SLAB_POISON);
2086#endif
2087 if (flags & SLAB_DESTROY_BY_RCU)
2088 BUG_ON(dtor);
2089
2090 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002091 * Always checks flags, a caller might be expecting debug support which
2092 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002094 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095
Andrew Mortona737b3e2006-03-22 00:08:11 -08002096 /*
2097 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098 * unaligned accesses for some archs when redzoning is used, and makes
2099 * sure any on-slab bufctl's are also correctly aligned.
2100 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002101 if (size & (BYTES_PER_WORD - 1)) {
2102 size += (BYTES_PER_WORD - 1);
2103 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002104 }
2105
Andrew Mortona737b3e2006-03-22 00:08:11 -08002106 /* calculate the final buffer alignment: */
2107
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 /* 1) arch recommendation: can be overridden for debug */
2109 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002110 /*
2111 * Default alignment: as specified by the arch code. Except if
2112 * an object is really small, then squeeze multiple objects into
2113 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114 */
2115 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002116 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117 ralign /= 2;
2118 } else {
2119 ralign = BYTES_PER_WORD;
2120 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002121
2122 /*
2123 * Redzoning and user store require word alignment. Note this will be
2124 * overridden by architecture or caller mandated alignment if either
2125 * is greater than BYTES_PER_WORD.
2126 */
2127 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2128 ralign = BYTES_PER_WORD;
2129
Linus Torvalds1da177e2005-04-16 15:20:36 -07002130 /* 2) arch mandated alignment: disables debug if necessary */
2131 if (ralign < ARCH_SLAB_MINALIGN) {
2132 ralign = ARCH_SLAB_MINALIGN;
2133 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002134 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135 }
2136 /* 3) caller mandated alignment: disables debug if necessary */
2137 if (ralign < align) {
2138 ralign = align;
2139 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002140 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002142 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002143 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002144 */
2145 align = ralign;
2146
2147 /* Get cache's description obj. */
Pekka Enbergc5e3b832006-03-25 03:06:43 -08002148 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002150 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151
2152#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002153 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002154
Pekka Enbergca5f9702006-09-25 23:31:25 -07002155 /*
2156 * Both debugging options require word-alignment which is calculated
2157 * into align above.
2158 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002161 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002162 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163 }
2164 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002165 /* user store requires one word storage behind the end of
2166 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168 size += BYTES_PER_WORD;
2169 }
2170#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002171 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002172 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2173 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174 size = PAGE_SIZE;
2175 }
2176#endif
2177#endif
2178
Ingo Molnare0a42722006-06-23 02:03:46 -07002179 /*
2180 * Determine if the slab management is 'on' or 'off' slab.
2181 * (bootstrapping cannot cope with offslab caches so don't do
2182 * it too early on.)
2183 */
2184 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002185 /*
2186 * Size is large, assume best to place the slab management obj
2187 * off-slab (should allow better packing of objs).
2188 */
2189 flags |= CFLGS_OFF_SLAB;
2190
2191 size = ALIGN(size, align);
2192
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002193 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002194
2195 if (!cachep->num) {
2196 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2197 kmem_cache_free(&cache_cache, cachep);
2198 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002199 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002201 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2202 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203
2204 /*
2205 * If the slab has been placed off-slab, and we have enough space then
2206 * move it on-slab. This is at the expense of any extra colouring.
2207 */
2208 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2209 flags &= ~CFLGS_OFF_SLAB;
2210 left_over -= slab_size;
2211 }
2212
2213 if (flags & CFLGS_OFF_SLAB) {
2214 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002215 slab_size =
2216 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002217 }
2218
2219 cachep->colour_off = cache_line_size();
2220 /* Offset must be a multiple of the alignment. */
2221 if (cachep->colour_off < align)
2222 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002223 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002224 cachep->slab_size = slab_size;
2225 cachep->flags = flags;
2226 cachep->gfpflags = 0;
2227 if (flags & SLAB_CACHE_DMA)
2228 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002229 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002231 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002232 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002233 /*
2234 * This is a possibility for one of the malloc_sizes caches.
2235 * But since we go off slab only for object size greater than
2236 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2237 * this should not happen at all.
2238 * But leave a BUG_ON for some lucky dude.
2239 */
2240 BUG_ON(!cachep->slabp_cache);
2241 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002242 cachep->ctor = ctor;
2243 cachep->dtor = dtor;
2244 cachep->name = name;
2245
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002246 if (setup_cpu_cache(cachep)) {
2247 __kmem_cache_destroy(cachep);
2248 cachep = NULL;
2249 goto oops;
2250 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002251
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 /* cache setup completed, link it into the list */
2253 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002254oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255 if (!cachep && (flags & SLAB_PANIC))
2256 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002257 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002258 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002259 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002260 return cachep;
2261}
2262EXPORT_SYMBOL(kmem_cache_create);
2263
2264#if DEBUG
2265static void check_irq_off(void)
2266{
2267 BUG_ON(!irqs_disabled());
2268}
2269
2270static void check_irq_on(void)
2271{
2272 BUG_ON(irqs_disabled());
2273}
2274
Pekka Enberg343e0d72006-02-01 03:05:50 -08002275static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002276{
2277#ifdef CONFIG_SMP
2278 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002279 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280#endif
2281}
Christoph Lametere498be72005-09-09 13:03:32 -07002282
Pekka Enberg343e0d72006-02-01 03:05:50 -08002283static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002284{
2285#ifdef CONFIG_SMP
2286 check_irq_off();
2287 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2288#endif
2289}
2290
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291#else
2292#define check_irq_off() do { } while(0)
2293#define check_irq_on() do { } while(0)
2294#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002295#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002296#endif
2297
Christoph Lameteraab22072006-03-22 00:09:06 -08002298static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2299 struct array_cache *ac,
2300 int force, int node);
2301
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302static void do_drain(void *arg)
2303{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002304 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002306 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307
2308 check_irq_off();
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08002309 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002310 spin_lock(&cachep->nodelists[node]->list_lock);
2311 free_block(cachep, ac->entry, ac->avail, node);
2312 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313 ac->avail = 0;
2314}
2315
Pekka Enberg343e0d72006-02-01 03:05:50 -08002316static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002317{
Christoph Lametere498be72005-09-09 13:03:32 -07002318 struct kmem_list3 *l3;
2319 int node;
2320
Andrew Mortona07fa392006-03-22 00:08:17 -08002321 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002323 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002324 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002325 if (l3 && l3->alien)
2326 drain_alien_cache(cachep, l3->alien);
2327 }
2328
2329 for_each_online_node(node) {
2330 l3 = cachep->nodelists[node];
2331 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002332 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002333 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334}
2335
Christoph Lametered11d9e2006-06-30 01:55:45 -07002336/*
2337 * Remove slabs from the list of free slabs.
2338 * Specify the number of slabs to drain in tofree.
2339 *
2340 * Returns the actual number of slabs released.
2341 */
2342static int drain_freelist(struct kmem_cache *cache,
2343 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002345 struct list_head *p;
2346 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348
Christoph Lametered11d9e2006-06-30 01:55:45 -07002349 nr_freed = 0;
2350 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351
Christoph Lametered11d9e2006-06-30 01:55:45 -07002352 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002353 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002354 if (p == &l3->slabs_free) {
2355 spin_unlock_irq(&l3->list_lock);
2356 goto out;
2357 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002358
Christoph Lametered11d9e2006-06-30 01:55:45 -07002359 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002361 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362#endif
2363 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002364 /*
2365 * Safe to drop the lock. The slab is no longer linked
2366 * to the cache.
