blob: ffe1da95033a1b433ea7c1108cfaac50d04b5a2a [file] [log] [blame]
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +10001/*
2 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License, version 2, as
6 * published by the Free Software Foundation.
7 */
8
9#define pr_fmt(fmt) "xive-kvm: " fmt
10
11#include <linux/kernel.h>
12#include <linux/kvm_host.h>
13#include <linux/err.h>
14#include <linux/gfp.h>
15#include <linux/spinlock.h>
16#include <linux/delay.h>
17#include <linux/percpu.h>
18#include <linux/cpumask.h>
19#include <asm/uaccess.h>
20#include <asm/kvm_book3s.h>
21#include <asm/kvm_ppc.h>
22#include <asm/hvcall.h>
23#include <asm/xics.h>
24#include <asm/xive.h>
25#include <asm/xive-regs.h>
26#include <asm/debug.h>
Paolo Bonzini4415b332017-05-09 11:50:01 +020027#include <asm/debugfs.h>
Benjamin Herrenschmidt5af50992017-04-05 17:54:56 +100028#include <asm/time.h>
29#include <asm/opal.h>
30
31#include <linux/debugfs.h>
32#include <linux/seq_file.h>
33
34#include "book3s_xive.h"
35
36
37/*
38 * Virtual mode variants of the hcalls for use on radix/radix
39 * with AIL. They require the VCPU's VP to be "pushed"
40 *
41 * We still instanciate them here because we use some of the
42 * generated utility functions as well in this file.
43 */
44#define XIVE_RUNTIME_CHECKS
45#define X_PFX xive_vm_
46#define X_STATIC static
47#define X_STAT_PFX stat_vm_
48#define __x_tima xive_tima
49#define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio))
50#define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio))
51#define __x_readb __raw_readb
52#define __x_writeb __raw_writeb
53#define __x_readw __raw_readw
54#define __x_readq __raw_readq
55#define __x_writeq __raw_writeq
56
57#include "book3s_xive_template.c"
58
59/*
60 * We leave a gap of a couple of interrupts in the queue to
61 * account for the IPI and additional safety guard.
62 */
63#define XIVE_Q_GAP 2
64
65/*
66 * This is a simple trigger for a generic XIVE IRQ. This must
67 * only be called for interrupts that support a trigger page
68 */
69static bool xive_irq_trigger(struct xive_irq_data *xd)
70{
71 /* This should be only for MSIs */
72 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
73 return false;
74
75 /* Those interrupts should always have a trigger page */
76 if (WARN_ON(!xd->trig_mmio))
77 return false;
78
79 out_be64(xd->trig_mmio, 0);
80
81 return true;
82}
83
84static irqreturn_t xive_esc_irq(int irq, void *data)
85{
86 struct kvm_vcpu *vcpu = data;
87
88 /* We use the existing H_PROD mechanism to wake up the target */
89 vcpu->arch.prodded = 1;
90 smp_mb();
91 if (vcpu->arch.ceded)
92 kvmppc_fast_vcpu_kick(vcpu);
93
94 return IRQ_HANDLED;
95}
96
97static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
98{
99 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
100 struct xive_q *q = &xc->queues[prio];
101 char *name = NULL;
102 int rc;
103
104 /* Already there ? */
105 if (xc->esc_virq[prio])
106 return 0;
107
108 /* Hook up the escalation interrupt */
109 xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
110 if (!xc->esc_virq[prio]) {
111 pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
112 prio, xc->server_num);
113 return -EIO;
114 }
115
116 /*
117 * Future improvement: start with them disabled
118 * and handle DD2 and later scheme of merged escalation
119 * interrupts
120 */
121 name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
122 vcpu->kvm->arch.lpid, xc->server_num, prio);
123 if (!name) {
124 pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
125 prio, xc->server_num);
126 rc = -ENOMEM;
127 goto error;
128 }
129 rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
130 IRQF_NO_THREAD, name, vcpu);
131 if (rc) {
132 pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
133 prio, xc->server_num);
134 goto error;
135 }
136 xc->esc_virq_names[prio] = name;
137 return 0;
138error:
139 irq_dispose_mapping(xc->esc_virq[prio]);
140 xc->esc_virq[prio] = 0;
141 kfree(name);
142 return rc;
143}
144
145static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
146{
147 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
148 struct kvmppc_xive *xive = xc->xive;
149 struct xive_q *q = &xc->queues[prio];
150 void *qpage;
151 int rc;
152
153 if (WARN_ON(q->qpage))
154 return 0;
155
156 /* Allocate the queue and retrieve infos on current node for now */
157 qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
