Vladimir Murzin | 1c51c42 | 2017-05-24 11:24:30 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Based on linux/arch/arm/mm/dma-mapping.c |
| 3 | * |
| 4 | * Copyright (C) 2000-2004 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | */ |
| 11 | |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/mm.h> |
| 14 | #include <linux/dma-mapping.h> |
| 15 | #include <linux/scatterlist.h> |
| 16 | |
| 17 | #include <asm/cachetype.h> |
| 18 | #include <asm/cacheflush.h> |
| 19 | #include <asm/outercache.h> |
| 20 | #include <asm/cp15.h> |
| 21 | |
| 22 | #include "dma.h" |
| 23 | |
| 24 | /* |
| 25 | * dma_noop_ops is used if |
| 26 | * - MMU/MPU is off |
| 27 | * - cpu is v7m w/o cache support |
| 28 | * - device is coherent |
| 29 | * otherwise arm_nommu_dma_ops is used. |
| 30 | * |
| 31 | * arm_nommu_dma_ops rely on consistent DMA memory (please, refer to |
| 32 | * [1] on how to declare such memory). |
| 33 | * |
| 34 | * [1] Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt |
| 35 | */ |
| 36 | |
| 37 | static void *arm_nommu_dma_alloc(struct device *dev, size_t size, |
| 38 | dma_addr_t *dma_handle, gfp_t gfp, |
| 39 | unsigned long attrs) |
| 40 | |
| 41 | { |
| 42 | const struct dma_map_ops *ops = &dma_noop_ops; |
| 43 | |
| 44 | /* |
| 45 | * We are here because: |
| 46 | * - no consistent DMA region has been defined, so we can't |
| 47 | * continue. |
| 48 | * - there is no space left in consistent DMA region, so we |
| 49 | * only can fallback to generic allocator if we are |
| 50 | * advertised that consistency is not required. |
| 51 | */ |
| 52 | |
| 53 | if (attrs & DMA_ATTR_NON_CONSISTENT) |
| 54 | return ops->alloc(dev, size, dma_handle, gfp, attrs); |
| 55 | |
| 56 | WARN_ON_ONCE(1); |
| 57 | return NULL; |
| 58 | } |
| 59 | |
| 60 | static void arm_nommu_dma_free(struct device *dev, size_t size, |
| 61 | void *cpu_addr, dma_addr_t dma_addr, |
| 62 | unsigned long attrs) |
| 63 | { |
| 64 | const struct dma_map_ops *ops = &dma_noop_ops; |
| 65 | |
| 66 | if (attrs & DMA_ATTR_NON_CONSISTENT) |
| 67 | ops->free(dev, size, cpu_addr, dma_addr, attrs); |
| 68 | else |
| 69 | WARN_ON_ONCE(1); |
| 70 | |
| 71 | return; |
| 72 | } |
| 73 | |
| 74 | static void __dma_page_cpu_to_dev(phys_addr_t paddr, size_t size, |
| 75 | enum dma_data_direction dir) |
| 76 | { |
| 77 | dmac_map_area(__va(paddr), size, dir); |
| 78 | |
| 79 | if (dir == DMA_FROM_DEVICE) |
| 80 | outer_inv_range(paddr, paddr + size); |
| 81 | else |
| 82 | outer_clean_range(paddr, paddr + size); |
| 83 | } |
| 84 | |
| 85 | static void __dma_page_dev_to_cpu(phys_addr_t paddr, size_t size, |
| 86 | enum dma_data_direction dir) |
| 87 | { |
| 88 | if (dir != DMA_TO_DEVICE) { |
| 89 | outer_inv_range(paddr, paddr + size); |
| 90 | dmac_unmap_area(__va(paddr), size, dir); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | static dma_addr_t arm_nommu_dma_map_page(struct device *dev, struct page *page, |
| 95 | unsigned long offset, size_t size, |
| 96 | enum dma_data_direction dir, |
| 97 | unsigned long attrs) |
| 98 | { |
| 99 | dma_addr_t handle = page_to_phys(page) + offset; |
| 100 | |
| 101 | __dma_page_cpu_to_dev(handle, size, dir); |
| 102 | |
| 103 | return handle; |
| 104 | } |
| 105 | |
| 106 | static void arm_nommu_dma_unmap_page(struct device *dev, dma_addr_t handle, |
| 107 | size_t size, enum dma_data_direction dir, |
| 108 | unsigned long attrs) |
| 109 | { |
| 110 | __dma_page_dev_to_cpu(handle, size, dir); |
| 111 | } |
| 112 | |
| 113 | |
| 114 | static int arm_nommu_dma_map_sg(struct device *dev, struct scatterlist *sgl, |
| 115 | int nents, enum dma_data_direction dir, |
| 116 | unsigned long attrs) |
| 117 | { |
| 118 | int i; |
| 119 | struct scatterlist *sg; |
| 120 | |
| 121 | for_each_sg(sgl, sg, nents, i) { |
| 122 | sg_dma_address(sg) = sg_phys(sg); |
