Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * IDE I/O functions |
| 3 | * |
| 4 | * Basic PIO and command management functionality. |
| 5 | * |
| 6 | * This code was split off from ide.c. See ide.c for history and original |
| 7 | * copyrights. |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify it |
| 10 | * under the terms of the GNU General Public License as published by the |
| 11 | * Free Software Foundation; either version 2, or (at your option) any |
| 12 | * later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but |
| 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 17 | * General Public License for more details. |
| 18 | * |
| 19 | * For the avoidance of doubt the "preferred form" of this code is one which |
| 20 | * is in an open non patent encumbered format. Where cryptographic key signing |
| 21 | * forms part of the process of creating an executable the information |
| 22 | * including keys needed to generate an equivalently functional executable |
| 23 | * are deemed to be part of the source code. |
| 24 | */ |
| 25 | |
| 26 | |
| 27 | #include <linux/config.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/types.h> |
| 30 | #include <linux/string.h> |
| 31 | #include <linux/kernel.h> |
| 32 | #include <linux/timer.h> |
| 33 | #include <linux/mm.h> |
| 34 | #include <linux/interrupt.h> |
| 35 | #include <linux/major.h> |
| 36 | #include <linux/errno.h> |
| 37 | #include <linux/genhd.h> |
| 38 | #include <linux/blkpg.h> |
| 39 | #include <linux/slab.h> |
| 40 | #include <linux/init.h> |
| 41 | #include <linux/pci.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <linux/ide.h> |
| 44 | #include <linux/completion.h> |
| 45 | #include <linux/reboot.h> |
| 46 | #include <linux/cdrom.h> |
| 47 | #include <linux/seq_file.h> |
| 48 | #include <linux/device.h> |
| 49 | #include <linux/kmod.h> |
| 50 | #include <linux/scatterlist.h> |
| 51 | |
| 52 | #include <asm/byteorder.h> |
| 53 | #include <asm/irq.h> |
| 54 | #include <asm/uaccess.h> |
| 55 | #include <asm/io.h> |
| 56 | #include <asm/bitops.h> |
| 57 | |
| 58 | int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate, |
| 59 | int nr_sectors) |
| 60 | { |
| 61 | int ret = 1; |
| 62 | |
| 63 | BUG_ON(!(rq->flags & REQ_STARTED)); |
| 64 | |
| 65 | /* |
| 66 | * if failfast is set on a request, override number of sectors and |
| 67 | * complete the whole request right now |
| 68 | */ |
| 69 | if (blk_noretry_request(rq) && end_io_error(uptodate)) |
| 70 | nr_sectors = rq->hard_nr_sectors; |
| 71 | |
| 72 | if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) |
| 73 | rq->errors = -EIO; |
| 74 | |
| 75 | /* |
| 76 | * decide whether to reenable DMA -- 3 is a random magic for now, |
| 77 | * if we DMA timeout more than 3 times, just stay in PIO |
| 78 | */ |
| 79 | if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { |
| 80 | drive->state = 0; |
| 81 | HWGROUP(drive)->hwif->ide_dma_on(drive); |
| 82 | } |
| 83 | |
| 84 | if (!end_that_request_first(rq, uptodate, nr_sectors)) { |
| 85 | add_disk_randomness(rq->rq_disk); |
| 86 | |
| 87 | if (blk_rq_tagged(rq)) |
| 88 | blk_queue_end_tag(drive->queue, rq); |
| 89 | |
| 90 | blkdev_dequeue_request(rq); |
| 91 | HWGROUP(drive)->rq = NULL; |
| 92 | end_that_request_last(rq); |
| 93 | ret = 0; |
| 94 | } |
| 95 | return ret; |
| 96 | } |
| 97 | EXPORT_SYMBOL(__ide_end_request); |
| 98 | |
| 99 | /** |
| 100 | * ide_end_request - complete an IDE I/O |
| 101 | * @drive: IDE device for the I/O |
| 102 | * @uptodate: |
| 103 | * @nr_sectors: number of sectors completed |
| 104 | * |
| 105 | * This is our end_request wrapper function. We complete the I/O |
| 106 | * update random number input and dequeue the request, which if |
| 107 | * it was tagged may be out of order. |
| 108 | */ |
| 109 | |
| 110 | int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) |
| 111 | { |
| 112 | struct request *rq; |
| 113 | unsigned long flags; |
| 114 | int ret = 1; |
| 115 | |
| 116 | spin_lock_irqsave(&ide_lock, flags); |
| 117 | rq = HWGROUP(drive)->rq; |
| 118 | |
| 119 | if (!nr_sectors) |
| 120 | nr_sectors = rq->hard_cur_sectors; |
| 121 | |
| 122 | if (blk_complete_barrier_rq_locked(drive->queue, rq, nr_sectors)) |
| 123 | ret = rq->nr_sectors != 0; |
| 124 | else |
| 125 | ret = __ide_end_request(drive, rq, uptodate, nr_sectors); |
| 126 | |
| 127 | spin_unlock_irqrestore(&ide_lock, flags); |
| 128 | return ret; |
| 129 | } |
| 130 | EXPORT_SYMBOL(ide_end_request); |
| 131 | |
| 132 | /* |
| 133 | * Power Management state machine. This one is rather trivial for now, |
| 134 | * we should probably add more, like switching back to PIO on suspend |
| 135 | * to help some BIOSes, re-do the door locking on resume, etc... |
| 136 | */ |
| 137 | |
| 138 | enum { |
| 139 | ide_pm_flush_cache = ide_pm_state_start_suspend, |
| 140 | idedisk_pm_standby, |
| 141 | |
| 142 | idedisk_pm_idle = ide_pm_state_start_resume, |
| 143 | ide_pm_restore_dma, |
| 144 | }; |
| 145 | |
| 146 | static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) |
| 147 | { |
| 148 | if (drive->media != ide_disk) |
| 149 | return; |
| 150 | |
| 151 | switch (rq->pm->pm_step) { |
| 152 | case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ |
Michal Schmidt | 46dacba | 2005-09-03 15:57:01 -0700 | [diff] [blame] | 153 | if (rq->pm->pm_state == PM_EVENT_FREEZE) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 154 | rq->pm->pm_step = ide_pm_state_completed; |
| 155 | else |
| 156 | rq->pm->pm_step = idedisk_pm_standby; |
| 157 | break; |
| 158 | case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ |
| 159 | rq->pm->pm_step = ide_pm_state_completed; |
| 160 | break; |
| 161 | case idedisk_pm_idle: /* Resume step 1 (idle) complete */ |
| 162 | rq->pm->pm_step = ide_pm_restore_dma; |
| 163 | break; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) |
| 168 | { |
| 169 | ide_task_t *args = rq->special; |
| 170 | |
| 171 | memset(args, 0, sizeof(*args)); |
| 172 | |
| 173 | if (drive->media != ide_disk) { |
| 174 | /* skip idedisk_pm_idle for ATAPI devices */ |
| 175 | if (rq->pm->pm_step == idedisk_pm_idle) |
| 176 | rq->pm->pm_step = ide_pm_restore_dma; |
| 177 | } |
| 178 | |
| 179 | switch (rq->pm->pm_step) { |
| 180 | case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ |
| 181 | if (drive->media != ide_disk) |
| 182 | break; |
| 183 | /* Not supported? Switch to next step now. */ |
| 184 | if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { |
| 185 | ide_complete_power_step(drive, rq, 0, 0); |
| 186 | return ide_stopped; |
| 187 | } |
| 188 | if (ide_id_has_flush_cache_ext(drive->id)) |
| 189 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; |
| 190 | else |
| 191 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; |
| 192 | args->command_type = IDE_DRIVE_TASK_NO_DATA; |
| 193 | args->handler = &task_no_data_intr; |
| 194 | return do_rw_taskfile(drive, args); |
| 195 | |
| 196 | case idedisk_pm_standby: /* Suspend step 2 (standby) */ |
| 197 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; |
| 198 | args->command_type = IDE_DRIVE_TASK_NO_DATA; |
| 199 | args->handler = &task_no_data_intr; |
| 200 | return do_rw_taskfile(drive, args); |
| 201 | |
| 202 | case idedisk_pm_idle: /* Resume step 1 (idle) */ |
| 203 | args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; |
| 204 | args->command_type = IDE_DRIVE_TASK_NO_DATA; |
| 205 | args->handler = task_no_data_intr; |
| 206 | return do_rw_taskfile(drive, args); |
| 207 | |
| 208 | case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */ |
| 209 | /* |
| 210 | * Right now, all we do is call hwif->ide_dma_check(drive), |
| 211 | * we could be smarter and check for current xfer_speed |
| 212 | * in struct drive etc... |
| 213 | */ |
| 214 | if ((drive->id->capability & 1) == 0) |
| 215 | break; |
| 216 | if (drive->hwif->ide_dma_check == NULL) |
| 217 | break; |
| 218 | drive->hwif->ide_dma_check(drive); |
| 219 | break; |
| 220 | } |