2367 */
2368 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002369 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002370 slab_destroy(cache, slabp);
2371 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002373out:
2374 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002375}
2376
Pekka Enberg343e0d72006-02-01 03:05:50 -08002377static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002378{
2379 int ret = 0, i = 0;
2380 struct kmem_list3 *l3;
2381
2382 drain_cpu_caches(cachep);
2383
2384 check_irq_on();
2385 for_each_online_node(i) {
2386 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002387 if (!l3)
2388 continue;
2389
2390 drain_freelist(cachep, l3, l3->free_objects);
2391
2392 ret += !list_empty(&l3->slabs_full) ||
2393 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002394 }
2395 return (ret ? 1 : 0);
2396}
2397
Linus Torvalds1da177e2005-04-16 15:20:36 -07002398/**
2399 * kmem_cache_shrink - Shrink a cache.
2400 * @cachep: The cache to shrink.
2401 *
2402 * Releases as many slabs as possible for a cache.
2403 * To help debugging, a zero exit status indicates all slabs were released.
2404 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002405int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002407 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408
2409 return __cache_shrink(cachep);
2410}
2411EXPORT_SYMBOL(kmem_cache_shrink);
2412
2413/**
2414 * kmem_cache_destroy - delete a cache
2415 * @cachep: the cache to destroy
2416 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002417 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 * Returns 0 on success.
2419 *
2420 * It is expected this function will be called by a module when it is
2421 * unloaded. This will remove the cache completely, and avoid a duplicate
2422 * cache being allocated each time a module is loaded and unloaded, if the
2423 * module doesn't have persistent in-kernel storage across loads and unloads.
2424 *
2425 * The cache must be empty before calling this function.
2426 *
2427 * The caller must guarantee that noone will allocate memory from the cache
2428 * during the kmem_cache_destroy().
2429 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002430int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002432 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002433
2434 /* Don't let CPUs to come and go */
2435 lock_cpu_hotplug();
2436
2437 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002438 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439 /*
2440 * the chain is never empty, cache_cache is never destroyed
2441 */
2442 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002443 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002444
2445 if (__cache_shrink(cachep)) {
2446 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002447 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002448 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002449 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450 unlock_cpu_hotplug();
2451 return 1;
2452 }
2453
2454 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002455 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002456
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002457 __kmem_cache_destroy(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002459 return 0;
2460}
2461EXPORT_SYMBOL(kmem_cache_destroy);
2462
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002463/*
2464 * Get the memory for a slab management obj.
2465 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2466 * always come from malloc_sizes caches. The slab descriptor cannot
2467 * come from the same cache which is getting created because,
2468 * when we are searching for an appropriate cache for these
2469 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2470 * If we are creating a malloc_sizes cache here it would not be visible to
2471 * kmem_find_general_cachep till the initialization is complete.
2472 * Hence we cannot have slabp_cache same as the original cache.
2473 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002474static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002475 int colour_off, gfp_t local_flags,
2476 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002477{
2478 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002479
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480 if (OFF_SLAB(cachep)) {
2481 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002482 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2483 local_flags, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002484 if (!slabp)
2485 return NULL;
2486 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002487 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488 colour_off += cachep->slab_size;
2489 }
2490 slabp->inuse = 0;
2491 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002492 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002493 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 return slabp;
2495}
2496
2497static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2498{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002499 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002500}
2501
Pekka Enberg343e0d72006-02-01 03:05:50 -08002502static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002503 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002504{
2505 int i;
2506
2507 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002508 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002509#if DEBUG
2510 /* need to poison the objs? */
2511 if (cachep->flags & SLAB_POISON)
2512 poison_obj(cachep, objp, POISON_FREE);
2513 if (cachep->flags & SLAB_STORE_USER)
2514 *dbg_userword(cachep, objp) = NULL;
2515
2516 if (cachep->flags & SLAB_RED_ZONE) {
2517 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2518 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2519 }
2520 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002521 * Constructors are not allowed to allocate memory from the same
2522 * cache which they are a constructor for. Otherwise, deadlock.
2523 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002524 */
2525 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002526 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002527 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002528
2529 if (cachep->flags & SLAB_RED_ZONE) {
2530 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2531 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002532 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2534 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002535 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002537 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2538 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002539 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002540 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541#else
2542 if (cachep->ctor)
2543 cachep->ctor(objp, cachep, ctor_flags);
2544#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002545 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002546 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002547 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002548 slabp->free = 0;
2549}
2550
Pekka Enberg343e0d72006-02-01 03:05:50 -08002551static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002552{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002553 if (flags & SLAB_DMA)
2554 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2555 else
2556 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557}
2558
Andrew Mortona737b3e2006-03-22 00:08:11 -08002559static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2560 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002561{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002562 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002563 kmem_bufctl_t next;
2564
2565 slabp->inuse++;
2566 next = slab_bufctl(slabp)[slabp->free];
2567#if DEBUG
2568 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2569 WARN_ON(slabp->nodeid != nodeid);
2570#endif
2571 slabp->free = next;
2572
2573 return objp;
2574}
2575
Andrew Mortona737b3e2006-03-22 00:08:11 -08002576static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2577 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002578{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002579 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002580
2581#if DEBUG
2582 /* Verify that the slab belongs to the intended node */
2583 WARN_ON(slabp->nodeid != nodeid);
2584
Al Viro871751e2006-03-25 03:06:39 -08002585 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002586 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002587 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002588 BUG();
2589 }
2590#endif
2591 slab_bufctl(slabp)[objnr] = slabp->free;
2592 slabp->free = objnr;
2593 slabp->inuse--;
2594}
2595
Pekka Enberg47768742006-06-23 02:03:07 -07002596/*
2597 * Map pages beginning at addr to the given cache and slab. This is required
2598 * for the slab allocator to be able to lookup the cache and slab of a
2599 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2600 */
2601static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2602 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002603{
Pekka Enberg47768742006-06-23 02:03:07 -07002604 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002605 struct page *page;
2606
Pekka Enberg47768742006-06-23 02:03:07 -07002607 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002608
Pekka Enberg47768742006-06-23 02:03:07 -07002609 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002610 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002611 nr_pages <<= cache->gfporder;
2612
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002614 page_set_cache(page, cache);
2615 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002616 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002617 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002618}
2619
2620/*
2621 * Grow (by 1) the number of slabs within a cache. This is called by
2622 * kmem_cache_alloc() when there are no active objs left in a cache.
2623 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002624static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002626 struct slab *slabp;
2627 void *objp;
2628 size_t offset;
2629 gfp_t local_flags;
2630 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002631 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632
Andrew Mortona737b3e2006-03-22 00:08:11 -08002633 /*
2634 * Be lazy and only check for valid flags here, keeping it out of the
2635 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002637 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002638 if (flags & SLAB_NO_GROW)
2639 return 0;
2640
2641 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2642 local_flags = (flags & SLAB_LEVEL_MASK);
2643 if (!(local_flags & __GFP_WAIT))
2644 /*
2645 * Not allowed to sleep. Need to tell a constructor about
2646 * this - it might need to know...
