blob: 4a7700620119686c741b6ac454b4cfa1b346133e [file] [log] [blame]
Jie Yanga6a53252008-07-18 11:37:13 +08001/*
2 * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3 *
4 * Derived from Intel e1000 driver
5 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the Free
9 * Software Foundation; either version 2 of the License, or (at your option)
10 * any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59
19 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/mii.h>
24#include <linux/crc32.h>
25
26#include "atl1e.h"
27
28/*
29 * check_eeprom_exist
30 * return 0 if eeprom exist
31 */
32int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
33{
34 u32 value;
35
36 value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
37 if (value & SPI_FLASH_CTRL_EN_VPD) {
38 value &= ~SPI_FLASH_CTRL_EN_VPD;
39 AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
40 }
41 value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
42 return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
43}
44
45void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
46{
47 u32 value;
48 /*
49 * 00-0B-6A-F6-00-DC
50 * 0: 6AF600DC 1: 000B
51 * low dword
52 */
53 value = (((u32)hw->mac_addr[2]) << 24) |
54 (((u32)hw->mac_addr[3]) << 16) |
55 (((u32)hw->mac_addr[4]) << 8) |
56 (((u32)hw->mac_addr[5])) ;
57 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
58 /* hight dword */
59 value = (((u32)hw->mac_addr[0]) << 8) |
60 (((u32)hw->mac_addr[1])) ;
61 AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
62}
63
64/*
65 * atl1e_get_permanent_address
66 * return 0 if get valid mac address,
67 */
68static int atl1e_get_permanent_address(struct atl1e_hw *hw)
69{
70 u32 addr[2];
71 u32 i;
72 u32 twsi_ctrl_data;
73 u8 eth_addr[ETH_ALEN];
74
75 if (is_valid_ether_addr(hw->perm_mac_addr))
76 return 0;
77
78 /* init */
79 addr[0] = addr[1] = 0;
80
81 if (!atl1e_check_eeprom_exist(hw)) {
82 /* eeprom exist */
83 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
84 twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
85 AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
86 for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
87 msleep(10);
88 twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
89 if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
90 break;
91 }
92 if (i >= AT_TWSI_EEPROM_TIMEOUT)
93 return AT_ERR_TIMEOUT;
94 }
95
96 /* maybe MAC-address is from BIOS */
97 addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
98 addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
99 *(u32 *) &eth_addr[2] = swab32(addr[0]);
100 *(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
101
102 if (is_valid_ether_addr(eth_addr)) {
103 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
104 return 0;
105 }
106
107 return AT_ERR_EEPROM;
108}
109
110bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
111{
112 return true;
113}
114
115bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
116{
117 int i;
118 u32 control;
119
120 if (offset & 3)
121 return false; /* address do not align */
122
123 AT_WRITE_REG(hw, REG_VPD_DATA, 0);
124 control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
125 AT_WRITE_REG(hw, REG_VPD_CAP, control);
126
127 for (i = 0; i < 10; i++) {
128 msleep(2);
129 control = AT_READ_REG(hw, REG_VPD_CAP);
130 if (control & VPD_CAP_VPD_FLAG)
131 break;
132 }
133 if (control & VPD_CAP_VPD_FLAG) {
134 *p_value = AT_READ_REG(hw, REG_VPD_DATA);
135 return true;
136 }
137 return false; /* timeout */
138}
139
140void atl1e_force_ps(struct atl1e_hw *hw)
141{
142 AT_WRITE_REGW(hw, REG_GPHY_CTRL,
143 GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
144}
145
146/*
147 * Reads the adapter's MAC address from the EEPROM
148 *
149 * hw - Struct containing variables accessed by shared code
150 */
151int atl1e_read_mac_addr(struct atl1e_hw *hw)
152{
153 int err = 0;
154
155 err = atl1e_get_permanent_address(hw);
156 if (err)
157 return AT_ERR_EEPROM;
158 memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
159 return 0;
160}
161
162/*
163 * atl1e_hash_mc_addr
164 * purpose
165 * set hash value for a multicast address
Jie Yanga6a53252008-07-18 11:37:13 +0800166 */
167u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
168{
169 u32 crc32;
170 u32 value = 0;
171 int i;
172
173 crc32 = ether_crc_le(6, mc_addr);
Jie Yanga6a53252008-07-18 11:37:13 +0800174 for (i = 0; i < 32; i++)
175 value |= (((crc32 >> i) & 1) << (31 - i));
176
177 return value;
178}
179
180/*
181 * Sets the bit in the multicast table corresponding to the hash value.