| 221 | rq->pm->pm_step = ide_pm_state_completed; |
| 222 | return ide_stopped; |
| 223 | } |
| 224 | |
| 225 | /** |
| 226 | * ide_complete_pm_request - end the current Power Management request |
| 227 | * @drive: target drive |
| 228 | * @rq: request |
| 229 | * |
| 230 | * This function cleans up the current PM request and stops the queue |
| 231 | * if necessary. |
| 232 | */ |
| 233 | static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) |
| 234 | { |
| 235 | unsigned long flags; |
| 236 | |
| 237 | #ifdef DEBUG_PM |
| 238 | printk("%s: completing PM request, %s\n", drive->name, |
| 239 | blk_pm_suspend_request(rq) ? "suspend" : "resume"); |
| 240 | #endif |
| 241 | spin_lock_irqsave(&ide_lock, flags); |
| 242 | if (blk_pm_suspend_request(rq)) { |
| 243 | blk_stop_queue(drive->queue); |
| 244 | } else { |
| 245 | drive->blocked = 0; |
| 246 | blk_start_queue(drive->queue); |
| 247 | } |
| 248 | blkdev_dequeue_request(rq); |
| 249 | HWGROUP(drive)->rq = NULL; |
| 250 | end_that_request_last(rq); |
| 251 | spin_unlock_irqrestore(&ide_lock, flags); |
| 252 | } |
| 253 | |
| 254 | /* |
| 255 | * FIXME: probably move this somewhere else, name is bad too :) |
| 256 | */ |
| 257 | u64 ide_get_error_location(ide_drive_t *drive, char *args) |
| 258 | { |
| 259 | u32 high, low; |
| 260 | u8 hcyl, lcyl, sect; |
| 261 | u64 sector; |
| 262 | |
| 263 | high = 0; |
| 264 | hcyl = args[5]; |
| 265 | lcyl = args[4]; |
| 266 | sect = args[3]; |
| 267 | |
| 268 | if (ide_id_has_flush_cache_ext(drive->id)) { |
| 269 | low = (hcyl << 16) | (lcyl << 8) | sect; |
| 270 | HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); |
| 271 | high = ide_read_24(drive); |
| 272 | } else { |
| 273 | u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); |
| 274 | if (cur & 0x40) { |
| 275 | high = cur & 0xf; |
| 276 | low = (hcyl << 16) | (lcyl << 8) | sect; |
| 277 | } else { |
| 278 | low = hcyl * drive->head * drive->sect; |
| 279 | low += lcyl * drive->sect; |
| 280 | low += sect - 1; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | sector = ((u64) high << 24) | low; |
| 285 | return sector; |
| 286 | } |
| 287 | EXPORT_SYMBOL(ide_get_error_location); |
| 288 | |
| 289 | /** |
| 290 | * ide_end_drive_cmd - end an explicit drive command |
| 291 | * @drive: command |
| 292 | * @stat: status bits |
| 293 | * @err: error bits |
| 294 | * |
| 295 | * Clean up after success/failure of an explicit drive command. |
| 296 | * These get thrown onto the queue so they are synchronized with |
| 297 | * real I/O operations on the drive. |
| 298 | * |
| 299 | * In LBA48 mode we have to read the register set twice to get |
| 300 | * all the extra information out. |
| 301 | */ |
| 302 | |
| 303 | void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) |
| 304 | { |
| 305 | ide_hwif_t *hwif = HWIF(drive); |
| 306 | unsigned long flags; |
| 307 | struct request *rq; |
| 308 | |
| 309 | spin_lock_irqsave(&ide_lock, flags); |
| 310 | rq = HWGROUP(drive)->rq; |
| 311 | spin_unlock_irqrestore(&ide_lock, flags); |
| 312 | |
| 313 | if (rq->flags & REQ_DRIVE_CMD) { |
| 314 | u8 *args = (u8 *) rq->buffer; |
| 315 | if (rq->errors == 0) |
| 316 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); |
| 317 | |
| 318 | if (args) { |
| 319 | args[0] = stat; |
| 320 | args[1] = err; |
| 321 | args[2] = hwif->INB(IDE_NSECTOR_REG); |
| 322 | } |
| 323 | } else if (rq->flags & REQ_DRIVE_TASK) { |
| 324 | u8 *args = (u8 *) rq->buffer; |
| 325 | if (rq->errors == 0) |
| 326 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); |
| 327 | |
| 328 | if (args) { |
| 329 | args[0] = stat; |
| 330 | args[1] = err; |
| 331 | args[2] = hwif->INB(IDE_NSECTOR_REG); |
| 332 | args[3] = hwif->INB(IDE_SECTOR_REG); |
| 333 | args[4] = hwif->INB(IDE_LCYL_REG); |
| 334 | args[5] = hwif->INB(IDE_HCYL_REG); |
| 335 | args[6] = hwif->INB(IDE_SELECT_REG); |
| 336 | } |
| 337 | } else if (rq->flags & REQ_DRIVE_TASKFILE) { |
| 338 | ide_task_t *args = (ide_task_t *) rq->special; |
| 339 | if (rq->errors == 0) |
| 340 | rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); |
| 341 | |
| 342 | if (args) { |
| 343 | if (args->tf_in_flags.b.data) { |
| 344 | u16 data = hwif->INW(IDE_DATA_REG); |
| 345 | args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF; |
| 346 | args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF; |
| 347 | } |
| 348 | args->tfRegister[IDE_ERROR_OFFSET] = err; |
| 349 | /* be sure we're looking at the low order bits */ |
| 350 | hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); |
| 351 | args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); |
| 352 | args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); |
| 353 | args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); |
| 354 | args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); |
| 355 | args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG); |
| 356 | args->tfRegister[IDE_STATUS_OFFSET] = stat; |
| 357 | |
| 358 | if (drive->addressing == 1) { |
| 359 | hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); |
| 360 | args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG); |
| 361 | args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); |
| 362 | args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); |
| 363 | args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); |
| 364 | args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); |
| 365 | } |
| 366 | } |
| 367 | } else if (blk_pm_request(rq)) { |
| 368 | #ifdef DEBUG_PM |
| 369 | printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", |
| 370 | drive->name, rq->pm->pm_step, stat, err); |
| 371 | #endif |
| 372 | ide_complete_power_step(drive, rq, stat, err); |
| 373 | if (rq->pm->pm_step == ide_pm_state_completed) |
| 374 | ide_complete_pm_request(drive, rq); |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | spin_lock_irqsave(&ide_lock, flags); |
| 379 | blkdev_dequeue_request(rq); |
| 380 | HWGROUP(drive)->rq = NULL; |
| 381 | rq->errors = err; |
| 382 | end_that_request_last(rq); |
| 383 | spin_unlock_irqrestore(&ide_lock, flags); |
| 384 | } |
| 385 | |
| 386 | EXPORT_SYMBOL(ide_end_drive_cmd); |
| 387 | |
| 388 | /** |
| 389 | * try_to_flush_leftover_data - flush junk |
| 390 | * @drive: drive to flush |
| 391 | * |
| 392 | * try_to_flush_leftover_data() is invoked in response to a drive |
| 393 | * unexpectedly having its DRQ_STAT bit set. As an alternative to |
| 394 | * resetting the drive, this routine tries to clear the condition |
| 395 | * by read a sector's worth of data from the drive. Of course, |
| 396 | * this may not help if the drive is *waiting* for data from *us*. |
| 397 | */ |
| 398 | static void try_to_flush_leftover_data (ide_drive_t *drive) |
| 399 | { |
| 400 | int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; |
| 401 | |
| 402 | if (drive->media != ide_disk) |
| 403 | return; |
| 404 | while (i > 0) { |
| 405 | u32 buffer[16]; |
| 406 | u32 wcount = (i > 16) ? 16 : i; |
| 407 | |
| 408 | i -= wcount; |
| 409 | HWIF(drive)->ata_input_data(drive, buffer, wcount); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | static void ide_kill_rq(ide_drive_t *drive, struct request *rq) |
| 414 | { |
| 415 | if (rq->rq_disk) { |
| 416 | ide_driver_t *drv; |
| 417 | |
| 418 | drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| 419 | drv->end_request(drive, 0, 0); |
| 420 | } else |
| 421 | ide_end_request(drive, 0, 0); |
| 422 | } |
| 423 | |
| 424 | static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) |
| 425 | { |
| 426 | ide_hwif_t *hwif = drive->hwif; |
| 427 | |
| 428 | if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { |
| 429 | /* other bits are useless when BUSY */ |
| 430 | rq->errors |= ERROR_RESET; |
| 431 | } else if (stat & ERR_STAT) { |
| 432 | /* err has different meaning on cdrom and tape */ |
| 433 | if (err == ABRT_ERR) { |
| 434 | if (drive->select.b.lba && |
| 435 | /* some newer drives don't support WIN_SPECIFY */ |