2647 */
2648 ctor_flags |= SLAB_CTOR_ATOMIC;
2649
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002650 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002652 l3 = cachep->nodelists[nodeid];
2653 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654
2655 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002656 offset = l3->colour_next;
2657 l3->colour_next++;
2658 if (l3->colour_next >= cachep->colour)
2659 l3->colour_next = 0;
2660 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002661
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002662 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663
2664 if (local_flags & __GFP_WAIT)
2665 local_irq_enable();
2666
2667 /*
2668 * The test for missing atomic flag is performed here, rather than
2669 * the more obvious place, simply to reduce the critical path length
2670 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2671 * will eventually be caught here (where it matters).
2672 */
2673 kmem_flagcheck(cachep, flags);
2674
Andrew Mortona737b3e2006-03-22 00:08:11 -08002675 /*
2676 * Get mem for the objs. Attempt to allocate a physical page from
2677 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002678 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002679 objp = kmem_getpages(cachep, flags, nodeid);
2680 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002681 goto failed;
2682
2683 /* Get slab management. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002684 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002685 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002686 goto opps1;
2687
Christoph Lametere498be72005-09-09 13:03:32 -07002688 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002689 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690
2691 cache_init_objs(cachep, slabp, ctor_flags);
2692
2693 if (local_flags & __GFP_WAIT)
2694 local_irq_disable();
2695 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002696 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002697
2698 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002699 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002700 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002701 l3->free_objects += cachep->num;
2702 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002704opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002706failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707 if (local_flags & __GFP_WAIT)
2708 local_irq_disable();
2709 return 0;
2710}
2711
2712#if DEBUG
2713
2714/*
2715 * Perform extra freeing checks:
2716 * - detect bad pointers.
2717 * - POISON/RED_ZONE checking
2718 * - destructor calls, for caches with POISON+dtor
2719 */
2720static void kfree_debugcheck(const void *objp)
2721{
2722 struct page *page;
2723
2724 if (!virt_addr_valid(objp)) {
2725 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002726 (unsigned long)objp);
2727 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002728 }
2729 page = virt_to_page(objp);
2730 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002731 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2732 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 BUG();
2734 }
2735}
2736
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002737static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2738{
2739 unsigned long redzone1, redzone2;
2740
2741 redzone1 = *dbg_redzone1(cache, obj);
2742 redzone2 = *dbg_redzone2(cache, obj);
2743
2744 /*
2745 * Redzone is ok.
2746 */
2747 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2748 return;
2749
2750 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2751 slab_error(cache, "double free detected");
2752 else
2753 slab_error(cache, "memory outside object was overwritten");
2754
2755 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2756 obj, redzone1, redzone2);
2757}
2758
Pekka Enberg343e0d72006-02-01 03:05:50 -08002759static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002760 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002761{
2762 struct page *page;
2763 unsigned int objnr;
2764 struct slab *slabp;
2765
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002766 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002767 kfree_debugcheck(objp);
2768 page = virt_to_page(objp);
2769
Pekka Enberg065d41c2005-11-13 16:06:46 -08002770 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002771
2772 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002773 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002774 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2775 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2776 }
2777 if (cachep->flags & SLAB_STORE_USER)
2778 *dbg_userword(cachep, objp) = caller;
2779
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002780 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002781
2782 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002783 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784
2785 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002786 /*
2787 * Need to call the slab's constructor so the caller can
2788 * perform a verify of its state (debugging). Called without
2789 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002790 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002791 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002792 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 }
2794 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2795 /* we want to cache poison the object,
2796 * call the destruction callback
2797 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002798 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002799 }
Al Viro871751e2006-03-25 03:06:39 -08002800#ifdef CONFIG_DEBUG_SLAB_LEAK
2801 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2802#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803 if (cachep->flags & SLAB_POISON) {
2804#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002805 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002807 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002808 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002809 } else {
2810 poison_obj(cachep, objp, POISON_FREE);
2811 }
2812#else
2813 poison_obj(cachep, objp, POISON_FREE);
2814#endif
2815 }
2816 return objp;
2817}
2818
Pekka Enberg343e0d72006-02-01 03:05:50 -08002819static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002820{
2821 kmem_bufctl_t i;
2822 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002823
Linus Torvalds1da177e2005-04-16 15:20:36 -07002824 /* Check slab's freelist to see if this obj is there. */
2825 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2826 entries++;
2827 if (entries > cachep->num || i >= cachep->num)
2828 goto bad;
2829 }
2830 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002831bad:
2832 printk(KERN_ERR "slab: Internal list corruption detected in "
2833 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2834 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002835 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002836 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002837 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002838 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002839 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002840 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841 }
2842 printk("\n");
2843 BUG();
2844 }
2845}
2846#else
2847#define kfree_debugcheck(x) do { } while(0)
2848#define cache_free_debugcheck(x,objp,z) (objp)
2849#define check_slabp(x,y) do { } while(0)
2850#endif
2851
Pekka Enberg343e0d72006-02-01 03:05:50 -08002852static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853{
2854 int batchcount;
2855 struct kmem_list3 *l3;
2856 struct array_cache *ac;
2857
2858 check_irq_off();
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08002859 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002860retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861 batchcount = ac->batchcount;
2862 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002863 /*
2864 * If there was little recent activity on this cache, then
2865 * perform only a partial refill. Otherwise we could generate
2866 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867 */
2868 batchcount = BATCHREFILL_LIMIT;
2869 }
Christoph Lametere498be72005-09-09 13:03:32 -07002870 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002871
Christoph Lametere498be72005-09-09 13:03:32 -07002872 BUG_ON(ac->avail > 0 || !l3);
2873 spin_lock(&l3->list_lock);
2874
Christoph Lameter3ded1752006-03-25 03:06:44 -08002875 /* See if we can refill from the shared array */
2876 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2877 goto alloc_done;
2878
Linus Torvalds1da177e2005-04-16 15:20:36 -07002879 while (batchcount > 0) {
2880 struct list_head *entry;
2881 struct slab *slabp;
2882 /* Get slab alloc is to come from. */
2883 entry = l3->slabs_partial.next;
2884 if (entry == &l3->slabs_partial) {
2885 l3->free_touched = 1;
2886 entry = l3->slabs_free.next;
2887 if (entry == &l3->slabs_free)
2888 goto must_grow;
2889 }
2890
2891 slabp = list_entry(entry, struct slab, list);
2892 check_slabp(cachep, slabp);
2893 check_spinlock_acquired(cachep);
2894 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895 STATS_INC_ALLOCED(cachep);
2896 STATS_INC_ACTIVE(cachep);
2897 STATS_SET_HIGH(cachep);
2898
Matthew Dobson78d382d2006-02-01 03:05:47 -08002899 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2900 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002901 }
2902 check_slabp(cachep, slabp);
2903
2904 /* move slabp to correct slabp list: */
2905 list_del(&slabp->list);
2906 if (slabp->free == BUFCTL_END)
2907 list_add(&slabp->list, &l3->slabs_full);
2908 else
2909 list_add(&slabp->list, &l3->slabs_partial);
2910 }
2911
Andrew Mortona737b3e2006-03-22 00:08:11 -08002912must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002914alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002915 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002916
2917 if (unlikely(!ac->avail)) {
2918 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002919 x = cache_grow(cachep, flags, numa_node_id());
2920
Andrew Mortona737b3e2006-03-22 00:08:11 -08002921 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08002922 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002923 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 return NULL;
2925
Andrew Mortona737b3e2006-03-22 00:08:11 -08002926 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002927 goto retry;
2928 }
2929 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002930 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002931}
2932
Andrew Mortona737b3e2006-03-22 00:08:11 -08002933static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2934 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935{
2936 might_sleep_if(flags & __GFP_WAIT);
2937#if DEBUG
2938 kmem_flagcheck(cachep, flags);
2939#endif
2940}
2941
2942#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002943static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2944 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002945{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002946 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002947 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002948 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002950 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002951 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002952 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002953 else
2954 check_poison_obj(cachep, objp);
2955#else
2956 check_poison_obj(cachep, objp);
2957#endif
2958 poison_obj(cachep, objp, POISON_INUSE);
2959 }
2960 if (cachep->flags & SLAB_STORE_USER)
2961 *dbg_userword(cachep, objp) = caller;
2962
2963 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002964 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2965 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2966 slab_error(cachep, "double free, or memory outside"
