Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame^] | 1 | /* |
| 2 | Red Black Trees |
| 3 | (C) 1999 Andrea Arcangeli <andrea@suse.de> |
| 4 | (C) 2002 David Woodhouse <dwmw2@infradead.org> |
| 5 | (C) 2012 Michel Lespinasse <walken@google.com> |
| 6 | |
| 7 | This program is free software; you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation; either version 2 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | This program is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program; if not, write to the Free Software |
| 19 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | |
| 21 | linux/lib/rbtree.c |
| 22 | */ |
| 23 | |
| 24 | #include <linux/rbtree_augmented.h> |
| 25 | |
| 26 | /* |
| 27 | * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree |
| 28 | * |
| 29 | * 1) A node is either red or black |
| 30 | * 2) The root is black |
| 31 | * 3) All leaves (NULL) are black |
| 32 | * 4) Both children of every red node are black |
| 33 | * 5) Every simple path from root to leaves contains the same number |
| 34 | * of black nodes. |
| 35 | * |
| 36 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two |
| 37 | * consecutive red nodes in a path and every red node is therefore followed by |
| 38 | * a black. So if B is the number of black nodes on every simple path (as per |
| 39 | * 5), then the longest possible path due to 4 is 2B. |
| 40 | * |
| 41 | * We shall indicate color with case, where black nodes are uppercase and red |
| 42 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within |
| 43 | * parentheses and have some accompanying text comment. |
| 44 | */ |
| 45 | |
| 46 | static inline void rb_set_black(struct rb_node *rb) |
| 47 | { |
| 48 | rb->__rb_parent_color |= RB_BLACK; |
| 49 | } |
| 50 | |
| 51 | static inline struct rb_node *rb_red_parent(struct rb_node *red) |
| 52 | { |
| 53 | return (struct rb_node *)red->__rb_parent_color; |
| 54 | } |
| 55 | |
| 56 | /* |
| 57 | * Helper function for rotations: |
| 58 | * - old's parent and color get assigned to new |
| 59 | * - old gets assigned new as a parent and 'color' as a color. |
| 60 | */ |
| 61 | static inline void |
| 62 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, |
| 63 | struct rb_root *root, int color) |
| 64 | { |
| 65 | struct rb_node *parent = rb_parent(old); |
| 66 | new->__rb_parent_color = old->__rb_parent_color; |
| 67 | rb_set_parent_color(old, new, color); |
| 68 | __rb_change_child(old, new, parent, root); |
| 69 | } |
| 70 | |
| 71 | static __always_inline void |
| 72 | __rb_insert(struct rb_node *node, struct rb_root *root, |
| 73 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 74 | { |
| 75 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; |
| 76 | |
| 77 | while (true) { |
| 78 | /* |
| 79 | * Loop invariant: node is red |
| 80 | * |
| 81 | * If there is a black parent, we are done. |
| 82 | * Otherwise, take some corrective action as we don't |
| 83 | * want a red root or two consecutive red nodes. |
| 84 | */ |
| 85 | if (!parent) { |
| 86 | rb_set_parent_color(node, NULL, RB_BLACK); |
| 87 | break; |
| 88 | } else if (rb_is_black(parent)) |
| 89 | break; |
| 90 | |
| 91 | gparent = rb_red_parent(parent); |
| 92 | |
| 93 | tmp = gparent->rb_right; |
| 94 | if (parent != tmp) { /* parent == gparent->rb_left */ |
| 95 | if (tmp && rb_is_red(tmp)) { |
| 96 | /* |
| 97 | * Case 1 - color flips |
| 98 | * |
| 99 | * G g |
| 100 | * / \ / \ |
| 101 | * p u --> P U |
| 102 | * / / |
| 103 | * n n |
| 104 | * |
| 105 | * However, since g's parent might be red, and |