158 if (!qpage) {
159 pr_err("Failed to allocate queue %d for VCPU %d\n",
160 prio, xc->server_num);
161 return -ENOMEM;;
162 }
163 memset(qpage, 0, 1 << xive->q_order);
164
165 /*
166 * Reconfigure the queue. This will set q->qpage only once the
167 * queue is fully configured. This is a requirement for prio 0
168 * as we will stop doing EOIs for every IPI as soon as we observe
169 * qpage being non-NULL, and instead will only EOI when we receive
170 * corresponding queue 0 entries
171 */
172 rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
173 xive->q_order, true);
174 if (rc)
175 pr_err("Failed to configure queue %d for VCPU %d\n",
176 prio, xc->server_num);
177 return rc;
178}
179
180/* Called with kvm_lock held */
181static int xive_check_provisioning(struct kvm *kvm, u8 prio)
182{
183 struct kvmppc_xive *xive = kvm->arch.xive;
184 struct kvm_vcpu *vcpu;
185 int i, rc;
186
187 lockdep_assert_held(&kvm->lock);
188
189 /* Already provisioned ? */
190 if (xive->qmap & (1 << prio))
191 return 0;
192
193 pr_devel("Provisioning prio... %d\n", prio);
194
195 /* Provision each VCPU and enable escalations */
196 kvm_for_each_vcpu(i, vcpu, kvm) {
197 if (!vcpu->arch.xive_vcpu)
198 continue;
199 rc = xive_provision_queue(vcpu, prio);
200 if (rc == 0)
201 xive_attach_escalation(vcpu, prio);
202 if (rc)
203 return rc;
204 }
205
206 /* Order previous stores and mark it as provisioned */
207 mb();
208 xive->qmap |= (1 << prio);
209 return 0;
210}
211
212static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
213{
214 struct kvm_vcpu *vcpu;
215 struct kvmppc_xive_vcpu *xc;
216 struct xive_q *q;
217
218 /* Locate target server */
219 vcpu = kvmppc_xive_find_server(kvm, server);
220 if (!vcpu) {
221 pr_warn("%s: Can't find server %d\n", __func__, server);
222 return;
223 }
224 xc = vcpu->arch.xive_vcpu;
225 if (WARN_ON(!xc))
226 return;
227
228 q = &xc->queues[prio];
229 atomic_inc(&q->pending_count);
230}
231
232static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
233{
234 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
235 struct xive_q *q;
236 u32 max;
237
238 if (WARN_ON(!xc))
239 return -ENXIO;
240 if (!xc->valid)
241 return -ENXIO;
242
243 q = &xc->queues[prio];
244 if (WARN_ON(!q->qpage))
245 return -ENXIO;
246
247 /* Calculate max number of interrupts in that queue. */
248 max = (q->msk + 1) - XIVE_Q_GAP;
249 return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
250}
251
252static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
253{
254 struct kvm_vcpu *vcpu;
255 int i, rc;
256
257 /* Locate target server */
258 vcpu = kvmppc_xive_find_server(kvm, *server);
259 if (!vcpu) {
260 pr_devel("Can't find server %d\n", *server);
261 return -EINVAL;
262 }
263
264 pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
265
266 /* Try pick it */
267 rc = xive_try_pick_queue(vcpu, prio);
268 if (rc == 0)
269 return rc;
270
271 pr_devel(" .. failed, looking up candidate...\n");
272
273 /* Failed, pick another VCPU */
274 kvm_for_each_vcpu(i, vcpu, kvm) {
275 if (!vcpu->arch.xive_vcpu)
276 continue;
277 rc = xive_try_pick_queue(vcpu, prio);
278 if (rc == 0) {
279 *server = vcpu->arch.xive_vcpu->server_num;
280 pr_devel(" found on 0x%x/%d\n", *server, prio);
281 return rc;
282 }
283 }
284 pr_devel(" no available target !\n");
285
286 /* No available target ! */
287 return -EBUSY;
288}
289
290static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
291 struct kvmppc_xive_src_block *sb,
292 struct kvmppc_xive_irq_state *state)
293{
294 struct xive_irq_data *xd;
295 u32 hw_num;
296 u8 old_prio;
297 u64 val;
298
299 /*
300 * Take the lock, set masked, try again if racing
301 * with H_EOI
302 */
303 for (;;) {
304 arch_spin_lock(&sb->lock);
305 old_prio = state->guest_priority;
306 state->guest_priority = MASKED;
307 mb();
308 if (!state->in_eoi)
309 break;
310 state->guest_priority = old_prio;
311 arch_spin_unlock(&sb->lock);
312 }
313
314 /* No change ? Bail */
315 if (old_prio == MASKED)
316 return old_prio;
317
318 /* Get the right irq */
319 kvmppc_xive_select_irq(state, &hw_num, &xd);
320
321 /*
322 * If the interrupt is marked as needing masking via
323 * firmware, we do it here. Firmware masking however
324 * is "lossy", it won't return the old p and q bits
325 * and won't set the interrupt to a state where it will
326 * record queued ones. If this is an issue we should do
327 * lazy masking instead.