2967 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002968 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002969 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2970 objp, *dbg_redzone1(cachep, objp),
2971 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002972 }
2973 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2974 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2975 }
Al Viro871751e2006-03-25 03:06:39 -08002976#ifdef CONFIG_DEBUG_SLAB_LEAK
2977 {
2978 struct slab *slabp;
2979 unsigned objnr;
2980
2981 slabp = page_get_slab(virt_to_page(objp));
2982 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
2983 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
2984 }
2985#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002986 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002987 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002988 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989
2990 if (!(flags & __GFP_WAIT))
2991 ctor_flags |= SLAB_CTOR_ATOMIC;
2992
2993 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002994 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002995 return objp;
2996}
2997#else
2998#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2999#endif
3000
Pekka Enberg343e0d72006-02-01 03:05:50 -08003001static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003003 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003004 struct array_cache *ac;
3005
Christoph Lameterdc85da12006-01-18 17:42:36 -08003006#ifdef CONFIG_NUMA
Paul Jacksonb2455392006-03-24 03:16:12 -08003007 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
Paul Jacksonc61afb12006-03-24 03:16:08 -08003008 objp = alternate_node_alloc(cachep, flags);
3009 if (objp != NULL)
3010 return objp;
Paul Jackson101a5002006-03-24 03:16:07 -08003011 }
Christoph Lameterdc85da12006-01-18 17:42:36 -08003012#endif
3013
Alok N Kataria5c382302005-09-27 21:45:46 -07003014 check_irq_off();
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08003015 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003016 if (likely(ac->avail)) {
3017 STATS_INC_ALLOCHIT(cachep);
3018 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003019 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003020 } else {
3021 STATS_INC_ALLOCMISS(cachep);
3022 objp = cache_alloc_refill(cachep, flags);
3023 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003024 return objp;
3025}
3026
Andrew Mortona737b3e2006-03-22 00:08:11 -08003027static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3028 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07003029{
3030 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003031 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07003032
3033 cache_alloc_debugcheck_before(cachep, flags);
3034
3035 local_irq_save(save_flags);
3036 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003037 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07003038 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003039 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07003040 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003041 return objp;
3042}
3043
Christoph Lametere498be72005-09-09 13:03:32 -07003044#ifdef CONFIG_NUMA
3045/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003046 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003047 *
3048 * If we are in_interrupt, then process context, including cpusets and
3049 * mempolicy, may not apply and should not be used for allocation policy.
3050 */
3051static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3052{
3053 int nid_alloc, nid_here;
3054
3055 if (in_interrupt())
3056 return NULL;
3057 nid_alloc = nid_here = numa_node_id();
3058 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3059 nid_alloc = cpuset_mem_spread_node();
3060 else if (current->mempolicy)
3061 nid_alloc = slab_node(current->mempolicy);
3062 if (nid_alloc != nid_here)
3063 return __cache_alloc_node(cachep, flags, nid_alloc);
3064 return NULL;
3065}
3066
3067/*
Christoph Lametere498be72005-09-09 13:03:32 -07003068 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003070static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3071 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003072{
3073 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003074 struct slab *slabp;
3075 struct kmem_list3 *l3;
3076 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003077 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003078
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003079 l3 = cachep->nodelists[nodeid];
3080 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003081
Andrew Mortona737b3e2006-03-22 00:08:11 -08003082retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003083 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003084 spin_lock(&l3->list_lock);
3085 entry = l3->slabs_partial.next;
3086 if (entry == &l3->slabs_partial) {
3087 l3->free_touched = 1;
3088 entry = l3->slabs_free.next;
3089 if (entry == &l3->slabs_free)
3090 goto must_grow;
3091 }
Christoph Lametere498be72005-09-09 13:03:32 -07003092
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003093 slabp = list_entry(entry, struct slab, list);
3094 check_spinlock_acquired_node(cachep, nodeid);
3095 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003096
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003097 STATS_INC_NODEALLOCS(cachep);
3098 STATS_INC_ACTIVE(cachep);
3099 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003100
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003101 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003102
Matthew Dobson78d382d2006-02-01 03:05:47 -08003103 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003104 check_slabp(cachep, slabp);
3105 l3->free_objects--;
3106 /* move slabp to correct slabp list: */
3107 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003108
Andrew Mortona737b3e2006-03-22 00:08:11 -08003109 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003110 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003111 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003112 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003113
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003114 spin_unlock(&l3->list_lock);
3115 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003116
Andrew Mortona737b3e2006-03-22 00:08:11 -08003117must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003118 spin_unlock(&l3->list_lock);
3119 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003120
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003121 if (!x)
3122 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003123
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003124 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003125done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003126 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003127}
3128#endif
3129
3130/*
3131 * Caller needs to acquire correct kmem_list's list_lock
3132 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003133static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003134 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003135{
3136 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003137 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003138
3139 for (i = 0; i < nr_objects; i++) {
3140 void *objp = objpp[i];
3141 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003142
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003143 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003144 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003145 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003146 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003147 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003148 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003149 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003150 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003151 check_slabp(cachep, slabp);
3152
3153 /* fixup slab chains */
3154 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003155 if (l3->free_objects > l3->free_limit) {
3156 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003157 /* No need to drop any previously held
3158 * lock here, even if we have a off-slab slab
3159 * descriptor it is guaranteed to come from
3160 * a different cache, refer to comments before
3161 * alloc_slabmgmt.
3162 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003163 slab_destroy(cachep, slabp);
3164 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003165 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003166 }
3167 } else {
3168 /* Unconditionally move a slab to the end of the
3169 * partial list on free - maximum time for the
3170 * other objects to be freed, too.
3171 */
Christoph Lametere498be72005-09-09 13:03:32 -07003172 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003173 }
3174 }
3175}
3176
Pekka Enberg343e0d72006-02-01 03:05:50 -08003177static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003178{
3179 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003180 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003181 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003182
3183 batchcount = ac->batchcount;
3184#if DEBUG
3185 BUG_ON(!batchcount || batchcount > ac->avail);
3186#endif
3187 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003188 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003189 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003190 if (l3->shared) {
3191 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003192 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003193 if (max) {
3194 if (batchcount > max)
3195 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003196 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003197 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003198 shared_array->avail += batchcount;
3199 goto free_done;
3200 }
3201 }
3202
Christoph Lameterff694162005-09-22 21:44:02 -07003203 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003204free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003205#if STATS
3206 {
3207 int i = 0;
3208 struct list_head *p;
3209
Christoph Lametere498be72005-09-09 13:03:32 -07003210 p = l3->slabs_free.next;
3211 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003212 struct slab *slabp;
3213
3214 slabp = list_entry(p, struct slab, list);
3215 BUG_ON(slabp->inuse);
3216
3217 i++;
3218 p = p->next;
3219 }
3220 STATS_SET_FREEABLE(cachep, i);
3221 }
3222#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003223 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003224 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003225 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003226}
3227
3228/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003229 * Release an obj back to its cache. If the obj has a constructed state, it must
3230 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003231 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003232static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233{
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08003234 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003235
3236 check_irq_off();
3237 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3238
Ingo Molnar873623d2006-07-13 14:44:38 +02003239 if (cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003240 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003241
Linus Torvalds1da177e2005-04-16 15:20:36 -07003242 if (likely(ac->avail < ac->limit)) {
3243 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003244 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003245 return;
3246 } else {
3247 STATS_INC_FREEMISS(cachep);
3248 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003249 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003250 }
3251}
3252
3253/**
3254 * kmem_cache_alloc - Allocate an object
3255 * @cachep: The cache to allocate from.