| 106 | * 4) does not allow this, we need to recurse |
| 107 | * at g. |
| 108 | */ |
| 109 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 110 | rb_set_parent_color(parent, gparent, RB_BLACK); |
| 111 | node = gparent; |
| 112 | parent = rb_parent(node); |
| 113 | rb_set_parent_color(node, parent, RB_RED); |
| 114 | continue; |
| 115 | } |
| 116 | |
| 117 | tmp = parent->rb_right; |
| 118 | if (node == tmp) { |
| 119 | /* |
| 120 | * Case 2 - left rotate at parent |
| 121 | * |
| 122 | * G G |
| 123 | * / \ / \ |
| 124 | * p U --> n U |
| 125 | * \ / |
| 126 | * n p |
| 127 | * |
| 128 | * This still leaves us in violation of 4), the |
| 129 | * continuation into Case 3 will fix that. |
| 130 | */ |
| 131 | parent->rb_right = tmp = node->rb_left; |
| 132 | node->rb_left = parent; |
| 133 | if (tmp) |
| 134 | rb_set_parent_color(tmp, parent, |
| 135 | RB_BLACK); |
| 136 | rb_set_parent_color(parent, node, RB_RED); |
| 137 | augment_rotate(parent, node); |
| 138 | parent = node; |
| 139 | tmp = node->rb_right; |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * Case 3 - right rotate at gparent |
| 144 | * |
| 145 | * G P |
| 146 | * / \ / \ |
| 147 | * p U --> n g |
| 148 | * / \ |
| 149 | * n U |
| 150 | */ |
| 151 | gparent->rb_left = tmp; /* == parent->rb_right */ |
| 152 | parent->rb_right = gparent; |
| 153 | if (tmp) |
| 154 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 155 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); |
| 156 | augment_rotate(gparent, parent); |
| 157 | break; |
| 158 | } else { |
| 159 | tmp = gparent->rb_left; |
| 160 | if (tmp && rb_is_red(tmp)) { |
| 161 | /* Case 1 - color flips */ |
| 162 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 163 | rb_set_parent_color(parent, gparent, RB_BLACK); |
| 164 | node = gparent; |
| 165 | parent = rb_parent(node); |
| 166 | rb_set_parent_color(node, parent, RB_RED); |
| 167 | continue; |
| 168 | } |
| 169 | |
| 170 | tmp = parent->rb_left; |
| 171 | if (node == tmp) { |
| 172 | /* Case 2 - right rotate at parent */ |
| 173 | parent->rb_left = tmp = node->rb_right; |
| 174 | node->rb_right = parent; |
| 175 | if (tmp) |
| 176 | rb_set_parent_color(tmp, parent, |
| 177 | RB_BLACK); |
| 178 | rb_set_parent_color(parent, node, RB_RED); |
| 179 | augment_rotate(parent, node); |
| 180 | parent = node; |
| 181 | tmp = node->rb_left; |
| 182 | } |
| 183 | |
| 184 | /* Case 3 - left rotate at gparent */ |
| 185 | gparent->rb_right = tmp; /* == parent->rb_left */ |
| 186 | parent->rb_left = gparent; |
| 187 | if (tmp) |
| 188 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 189 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); |
| 190 | augment_rotate(gparent, parent); |
| 191 | break; |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Inline version for rb_erase() use - we want to be able to inline |
| 198 | * and eliminate the dummy_rotate callback there |
| 199 | */ |
| 200 | static __always_inline void |
| 201 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, |
| 202 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 203 | { |
| 204 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; |
| 205 | |
| 206 | while (true) { |
| 207 | /* |
| 208 | * Loop invariants: |
| 209 | * - node is black (or NULL on first iteration) |
| 210 | * - node is not the root (parent is not NULL) |
| 211 | * - All leaf paths going through parent and node have a |
| 212 | * black node count that is 1 lower than other leaf paths. |
| 213 | */ |
| 214 | sibling = parent->rb_right; |