328 *
329 * For now, we work around this in unmask by forcing
330 * an interrupt whenever we unmask a non-LSI via FW
331 * (if ever).
332 */
333 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
334 xive_native_configure_irq(hw_num,
335 xive->vp_base + state->act_server,
336 MASKED, state->number);
337 /* set old_p so we can track if an H_EOI was done */
338 state->old_p = true;
339 state->old_q = false;
340 } else {
341 /* Set PQ to 10, return old P and old Q and remember them */
342 val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
343 state->old_p = !!(val & 2);
344 state->old_q = !!(val & 1);
345
346 /*
347 * Synchronize hardware to sensure the queues are updated
348 * when masking
349 */
350 xive_native_sync_source(hw_num);
351 }
352
353 return old_prio;
354}
355
356static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
357 struct kvmppc_xive_irq_state *state)
358{
359 /*
360 * Take the lock try again if racing with H_EOI
361 */
362 for (;;) {
363 arch_spin_lock(&sb->lock);
364 if (!state->in_eoi)
365 break;
366 arch_spin_unlock(&sb->lock);
367 }
368}
369
370static void xive_finish_unmask(struct kvmppc_xive *xive,
371 struct kvmppc_xive_src_block *sb,
372 struct kvmppc_xive_irq_state *state,
373 u8 prio)
374{
375 struct xive_irq_data *xd;
376 u32 hw_num;
377
378 /* If we aren't changing a thing, move on */
379 if (state->guest_priority != MASKED)
380 goto bail;
381
382 /* Get the right irq */
383 kvmppc_xive_select_irq(state, &hw_num, &xd);
384
385 /*
386 * See command in xive_lock_and_mask() concerning masking
387 * via firmware.
388 */
389 if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
390 xive_native_configure_irq(hw_num,
391 xive->vp_base + state->act_server,
392 state->act_priority, state->number);
393 /* If an EOI is needed, do it here */
394 if (!state->old_p)
395 xive_vm_source_eoi(hw_num, xd);
396 /* If this is not an LSI, force a trigger */
397 if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
398 xive_irq_trigger(xd);
399 goto bail;
400 }
401
402 /* Old Q set, set PQ to 11 */
403 if (state->old_q)
404 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
405
406 /*
407 * If not old P, then perform an "effective" EOI,
408 * on the source. This will handle the cases where
409 * FW EOI is needed.
410 */
411 if (!state->old_p)
412 xive_vm_source_eoi(hw_num, xd);
413
414 /* Synchronize ordering and mark unmasked */
415 mb();
416bail:
417 state->guest_priority = prio;
418}
419
420/*
421 * Target an interrupt to a given server/prio, this will fallback
422 * to another server if necessary and perform the HW targetting
423 * updates as needed
424 *
425 * NOTE: Must be called with the state lock held
426 */
427static int xive_target_interrupt(struct kvm *kvm,
428 struct kvmppc_xive_irq_state *state,
429 u32 server, u8 prio)
430{
431 struct kvmppc_xive *xive = kvm->arch.xive;
432 u32 hw_num;
433 int rc;
434
435 /*
436 * This will return a tentative server and actual
437 * priority. The count for that new target will have
438 * already been incremented.
439 */
440 rc = xive_select_target(kvm, &server, prio);
441
442 /*
443 * We failed to find a target ? Not much we can do
444 * at least until we support the GIQ.
445 */
446 if (rc)
447 return rc;
448
449 /*
450 * Increment the old queue pending count if there
451 * was one so that the old queue count gets adjusted later
452 * when observed to be empty.
453 */
454 if (state->act_priority != MASKED)
455 xive_inc_q_pending(kvm,
456 state->act_server,
457 state->act_priority);
458 /*
459 * Update state and HW
460 */
461 state->act_priority = prio;
462 state->act_server = server;
463
464 /* Get the right irq */
465 kvmppc_xive_select_irq(state, &hw_num, NULL);
466
467 return xive_native_configure_irq(hw_num,
468 xive->vp_base + server,
469 prio, state->number);
470}
471
472/*
473 * Targetting rules: In order to avoid losing track of
474 * pending interrupts accross mask and unmask, which would
475 * allow queue overflows, we implement the following rules:
476 *
477 * - Unless it was never enabled (or we run out of capacity)
478 * an interrupt is always targetted at a valid server/queue
479 * pair even when "masked" by the guest. This pair tends to
480 * be the last one used but it can be changed under some
481 * circumstances. That allows us to separate targetting
482 * from masking, we only handle accounting during (re)targetting,
483 * this also allows us to let an interrupt drain into its target
484 * queue after masking, avoiding complex schemes to remove
485 * interrupts out of remote processor queues.
486 *
487 * - When masking, we set PQ to 10 and save the previous value
488 * of P and Q.