3256 * @flags: See kmalloc().
3257 *
3258 * Allocate an object from this cache. The flags are only relevant
3259 * if the cache has no available objects.
3260 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003261void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003262{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003263 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003264}
3265EXPORT_SYMBOL(kmem_cache_alloc);
3266
3267/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003268 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003269 * @cache: The cache to allocate from.
3270 * @flags: See kmalloc().
3271 *
3272 * Allocate an object from this cache and set the allocated memory to zero.
3273 * The flags are only relevant if the cache has no available objects.
3274 */
3275void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3276{
3277 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3278 if (ret)
3279 memset(ret, 0, obj_size(cache));
3280 return ret;
3281}
3282EXPORT_SYMBOL(kmem_cache_zalloc);
3283
3284/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003285 * kmem_ptr_validate - check if an untrusted pointer might
3286 * be a slab entry.
3287 * @cachep: the cache we're checking against
3288 * @ptr: pointer to validate
3289 *
3290 * This verifies that the untrusted pointer looks sane:
3291 * it is _not_ a guarantee that the pointer is actually
3292 * part of the slab cache in question, but it at least
3293 * validates that the pointer can be dereferenced and
3294 * looks half-way sane.
3295 *
3296 * Currently only used for dentry validation.
3297 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003298int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003299{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003300 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003301 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003302 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003303 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003304 struct page *page;
3305
3306 if (unlikely(addr < min_addr))
3307 goto out;
3308 if (unlikely(addr > (unsigned long)high_memory - size))
3309 goto out;
3310 if (unlikely(addr & align_mask))
3311 goto out;
3312 if (unlikely(!kern_addr_valid(addr)))
3313 goto out;
3314 if (unlikely(!kern_addr_valid(addr + size - 1)))
3315 goto out;
3316 page = virt_to_page(ptr);
3317 if (unlikely(!PageSlab(page)))
3318 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003319 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003320 goto out;
3321 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003322out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323 return 0;
3324}
3325
3326#ifdef CONFIG_NUMA
3327/**
3328 * kmem_cache_alloc_node - Allocate an object on the specified node
3329 * @cachep: The cache to allocate from.
3330 * @flags: See kmalloc().
3331 * @nodeid: node number of the target node.
3332 *
3333 * Identical to kmem_cache_alloc, except that this function is slow
3334 * and can sleep. And it will allocate memory on the given node, which
3335 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003336 * New and improved: it will now make sure that the object gets
3337 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003339void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003340{
Christoph Lametere498be72005-09-09 13:03:32 -07003341 unsigned long save_flags;
3342 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003343
Christoph Lametere498be72005-09-09 13:03:32 -07003344 cache_alloc_debugcheck_before(cachep, flags);
3345 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003346
3347 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003348 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003349 ptr = ____cache_alloc(cachep, flags);
3350 else
3351 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003352 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003353
3354 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3355 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003356
Christoph Lametere498be72005-09-09 13:03:32 -07003357 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003358}
3359EXPORT_SYMBOL(kmem_cache_alloc_node);
3360
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003361void *__kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003362{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003363 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003364
3365 cachep = kmem_find_general_cachep(size, flags);
3366 if (unlikely(cachep == NULL))
3367 return NULL;
3368 return kmem_cache_alloc_node(cachep, flags, node);
3369}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003370EXPORT_SYMBOL(__kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003371#endif
3372
3373/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003374 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003376 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003377 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003378 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003379static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3380 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003381{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003382 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003383
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003384 /* If you want to save a few bytes .text space: replace
3385 * __ with kmem_.
3386 * Then kmalloc uses the uninlined functions instead of the inline
3387 * functions.
3388 */
3389 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003390 if (unlikely(cachep == NULL))
3391 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003392 return __cache_alloc(cachep, flags, caller);
3393}
3394
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003395
3396void *__kmalloc(size_t size, gfp_t flags)
3397{
Al Viro871751e2006-03-25 03:06:39 -08003398#ifndef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003399 return __do_kmalloc(size, flags, NULL);
Al Viro871751e2006-03-25 03:06:39 -08003400#else
3401 return __do_kmalloc(size, flags, __builtin_return_address(0));
3402#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403}
3404EXPORT_SYMBOL(__kmalloc);
3405
Al Viro871751e2006-03-25 03:06:39 -08003406#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003407void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3408{
3409 return __do_kmalloc(size, flags, caller);
3410}
3411EXPORT_SYMBOL(__kmalloc_track_caller);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003412#endif
3413
Linus Torvalds1da177e2005-04-16 15:20:36 -07003414#ifdef CONFIG_SMP
3415/**
Martin Peschke7ff6f082006-09-25 23:31:21 -07003416 * percpu_depopulate - depopulate per-cpu data for given cpu
3417 * @__pdata: per-cpu data to depopulate
3418 * @cpu: depopulate per-cpu data for this cpu
Linus Torvalds1da177e2005-04-16 15:20:36 -07003419 *
Martin Peschke7ff6f082006-09-25 23:31:21 -07003420 * Depopulating per-cpu data for a cpu going offline would be a typical
3421 * use case. You need to register a cpu hotplug handler for that purpose.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003422 */
Martin Peschke7ff6f082006-09-25 23:31:21 -07003423void percpu_depopulate(void *__pdata, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003424{
Martin Peschke7ff6f082006-09-25 23:31:21 -07003425 struct percpu_data *pdata = __percpu_disguise(__pdata);
3426 if (pdata->ptrs[cpu]) {
3427 kfree(pdata->ptrs[cpu]);
3428 pdata->ptrs[cpu] = NULL;
3429 }
3430}
3431EXPORT_SYMBOL_GPL(percpu_depopulate);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003432
Martin Peschke7ff6f082006-09-25 23:31:21 -07003433/**
3434 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
3435 * @__pdata: per-cpu data to depopulate
3436 * @mask: depopulate per-cpu data for cpu's selected through mask bits
3437 */
3438void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
3439{
3440 int cpu;
3441 for_each_cpu_mask(cpu, *mask)
3442 percpu_depopulate(__pdata, cpu);
3443}
3444EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
3445
3446/**
3447 * percpu_populate - populate per-cpu data for given cpu
3448 * @__pdata: per-cpu data to populate further
3449 * @size: size of per-cpu object
3450 * @gfp: may sleep or not etc.
3451 * @cpu: populate per-data for this cpu
3452 *
3453 * Populating per-cpu data for a cpu coming online would be a typical
3454 * use case. You need to register a cpu hotplug handler for that purpose.
3455 * Per-cpu object is populated with zeroed buffer.