182 * hw - Struct containing variables accessed by shared code
183 * hash_value - Multicast address hash value
184 */
185void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
186{
187 u32 hash_bit, hash_reg;
188 u32 mta;
189
190 /*
191 * The HASH Table is a register array of 2 32-bit registers.
192 * It is treated like an array of 64 bits. We want to set
193 * bit BitArray[hash_value]. So we figure out what register
194 * the bit is in, read it, OR in the new bit, then write
195 * back the new value. The register is determined by the
196 * upper 7 bits of the hash value and the bit within that
197 * register are determined by the lower 5 bits of the value.
198 */
199 hash_reg = (hash_value >> 31) & 0x1;
200 hash_bit = (hash_value >> 26) & 0x1F;
201
202 mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
203
204 mta |= (1 << hash_bit);
205
206 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
207}
208/*
209 * Reads the value from a PHY register
210 * hw - Struct containing variables accessed by shared code
211 * reg_addr - address of the PHY register to read
212 */
213int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
214{
215 u32 val;
216 int i;
217
218 val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
219 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
220 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
221
222 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
223
224 wmb();
225
226 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
227 udelay(2);
228 val = AT_READ_REG(hw, REG_MDIO_CTRL);
229 if (!(val & (MDIO_START | MDIO_BUSY)))
230 break;
231 wmb();
232 }
233 if (!(val & (MDIO_START | MDIO_BUSY))) {
234 *phy_data = (u16)val;
235 return 0;
236 }
237
238 return AT_ERR_PHY;
239}
240
241/*
242 * Writes a value to a PHY register
243 * hw - Struct containing variables accessed by shared code
244 * reg_addr - address of the PHY register to write
245 * data - data to write to the PHY
246 */
247int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
248{
249 int i;
250 u32 val;
251
252 val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
253 (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
254 MDIO_SUP_PREAMBLE |
255 MDIO_START |
256 MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
257
258 AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
259 wmb();
260
261 for (i = 0; i < MDIO_WAIT_TIMES; i++) {
262 udelay(2);
263 val = AT_READ_REG(hw, REG_MDIO_CTRL);
264 if (!(val & (MDIO_START | MDIO_BUSY)))
265 break;
266 wmb();
267 }
268
269 if (!(val & (MDIO_START | MDIO_BUSY)))
270 return 0;
271
272 return AT_ERR_PHY;
273}
274
275/*
276 * atl1e_init_pcie - init PCIE module
277 */
278static void atl1e_init_pcie(struct atl1e_hw *hw)
279{
280 u32 value;
281 /* comment 2lines below to save more power when sususpend
282 value = LTSSM_TEST_MODE_DEF;
283 AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
284 */
285
286 /* pcie flow control mode change */
287 value = AT_READ_REG(hw, 0x1008);
288 value |= 0x8000;
289 AT_WRITE_REG(hw, 0x1008, value);
290}
291/*
292 * Configures PHY autoneg and flow control advertisement settings
293 *
294 * hw - Struct containing variables accessed by shared code
295 */
296static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
297{
298 s32 ret_val;
299 u16 mii_autoneg_adv_reg;
300 u16 mii_1000t_ctrl_reg;
301
302 if (0 != hw->mii_autoneg_adv_reg)
303 return 0;
304 /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
305 mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
306 mii_1000t_ctrl_reg = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
307
308 /*
309 * Need to parse autoneg_advertised and set up
310 * the appropriate PHY registers. First we will parse for
311 * autoneg_advertised software override. Since we can advertise
312 * a plethora of combinations, we need to check each bit
313 * individually.
314 */
315
316 /*
317 * First we clear all the 10/100 mb speed bits in the Auto-Neg
318 * Advertisement Register (Address 4) and the 1000 mb speed bits in
319 * the 1000Base-T control Register (Address 9).
320 */
321 mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
322 mii_1000t_ctrl_reg &= ~MII_AT001_CR_1000T_SPEED_MASK;
323
324 /*
325 * Need to parse MediaType and setup the
326 * appropriate PHY registers.