489 *
490 * - When unmasking, if saved Q was set, we set PQ to 11
491 * otherwise we leave PQ to the HW state which will be either
492 * 10 if nothing happened or 11 if the interrupt fired while
493 * masked. Effectively we are OR'ing the previous Q into the
494 * HW Q.
495 *
496 * Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
497 * which will unmask the interrupt and shoot a new one if Q was
498 * set.
499 *
500 * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
501 * effectively meaning an H_EOI from the guest is still expected
502 * for that interrupt).
503 *
504 * - If H_EOI occurs while masked, we clear the saved P.
505 *
506 * - When changing target, we account on the new target and
507 * increment a separate "pending" counter on the old one.
508 * This pending counter will be used to decrement the old
509 * target's count when its queue has been observed empty.
510 */
511
512int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
513 u32 priority)
514{
515 struct kvmppc_xive *xive = kvm->arch.xive;
516 struct kvmppc_xive_src_block *sb;
517 struct kvmppc_xive_irq_state *state;
518 u8 new_act_prio;
519 int rc = 0;
520 u16 idx;
521
522 if (!xive)
523 return -ENODEV;
524
525 pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
526 irq, server, priority);
527
528 /* First, check provisioning of queues */
529 if (priority != MASKED)
530 rc = xive_check_provisioning(xive->kvm,
531 xive_prio_from_guest(priority));
532 if (rc) {
533 pr_devel(" provisioning failure %d !\n", rc);
534 return rc;
535 }
536
537 sb = kvmppc_xive_find_source(xive, irq, &idx);
538 if (!sb)
539 return -EINVAL;
540 state = &sb->irq_state[idx];
541
542 /*
543 * We first handle masking/unmasking since the locking
544 * might need to be retried due to EOIs, we'll handle
545 * targetting changes later. These functions will return
546 * with the SB lock held.
547 *
548 * xive_lock_and_mask() will also set state->guest_priority
549 * but won't otherwise change other fields of the state.
550 *
551 * xive_lock_for_unmask will not actually unmask, this will
552 * be done later by xive_finish_unmask() once the targetting
553 * has been done, so we don't try to unmask an interrupt
554 * that hasn't yet been targetted.
555 */
556 if (priority == MASKED)
557 xive_lock_and_mask(xive, sb, state);
558 else
559 xive_lock_for_unmask(sb, state);
560
561
562 /*
563 * Then we handle targetting.
564 *
565 * First calculate a new "actual priority"
566 */
567 new_act_prio = state->act_priority;
568 if (priority != MASKED)
569 new_act_prio = xive_prio_from_guest(priority);
570
571 pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
572 new_act_prio, state->act_server, state->act_priority);
573
574 /*
575 * Then check if we actually need to change anything,
576 *
577 * The condition for re-targetting the interrupt is that
578 * we have a valid new priority (new_act_prio is not 0xff)
579 * and either the server or the priority changed.
580 *
581 * Note: If act_priority was ff and the new priority is
582 * also ff, we don't do anything and leave the interrupt
583 * untargetted. An attempt of doing an int_on on an
584 * untargetted interrupt will fail. If that is a problem
585 * we could initialize interrupts with valid default
586 */
587
588 if (new_act_prio != MASKED &&
589 (state->act_server != server ||
590 state->act_priority != new_act_prio))
591 rc = xive_target_interrupt(kvm, state, server, new_act_prio);
592
593 /*
594 * Perform the final unmasking of the interrupt source
595 * if necessary
596 */
597 if (priority != MASKED)
598 xive_finish_unmask(xive, sb, state, priority);
599
600 /*
601 * Finally Update saved_priority to match. Only int_on/off
602 * set this field to a different value.
603 */
604 state->saved_priority = priority;
605
606 arch_spin_unlock(&sb->lock);
607 return rc;
608}
609
610int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
611 u32 *priority)
612{
613 struct kvmppc_xive *xive = kvm->arch.xive;
614 struct kvmppc_xive_src_block *sb;
615 struct kvmppc_xive_irq_state *state;
616 u16 idx;
617
618 if (!xive)
619 return -ENODEV;
620
621 sb = kvmppc_xive_find_source(xive, irq, &idx);
622 if (!sb)
623 return -EINVAL;
624 state = &sb->irq_state[idx];
625 arch_spin_lock(&sb->lock);
626 *server = state->guest_server;
627 *priority = state->guest_priority;
628 arch_spin_unlock(&sb->lock);
629
630 return 0;
631}
632
633int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
634{
635 struct kvmppc_xive *xive = kvm->arch.xive;
636 struct kvmppc_xive_src_block *sb;
637 struct kvmppc_xive_irq_state *state;
638 u16 idx;
639
640 if (!xive)
641 return -ENODEV;
642
643 sb = kvmppc_xive_find_source(xive, irq, &idx);
644 if (!sb)
645 return -EINVAL;
646 state = &sb->irq_state[idx];
647
648 pr_devel("int_on(irq=0x%x)\n", irq);
649
650 /*
651 * Check if interrupt was not targetted
652 */
653 if (state->act_priority == MASKED) {
654 pr_devel("int_on on untargetted interrupt\n");
655 return -EINVAL;
656 }
657
658 /* If saved_priority is 0xff, do nothing */
659 if (state->saved_priority == MASKED)
660 return 0;
661
662 /*
663 * Lock and unmask it.