3456 */
3457void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
3458{
3459 struct percpu_data *pdata = __percpu_disguise(__pdata);
3460 int node = cpu_to_node(cpu);
3461
3462 BUG_ON(pdata->ptrs[cpu]);
3463 if (node_online(node)) {
3464 /* FIXME: kzalloc_node(size, gfp, node) */
3465 pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
3466 if (pdata->ptrs[cpu])
3467 memset(pdata->ptrs[cpu], 0, size);
3468 } else
3469 pdata->ptrs[cpu] = kzalloc(size, gfp);
3470 return pdata->ptrs[cpu];
3471}
3472EXPORT_SYMBOL_GPL(percpu_populate);
3473
3474/**
3475 * percpu_populate_mask - populate per-cpu data for more cpu's
3476 * @__pdata: per-cpu data to populate further
3477 * @size: size of per-cpu object
3478 * @gfp: may sleep or not etc.
3479 * @mask: populate per-cpu data for cpu's selected through mask bits
3480 *
3481 * Per-cpu objects are populated with zeroed buffers.
3482 */
3483int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
3484 cpumask_t *mask)
3485{
3486 cpumask_t populated = CPU_MASK_NONE;
3487 int cpu;
3488
3489 for_each_cpu_mask(cpu, *mask)
3490 if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
3491 __percpu_depopulate_mask(__pdata, &populated);
3492 return -ENOMEM;
3493 } else
3494 cpu_set(cpu, populated);
3495 return 0;
3496}
3497EXPORT_SYMBOL_GPL(__percpu_populate_mask);
3498
3499/**
3500 * percpu_alloc_mask - initial setup of per-cpu data
3501 * @size: size of per-cpu object
3502 * @gfp: may sleep or not etc.
3503 * @mask: populate per-data for cpu's selected through mask bits
3504 *
3505 * Populating per-cpu data for all online cpu's would be a typical use case,
3506 * which is simplified by the percpu_alloc() wrapper.
3507 * Per-cpu objects are populated with zeroed buffers.
3508 */
3509void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
3510{
3511 void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
3512 void *__pdata = __percpu_disguise(pdata);
3513
3514 if (unlikely(!pdata))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003515 return NULL;
Martin Peschke7ff6f082006-09-25 23:31:21 -07003516 if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
3517 return __pdata;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518 kfree(pdata);
3519 return NULL;
3520}
Martin Peschke7ff6f082006-09-25 23:31:21 -07003521EXPORT_SYMBOL_GPL(__percpu_alloc_mask);
3522
3523/**
3524 * percpu_free - final cleanup of per-cpu data
3525 * @__pdata: object to clean up
3526 *
3527 * We simply clean up any per-cpu object left. No need for the client to
3528 * track and specify through a bis mask which per-cpu objects are to free.
3529 */
3530void percpu_free(void *__pdata)
3531{
3532 __percpu_depopulate_mask(__pdata, &cpu_possible_map);
3533 kfree(__percpu_disguise(__pdata));
3534}
3535EXPORT_SYMBOL_GPL(percpu_free);
3536#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537
3538/**
3539 * kmem_cache_free - Deallocate an object
3540 * @cachep: The cache the allocation was from.
3541 * @objp: The previously allocated object.
3542 *
3543 * Free an object which was previously allocated from this
3544 * cache.
3545 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003546void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547{
3548 unsigned long flags;
3549
Pekka Enbergddc2e812006-06-23 02:03:40 -07003550 BUG_ON(virt_to_cache(objp) != cachep);
3551
Linus Torvalds1da177e2005-04-16 15:20:36 -07003552 local_irq_save(flags);
Ingo Molnar873623d2006-07-13 14:44:38 +02003553 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003554 local_irq_restore(flags);
3555}
3556EXPORT_SYMBOL(kmem_cache_free);
3557
3558/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003559 * kfree - free previously allocated memory
3560 * @objp: pointer returned by kmalloc.
3561 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003562 * If @objp is NULL, no operation is performed.
3563 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003564 * Don't free memory not originally allocated by kmalloc()
3565 * or you will run into trouble.
3566 */
3567void kfree(const void *objp)
3568{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003569 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003570 unsigned long flags;
3571
3572 if (unlikely(!objp))
3573 return;
3574 local_irq_save(flags);
3575 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003576 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003577 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003578 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579 local_irq_restore(flags);
3580}
3581EXPORT_SYMBOL(kfree);
3582
Pekka Enberg343e0d72006-02-01 03:05:50 -08003583unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003584{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003585 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586}
3587EXPORT_SYMBOL(kmem_cache_size);
3588
Pekka Enberg343e0d72006-02-01 03:05:50 -08003589const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003590{
3591 return cachep->name;
3592}
3593EXPORT_SYMBOL_GPL(kmem_cache_name);
3594
Christoph Lametere498be72005-09-09 13:03:32 -07003595/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003596 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003597 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003598static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003599{
3600 int node;
3601 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003602 struct array_cache *new_shared;
3603 struct array_cache **new_alien;
Christoph Lametere498be72005-09-09 13:03:32 -07003604
3605 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003606
Andrew Mortona737b3e2006-03-22 00:08:11 -08003607 new_alien = alloc_alien_cache(node, cachep->limit);
3608 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003609 goto fail;
Christoph Lametercafeb022006-03-25 03:06:46 -08003610
Christoph Lameter0718dc22006-03-25 03:06:47 -08003611 new_shared = alloc_arraycache(node,
3612 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003613 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003614 if (!new_shared) {
3615 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003616 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003617 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003618
Andrew Mortona737b3e2006-03-22 00:08:11 -08003619 l3 = cachep->nodelists[node];
3620 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003621 struct array_cache *shared = l3->shared;
3622
Christoph Lametere498be72005-09-09 13:03:32 -07003623 spin_lock_irq(&l3->list_lock);
3624
Christoph Lametercafeb022006-03-25 03:06:46 -08003625 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003626 free_block(cachep, shared->entry,
3627 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003628
Christoph Lametercafeb022006-03-25 03:06:46 -08003629 l3->shared = new_shared;
3630 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003631 l3->alien = new_alien;
3632 new_alien = NULL;
3633 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003634 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003635 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003636 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003637 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003638 free_alien_cache(new_alien);
3639 continue;
3640 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003641 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003642 if (!l3) {
3643 free_alien_cache(new_alien);
3644 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003645 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003646 }
Christoph Lametere498be72005-09-09 13:03:32 -07003647
3648 kmem_list3_init(l3);
3649 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003650 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003651 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003652 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003653 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003654 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003655 cachep->nodelists[node] = l3;
3656 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003657 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003658
Andrew Mortona737b3e2006-03-22 00:08:11 -08003659fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003660 if (!cachep->next.next) {
3661 /* Cache is not active yet. Roll back what we did */
3662 node--;
3663 while (node >= 0) {
3664 if (cachep->nodelists[node]) {
3665 l3 = cachep->nodelists[node];
3666
3667 kfree(l3->shared);
3668 free_alien_cache(l3->alien);
3669 kfree(l3);
3670 cachep->nodelists[node] = NULL;
3671 }
3672 node--;
3673 }
3674 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003675 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003676}
3677
Linus Torvalds1da177e2005-04-16 15:20:36 -07003678struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003679 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003680 struct array_cache *new[NR_CPUS];
3681};
3682
3683static void do_ccupdate_local(void *info)
3684{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003685 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003686 struct array_cache *old;
3687
3688 check_irq_off();
Pekka Enberg9a2dba4b2006-02-01 03:05:49 -08003689 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003690
Linus Torvalds1da177e2005-04-16 15:20:36 -07003691 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3692 new->new[smp_processor_id()] = old;
3693}
3694
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003695/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003696static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3697 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003698{
3699 struct ccupdate_struct new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003700 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003701
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003702 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003703 for_each_online_cpu(i) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003704 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3705 batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003706 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003707 for (i--; i >= 0; i--)
3708 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003709 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003710 }
3711 }
3712 new.cachep = cachep;
3713
Andrew Mortona07fa392006-03-22 00:08:17 -08003714 on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003715
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003717 cachep->batchcount = batchcount;
3718 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003719 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720
Christoph Lametere498be72005-09-09 13:03:32 -07003721 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003722 struct array_cache *ccold = new.new[i];
3723 if (!ccold)
3724 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003725 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003726 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003727 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003728 kfree(ccold);
3729 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003731 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003732}
3733
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003734/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003735static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003736{
3737 int err;
3738 int limit, shared;
3739
Andrew Mortona737b3e2006-03-22 00:08:11 -08003740 /*
3741 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003742 * - create a LIFO ordering, i.e. return objects that are cache-warm
3743 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003744 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003745 * bufctl chains: array operations are cheaper.