| 436 | hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) |
| 437 | return ide_stopped; |
| 438 | } else if ((err & BAD_CRC) == BAD_CRC) { |
| 439 | /* UDMA crc error, just retry the operation */ |
| 440 | drive->crc_count++; |
| 441 | } else if (err & (BBD_ERR | ECC_ERR)) { |
| 442 | /* retries won't help these */ |
| 443 | rq->errors = ERROR_MAX; |
| 444 | } else if (err & TRK0_ERR) { |
| 445 | /* help it find track zero */ |
| 446 | rq->errors |= ERROR_RECAL; |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ) |
| 451 | try_to_flush_leftover_data(drive); |
| 452 | |
| 453 | if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) |
| 454 | /* force an abort */ |
| 455 | hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); |
| 456 | |
| 457 | if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) |
| 458 | ide_kill_rq(drive, rq); |
| 459 | else { |
| 460 | if ((rq->errors & ERROR_RESET) == ERROR_RESET) { |
| 461 | ++rq->errors; |
| 462 | return ide_do_reset(drive); |
| 463 | } |
| 464 | if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) |
| 465 | drive->special.b.recalibrate = 1; |
| 466 | ++rq->errors; |
| 467 | } |
| 468 | return ide_stopped; |
| 469 | } |
| 470 | |
| 471 | static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) |
| 472 | { |
| 473 | ide_hwif_t *hwif = drive->hwif; |
| 474 | |
| 475 | if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { |
| 476 | /* other bits are useless when BUSY */ |
| 477 | rq->errors |= ERROR_RESET; |
| 478 | } else { |
| 479 | /* add decoding error stuff */ |
| 480 | } |
| 481 | |
| 482 | if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) |
| 483 | /* force an abort */ |
| 484 | hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); |
| 485 | |
| 486 | if (rq->errors >= ERROR_MAX) { |
| 487 | ide_kill_rq(drive, rq); |
| 488 | } else { |
| 489 | if ((rq->errors & ERROR_RESET) == ERROR_RESET) { |
| 490 | ++rq->errors; |
| 491 | return ide_do_reset(drive); |
| 492 | } |
| 493 | ++rq->errors; |
| 494 | } |
| 495 | |
| 496 | return ide_stopped; |
| 497 | } |
| 498 | |
| 499 | ide_startstop_t |
| 500 | __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) |
| 501 | { |
| 502 | if (drive->media == ide_disk) |
| 503 | return ide_ata_error(drive, rq, stat, err); |
| 504 | return ide_atapi_error(drive, rq, stat, err); |
| 505 | } |
| 506 | |
| 507 | EXPORT_SYMBOL_GPL(__ide_error); |
| 508 | |
| 509 | /** |
| 510 | * ide_error - handle an error on the IDE |
| 511 | * @drive: drive the error occurred on |
| 512 | * @msg: message to report |
| 513 | * @stat: status bits |
| 514 | * |
| 515 | * ide_error() takes action based on the error returned by the drive. |
| 516 | * For normal I/O that may well include retries. We deal with |
| 517 | * both new-style (taskfile) and old style command handling here. |
| 518 | * In the case of taskfile command handling there is work left to |
| 519 | * do |
| 520 | */ |
| 521 | |
| 522 | ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) |
| 523 | { |
| 524 | struct request *rq; |
| 525 | u8 err; |
| 526 | |
| 527 | err = ide_dump_status(drive, msg, stat); |
| 528 | |
| 529 | if ((rq = HWGROUP(drive)->rq) == NULL) |
| 530 | return ide_stopped; |
| 531 | |
| 532 | /* retry only "normal" I/O: */ |
| 533 | if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { |
| 534 | rq->errors = 1; |
| 535 | ide_end_drive_cmd(drive, stat, err); |
| 536 | return ide_stopped; |
| 537 | } |
| 538 | |
| 539 | if (rq->rq_disk) { |
| 540 | ide_driver_t *drv; |
| 541 | |
| 542 | drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| 543 | return drv->error(drive, rq, stat, err); |
| 544 | } else |
| 545 | return __ide_error(drive, rq, stat, err); |
| 546 | } |
| 547 | |
| 548 | EXPORT_SYMBOL_GPL(ide_error); |
| 549 | |
| 550 | ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) |
| 551 | { |
| 552 | if (drive->media != ide_disk) |
| 553 | rq->errors |= ERROR_RESET; |
| 554 | |
| 555 | ide_kill_rq(drive, rq); |
| 556 | |
| 557 | return ide_stopped; |
| 558 | } |
| 559 | |
| 560 | EXPORT_SYMBOL_GPL(__ide_abort); |
| 561 | |
| 562 | /** |
Adrian Bunk | 338cec3 | 2005-09-10 00:26:54 -0700 | [diff] [blame^] | 563 | * ide_abort - abort pending IDE operations |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 564 | * @drive: drive the error occurred on |
| 565 | * @msg: message to report |
| 566 | * |
| 567 | * ide_abort kills and cleans up when we are about to do a |
| 568 | * host initiated reset on active commands. Longer term we |
| 569 | * want handlers to have sensible abort handling themselves |
| 570 | * |
| 571 | * This differs fundamentally from ide_error because in |
| 572 | * this case the command is doing just fine when we |
| 573 | * blow it away. |
| 574 | */ |
| 575 | |
| 576 | ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) |
| 577 | { |
| 578 | struct request *rq; |
| 579 | |
| 580 | if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) |
| 581 | return ide_stopped; |
| 582 | |
| 583 | /* retry only "normal" I/O: */ |
| 584 | if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { |
| 585 | rq->errors = 1; |
| 586 | ide_end_drive_cmd(drive, BUSY_STAT, 0); |
| 587 | return ide_stopped; |
| 588 | } |
| 589 | |
| 590 | if (rq->rq_disk) { |
| 591 | ide_driver_t *drv; |
| 592 | |
| 593 | drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| 594 | return drv->abort(drive, rq); |
| 595 | } else |
| 596 | return __ide_abort(drive, rq); |
| 597 | } |
| 598 | |
| 599 | /** |
| 600 | * ide_cmd - issue a simple drive command |
| 601 | * @drive: drive the command is for |
| 602 | * @cmd: command byte |
| 603 | * @nsect: sector byte |
| 604 | * @handler: handler for the command completion |
| 605 | * |
| 606 | * Issue a simple drive command with interrupts. |
| 607 | * The drive must be selected beforehand. |
| 608 | */ |
| 609 | |
| 610 | static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, |
| 611 | ide_handler_t *handler) |
| 612 | { |
| 613 | ide_hwif_t *hwif = HWIF(drive); |
| 614 | if (IDE_CONTROL_REG) |
| 615 | hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ |
| 616 | SELECT_MASK(drive,0); |
| 617 | hwif->OUTB(nsect,IDE_NSECTOR_REG); |
| 618 | ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); |
| 619 | } |
| 620 | |
| 621 | /** |
| 622 | * drive_cmd_intr - drive command completion interrupt |
| 623 | * @drive: drive the completion interrupt occurred on |
| 624 | * |
| 625 | * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. |
Adrian Bunk | 338cec3 | 2005-09-10 00:26:54 -0700 | [diff] [blame^] | 626 | * We do any necessary data reading and then wait for the drive to |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 627 | * go non busy. At that point we may read the error data and complete |
| 628 | * the request |
| 629 | */ |
| 630 | |
| 631 | static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) |
| 632 | { |
| 633 | struct request *rq = HWGROUP(drive)->rq; |
| 634 | ide_hwif_t *hwif = HWIF(drive); |
| 635 | u8 *args = (u8 *) rq->buffer; |
| 636 | u8 stat = hwif->INB(IDE_STATUS_REG); |
| 637 | int retries = 10; |
| 638 | |
| 639 | local_irq_enable(); |
| 640 | if ((stat & DRQ_STAT) && args && args[3]) { |
| 641 | u8 io_32bit = drive->io_32bit; |
| 642 | drive->io_32bit = 0; |
| 643 | hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); |
| 644 | drive->io_32bit = io_32bit; |
| 645 | while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) |
| 646 | udelay(100); |
| 647 | } |
| 648 | |
| 649 | if (!OK_STAT(stat, READY_STAT, BAD_STAT)) |
| 650 | return ide_error(drive, "drive_cmd", stat); |
| 651 | /* calls ide_end_drive_cmd */ |
| 652 | ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); |
| 653 | return ide_stopped; |
| 654 | } |
| 655 | |
| 656 | static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) |
| 657 | { |
| 658 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; |
| 659 | task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect; |