664 */
665 xive_lock_for_unmask(sb, state);
666 xive_finish_unmask(xive, sb, state, state->saved_priority);
667 arch_spin_unlock(&sb->lock);
668
669 return 0;
670}
671
672int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
673{
674 struct kvmppc_xive *xive = kvm->arch.xive;
675 struct kvmppc_xive_src_block *sb;
676 struct kvmppc_xive_irq_state *state;
677 u16 idx;
678
679 if (!xive)
680 return -ENODEV;
681
682 sb = kvmppc_xive_find_source(xive, irq, &idx);
683 if (!sb)
684 return -EINVAL;
685 state = &sb->irq_state[idx];
686
687 pr_devel("int_off(irq=0x%x)\n", irq);
688
689 /*
690 * Lock and mask
691 */
692 state->saved_priority = xive_lock_and_mask(xive, sb, state);
693 arch_spin_unlock(&sb->lock);
694
695 return 0;
696}
697
698static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
699{
700 struct kvmppc_xive_src_block *sb;
701 struct kvmppc_xive_irq_state *state;
702 u16 idx;
703
704 sb = kvmppc_xive_find_source(xive, irq, &idx);
705 if (!sb)
706 return false;
707 state = &sb->irq_state[idx];
708 if (!state->valid)
709 return false;
710
711 /*
712 * Trigger the IPI. This assumes we never restore a pass-through
713 * interrupt which should be safe enough
714 */
715 xive_irq_trigger(&state->ipi_data);
716
717 return true;
718}
719
720u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
721{
722 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
723
724 if (!xc)
725 return 0;
726
727 /* Return the per-cpu state for state saving/migration */
728 return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
729 (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT;
730}
731
732int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
733{
734 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
735 struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
736 u8 cppr, mfrr;
737 u32 xisr;
738
739 if (!xc || !xive)
740 return -ENOENT;
741
742 /* Grab individual state fields. We don't use pending_pri */
743 cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
744 xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
745 KVM_REG_PPC_ICP_XISR_MASK;
746 mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
747
748 pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
749 xc->server_num, cppr, mfrr, xisr);
750
751 /*
752 * We can't update the state of a "pushed" VCPU, but that
753 * shouldn't happen.
754 */
755 if (WARN_ON(vcpu->arch.xive_pushed))
756 return -EIO;
757
758 /* Update VCPU HW saved state */
759 vcpu->arch.xive_saved_state.cppr = cppr;
760 xc->hw_cppr = xc->cppr = cppr;
761
762 /*
763 * Update MFRR state. If it's not 0xff, we mark the VCPU as
764 * having a pending MFRR change, which will re-evaluate the
765 * target. The VCPU will thus potentially get a spurious
766 * interrupt but that's not a big deal.
767 */
768 xc->mfrr = mfrr;
769 if (mfrr < cppr)
770 xive_irq_trigger(&xc->vp_ipi_data);
771
772 /*
773 * Now saved XIRR is "interesting". It means there's something in
774 * the legacy "1 element" queue... for an IPI we simply ignore it,
775 * as the MFRR restore will handle that. For anything else we need
776 * to force a resend of the source.
777 * However the source may not have been setup yet. If that's the
778 * case, we keep that info and increment a counter in the xive to
779 * tell subsequent xive_set_source() to go look.
780 */
781 if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
782 xc->delayed_irq = xisr;
783 xive->delayed_irqs++;
784 pr_devel(" xisr restore delayed\n");
785 }
786
787 return 0;
788}
789
790int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
791 struct irq_desc *host_desc)
792{
793 struct kvmppc_xive *xive = kvm->arch.xive;
794 struct kvmppc_xive_src_block *sb;
795 struct kvmppc_xive_irq_state *state;
796 struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
797 unsigned int host_irq = irq_desc_get_irq(host_desc);
798 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
799 u16 idx;
800 u8 prio;
801 int rc;
802
803 if (!xive)
804 return -ENODEV;
805
806 pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
807
808 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
809 if (!sb)
810 return -EINVAL;
811 state = &sb->irq_state[idx];
812
813 /*
814 * Mark the passed-through interrupt as going to a VCPU,
815 * this will prevent further EOIs and similar operations
816 * from the XIVE code. It will also mask the interrupt
817 * to either PQ=10 or 11 state, the latter if the interrupt
818 * is pending. This will allow us to unmask or retrigger it
819 * after routing it to the guest with a simple EOI.