3746 * The numbers are guessed, we should auto-tune as described by
3747 * Bonwick.
3748 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003749 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003751 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003752 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003753 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003754 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003755 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003756 limit = 54;
3757 else
3758 limit = 120;
3759
Andrew Mortona737b3e2006-03-22 00:08:11 -08003760 /*
3761 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762 * allocation behaviour: Most allocs on one cpu, most free operations
3763 * on another cpu. For these cases, an efficient object passing between
3764 * cpus is necessary. This is provided by a shared array. The array
3765 * replaces Bonwick's magazine layer.
3766 * On uniprocessor, it's functionally equivalent (but less efficient)
3767 * to a larger limit. Thus disabled by default.
3768 */
3769 shared = 0;
3770#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003771 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003772 shared = 8;
3773#endif
3774
3775#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003776 /*
3777 * With debugging enabled, large batchcount lead to excessively long
3778 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003779 */
3780 if (limit > 32)
3781 limit = 32;
3782#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003783 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003784 if (err)
3785 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003786 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003787 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003788}
3789
Christoph Lameter1b552532006-03-22 00:09:07 -08003790/*
3791 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003792 * necessary. Note that the l3 listlock also protects the array_cache
3793 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003794 */
3795void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3796 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797{
3798 int tofree;
3799
Christoph Lameter1b552532006-03-22 00:09:07 -08003800 if (!ac || !ac->avail)
3801 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003802 if (ac->touched && !force) {
3803 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003804 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003805 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003806 if (ac->avail) {
3807 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3808 if (tofree > ac->avail)
3809 tofree = (ac->avail + 1) / 2;
3810 free_block(cachep, ac->entry, tofree, node);
3811 ac->avail -= tofree;
3812 memmove(ac->entry, &(ac->entry[tofree]),
3813 sizeof(void *) * ac->avail);
3814 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003815 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003816 }
3817}
3818
3819/**
3820 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003821 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003822 *
3823 * Called from workqueue/eventd every few seconds.
3824 * Purpose:
3825 * - clear the per-cpu caches for this CPU.
3826 * - return freeable pages to the main free memory pool.
3827 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003828 * If we cannot acquire the cache chain mutex then just give up - we'll try
3829 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830 */
3831static void cache_reap(void *unused)
3832{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003833 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07003834 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08003835 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003836
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003837 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003838 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003839 schedule_delayed_work(&__get_cpu_var(reap_work),
3840 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003841 return;
3842 }
3843
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003844 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845 check_irq_on();
3846
Christoph Lameter35386e32006-03-22 00:09:05 -08003847 /*
3848 * We only take the l3 lock if absolutely necessary and we
3849 * have established with reasonable certainty that
3850 * we can do some work if the lock was obtained.
3851 */
Christoph Lameteraab22072006-03-22 00:09:06 -08003852 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08003853
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003854 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003855
Christoph Lameteraab22072006-03-22 00:09:06 -08003856 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003857
Christoph Lameter35386e32006-03-22 00:09:05 -08003858 /*
3859 * These are racy checks but it does not matter
3860 * if we skip one check or scan twice.
3861 */
Christoph Lametere498be72005-09-09 13:03:32 -07003862 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08003863 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003864
Christoph Lametere498be72005-09-09 13:03:32 -07003865 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003866
Christoph Lameteraab22072006-03-22 00:09:06 -08003867 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003868
Christoph Lametered11d9e2006-06-30 01:55:45 -07003869 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07003870 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07003871 else {
3872 int freed;
3873
3874 freed = drain_freelist(searchp, l3, (l3->free_limit +
3875 5 * searchp->num - 1) / (5 * searchp->num));
3876 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003877 }
Christoph Lameter35386e32006-03-22 00:09:05 -08003878next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003879 cond_resched();
3880 }
3881 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003882 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003883 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07003884 refresh_cpu_vm_stats(smp_processor_id());
Andrew Mortona737b3e2006-03-22 00:08:11 -08003885 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003886 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003887}
3888
3889#ifdef CONFIG_PROC_FS
3890
Pekka Enberg85289f92006-01-08 01:00:36 -08003891static void print_slabinfo_header(struct seq_file *m)
3892{
3893 /*
3894 * Output format version, so at least we can change it
3895 * without _too_ many complaints.
3896 */
3897#if STATS
3898 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3899#else
3900 seq_puts(m, "slabinfo - version: 2.1\n");
3901#endif
3902 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3903 "<objperslab> <pagesperslab>");
3904 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3905 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3906#if STATS
3907 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003908 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08003909 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3910#endif
3911 seq_putc(m, '\n');
3912}
3913
Linus Torvalds1da177e2005-04-16 15:20:36 -07003914static void *s_start(struct seq_file *m, loff_t *pos)
3915{
3916 loff_t n = *pos;
3917 struct list_head *p;
3918
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003919 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003920 if (!n)
3921 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003922 p = cache_chain.next;
3923 while (n--) {
3924 p = p->next;
3925 if (p == &cache_chain)
3926 return NULL;
3927 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003928 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003929}
3930
3931static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3932{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003933 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003934 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003935 return cachep->next.next == &cache_chain ?