327 */
328 switch (hw->media_type) {
329 case MEDIA_TYPE_AUTO_SENSOR:
330 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
331 MII_AR_10T_FD_CAPS |
332 MII_AR_100TX_HD_CAPS |
333 MII_AR_100TX_FD_CAPS);
334 hw->autoneg_advertised = ADVERTISE_10_HALF |
335 ADVERTISE_10_FULL |
336 ADVERTISE_100_HALF |
337 ADVERTISE_100_FULL;
338 if (hw->nic_type == athr_l1e) {
339 mii_1000t_ctrl_reg |=
340 MII_AT001_CR_1000T_FD_CAPS;
341 hw->autoneg_advertised |= ADVERTISE_1000_FULL;
342 }
343 break;
344
345 case MEDIA_TYPE_100M_FULL:
346 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
347 hw->autoneg_advertised = ADVERTISE_100_FULL;
348 break;
349
350 case MEDIA_TYPE_100M_HALF:
351 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
352 hw->autoneg_advertised = ADVERTISE_100_HALF;
353 break;
354
355 case MEDIA_TYPE_10M_FULL:
356 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
357 hw->autoneg_advertised = ADVERTISE_10_FULL;
358 break;
359
360 default:
361 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
362 hw->autoneg_advertised = ADVERTISE_10_HALF;
363 break;
364 }
365
366 /* flow control fixed to enable all */
367 mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
368
369 hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
370 hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
371
372 ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
373 if (ret_val)
374 return ret_val;
375
376 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
377 ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR,
378 mii_1000t_ctrl_reg);
379 if (ret_val)
380 return ret_val;
381 }
382
383 return 0;
384}
385
386
387/*
388 * Resets the PHY and make all config validate
389 *
390 * hw - Struct containing variables accessed by shared code
391 *
392 * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
393 */
394int atl1e_phy_commit(struct atl1e_hw *hw)
395{
Jie Yanga4e77d02008-09-22 14:52:25 -0700396 struct atl1e_adapter *adapter = hw->adapter;
Jie Yanga6a53252008-07-18 11:37:13 +0800397 struct pci_dev *pdev = adapter->pdev;
398 int ret_val;
399 u16 phy_data;
400
401 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
402
403 ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
404 if (ret_val) {
405 u32 val;
406 int i;
407 /**************************************
408 * pcie serdes link may be down !
409 **************************************/
410 for (i = 0; i < 25; i++) {
411 msleep(1);
412 val = AT_READ_REG(hw, REG_MDIO_CTRL);
413 if (!(val & (MDIO_START | MDIO_BUSY)))
414 break;
415 }
416
417 if (0 != (val & (MDIO_START | MDIO_BUSY))) {
418 dev_err(&pdev->dev,
419 "pcie linkdown at least for 25ms\n");
420 return ret_val;
421 }
422
423 dev_err(&pdev->dev, "pcie linkup after %d ms\n", i);
424 }
425 return 0;
426}
427
428int atl1e_phy_init(struct atl1e_hw *hw)
429{
Jie Yanga4e77d02008-09-22 14:52:25 -0700430 struct atl1e_adapter *adapter = hw->adapter;
Jie Yanga6a53252008-07-18 11:37:13 +0800431 struct pci_dev *pdev = adapter->pdev;
432 s32 ret_val;
433 u16 phy_val;
434
435 if (hw->phy_configured) {
436 if (hw->re_autoneg) {
437 hw->re_autoneg = false;
438 return atl1e_restart_autoneg(hw);
439 }
440 return 0;
441 }
442
443 /* RESET GPHY Core */
444 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
445 msleep(2);
446 AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
447 GPHY_CTRL_EXT_RESET);
448 msleep(2);
449
450 /* patches */
451 /* p1. eable hibernation mode */
452 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
453 if (ret_val)
454 return ret_val;
455 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
456 if (ret_val)
457 return ret_val;
458 /* p2. set Class A/B for all modes */
459 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
460 if (ret_val)
461 return ret_val;
462 phy_val = 0x02ef;
463 /* remove Class AB */
464 /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
465 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
466 if (ret_val)
467 return ret_val;
468 /* p3. 10B ??? */
469 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
470 if (ret_val)
471 return ret_val;
472 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
473 if (ret_val)
474 return ret_val;
475 /* p4. 1000T power */
476 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
477 if (ret_val)
478 return ret_val;
479 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
480 if (ret_val)
481 return ret_val;
482
483 ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
484 if (ret_val)
485 return ret_val;
486 ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
487 if (ret_val)
488 return ret_val;
489
490 msleep(1);
491
492 /*Enable PHY LinkChange Interrupt */
493 ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
494 if (ret_val) {
495 dev_err(&pdev->dev, "Error enable PHY linkChange Interrupt\n");
496 return ret_val;
497 }
498 /* setup AutoNeg parameters */
499 ret_val = atl1e_phy_setup_autoneg_adv(hw);
500 if (ret_val) {
501 dev_err(&pdev->dev, "Error Setting up Auto-Negotiation\n");
502 return ret_val;
503 }
504 /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
505 dev_dbg(&pdev->dev, "Restarting Auto-Neg");
506 ret_val = atl1e_phy_commit(hw);
507 if (ret_val) {
508 dev_err(&pdev->dev, "Error Resetting the phy");
509 return ret_val;
510 }
511
512 hw->phy_configured = true;
513
514 return 0;
515}
516
517/*
518 * Reset the transmit and receive units; mask and clear all interrupts.