820 *
821 * The "state" argument is a "token", all it needs is to be
822 * non-NULL to switch to passed-through or NULL for the
823 * other way around. We may not yet have an actual VCPU
824 * target here and we don't really care.
825 */
826 rc = irq_set_vcpu_affinity(host_irq, state);
827 if (rc) {
828 pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
829 return rc;
830 }
831
832 /*
833 * Mask and read state of IPI. We need to know if its P bit
834 * is set as that means it's potentially already using a
835 * queue entry in the target
836 */
837 prio = xive_lock_and_mask(xive, sb, state);
838 pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
839 state->old_p, state->old_q);
840
841 /* Turn the IPI hard off */
842 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
843
844 /* Grab info about irq */
845 state->pt_number = hw_irq;
846 state->pt_data = irq_data_get_irq_handler_data(host_data);
847
848 /*
849 * Configure the IRQ to match the existing configuration of
850 * the IPI if it was already targetted. Otherwise this will
851 * mask the interrupt in a lossy way (act_priority is 0xff)
852 * which is fine for a never started interrupt.
853 */
854 xive_native_configure_irq(hw_irq,
855 xive->vp_base + state->act_server,
856 state->act_priority, state->number);
857
858 /*
859 * We do an EOI to enable the interrupt (and retrigger if needed)
860 * if the guest has the interrupt unmasked and the P bit was *not*
861 * set in the IPI. If it was set, we know a slot may still be in
862 * use in the target queue thus we have to wait for a guest
863 * originated EOI
864 */
865 if (prio != MASKED && !state->old_p)
866 xive_vm_source_eoi(hw_irq, state->pt_data);
867
868 /* Clear old_p/old_q as they are no longer relevant */
869 state->old_p = state->old_q = false;
870
871 /* Restore guest prio (unlocks EOI) */
872 mb();
873 state->guest_priority = prio;
874 arch_spin_unlock(&sb->lock);
875
876 return 0;
877}
878EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
879
880int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
881 struct irq_desc *host_desc)
882{
883 struct kvmppc_xive *xive = kvm->arch.xive;
884 struct kvmppc_xive_src_block *sb;
885 struct kvmppc_xive_irq_state *state;
886 unsigned int host_irq = irq_desc_get_irq(host_desc);
887 u16 idx;
888 u8 prio;
889 int rc;
890
891 if (!xive)
892 return -ENODEV;
893
894 pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
895
896 sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
897 if (!sb)
898 return -EINVAL;
899 state = &sb->irq_state[idx];
900
901 /*
902 * Mask and read state of IRQ. We need to know if its P bit
903 * is set as that means it's potentially already using a
904 * queue entry in the target
905 */
906 prio = xive_lock_and_mask(xive, sb, state);
907 pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
908 state->old_p, state->old_q);
909
910 /*
911 * If old_p is set, the interrupt is pending, we switch it to
912 * PQ=11. This will force a resend in the host so the interrupt
913 * isn't lost to whatver host driver may pick it up
914 */
915 if (state->old_p)
916 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
917
918 /* Release the passed-through interrupt to the host */
919 rc = irq_set_vcpu_affinity(host_irq, NULL);
920 if (rc) {
921 pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
922 return rc;
923 }
924
925 /* Forget about the IRQ */
926 state->pt_number = 0;
927 state->pt_data = NULL;
928
929 /* Reconfigure the IPI */
930 xive_native_configure_irq(state->ipi_number,
931 xive->vp_base + state->act_server,
932 state->act_priority, state->number);
933
934 /*
935 * If old_p is set (we have a queue entry potentially
936 * occupied) or the interrupt is masked, we set the IPI
937 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
938 */
939 if (prio == MASKED || state->old_p)
940 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
941 else
942 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
943
944 /* Restore guest prio (unlocks EOI) */
945 mb();
946 state->guest_priority = prio;
947 arch_spin_unlock(&sb->lock);
948
949 return 0;
950}
951EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
952
953static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
954{
955 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
956 struct kvm *kvm = vcpu->kvm;
957 struct kvmppc_xive *xive = kvm->arch.xive;
958 int i, j;
959
960 for (i = 0; i <= xive->max_sbid; i++) {
961 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
962
963 if (!sb)
964 continue;
965 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
966 struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
967
968 if (!state->valid)
969 continue;
970 if (state->act_priority == MASKED)
971 continue;
972 if (state->act_server != xc->server_num)
973 continue;
974
975 /* Clean it up */
976 arch_spin_lock(&sb->lock);
977 state->act_priority = MASKED;
978 xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
979 xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
980 if (state->pt_number) {