| 660 | task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl; |
| 661 | task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8; |
| 662 | task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF; |
| 663 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; |
| 664 | |
| 665 | task->handler = &set_geometry_intr; |
| 666 | } |
| 667 | |
| 668 | static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) |
| 669 | { |
| 670 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; |
| 671 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; |
| 672 | |
| 673 | task->handler = &recal_intr; |
| 674 | } |
| 675 | |
| 676 | static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) |
| 677 | { |
| 678 | task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; |
| 679 | task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; |
| 680 | |
| 681 | task->handler = &set_multmode_intr; |
| 682 | } |
| 683 | |
| 684 | static ide_startstop_t ide_disk_special(ide_drive_t *drive) |
| 685 | { |
| 686 | special_t *s = &drive->special; |
| 687 | ide_task_t args; |
| 688 | |
| 689 | memset(&args, 0, sizeof(ide_task_t)); |
| 690 | args.command_type = IDE_DRIVE_TASK_NO_DATA; |
| 691 | |
| 692 | if (s->b.set_geometry) { |
| 693 | s->b.set_geometry = 0; |
| 694 | ide_init_specify_cmd(drive, &args); |
| 695 | } else if (s->b.recalibrate) { |
| 696 | s->b.recalibrate = 0; |
| 697 | ide_init_restore_cmd(drive, &args); |
| 698 | } else if (s->b.set_multmode) { |
| 699 | s->b.set_multmode = 0; |
| 700 | if (drive->mult_req > drive->id->max_multsect) |
| 701 | drive->mult_req = drive->id->max_multsect; |
| 702 | ide_init_setmult_cmd(drive, &args); |
| 703 | } else if (s->all) { |
| 704 | int special = s->all; |
| 705 | s->all = 0; |
| 706 | printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); |
| 707 | return ide_stopped; |
| 708 | } |
| 709 | |
| 710 | do_rw_taskfile(drive, &args); |
| 711 | |
| 712 | return ide_started; |
| 713 | } |
| 714 | |
| 715 | /** |
| 716 | * do_special - issue some special commands |
| 717 | * @drive: drive the command is for |
| 718 | * |
| 719 | * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT |
| 720 | * commands to a drive. It used to do much more, but has been scaled |
| 721 | * back. |
| 722 | */ |
| 723 | |
| 724 | static ide_startstop_t do_special (ide_drive_t *drive) |
| 725 | { |
| 726 | special_t *s = &drive->special; |
| 727 | |
| 728 | #ifdef DEBUG |
| 729 | printk("%s: do_special: 0x%02x\n", drive->name, s->all); |
| 730 | #endif |
| 731 | if (s->b.set_tune) { |
| 732 | s->b.set_tune = 0; |
| 733 | if (HWIF(drive)->tuneproc != NULL) |
| 734 | HWIF(drive)->tuneproc(drive, drive->tune_req); |
| 735 | return ide_stopped; |
| 736 | } else { |
| 737 | if (drive->media == ide_disk) |
| 738 | return ide_disk_special(drive); |
| 739 | |
| 740 | s->all = 0; |
| 741 | drive->mult_req = 0; |
| 742 | return ide_stopped; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | void ide_map_sg(ide_drive_t *drive, struct request *rq) |
| 747 | { |
| 748 | ide_hwif_t *hwif = drive->hwif; |
| 749 | struct scatterlist *sg = hwif->sg_table; |
| 750 | |
| 751 | if (hwif->sg_mapped) /* needed by ide-scsi */ |
| 752 | return; |
| 753 | |
| 754 | if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) { |
| 755 | hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); |
| 756 | } else { |
| 757 | sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); |
| 758 | hwif->sg_nents = 1; |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | EXPORT_SYMBOL_GPL(ide_map_sg); |
| 763 | |
| 764 | void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) |
| 765 | { |
| 766 | ide_hwif_t *hwif = drive->hwif; |
| 767 | |
| 768 | hwif->nsect = hwif->nleft = rq->nr_sectors; |
| 769 | hwif->cursg = hwif->cursg_ofs = 0; |
| 770 | } |
| 771 | |
| 772 | EXPORT_SYMBOL_GPL(ide_init_sg_cmd); |
| 773 | |
| 774 | /** |
| 775 | * execute_drive_command - issue special drive command |
Adrian Bunk | 338cec3 | 2005-09-10 00:26:54 -0700 | [diff] [blame^] | 776 | * @drive: the drive to issue the command on |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 777 | * @rq: the request structure holding the command |
| 778 | * |
| 779 | * execute_drive_cmd() issues a special drive command, usually |
| 780 | * initiated by ioctl() from the external hdparm program. The |
| 781 | * command can be a drive command, drive task or taskfile |
| 782 | * operation. Weirdly you can call it with NULL to wait for |
| 783 | * all commands to finish. Don't do this as that is due to change |
| 784 | */ |
| 785 | |
| 786 | static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, |
| 787 | struct request *rq) |
| 788 | { |
| 789 | ide_hwif_t *hwif = HWIF(drive); |
| 790 | if (rq->flags & REQ_DRIVE_TASKFILE) { |
| 791 | ide_task_t *args = rq->special; |
| 792 | |
| 793 | if (!args) |
| 794 | goto done; |
| 795 | |
| 796 | hwif->data_phase = args->data_phase; |
| 797 | |
| 798 | switch (hwif->data_phase) { |
| 799 | case TASKFILE_MULTI_OUT: |
| 800 | case TASKFILE_OUT: |
| 801 | case TASKFILE_MULTI_IN: |
| 802 | case TASKFILE_IN: |
| 803 | ide_init_sg_cmd(drive, rq); |
| 804 | ide_map_sg(drive, rq); |
| 805 | default: |
| 806 | break; |
| 807 | } |
| 808 | |
| 809 | if (args->tf_out_flags.all != 0) |
| 810 | return flagged_taskfile(drive, args); |
| 811 | return do_rw_taskfile(drive, args); |
| 812 | } else if (rq->flags & REQ_DRIVE_TASK) { |
| 813 | u8 *args = rq->buffer; |
| 814 | u8 sel; |
| 815 | |
| 816 | if (!args) |
| 817 | goto done; |
| 818 | #ifdef DEBUG |
| 819 | printk("%s: DRIVE_TASK_CMD ", drive->name); |
| 820 | printk("cmd=0x%02x ", args[0]); |
| 821 | printk("fr=0x%02x ", args[1]); |
| 822 | printk("ns=0x%02x ", args[2]); |
| 823 | printk("sc=0x%02x ", args[3]); |
| 824 | printk("lcyl=0x%02x ", args[4]); |
| 825 | printk("hcyl=0x%02x ", args[5]); |
| 826 | printk("sel=0x%02x\n", args[6]); |
| 827 | #endif |
| 828 | hwif->OUTB(args[1], IDE_FEATURE_REG); |
| 829 | hwif->OUTB(args[3], IDE_SECTOR_REG); |
| 830 | hwif->OUTB(args[4], IDE_LCYL_REG); |
| 831 | hwif->OUTB(args[5], IDE_HCYL_REG); |
| 832 | sel = (args[6] & ~0x10); |
| 833 | if (drive->select.b.unit) |
| 834 | sel |= 0x10; |
| 835 | hwif->OUTB(sel, IDE_SELECT_REG); |
| 836 | ide_cmd(drive, args[0], args[2], &drive_cmd_intr); |
| 837 | return ide_started; |
| 838 | } else if (rq->flags & REQ_DRIVE_CMD) { |
| 839 | u8 *args = rq->buffer; |
| 840 | |
| 841 | if (!args) |
| 842 | goto done; |
| 843 | #ifdef DEBUG |
| 844 | printk("%s: DRIVE_CMD ", drive->name); |
| 845 | printk("cmd=0x%02x ", args[0]); |
| 846 | printk("sc=0x%02x ", args[1]); |
| 847 | printk("fr=0x%02x ", args[2]); |
| 848 | printk("xx=0x%02x\n", args[3]); |
| 849 | #endif |
| 850 | if (args[0] == WIN_SMART) { |
| 851 | hwif->OUTB(0x4f, IDE_LCYL_REG); |
| 852 | hwif->OUTB(0xc2, IDE_HCYL_REG); |
| 853 | hwif->OUTB(args[2],IDE_FEATURE_REG); |
| 854 | hwif->OUTB(args[1],IDE_SECTOR_REG); |
| 855 | ide_cmd(drive, args[0], args[3], &drive_cmd_intr); |
| 856 | return ide_started; |
| 857 | } |
| 858 | hwif->OUTB(args[2],IDE_FEATURE_REG); |
| 859 | ide_cmd(drive, args[0], args[1], &drive_cmd_intr); |
| 860 | return ide_started; |
| 861 | } |
| 862 | |
| 863 | done: |
| 864 | /* |
| 865 | * NULL is actually a valid way of waiting for |
| 866 | * all current requests to be flushed from the queue. |
| 867 | */ |
| 868 | #ifdef DEBUG |
| 869 | printk("%s: DRIVE_CMD (null)\n", drive->name); |
| 870 | #endif |
| 871 | ide_end_drive_cmd(drive, |
| 872 | hwif->INB(IDE_STATUS_REG), |
| 873 | hwif->INB(IDE_ERROR_REG)); |
| 874 | return ide_stopped; |
| 875 | } |
| 876 | |
| 877 | /** |
| 878 | * start_request - start of I/O and command issuing for IDE |
| 879 | * |
| 880 | * start_request() initiates handling of a new I/O request. It |
| 881 | * accepts commands and I/O (read/write) requests. It also does |
| 882 | * the final remapping for weird stuff like EZDrive. Once |
| 883 | * device mapper can work sector level the EZDrive stuff can go away |