519 * hw - Struct containing variables accessed by shared code
520 * return : 0 or idle status (if error)
521 */
522int atl1e_reset_hw(struct atl1e_hw *hw)
523{
Jie Yanga4e77d02008-09-22 14:52:25 -0700524 struct atl1e_adapter *adapter = hw->adapter;
Jie Yanga6a53252008-07-18 11:37:13 +0800525 struct pci_dev *pdev = adapter->pdev;
526
527 u32 idle_status_data = 0;
528 u16 pci_cfg_cmd_word = 0;
529 int timeout = 0;
530
531 /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
532 pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
533 if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
534 CMD_MEMORY_SPACE | CMD_BUS_MASTER))
535 != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
536 pci_cfg_cmd_word |= (CMD_IO_SPACE |
537 CMD_MEMORY_SPACE | CMD_BUS_MASTER);
538 pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
539 }
540
541 /*
542 * Issue Soft Reset to the MAC. This will reset the chip's
543 * transmit, receive, DMA. It will not effect
544 * the current PCI configuration. The global reset bit is self-
545 * clearing, and should clear within a microsecond.
546 */
547 AT_WRITE_REG(hw, REG_MASTER_CTRL,
548 MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
549 wmb();
550 msleep(1);
551
552 /* Wait at least 10ms for All module to be Idle */
553 for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
554 idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
555 if (idle_status_data == 0)
556 break;
557 msleep(1);
558 cpu_relax();
559 }
560
561 if (timeout >= AT_HW_MAX_IDLE_DELAY) {
562 dev_err(&pdev->dev,
563 "MAC state machine cann't be idle since"
564 " disabled for 10ms second\n");
565 return AT_ERR_TIMEOUT;
566 }
567
568 return 0;
569}
570
571
572/*
573 * Performs basic configuration of the adapter.
574 *
575 * hw - Struct containing variables accessed by shared code
576 * Assumes that the controller has previously been reset and is in a
577 * post-reset uninitialized state. Initializes multicast table,
578 * and Calls routines to setup link
579 * Leaves the transmit and receive units disabled and uninitialized.
580 */
581int atl1e_init_hw(struct atl1e_hw *hw)
582{
583 s32 ret_val = 0;
584
585 atl1e_init_pcie(hw);
586
587 /* Zero out the Multicast HASH table */
588 /* clear the old settings from the multicast hash table */
589 AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
590 AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
591
592 ret_val = atl1e_phy_init(hw);
593
594 return ret_val;
595}
596
597/*
598 * Detects the current speed and duplex settings of the hardware.
599 *
600 * hw - Struct containing variables accessed by shared code
601 * speed - Speed of the connection
602 * duplex - Duplex setting of the connection
603 */
604int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
605{
606 int err;
607 u16 phy_data;
608
609 /* Read PHY Specific Status Register (17) */
610 err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
611 if (err)
612 return err;
613
614 if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
615 return AT_ERR_PHY_RES;
616
617 switch (phy_data & MII_AT001_PSSR_SPEED) {
618 case MII_AT001_PSSR_1000MBS:
619 *speed = SPEED_1000;
620 break;
621 case MII_AT001_PSSR_100MBS:
622 *speed = SPEED_100;
623 break;
624 case MII_AT001_PSSR_10MBS:
625 *speed = SPEED_10;
626 break;
627 default:
628 return AT_ERR_PHY_SPEED;
629 break;
630 }
631
632 if (phy_data & MII_AT001_PSSR_DPLX)
633 *duplex = FULL_DUPLEX;
634 else
635 *duplex = HALF_DUPLEX;
636
637 return 0;
638}
639
640int atl1e_restart_autoneg(struct atl1e_hw *hw)
641{
642 int err = 0;
643
644 err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
645 if (err)
646 return err;
647
648 if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
649 err = atl1e_write_phy_reg(hw, MII_AT001_CR,
650 hw->mii_1000t_ctrl_reg);
651 if (err)
652 return err;
653 }
654
655 err = atl1e_write_phy_reg(hw, MII_BMCR,
656 MII_CR_RESET | MII_CR_AUTO_NEG_EN |
657 MII_CR_RESTART_AUTO_NEG);
658 return err;
659}
660