981 xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
982 xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
983 }
984 arch_spin_unlock(&sb->lock);
985 }
986 }
987}
988
989void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
990{
991 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
992 struct kvmppc_xive *xive = xc->xive;
993 int i;
994
995 pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
996
997 /* Ensure no interrupt is still routed to that VP */
998 xc->valid = false;
999 kvmppc_xive_disable_vcpu_interrupts(vcpu);
1000
1001 /* Mask the VP IPI */
1002 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1003
1004 /* Disable the VP */
1005 xive_native_disable_vp(xc->vp_id);
1006
1007 /* Free the queues & associated interrupts */
1008 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1009 struct xive_q *q = &xc->queues[i];
1010
1011 /* Free the escalation irq */
1012 if (xc->esc_virq[i]) {
1013 free_irq(xc->esc_virq[i], vcpu);
1014 irq_dispose_mapping(xc->esc_virq[i]);
1015 kfree(xc->esc_virq_names[i]);
1016 }
1017 /* Free the queue */
1018 xive_native_disable_queue(xc->vp_id, q, i);
1019 if (q->qpage) {
1020 free_pages((unsigned long)q->qpage,
1021 xive->q_page_order);
1022 q->qpage = NULL;
1023 }
1024 }
1025
1026 /* Free the IPI */
1027 if (xc->vp_ipi) {
1028 xive_cleanup_irq_data(&xc->vp_ipi_data);
1029 xive_native_free_irq(xc->vp_ipi);
1030 }
1031 /* Free the VP */
1032 kfree(xc);
1033}
1034
1035int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1036 struct kvm_vcpu *vcpu, u32 cpu)
1037{
1038 struct kvmppc_xive *xive = dev->private;
1039 struct kvmppc_xive_vcpu *xc;
1040 int i, r = -EBUSY;
1041
1042 pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1043
1044 if (dev->ops != &kvm_xive_ops) {
1045 pr_devel("Wrong ops !\n");
1046 return -EPERM;
1047 }
1048 if (xive->kvm != vcpu->kvm)
1049 return -EPERM;
1050 if (vcpu->arch.irq_type)
1051 return -EBUSY;
1052 if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1053 pr_devel("Duplicate !\n");
1054 return -EEXIST;
1055 }
1056 if (cpu >= KVM_MAX_VCPUS) {
1057 pr_devel("Out of bounds !\n");
1058 return -EINVAL;
1059 }
1060 xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1061 if (!xc)
1062 return -ENOMEM;
1063
1064 /* We need to synchronize with queue provisioning */
1065 mutex_lock(&vcpu->kvm->lock);
1066 vcpu->arch.xive_vcpu = xc;
1067 xc->xive = xive;
1068 xc->vcpu = vcpu;
1069 xc->server_num = cpu;
1070 xc->vp_id = xive->vp_base + cpu;
1071 xc->mfrr = 0xff;
1072 xc->valid = true;
1073
1074 r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1075 if (r)
1076 goto bail;
1077
1078 /* Configure VCPU fields for use by assembly push/pull */
1079 vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1080 vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1081
1082 /* Allocate IPI */
1083 xc->vp_ipi = xive_native_alloc_irq();
1084 if (!xc->vp_ipi) {
1085 r = -EIO;
1086 goto bail;
1087 }
1088 pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1089
1090 r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1091 if (r)
1092 goto bail;
1093
1094 /*
1095 * Initialize queues. Initially we set them all for no queueing
1096 * and we enable escalation for queue 0 only which we'll use for
1097 * our mfrr change notifications. If the VCPU is hot-plugged, we
1098 * do handle provisioning however.
1099 */
1100 for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1101 struct xive_q *q = &xc->queues[i];
1102
1103 /* Is queue already enabled ? Provision it */
1104 if (xive->qmap & (1 << i)) {
1105 r = xive_provision_queue(vcpu, i);
1106 if (r == 0)
1107 xive_attach_escalation(vcpu, i);
1108 if (r)
1109 goto bail;
1110 } else {
1111 r = xive_native_configure_queue(xc->vp_id,
1112 q, i, NULL, 0, true);
1113 if (r) {
1114 pr_err("Failed to configure queue %d for VCPU %d\n",
1115 i, cpu);
1116 goto bail;
1117 }
1118 }
1119 }
1120
1121 /* If not done above, attach priority 0 escalation */
1122 r = xive_attach_escalation(vcpu, 0);
1123 if (r)
1124 goto bail;
1125
1126 /* Enable the VP */
1127 r = xive_native_enable_vp(xc->vp_id);
1128 if (r)
1129 goto bail;
1130
1131 /* Route the IPI */
1132 r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1133 if (!r)
1134 xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1135
1136bail:
1137 mutex_unlock(&vcpu->kvm->lock);
1138 if (r) {
1139 kvmppc_xive_cleanup_vcpu(vcpu);
1140 return r;
1141 }
1142
1143 vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1144 return 0;
1145}
1146
1147/*
1148 * Scanning of queues before/after migration save
1149 */
1150static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1151{
1152 struct kvmppc_xive_src_block *sb;
1153 struct kvmppc_xive_irq_state *state;
1154 u16 idx;
1155
1156 sb = kvmppc_xive_find_source(xive, irq, &idx);
1157 if (!sb)
1158 return;
1159
1160 state = &sb->irq_state[idx];
1161
1162 /* Some sanity checking */
1163 if (!state->valid) {
1164 pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1165 return;
1166 }
1167
1168 /*
1169 * If the interrupt is in a queue it should have P set.