| 123 | sg_dma_len(sg) = sg->length; |
| 124 | __dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir); |
| 125 | } |
| 126 | |
| 127 | return nents; |
| 128 | } |
| 129 | |
| 130 | static void arm_nommu_dma_unmap_sg(struct device *dev, struct scatterlist *sgl, |
| 131 | int nents, enum dma_data_direction dir, |
| 132 | unsigned long attrs) |
| 133 | { |
| 134 | struct scatterlist *sg; |
| 135 | int i; |
| 136 | |
| 137 | for_each_sg(sgl, sg, nents, i) |
| 138 | __dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir); |
| 139 | } |
| 140 | |
| 141 | static void arm_nommu_dma_sync_single_for_device(struct device *dev, |
| 142 | dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| 143 | { |
| 144 | __dma_page_cpu_to_dev(handle, size, dir); |
| 145 | } |
| 146 | |
| 147 | static void arm_nommu_dma_sync_single_for_cpu(struct device *dev, |
| 148 | dma_addr_t handle, size_t size, enum dma_data_direction dir) |
| 149 | { |
| 150 | __dma_page_cpu_to_dev(handle, size, dir); |
| 151 | } |
| 152 | |
| 153 | static void arm_nommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, |
| 154 | int nents, enum dma_data_direction dir) |
| 155 | { |
| 156 | struct scatterlist *sg; |
| 157 | int i; |
| 158 | |
| 159 | for_each_sg(sgl, sg, nents, i) |
| 160 | __dma_page_cpu_to_dev(sg_dma_address(sg), sg_dma_len(sg), dir); |
| 161 | } |
| 162 | |
| 163 | static void arm_nommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl, |
| 164 | int nents, enum dma_data_direction dir) |
| 165 | { |
| 166 | struct scatterlist *sg; |
| 167 | int i; |
| 168 | |
| 169 | for_each_sg(sgl, sg, nents, i) |
| 170 | __dma_page_dev_to_cpu(sg_dma_address(sg), sg_dma_len(sg), dir); |
| 171 | } |
| 172 | |
| 173 | const struct dma_map_ops arm_nommu_dma_ops = { |
| 174 | .alloc = arm_nommu_dma_alloc, |
| 175 | .free = arm_nommu_dma_free, |
| 176 | .map_page = arm_nommu_dma_map_page, |
| 177 | .unmap_page = arm_nommu_dma_unmap_page, |
| 178 | .map_sg = arm_nommu_dma_map_sg, |
| 179 | .unmap_sg = arm_nommu_dma_unmap_sg, |
| 180 | .sync_single_for_device = arm_nommu_dma_sync_single_for_device, |
| 181 | .sync_single_for_cpu = arm_nommu_dma_sync_single_for_cpu, |
| 182 | .sync_sg_for_device = arm_nommu_dma_sync_sg_for_device, |
| 183 | .sync_sg_for_cpu = arm_nommu_dma_sync_sg_for_cpu, |
| 184 | }; |
| 185 | EXPORT_SYMBOL(arm_nommu_dma_ops); |
| 186 | |
| 187 | static const struct dma_map_ops *arm_nommu_get_dma_map_ops(bool coherent) |
| 188 | { |
| 189 | return coherent ? &dma_noop_ops : &arm_nommu_dma_ops; |
| 190 | } |
| 191 | |
| 192 | void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, |
| 193 | const struct iommu_ops *iommu, bool coherent) |
| 194 | { |
| 195 | const struct dma_map_ops *dma_ops; |
| 196 | |
| 197 | if (IS_ENABLED(CONFIG_CPU_V7M)) { |
| 198 | /* |
| 199 | * Cache support for v7m is optional, so can be treated as |
| 200 | * coherent if no cache has been detected. Note that it is not |
| 201 | * enough to check if MPU is in use or not since in absense of |
| 202 | * MPU system memory map is used. |
| 203 | */ |
| 204 | dev->archdata.dma_coherent = (cacheid) ? coherent : true; |
| 205 | } else { |
| 206 | /* |
| 207 | * Assume coherent DMA in case MMU/MPU has not been set up. |
| 208 | */ |
| 209 | dev->archdata.dma_coherent = (get_cr() & CR_M) ? coherent : true; |
| 210 | } |
| 211 | |
| 212 | dma_ops = arm_nommu_get_dma_map_ops(dev->archdata.dma_coherent); |
| 213 | |
| 214 | set_dma_ops(dev, dma_ops); |
| 215 | } |
| 216 | |
| 217 | void arch_teardown_dma_ops(struct device *dev) |
| 218 | { |
| 219 | } |
| 220 | |
| 221 | #define PREALLOC_DMA_DEBUG_ENTRIES 4096 |
| 222 | |
| 223 | static int __init dma_debug_do_init(void) |
| 224 | { |
| 225 | dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); |
| 226 | return 0; |
| 227 | } |
| 228 | core_initcall(dma_debug_do_init); |