| 884 | * |
| 885 | * FIXME: this function needs a rename |
| 886 | */ |
| 887 | |
| 888 | static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) |
| 889 | { |
| 890 | ide_startstop_t startstop; |
| 891 | sector_t block; |
| 892 | |
| 893 | BUG_ON(!(rq->flags & REQ_STARTED)); |
| 894 | |
| 895 | #ifdef DEBUG |
| 896 | printk("%s: start_request: current=0x%08lx\n", |
| 897 | HWIF(drive)->name, (unsigned long) rq); |
| 898 | #endif |
| 899 | |
| 900 | /* bail early if we've exceeded max_failures */ |
| 901 | if (drive->max_failures && (drive->failures > drive->max_failures)) { |
| 902 | goto kill_rq; |
| 903 | } |
| 904 | |
| 905 | block = rq->sector; |
| 906 | if (blk_fs_request(rq) && |
| 907 | (drive->media == ide_disk || drive->media == ide_floppy)) { |
| 908 | block += drive->sect0; |
| 909 | } |
| 910 | /* Yecch - this will shift the entire interval, |
| 911 | possibly killing some innocent following sector */ |
| 912 | if (block == 0 && drive->remap_0_to_1 == 1) |
| 913 | block = 1; /* redirect MBR access to EZ-Drive partn table */ |
| 914 | |
| 915 | if (blk_pm_suspend_request(rq) && |
| 916 | rq->pm->pm_step == ide_pm_state_start_suspend) |
| 917 | /* Mark drive blocked when starting the suspend sequence. */ |
| 918 | drive->blocked = 1; |
| 919 | else if (blk_pm_resume_request(rq) && |
| 920 | rq->pm->pm_step == ide_pm_state_start_resume) { |
| 921 | /* |
| 922 | * The first thing we do on wakeup is to wait for BSY bit to |
| 923 | * go away (with a looong timeout) as a drive on this hwif may |
| 924 | * just be POSTing itself. |
| 925 | * We do that before even selecting as the "other" device on |
| 926 | * the bus may be broken enough to walk on our toes at this |
| 927 | * point. |
| 928 | */ |
| 929 | int rc; |
| 930 | #ifdef DEBUG_PM |
| 931 | printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); |
| 932 | #endif |
| 933 | rc = ide_wait_not_busy(HWIF(drive), 35000); |
| 934 | if (rc) |
| 935 | printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); |
| 936 | SELECT_DRIVE(drive); |
| 937 | HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); |
| 938 | rc = ide_wait_not_busy(HWIF(drive), 10000); |
| 939 | if (rc) |
| 940 | printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); |
| 941 | } |
| 942 | |
| 943 | SELECT_DRIVE(drive); |
| 944 | if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { |
| 945 | printk(KERN_ERR "%s: drive not ready for command\n", drive->name); |
| 946 | return startstop; |
| 947 | } |
| 948 | if (!drive->special.all) { |
| 949 | ide_driver_t *drv; |
| 950 | |
| 951 | if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) |
| 952 | return execute_drive_cmd(drive, rq); |
| 953 | else if (rq->flags & REQ_DRIVE_TASKFILE) |
| 954 | return execute_drive_cmd(drive, rq); |
| 955 | else if (blk_pm_request(rq)) { |
| 956 | #ifdef DEBUG_PM |
| 957 | printk("%s: start_power_step(step: %d)\n", |
| 958 | drive->name, rq->pm->pm_step); |
| 959 | #endif |
| 960 | startstop = ide_start_power_step(drive, rq); |
| 961 | if (startstop == ide_stopped && |
| 962 | rq->pm->pm_step == ide_pm_state_completed) |
| 963 | ide_complete_pm_request(drive, rq); |
| 964 | return startstop; |
| 965 | } |
| 966 | |
| 967 | drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| 968 | return drv->do_request(drive, rq, block); |
| 969 | } |
| 970 | return do_special(drive); |
| 971 | kill_rq: |
| 972 | ide_kill_rq(drive, rq); |
| 973 | return ide_stopped; |
| 974 | } |
| 975 | |
| 976 | /** |
| 977 | * ide_stall_queue - pause an IDE device |
| 978 | * @drive: drive to stall |
| 979 | * @timeout: time to stall for (jiffies) |
| 980 | * |
| 981 | * ide_stall_queue() can be used by a drive to give excess bandwidth back |
| 982 | * to the hwgroup by sleeping for timeout jiffies. |
| 983 | */ |
| 984 | |
| 985 | void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) |
| 986 | { |
| 987 | if (timeout > WAIT_WORSTCASE) |
| 988 | timeout = WAIT_WORSTCASE; |
| 989 | drive->sleep = timeout + jiffies; |
| 990 | drive->sleeping = 1; |
| 991 | } |
| 992 | |
| 993 | EXPORT_SYMBOL(ide_stall_queue); |
| 994 | |
| 995 | #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) |
| 996 | |
| 997 | /** |
| 998 | * choose_drive - select a drive to service |
| 999 | * @hwgroup: hardware group to select on |
| 1000 | * |
| 1001 | * choose_drive() selects the next drive which will be serviced. |
| 1002 | * This is necessary because the IDE layer can't issue commands |
| 1003 | * to both drives on the same cable, unlike SCSI. |
| 1004 | */ |
| 1005 | |
| 1006 | static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) |
| 1007 | { |
| 1008 | ide_drive_t *drive, *best; |
| 1009 | |
| 1010 | repeat: |
| 1011 | best = NULL; |
| 1012 | drive = hwgroup->drive; |
| 1013 | |
| 1014 | /* |
| 1015 | * drive is doing pre-flush, ordered write, post-flush sequence. even |
| 1016 | * though that is 3 requests, it must be seen as a single transaction. |
| 1017 | * we must not preempt this drive until that is complete |
| 1018 | */ |
| 1019 | if (blk_queue_flushing(drive->queue)) { |
| 1020 | /* |
| 1021 | * small race where queue could get replugged during |
| 1022 | * the 3-request flush cycle, just yank the plug since |
| 1023 | * we want it to finish asap |
| 1024 | */ |
| 1025 | blk_remove_plug(drive->queue); |
| 1026 | return drive; |
| 1027 | } |
| 1028 | |
| 1029 | do { |
| 1030 | if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) |
| 1031 | && !elv_queue_empty(drive->queue)) { |
| 1032 | if (!best |
| 1033 | || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) |
| 1034 | || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) |
| 1035 | { |
| 1036 | if (!blk_queue_plugged(drive->queue)) |
| 1037 | best = drive; |
| 1038 | } |
| 1039 | } |
| 1040 | } while ((drive = drive->next) != hwgroup->drive); |
| 1041 | if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { |
| 1042 | long t = (signed long)(WAKEUP(best) - jiffies); |
| 1043 | if (t >= WAIT_MIN_SLEEP) { |
| 1044 | /* |
| 1045 | * We *may* have some time to spare, but first let's see if |
| 1046 | * someone can potentially benefit from our nice mood today.. |
| 1047 | */ |
| 1048 | drive = best->next; |
| 1049 | do { |
| 1050 | if (!drive->sleeping |
| 1051 | && time_before(jiffies - best->service_time, WAKEUP(drive)) |
| 1052 | && time_before(WAKEUP(drive), jiffies + t)) |
| 1053 | { |
| 1054 | ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); |
| 1055 | goto repeat; |
| 1056 | } |
| 1057 | } while ((drive = drive->next) != best); |
| 1058 | } |
| 1059 | } |
| 1060 | return best; |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * Issue a new request to a drive from hwgroup |
| 1065 | * Caller must have already done spin_lock_irqsave(&ide_lock, ..); |
| 1066 | * |
| 1067 | * A hwgroup is a serialized group of IDE interfaces. Usually there is |
| 1068 | * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) |
| 1069 | * may have both interfaces in a single hwgroup to "serialize" access. |
| 1070 | * Or possibly multiple ISA interfaces can share a common IRQ by being grouped |
| 1071 | * together into one hwgroup for serialized access. |
| 1072 | * |
| 1073 | * Note also that several hwgroups can end up sharing a single IRQ, |
| 1074 | * possibly along with many other devices. This is especially common in |
| 1075 | * PCI-based systems with off-board IDE controller cards. |
| 1076 | * |
| 1077 | * The IDE driver uses the single global ide_lock spinlock to protect |
| 1078 | * access to the request queues, and to protect the hwgroup->busy flag. |
| 1079 | * |
| 1080 | * The first thread into the driver for a particular hwgroup sets the |
| 1081 | * hwgroup->busy flag to indicate that this hwgroup is now active, |
| 1082 | * and then initiates processing of the top request from the request queue. |
| 1083 | * |
| 1084 | * Other threads attempting entry notice the busy setting, and will simply |