3936 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003937}
3938
3939static void s_stop(struct seq_file *m, void *p)
3940{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003941 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003942}
3943
3944static int s_show(struct seq_file *m, void *p)
3945{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003946 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003947 struct slab *slabp;
3948 unsigned long active_objs;
3949 unsigned long num_objs;
3950 unsigned long active_slabs = 0;
3951 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003952 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003953 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003954 int node;
3955 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003956
Linus Torvalds1da177e2005-04-16 15:20:36 -07003957 active_objs = 0;
3958 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003959 for_each_online_node(node) {
3960 l3 = cachep->nodelists[node];
3961 if (!l3)
3962 continue;
3963
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003964 check_irq_on();
3965 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003966
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003967 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003968 if (slabp->inuse != cachep->num && !error)
3969 error = "slabs_full accounting error";
3970 active_objs += cachep->num;
3971 active_slabs++;
3972 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003973 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003974 if (slabp->inuse == cachep->num && !error)
3975 error = "slabs_partial inuse accounting error";
3976 if (!slabp->inuse && !error)
3977 error = "slabs_partial/inuse accounting error";
3978 active_objs += slabp->inuse;
3979 active_slabs++;
3980 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003981 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07003982 if (slabp->inuse && !error)
3983 error = "slabs_free/inuse accounting error";
3984 num_slabs++;
3985 }
3986 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003987 if (l3->shared)
3988 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003989
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003990 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003991 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003992 num_slabs += active_slabs;
3993 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003994 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003995 error = "free_objects accounting error";
3996
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003997 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998 if (error)
3999 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4000
4001 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004002 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004003 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004005 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004006 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004007 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004008#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004009 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004010 unsigned long high = cachep->high_mark;
4011 unsigned long allocs = cachep->num_allocations;
4012 unsigned long grown = cachep->grown;
4013 unsigned long reaped = cachep->reaped;
4014 unsigned long errors = cachep->errors;
4015 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004016 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004017 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004018 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004019
Christoph Lametere498be72005-09-09 13:03:32 -07004020 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004021 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004022 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004023 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004024 }
4025 /* cpu stats */
4026 {
4027 unsigned long allochit = atomic_read(&cachep->allochit);
4028 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4029 unsigned long freehit = atomic_read(&cachep->freehit);
4030 unsigned long freemiss = atomic_read(&cachep->freemiss);
4031
4032 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004033 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034 }
4035#endif
4036 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037 return 0;
4038}
4039
4040/*
4041 * slabinfo_op - iterator that generates /proc/slabinfo
4042 *
4043 * Output layout:
4044 * cache-name
4045 * num-active-objs
4046 * total-objs
4047 * object size
4048 * num-active-slabs
4049 * total-slabs
4050 * num-pages-per-slab
4051 * + further values on SMP and with statistics enabled
4052 */
4053
4054struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004055 .start = s_start,
4056 .next = s_next,
4057 .stop = s_stop,
4058 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004059};
4060
4061#define MAX_SLABINFO_WRITE 128
4062/**
4063 * slabinfo_write - Tuning for the slab allocator
4064 * @file: unused
4065 * @buffer: user buffer
4066 * @count: data length
4067 * @ppos: unused
4068 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004069ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4070 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004071{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004072 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004073 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004074 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004075
Linus Torvalds1da177e2005-04-16 15:20:36 -07004076 if (count > MAX_SLABINFO_WRITE)
4077 return -EINVAL;
4078 if (copy_from_user(&kbuf, buffer, count))
4079 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004080 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004081
4082 tmp = strchr(kbuf, ' ');
4083 if (!tmp)
4084 return -EINVAL;
4085 *tmp = '\0';
4086 tmp++;
4087 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4088 return -EINVAL;
4089
4090 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004091 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004093 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004094 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004095 if (limit < 1 || batchcount < 1 ||
4096 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004097 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004098 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004099 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004100 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004101 }
4102 break;
4103 }
4104 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004105 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106 if (res >= 0)
4107 res = count;
4108 return res;
4109}
Al Viro871751e2006-03-25 03:06:39 -08004110
4111#ifdef CONFIG_DEBUG_SLAB_LEAK
4112
4113static void *leaks_start(struct seq_file *m, loff_t *pos)
4114{
4115 loff_t n = *pos;
4116 struct list_head *p;
4117
4118 mutex_lock(&cache_chain_mutex);
4119 p = cache_chain.next;
4120 while (n--) {
4121 p = p->next;
4122 if (p == &cache_chain)
4123 return NULL;
4124 }
4125 return list_entry(p, struct kmem_cache, next);
4126}
4127
4128static inline int add_caller(unsigned long *n, unsigned long v)
4129{
4130 unsigned long *p;
4131 int l;
4132 if (!v)
4133 return 1;
4134 l = n[1];
4135 p = n + 2;
4136 while (l) {
4137 int i = l/2;
4138 unsigned long *q = p + 2 * i;
4139 if (*q == v) {
4140 q[1]++;
4141 return 1;
4142 }
4143 if (*q > v) {
4144 l = i;
4145 } else {
4146 p = q + 2;
4147 l -= i + 1;
4148 }
4149 }
4150 if (++n[1] == n[0])
4151 return 0;
4152 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4153 p[0] = v;
4154 p[1] = 1;
4155 return 1;
4156}
4157
4158static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4159{
4160 void *p;
4161 int i;
4162 if (n[0] == n[1])
4163 return;
4164 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4165 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4166 continue;
4167 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4168 return;
4169 }
4170}
4171
4172static void show_symbol(struct seq_file *m, unsigned long address)
4173{
4174#ifdef CONFIG_KALLSYMS
4175 char *modname;
4176 const char *name;
4177 unsigned long offset, size;
4178 char namebuf[KSYM_NAME_LEN+1];
4179
4180 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4181
4182 if (name) {
4183 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4184 if (modname)
4185 seq_printf(m, " [%s]", modname);
4186 return;
4187 }
4188#endif
4189 seq_printf(m, "%p", (void *)address);
4190}
4191
4192static int leaks_show(struct seq_file *m, void *p)
4193{
4194 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004195 struct slab *slabp;
4196 struct kmem_list3 *l3;
4197 const char *name;
4198 unsigned long *n = m->private;
4199 int node;
4200 int i;
4201
4202 if (!(cachep->flags & SLAB_STORE_USER))
4203 return 0;
4204 if (!(cachep->flags & SLAB_RED_ZONE))
4205 return 0;
4206
4207 /* OK, we can do it */
4208
4209 n[1] = 0;
4210
4211 for_each_online_node(node) {
4212 l3 = cachep->nodelists[node];
4213 if (!l3)
4214 continue;
4215
4216 check_irq_on();
4217 spin_lock_irq(&l3->list_lock);
4218
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004219 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004220 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004221 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004222 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004223 spin_unlock_irq(&l3->list_lock);
4224 }
4225 name = cachep->name;
4226 if (n[0] == n[1]) {
4227 /* Increase the buffer size */
4228 mutex_unlock(&cache_chain_mutex);
4229 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4230 if (!m->private) {
4231 /* Too bad, we are really out */
4232 m->private = n;
4233 mutex_lock(&cache_chain_mutex);
4234 return -ENOMEM;
4235 }
4236 *(unsigned long *)m->private = n[0] * 2;
4237 kfree(n);
4238 mutex_lock(&cache_chain_mutex);
4239 /* Now make sure this entry will be retried */
4240 m->count = m->size;
4241 return 0;
4242 }
4243 for (i = 0; i < n[1]; i++) {
4244 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4245 show_symbol(m, n[2*i+2]);
4246 seq_putc(m, '\n');
4247 }
4248 return 0;
4249}
4250
4251struct seq_operations slabstats_op = {
4252 .start = leaks_start,
4253 .next = s_next,
4254 .stop = s_stop,
4255 .show = leaks_show,
4256};
4257#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004258#endif
4259
Manfred Spraul00e145b2005-09-03 15:55:07 -07004260/**
4261 * ksize - get the actual amount of memory allocated for a given object
4262 * @objp: Pointer to the object
4263 *
4264 * kmalloc may internally round up allocations and return more memory
4265 * than requested. ksize() can be used to determine the actual amount of
4266 * memory allocated. The caller may use this additional memory, even though
4267 * a smaller amount of memory was initially specified with the kmalloc call.
4268 * The caller must guarantee that objp points to a valid object previously
4269 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4270 * must not be freed during the duration of the call.
4271 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004272unsigned int ksize(const void *objp)
4273{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004274 if (unlikely(objp == NULL))
4275 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004276
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004277 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004278}