| 215 | if (node != sibling) { /* node == parent->rb_left */ |
| 216 | if (rb_is_red(sibling)) { |
| 217 | /* |
| 218 | * Case 1 - left rotate at parent |
| 219 | * |
| 220 | * P S |
| 221 | * / \ / \ |
| 222 | * N s --> p Sr |
| 223 | * / \ / \ |
| 224 | * Sl Sr N Sl |
| 225 | */ |
| 226 | parent->rb_right = tmp1 = sibling->rb_left; |
| 227 | sibling->rb_left = parent; |
| 228 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
| 229 | __rb_rotate_set_parents(parent, sibling, root, |
| 230 | RB_RED); |
| 231 | augment_rotate(parent, sibling); |
| 232 | sibling = tmp1; |
| 233 | } |
| 234 | tmp1 = sibling->rb_right; |
| 235 | if (!tmp1 || rb_is_black(tmp1)) { |
| 236 | tmp2 = sibling->rb_left; |
| 237 | if (!tmp2 || rb_is_black(tmp2)) { |
| 238 | /* |
| 239 | * Case 2 - sibling color flip |
| 240 | * (p could be either color here) |
| 241 | * |
| 242 | * (p) (p) |
| 243 | * / \ / \ |
| 244 | * N S --> N s |
| 245 | * / \ / \ |
| 246 | * Sl Sr Sl Sr |
| 247 | * |
| 248 | * This leaves us violating 5) which |
| 249 | * can be fixed by flipping p to black |
| 250 | * if it was red, or by recursing at p. |
| 251 | * p is red when coming from Case 1. |
| 252 | */ |
| 253 | rb_set_parent_color(sibling, parent, |
| 254 | RB_RED); |
| 255 | if (rb_is_red(parent)) |
| 256 | rb_set_black(parent); |
| 257 | else { |
| 258 | node = parent; |
| 259 | parent = rb_parent(node); |
| 260 | if (parent) |
| 261 | continue; |
| 262 | } |
| 263 | break; |
| 264 | } |
| 265 | /* |
| 266 | * Case 3 - right rotate at sibling |
| 267 | * (p could be either color here) |
| 268 | * |
| 269 | * (p) (p) |
| 270 | * / \ / \ |
| 271 | * N S --> N Sl |
| 272 | * / \ \ |
| 273 | * sl Sr s |
| 274 | * \ |
| 275 | * Sr |
| 276 | */ |
| 277 | sibling->rb_left = tmp1 = tmp2->rb_right; |
| 278 | tmp2->rb_right = sibling; |
| 279 | parent->rb_right = tmp2; |
| 280 | if (tmp1) |
| 281 | rb_set_parent_color(tmp1, sibling, |
| 282 | RB_BLACK); |
| 283 | augment_rotate(sibling, tmp2); |
| 284 | tmp1 = sibling; |
| 285 | sibling = tmp2; |
| 286 | } |
| 287 | /* |
| 288 | * Case 4 - left rotate at parent + color flips |
| 289 | * (p and sl could be either color here. |
| 290 | * After rotation, p becomes black, s acquires |
| 291 | * p's color, and sl keeps its color) |
| 292 | * |
| 293 | * (p) (s) |
| 294 | * / \ / \ |
| 295 | * N S --> P Sr |
| 296 | * / \ / \ |
| 297 | * (sl) sr N (sl) |
| 298 | */ |
| 299 | parent->rb_right = tmp2 = sibling->rb_left; |
| 300 | sibling->rb_left = parent; |
| 301 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| 302 | if (tmp2) |
| 303 | rb_set_parent(tmp2, parent); |
| 304 | __rb_rotate_set_parents(parent, sibling, root, |
| 305 | RB_BLACK); |
| 306 | augment_rotate(parent, sibling); |
| 307 | break; |
| 308 | } else { |
| 309 | sibling = parent->rb_left; |
| 310 | if (rb_is_red(sibling)) { |
| 311 | /* Case 1 - right rotate at parent */ |
| 312 | parent->rb_left = tmp1 = sibling->rb_right; |
| 313 | sibling->rb_right = parent; |
| 314 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
| 315 | __rb_rotate_set_parents(parent, sibling, root, |
| 316 | RB_RED); |
| 317 | augment_rotate(parent, sibling); |
| 318 | sibling = tmp1; |
| 319 | } |
| 320 | tmp1 = sibling->rb_left; |
| 321 | if (!tmp1 || rb_is_black(tmp1)) { |
| 322 | tmp2 = sibling->rb_right; |
| 323 | if (!tmp2 || rb_is_black(tmp2)) { |
| 324 | /* Case 2 - sibling color flip */ |
| 325 | rb_set_parent_color(sibling, parent, |
| 326 | RB_RED); |
| 327 | if (rb_is_red(parent)) |
| 328 | rb_set_black(parent); |
| 329 | else { |
| 330 | node = parent; |