| 1085 | * queue their new requests and exit immediately. Note that hwgroup->busy |
| 1086 | * remains set even when the driver is merely awaiting the next interrupt. |
| 1087 | * Thus, the meaning is "this hwgroup is busy processing a request". |
| 1088 | * |
| 1089 | * When processing of a request completes, the completing thread or IRQ-handler |
| 1090 | * will start the next request from the queue. If no more work remains, |
| 1091 | * the driver will clear the hwgroup->busy flag and exit. |
| 1092 | * |
| 1093 | * The ide_lock (spinlock) is used to protect all access to the |
| 1094 | * hwgroup->busy flag, but is otherwise not needed for most processing in |
| 1095 | * the driver. This makes the driver much more friendlier to shared IRQs |
| 1096 | * than previous designs, while remaining 100% (?) SMP safe and capable. |
| 1097 | */ |
| 1098 | static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) |
| 1099 | { |
| 1100 | ide_drive_t *drive; |
| 1101 | ide_hwif_t *hwif; |
| 1102 | struct request *rq; |
| 1103 | ide_startstop_t startstop; |
| 1104 | |
| 1105 | /* for atari only: POSSIBLY BROKEN HERE(?) */ |
| 1106 | ide_get_lock(ide_intr, hwgroup); |
| 1107 | |
| 1108 | /* caller must own ide_lock */ |
| 1109 | BUG_ON(!irqs_disabled()); |
| 1110 | |
| 1111 | while (!hwgroup->busy) { |
| 1112 | hwgroup->busy = 1; |
| 1113 | drive = choose_drive(hwgroup); |
| 1114 | if (drive == NULL) { |
| 1115 | int sleeping = 0; |
| 1116 | unsigned long sleep = 0; /* shut up, gcc */ |
| 1117 | hwgroup->rq = NULL; |
| 1118 | drive = hwgroup->drive; |
| 1119 | do { |
| 1120 | if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { |
| 1121 | sleeping = 1; |
| 1122 | sleep = drive->sleep; |
| 1123 | } |
| 1124 | } while ((drive = drive->next) != hwgroup->drive); |
| 1125 | if (sleeping) { |
| 1126 | /* |
| 1127 | * Take a short snooze, and then wake up this hwgroup again. |
| 1128 | * This gives other hwgroups on the same a chance to |
| 1129 | * play fairly with us, just in case there are big differences |
| 1130 | * in relative throughputs.. don't want to hog the cpu too much. |
| 1131 | */ |
| 1132 | if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) |
| 1133 | sleep = jiffies + WAIT_MIN_SLEEP; |
| 1134 | #if 1 |
| 1135 | if (timer_pending(&hwgroup->timer)) |
| 1136 | printk(KERN_CRIT "ide_set_handler: timer already active\n"); |
| 1137 | #endif |
| 1138 | /* so that ide_timer_expiry knows what to do */ |
| 1139 | hwgroup->sleeping = 1; |
| 1140 | mod_timer(&hwgroup->timer, sleep); |
| 1141 | /* we purposely leave hwgroup->busy==1 |
| 1142 | * while sleeping */ |
| 1143 | } else { |
| 1144 | /* Ugly, but how can we sleep for the lock |
| 1145 | * otherwise? perhaps from tq_disk? |
| 1146 | */ |
| 1147 | |
| 1148 | /* for atari only */ |
| 1149 | ide_release_lock(); |
| 1150 | hwgroup->busy = 0; |
| 1151 | } |
| 1152 | |
| 1153 | /* no more work for this hwgroup (for now) */ |
| 1154 | return; |
| 1155 | } |
| 1156 | hwif = HWIF(drive); |
| 1157 | if (hwgroup->hwif->sharing_irq && |
| 1158 | hwif != hwgroup->hwif && |
| 1159 | hwif->io_ports[IDE_CONTROL_OFFSET]) { |
| 1160 | /* set nIEN for previous hwif */ |
| 1161 | SELECT_INTERRUPT(drive); |
| 1162 | } |
| 1163 | hwgroup->hwif = hwif; |
| 1164 | hwgroup->drive = drive; |
| 1165 | drive->sleeping = 0; |
| 1166 | drive->service_start = jiffies; |
| 1167 | |
| 1168 | if (blk_queue_plugged(drive->queue)) { |
| 1169 | printk(KERN_ERR "ide: huh? queue was plugged!\n"); |
| 1170 | break; |
| 1171 | } |
| 1172 | |
| 1173 | /* |
| 1174 | * we know that the queue isn't empty, but this can happen |
| 1175 | * if the q->prep_rq_fn() decides to kill a request |
| 1176 | */ |
| 1177 | rq = elv_next_request(drive->queue); |
| 1178 | if (!rq) { |
| 1179 | hwgroup->busy = 0; |
| 1180 | break; |
| 1181 | } |
| 1182 | |
| 1183 | /* |
| 1184 | * Sanity: don't accept a request that isn't a PM request |
| 1185 | * if we are currently power managed. This is very important as |
| 1186 | * blk_stop_queue() doesn't prevent the elv_next_request() |
| 1187 | * above to return us whatever is in the queue. Since we call |
| 1188 | * ide_do_request() ourselves, we end up taking requests while |
| 1189 | * the queue is blocked... |
| 1190 | * |
| 1191 | * We let requests forced at head of queue with ide-preempt |
| 1192 | * though. I hope that doesn't happen too much, hopefully not |
| 1193 | * unless the subdriver triggers such a thing in its own PM |
| 1194 | * state machine. |
| 1195 | */ |
| 1196 | if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) { |
| 1197 | /* We clear busy, there should be no pending ATA command at this point. */ |
| 1198 | hwgroup->busy = 0; |
| 1199 | break; |
| 1200 | } |
| 1201 | |
| 1202 | hwgroup->rq = rq; |
| 1203 | |
| 1204 | /* |
| 1205 | * Some systems have trouble with IDE IRQs arriving while |
| 1206 | * the driver is still setting things up. So, here we disable |
| 1207 | * the IRQ used by this interface while the request is being started. |
| 1208 | * This may look bad at first, but pretty much the same thing |
| 1209 | * happens anyway when any interrupt comes in, IDE or otherwise |
| 1210 | * -- the kernel masks the IRQ while it is being handled. |
| 1211 | */ |
| 1212 | if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) |
| 1213 | disable_irq_nosync(hwif->irq); |
| 1214 | spin_unlock(&ide_lock); |
| 1215 | local_irq_enable(); |
| 1216 | /* allow other IRQs while we start this request */ |
| 1217 | startstop = start_request(drive, rq); |
| 1218 | spin_lock_irq(&ide_lock); |
| 1219 | if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) |
| 1220 | enable_irq(hwif->irq); |
| 1221 | if (startstop == ide_stopped) |
| 1222 | hwgroup->busy = 0; |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | /* |
| 1227 | * Passes the stuff to ide_do_request |
| 1228 | */ |
| 1229 | void do_ide_request(request_queue_t *q) |
| 1230 | { |
| 1231 | ide_drive_t *drive = q->queuedata; |
| 1232 | |
| 1233 | ide_do_request(HWGROUP(drive), IDE_NO_IRQ); |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * un-busy the hwgroup etc, and clear any pending DMA status. we want to |
| 1238 | * retry the current request in pio mode instead of risking tossing it |
| 1239 | * all away |
| 1240 | */ |
| 1241 | static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) |
| 1242 | { |
| 1243 | ide_hwif_t *hwif = HWIF(drive); |
| 1244 | struct request *rq; |
| 1245 | ide_startstop_t ret = ide_stopped; |
| 1246 | |
| 1247 | /* |
| 1248 | * end current dma transaction |
| 1249 | */ |
| 1250 | |
| 1251 | if (error < 0) { |
| 1252 | printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); |
| 1253 | (void)HWIF(drive)->ide_dma_end(drive); |
| 1254 | ret = ide_error(drive, "dma timeout error", |
| 1255 | hwif->INB(IDE_STATUS_REG)); |
| 1256 | } else { |
| 1257 | printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); |
| 1258 | (void) hwif->ide_dma_timeout(drive); |
| 1259 | } |
| 1260 | |
| 1261 | /* |
| 1262 | * disable dma for now, but remember that we did so because of |
| 1263 | * a timeout -- we'll reenable after we finish this next request |
| 1264 | * (or rather the first chunk of it) in pio. |
| 1265 | */ |
| 1266 | drive->retry_pio++; |
| 1267 | drive->state = DMA_PIO_RETRY; |
| 1268 | (void) hwif->ide_dma_off_quietly(drive); |
| 1269 | |
| 1270 | /* |
| 1271 | * un-busy drive etc (hwgroup->busy is cleared on return) and |
| 1272 | * make sure request is sane |
| 1273 | */ |
| 1274 | rq = HWGROUP(drive)->rq; |
| 1275 | HWGROUP(drive)->rq = NULL; |
| 1276 | |
| 1277 | rq->errors = 0; |
| 1278 | |
| 1279 | if (!rq->bio) |
| 1280 | goto out; |
| 1281 | |
| 1282 | rq->sector = rq->bio->bi_sector; |
| 1283 | rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; |
| 1284 | rq->hard_cur_sectors = rq->current_nr_sectors; |
| 1285 | rq->buffer = bio_data(rq->bio); |
| 1286 | out: |
| 1287 | return ret; |
| 1288 | } |
| 1289 | |
| 1290 | /** |
| 1291 | * ide_timer_expiry - handle lack of an IDE interrupt |