| 331 | parent = rb_parent(node); |
| 332 | if (parent) |
| 333 | continue; |
| 334 | } |
| 335 | break; |
| 336 | } |
| 337 | /* Case 3 - right rotate at sibling */ |
| 338 | sibling->rb_right = tmp1 = tmp2->rb_left; |
| 339 | tmp2->rb_left = sibling; |
| 340 | parent->rb_left = tmp2; |
| 341 | if (tmp1) |
| 342 | rb_set_parent_color(tmp1, sibling, |
| 343 | RB_BLACK); |
| 344 | augment_rotate(sibling, tmp2); |
| 345 | tmp1 = sibling; |
| 346 | sibling = tmp2; |
| 347 | } |
| 348 | /* Case 4 - left rotate at parent + color flips */ |
| 349 | parent->rb_left = tmp2 = sibling->rb_right; |
| 350 | sibling->rb_right = parent; |
| 351 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| 352 | if (tmp2) |
| 353 | rb_set_parent(tmp2, parent); |
| 354 | __rb_rotate_set_parents(parent, sibling, root, |
| 355 | RB_BLACK); |
| 356 | augment_rotate(parent, sibling); |
| 357 | break; |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | /* Non-inline version for rb_erase_augmented() use */ |
| 363 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, |
| 364 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 365 | { |
| 366 | ____rb_erase_color(parent, root, augment_rotate); |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Non-augmented rbtree manipulation functions. |
| 371 | * |
| 372 | * We use dummy augmented callbacks here, and have the compiler optimize them |
| 373 | * out of the rb_insert_color() and rb_erase() function definitions. |
| 374 | */ |
| 375 | |
| 376 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} |
| 377 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} |
| 378 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} |
| 379 | |
| 380 | static const struct rb_augment_callbacks dummy_callbacks = { |
| 381 | dummy_propagate, dummy_copy, dummy_rotate |
| 382 | }; |
| 383 | |
| 384 | void rb_insert_color(struct rb_node *node, struct rb_root *root) |
| 385 | { |
| 386 | __rb_insert(node, root, dummy_rotate); |
| 387 | } |
| 388 | |
| 389 | void rb_erase(struct rb_node *node, struct rb_root *root) |
| 390 | { |
| 391 | struct rb_node *rebalance; |
| 392 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); |
| 393 | if (rebalance) |
| 394 | ____rb_erase_color(rebalance, root, dummy_rotate); |
| 395 | } |
| 396 | |
| 397 | /* |
| 398 | * Augmented rbtree manipulation functions. |
| 399 | * |
| 400 | * This instantiates the same __always_inline functions as in the non-augmented |
| 401 | * case, but this time with user-defined callbacks. |
| 402 | */ |
| 403 | |
| 404 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, |
| 405 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 406 | { |
| 407 | __rb_insert(node, root, augment_rotate); |
| 408 | } |
| 409 | |
| 410 | /* |
| 411 | * This function returns the first node (in sort order) of the tree. |
| 412 | */ |
| 413 | struct rb_node *rb_first(const struct rb_root *root) |
| 414 | { |
| 415 | struct rb_node *n; |
| 416 | |
| 417 | n = root->rb_node; |
| 418 | if (!n) |
| 419 | return NULL; |
| 420 | while (n->rb_left) |
| 421 | n = n->rb_left; |
| 422 | return n; |
| 423 | } |
| 424 | |
| 425 | struct rb_node *rb_last(const struct rb_root *root) |
| 426 | { |
| 427 | struct rb_node *n; |
| 428 | |
| 429 | n = root->rb_node; |
| 430 | if (!n) |
| 431 | return NULL; |
| 432 | while (n->rb_right) |
| 433 | n = n->rb_right; |
| 434 | return n; |
| 435 | } |
| 436 | |
| 437 | struct rb_node *rb_next(const struct rb_node *node) |
| 438 | { |
| 439 | struct rb_node *parent; |
| 440 | |
| 441 | if (RB_EMPTY_NODE(node)) |
| 442 | return NULL; |
| 443 | |
| 444 | /* |
| 445 | * If we have a right-hand child, go down and then left as far |
| 446 | * as we can. |
| 447 | */ |
| 448 | if (node->rb_right) { |
| 449 | node = node->rb_right; |
| 450 | while (node->rb_left) |
| 451 | node=node->rb_left; |
| 452 | return (struct rb_node *)node; |
| 453 | } |
| 454 | |
| 455 | /* |
| 456 | * No right-hand children. Everything down and left is smaller than us, |
| 457 | * so any 'next' node must be in the general direction of our parent. |
| 458 | * Go up the tree; any time the ancestor is a right-hand child of its |
| 459 | * parent, keep going up. First time it's a left-hand child of its |
| 460 | * parent, said parent is our 'next' node. |
| 461 | */ |
| 462 | while ((parent = rb_parent(node)) && node == parent->rb_right) |
| 463 | node = parent; |
| 464 | |
| 465 | return parent; |
| 466 | } |
| 467 | |
| 468 | struct rb_node *rb_prev(const struct rb_node *node) |
| 469 | { |
| 470 | struct rb_node *parent; |
| 471 | |
| 472 | if (RB_EMPTY_NODE(node)) |
| 473 | return NULL; |
| 474 | |
| 475 | /* |
| 476 | * If we have a left-hand child, go down and then right as far |
| 477 | * as we can. |
| 478 | */ |
| 479 | if (node->rb_left) { |
| 480 | node = node->rb_left; |
| 481 | while (node->rb_right) |
| 482 | node=node->rb_right; |
| 483 | return (struct rb_node *)node; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * No left-hand children. Go up till we find an ancestor which |
| 488 | * is a right-hand child of its parent. |
| 489 | */ |
| 490 | while ((parent = rb_parent(node)) && node == parent->rb_left) |
| 491 | node = parent; |
| 492 | |
| 493 | return parent; |
| 494 | } |
| 495 | |
| 496 | void rb_replace_node(struct rb_node *victim, struct rb_node *new, |
| 497 | struct rb_root *root) |
| 498 | { |
| 499 | struct rb_node *parent = rb_parent(victim); |
| 500 | |
| 501 | /* Set the surrounding nodes to point to the replacement */ |
| 502 | __rb_change_child(victim, new, parent, root); |
| 503 | if (victim->rb_left) |
| 504 | rb_set_parent(victim->rb_left, new); |
| 505 | if (victim->rb_right) |
| 506 | rb_set_parent(victim->rb_right, new); |
| 507 | |
| 508 | /* Copy the pointers/colour from the victim to the replacement */ |
| 509 | *new = *victim; |
| 510 | } |
| 511 | |
| 512 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) |
| 513 | { |
| 514 | for (;;) { |
| 515 | if (node->rb_left) |
| 516 | node = node->rb_left; |
| 517 | else if (node->rb_right) |
| 518 | node = node->rb_right; |
| 519 | else |
| 520 | return (struct rb_node *)node; |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | struct rb_node *rb_next_postorder(const struct rb_node *node) |
| 525 | { |
| 526 | const struct rb_node *parent; |
| 527 | if (!node) |
| 528 | return NULL; |
| 529 | parent = rb_parent(node); |
| 530 | |
| 531 | /* If we're sitting on node, we've already seen our children */ |
| 532 | if (parent && node == parent->rb_left && parent->rb_right) { |
| 533 | /* If we are the parent's left node, go to the parent's right |
| 534 | * node then all the way down to the left */ |
| 535 | return rb_left_deepest_node(parent->rb_right); |
| 536 | } else |
| 537 | /* Otherwise we are the parent's right node, and the parent |
| 538 | * should be next */ |
| 539 | return (struct rb_node *)parent; |
| 540 | } |
| 541 | |
| 542 | struct rb_node *rb_first_postorder(const struct rb_root *root) |
| 543 | { |
| 544 | if (!root->rb_node) |
| 545 | return NULL; |
| 546 | |
| 547 | return rb_left_deepest_node(root->rb_node); |
| 548 | } |