| 1292 | * @data: timer callback magic (hwgroup) |
| 1293 | * |
| 1294 | * An IDE command has timed out before the expected drive return |
| 1295 | * occurred. At this point we attempt to clean up the current |
| 1296 | * mess. If the current handler includes an expiry handler then |
| 1297 | * we invoke the expiry handler, and providing it is happy the |
| 1298 | * work is done. If that fails we apply generic recovery rules |
| 1299 | * invoking the handler and checking the drive DMA status. We |
| 1300 | * have an excessively incestuous relationship with the DMA |
| 1301 | * logic that wants cleaning up. |
| 1302 | */ |
| 1303 | |
| 1304 | void ide_timer_expiry (unsigned long data) |
| 1305 | { |
| 1306 | ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; |
| 1307 | ide_handler_t *handler; |
| 1308 | ide_expiry_t *expiry; |
| 1309 | unsigned long flags; |
| 1310 | unsigned long wait = -1; |
| 1311 | |
| 1312 | spin_lock_irqsave(&ide_lock, flags); |
| 1313 | |
| 1314 | if ((handler = hwgroup->handler) == NULL) { |
| 1315 | /* |
| 1316 | * Either a marginal timeout occurred |
| 1317 | * (got the interrupt just as timer expired), |
| 1318 | * or we were "sleeping" to give other devices a chance. |
| 1319 | * Either way, we don't really want to complain about anything. |
| 1320 | */ |
| 1321 | if (hwgroup->sleeping) { |
| 1322 | hwgroup->sleeping = 0; |
| 1323 | hwgroup->busy = 0; |
| 1324 | } |
| 1325 | } else { |
| 1326 | ide_drive_t *drive = hwgroup->drive; |
| 1327 | if (!drive) { |
| 1328 | printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); |
| 1329 | hwgroup->handler = NULL; |
| 1330 | } else { |
| 1331 | ide_hwif_t *hwif; |
| 1332 | ide_startstop_t startstop = ide_stopped; |
| 1333 | if (!hwgroup->busy) { |
| 1334 | hwgroup->busy = 1; /* paranoia */ |
| 1335 | printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); |
| 1336 | } |
| 1337 | if ((expiry = hwgroup->expiry) != NULL) { |
| 1338 | /* continue */ |
| 1339 | if ((wait = expiry(drive)) > 0) { |
| 1340 | /* reset timer */ |
| 1341 | hwgroup->timer.expires = jiffies + wait; |
| 1342 | add_timer(&hwgroup->timer); |
| 1343 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1344 | return; |
| 1345 | } |
| 1346 | } |
| 1347 | hwgroup->handler = NULL; |
| 1348 | /* |
| 1349 | * We need to simulate a real interrupt when invoking |
| 1350 | * the handler() function, which means we need to |
| 1351 | * globally mask the specific IRQ: |
| 1352 | */ |
| 1353 | spin_unlock(&ide_lock); |
| 1354 | hwif = HWIF(drive); |
| 1355 | #if DISABLE_IRQ_NOSYNC |
| 1356 | disable_irq_nosync(hwif->irq); |
| 1357 | #else |
| 1358 | /* disable_irq_nosync ?? */ |
| 1359 | disable_irq(hwif->irq); |
| 1360 | #endif /* DISABLE_IRQ_NOSYNC */ |
| 1361 | /* local CPU only, |
| 1362 | * as if we were handling an interrupt */ |
| 1363 | local_irq_disable(); |
| 1364 | if (hwgroup->polling) { |
| 1365 | startstop = handler(drive); |
| 1366 | } else if (drive_is_ready(drive)) { |
| 1367 | if (drive->waiting_for_dma) |
| 1368 | (void) hwgroup->hwif->ide_dma_lostirq(drive); |
| 1369 | (void)ide_ack_intr(hwif); |
| 1370 | printk(KERN_WARNING "%s: lost interrupt\n", drive->name); |
| 1371 | startstop = handler(drive); |
| 1372 | } else { |
| 1373 | if (drive->waiting_for_dma) { |
| 1374 | startstop = ide_dma_timeout_retry(drive, wait); |
| 1375 | } else |
| 1376 | startstop = |
| 1377 | ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); |
| 1378 | } |
| 1379 | drive->service_time = jiffies - drive->service_start; |
| 1380 | spin_lock_irq(&ide_lock); |
| 1381 | enable_irq(hwif->irq); |
| 1382 | if (startstop == ide_stopped) |
| 1383 | hwgroup->busy = 0; |
| 1384 | } |
| 1385 | } |
| 1386 | ide_do_request(hwgroup, IDE_NO_IRQ); |
| 1387 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1388 | } |
| 1389 | |
| 1390 | /** |
| 1391 | * unexpected_intr - handle an unexpected IDE interrupt |
| 1392 | * @irq: interrupt line |
| 1393 | * @hwgroup: hwgroup being processed |
| 1394 | * |
| 1395 | * There's nothing really useful we can do with an unexpected interrupt, |
| 1396 | * other than reading the status register (to clear it), and logging it. |
| 1397 | * There should be no way that an irq can happen before we're ready for it, |
| 1398 | * so we needn't worry much about losing an "important" interrupt here. |
| 1399 | * |
| 1400 | * On laptops (and "green" PCs), an unexpected interrupt occurs whenever |
| 1401 | * the drive enters "idle", "standby", or "sleep" mode, so if the status |
| 1402 | * looks "good", we just ignore the interrupt completely. |
| 1403 | * |
| 1404 | * This routine assumes __cli() is in effect when called. |
| 1405 | * |
| 1406 | * If an unexpected interrupt happens on irq15 while we are handling irq14 |
| 1407 | * and if the two interfaces are "serialized" (CMD640), then it looks like |
| 1408 | * we could screw up by interfering with a new request being set up for |
| 1409 | * irq15. |
| 1410 | * |
| 1411 | * In reality, this is a non-issue. The new command is not sent unless |
| 1412 | * the drive is ready to accept one, in which case we know the drive is |
| 1413 | * not trying to interrupt us. And ide_set_handler() is always invoked |
| 1414 | * before completing the issuance of any new drive command, so we will not |
| 1415 | * be accidentally invoked as a result of any valid command completion |
| 1416 | * interrupt. |
| 1417 | * |
| 1418 | * Note that we must walk the entire hwgroup here. We know which hwif |
| 1419 | * is doing the current command, but we don't know which hwif burped |
| 1420 | * mysteriously. |
| 1421 | */ |
| 1422 | |
| 1423 | static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) |
| 1424 | { |
| 1425 | u8 stat; |
| 1426 | ide_hwif_t *hwif = hwgroup->hwif; |
| 1427 | |
| 1428 | /* |
| 1429 | * handle the unexpected interrupt |
| 1430 | */ |
| 1431 | do { |
| 1432 | if (hwif->irq == irq) { |
| 1433 | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); |
| 1434 | if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { |
| 1435 | /* Try to not flood the console with msgs */ |
| 1436 | static unsigned long last_msgtime, count; |
| 1437 | ++count; |
| 1438 | if (time_after(jiffies, last_msgtime + HZ)) { |
| 1439 | last_msgtime = jiffies; |
| 1440 | printk(KERN_ERR "%s%s: unexpected interrupt, " |
| 1441 | "status=0x%02x, count=%ld\n", |
| 1442 | hwif->name, |
| 1443 | (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); |
| 1444 | } |
| 1445 | } |
| 1446 | } |
| 1447 | } while ((hwif = hwif->next) != hwgroup->hwif); |
| 1448 | } |
| 1449 | |
| 1450 | /** |
| 1451 | * ide_intr - default IDE interrupt handler |
| 1452 | * @irq: interrupt number |
| 1453 | * @dev_id: hwif group |
| 1454 | * @regs: unused weirdness from the kernel irq layer |
| 1455 | * |
| 1456 | * This is the default IRQ handler for the IDE layer. You should |
| 1457 | * not need to override it. If you do be aware it is subtle in |
| 1458 | * places |
| 1459 | * |
| 1460 | * hwgroup->hwif is the interface in the group currently performing |
| 1461 | * a command. hwgroup->drive is the drive and hwgroup->handler is |
| 1462 | * the IRQ handler to call. As we issue a command the handlers |
| 1463 | * step through multiple states, reassigning the handler to the |
| 1464 | * next step in the process. Unlike a smart SCSI controller IDE |
| 1465 | * expects the main processor to sequence the various transfer |
| 1466 | * stages. We also manage a poll timer to catch up with most |
| 1467 | * timeout situations. There are still a few where the handlers |
| 1468 | * don't ever decide to give up. |
| 1469 | * |
| 1470 | * The handler eventually returns ide_stopped to indicate the |
| 1471 | * request completed. At this point we issue the next request |
| 1472 | * on the hwgroup and the process begins again. |
| 1473 | */ |
| 1474 | |
| 1475 | irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs) |
| 1476 | { |
| 1477 | unsigned long flags; |
| 1478 | ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; |
| 1479 | ide_hwif_t *hwif; |
| 1480 | ide_drive_t *drive; |
| 1481 | ide_handler_t *handler; |
| 1482 | ide_startstop_t startstop; |
| 1483 | |
| 1484 | spin_lock_irqsave(&ide_lock, flags); |
| 1485 | hwif = hwgroup->hwif; |
| 1486 | |
| 1487 | if (!ide_ack_intr(hwif)) { |
| 1488 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1489 | return IRQ_NONE; |
| 1490 | } |
| 1491 | |
| 1492 | if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { |
| 1493 | /* |
| 1494 | * Not expecting an interrupt from this drive. |
| 1495 | * That means this could be: |
| 1496 | * (1) an interrupt from another PCI device |
| 1497 | * sharing the same PCI INT# as us. |
| 1498 | * or (2) a drive just entered sleep or standby mode, |
| 1499 | * and is interrupting to let us know. |
| 1500 | * or (3) a spurious interrupt of unknown origin. |
| 1501 | * |
| 1502 | * For PCI, we cannot tell the difference, |
| 1503 | * so in that case we just ignore it and hope it goes away. |
| 1504 | * |
| 1505 | * FIXME: unexpected_intr should be hwif-> then we can |
| 1506 | * remove all the ifdef PCI crap |
| 1507 | */ |
| 1508 | #ifdef CONFIG_BLK_DEV_IDEPCI |
| 1509 | if (hwif->pci_dev && !hwif->pci_dev->vendor) |
| 1510 | #endif /* CONFIG_BLK_DEV_IDEPCI */ |
| 1511 | { |
| 1512 | /* |
| 1513 | * Probably not a shared PCI interrupt, |
| 1514 | * so we can safely try to do something about it: |
| 1515 | */ |
| 1516 | unexpected_intr(irq, hwgroup); |
| 1517 | #ifdef CONFIG_BLK_DEV_IDEPCI |
| 1518 | } else { |
| 1519 | /* |
| 1520 | * Whack the status register, just in case |
| 1521 | * we have a leftover pending IRQ. |
| 1522 | */ |
| 1523 | (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); |
| 1524 | #endif /* CONFIG_BLK_DEV_IDEPCI */ |
| 1525 | } |
| 1526 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1527 | return IRQ_NONE; |
| 1528 | } |
| 1529 | drive = hwgroup->drive; |
| 1530 | if (!drive) { |
| 1531 | /* |
| 1532 | * This should NEVER happen, and there isn't much |
| 1533 | * we could do about it here. |
| 1534 | * |
| 1535 | * [Note - this can occur if the drive is hot unplugged] |
| 1536 | */ |
| 1537 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1538 | return IRQ_HANDLED; |
| 1539 | } |
| 1540 | if (!drive_is_ready(drive)) { |
| 1541 | /* |
| 1542 | * This happens regularly when we share a PCI IRQ with |
| 1543 | * another device. Unfortunately, it can also happen |
| 1544 | * with some buggy drives that trigger the IRQ before |
| 1545 | * their status register is up to date. Hopefully we have |
| 1546 | * enough advance overhead that the latter isn't a problem. |
| 1547 | */ |
| 1548 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1549 | return IRQ_NONE; |
| 1550 | } |
| 1551 | if (!hwgroup->busy) { |
| 1552 | hwgroup->busy = 1; /* paranoia */ |
| 1553 | printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); |
| 1554 | } |
| 1555 | hwgroup->handler = NULL; |
| 1556 | del_timer(&hwgroup->timer); |
| 1557 | spin_unlock(&ide_lock); |
| 1558 | |
| 1559 | if (drive->unmask) |
| 1560 | local_irq_enable(); |
| 1561 | /* service this interrupt, may set handler for next interrupt */ |
| 1562 | startstop = handler(drive); |
| 1563 | spin_lock_irq(&ide_lock); |
| 1564 | |
| 1565 | /* |
| 1566 | * Note that handler() may have set things up for another |
| 1567 | * interrupt to occur soon, but it cannot happen until |
| 1568 | * we exit from this routine, because it will be the |
| 1569 | * same irq as is currently being serviced here, and Linux |
| 1570 | * won't allow another of the same (on any CPU) until we return. |
| 1571 | */ |
| 1572 | drive->service_time = jiffies - drive->service_start; |
| 1573 | if (startstop == ide_stopped) { |
| 1574 | if (hwgroup->handler == NULL) { /* paranoia */ |
| 1575 | hwgroup->busy = 0; |
| 1576 | ide_do_request(hwgroup, hwif->irq); |
| 1577 | } else { |
| 1578 | printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " |
| 1579 | "on exit\n", drive->name); |
| 1580 | } |
| 1581 | } |
| 1582 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1583 | return IRQ_HANDLED; |
| 1584 | } |
| 1585 | |
| 1586 | /** |
| 1587 | * ide_init_drive_cmd - initialize a drive command request |
| 1588 | * @rq: request object |
| 1589 | * |
| 1590 | * Initialize a request before we fill it in and send it down to |
| 1591 | * ide_do_drive_cmd. Commands must be set up by this function. Right |
| 1592 | * now it doesn't do a lot, but if that changes abusers will have a |
| 1593 | * nasty suprise. |
| 1594 | */ |
| 1595 | |
| 1596 | void ide_init_drive_cmd (struct request *rq) |
| 1597 | { |
| 1598 | memset(rq, 0, sizeof(*rq)); |
| 1599 | rq->flags = REQ_DRIVE_CMD; |
| 1600 | rq->ref_count = 1; |
| 1601 | } |
| 1602 | |
| 1603 | EXPORT_SYMBOL(ide_init_drive_cmd); |
| 1604 | |
| 1605 | /** |
| 1606 | * ide_do_drive_cmd - issue IDE special command |
| 1607 | * @drive: device to issue command |
| 1608 | * @rq: request to issue |
| 1609 | * @action: action for processing |
| 1610 | * |
| 1611 | * This function issues a special IDE device request |
| 1612 | * onto the request queue. |
| 1613 | * |
| 1614 | * If action is ide_wait, then the rq is queued at the end of the |
| 1615 | * request queue, and the function sleeps until it has been processed. |
| 1616 | * This is for use when invoked from an ioctl handler. |
| 1617 | * |
| 1618 | * If action is ide_preempt, then the rq is queued at the head of |
| 1619 | * the request queue, displacing the currently-being-processed |
| 1620 | * request and this function returns immediately without waiting |
| 1621 | * for the new rq to be completed. This is VERY DANGEROUS, and is |
| 1622 | * intended for careful use by the ATAPI tape/cdrom driver code. |
| 1623 | * |
| 1624 | * If action is ide_next, then the rq is queued immediately after |
| 1625 | * the currently-being-processed-request (if any), and the function |
| 1626 | * returns without waiting for the new rq to be completed. As above, |
| 1627 | * This is VERY DANGEROUS, and is intended for careful use by the |
| 1628 | * ATAPI tape/cdrom driver code. |
| 1629 | * |
| 1630 | * If action is ide_end, then the rq is queued at the end of the |
| 1631 | * request queue, and the function returns immediately without waiting |
| 1632 | * for the new rq to be completed. This is again intended for careful |
| 1633 | * use by the ATAPI tape/cdrom driver code. |
| 1634 | */ |
| 1635 | |
| 1636 | int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) |
| 1637 | { |
| 1638 | unsigned long flags; |
| 1639 | ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| 1640 | DECLARE_COMPLETION(wait); |
| 1641 | int where = ELEVATOR_INSERT_BACK, err; |
| 1642 | int must_wait = (action == ide_wait || action == ide_head_wait); |
| 1643 | |
| 1644 | rq->errors = 0; |
| 1645 | rq->rq_status = RQ_ACTIVE; |
| 1646 | |
| 1647 | /* |
| 1648 | * we need to hold an extra reference to request for safe inspection |
| 1649 | * after completion |
| 1650 | */ |
| 1651 | if (must_wait) { |
| 1652 | rq->ref_count++; |
| 1653 | rq->waiting = &wait; |
| 1654 | rq->end_io = blk_end_sync_rq; |
| 1655 | } |
| 1656 | |
| 1657 | spin_lock_irqsave(&ide_lock, flags); |
| 1658 | if (action == ide_preempt) |
| 1659 | hwgroup->rq = NULL; |
| 1660 | if (action == ide_preempt || action == ide_head_wait) { |
| 1661 | where = ELEVATOR_INSERT_FRONT; |
| 1662 | rq->flags |= REQ_PREEMPT; |
| 1663 | } |
| 1664 | __elv_add_request(drive->queue, rq, where, 0); |
| 1665 | ide_do_request(hwgroup, IDE_NO_IRQ); |
| 1666 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1667 | |
| 1668 | err = 0; |
| 1669 | if (must_wait) { |
| 1670 | wait_for_completion(&wait); |
| 1671 | rq->waiting = NULL; |
| 1672 | if (rq->errors) |
| 1673 | err = -EIO; |
| 1674 | |
| 1675 | blk_put_request(rq); |
| 1676 | } |
| 1677 | |
| 1678 | return err; |
| 1679 | } |
| 1680 | |
| 1681 | EXPORT_SYMBOL(ide_do_drive_cmd); |