1170 * We warn so that gets reported. A backtrace isn't useful
1171 * so no need to use a WARN_ON.
1172 */
1173 if (!state->saved_p)
1174 pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1175
1176 /* Set flag */
1177 state->in_queue = true;
1178}
1179
1180static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1181 struct kvmppc_xive_src_block *sb,
1182 u32 irq)
1183{
1184 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1185
1186 if (!state->valid)
1187 return;
1188
1189 /* Mask and save state, this will also sync HW queues */
1190 state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1191
1192 /* Transfer P and Q */
1193 state->saved_p = state->old_p;
1194 state->saved_q = state->old_q;
1195
1196 /* Unlock */
1197 arch_spin_unlock(&sb->lock);
1198}
1199
1200static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1201 struct kvmppc_xive_src_block *sb,
1202 u32 irq)
1203{
1204 struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1205
1206 if (!state->valid)
1207 return;
1208
1209 /*
1210 * Lock / exclude EOI (not technically necessary if the
1211 * guest isn't running concurrently. If this becomes a
1212 * performance issue we can probably remove the lock.
1213 */
1214 xive_lock_for_unmask(sb, state);
1215
1216 /* Restore mask/prio if it wasn't masked */
1217 if (state->saved_scan_prio != MASKED)
1218 xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1219
1220 /* Unlock */
1221 arch_spin_unlock(&sb->lock);
1222}
1223
1224static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1225{
1226 u32 idx = q->idx;
1227 u32 toggle = q->toggle;
1228 u32 irq;
1229
1230 do {
1231 irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1232 if (irq > XICS_IPI)
1233 xive_pre_save_set_queued(xive, irq);
1234 } while(irq);
1235}
1236
1237static void xive_pre_save_scan(struct kvmppc_xive *xive)
1238{
1239 struct kvm_vcpu *vcpu = NULL;
1240 int i, j;
1241
1242 /*
1243 * See comment in xive_get_source() about how this
1244 * work. Collect a stable state for all interrupts
1245 */
1246 for (i = 0; i <= xive->max_sbid; i++) {
1247 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1248 if (!sb)
1249 continue;
1250 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1251 xive_pre_save_mask_irq(xive, sb, j);
1252 }
1253
1254 /* Then scan the queues and update the "in_queue" flag */
1255 kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1256 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1257 if (!xc)
1258 continue;
1259 for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1260 if (xc->queues[i].qpage)
1261 xive_pre_save_queue(xive, &xc->queues[i]);
1262 }
1263 }
1264
1265 /* Finally restore interrupt states */
1266 for (i = 0; i <= xive->max_sbid; i++) {
1267 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1268 if (!sb)
1269 continue;
1270 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1271 xive_pre_save_unmask_irq(xive, sb, j);
1272 }
1273}
1274
1275static void xive_post_save_scan(struct kvmppc_xive *xive)
1276{
1277 u32 i, j;
1278
1279 /* Clear all the in_queue flags */
1280 for (i = 0; i <= xive->max_sbid; i++) {
1281 struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1282 if (!sb)
1283 continue;
1284 for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1285 sb->irq_state[j].in_queue = false;
1286 }
1287
1288 /* Next get_source() will do a new scan */
1289 xive->saved_src_count = 0;
1290}
1291
1292/*
1293 * This returns the source configuration and state to user space.
1294 */
1295static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1296{
1297 struct kvmppc_xive_src_block *sb;
1298 struct kvmppc_xive_irq_state *state;
1299 u64 __user *ubufp = (u64 __user *) addr;
1300 u64 val, prio;
1301 u16 idx;
1302
1303 sb = kvmppc_xive_find_source(xive, irq, &idx);
1304 if (!sb)
1305 return -ENOENT;
1306
1307 state = &sb->irq_state[idx];
1308
1309 if (!state->valid)
1310 return -ENOENT;
1311
1312 pr_devel("get_source(%ld)...\n", irq);
1313
1314 /*
1315 * So to properly save the state into something that looks like a
1316 * XICS migration stream we cannot treat interrupts individually.
1317 *
1318 * We need, instead, mask them all (& save their previous PQ state)
1319 * to get a stable state in the HW, then sync them to ensure that
1320 * any interrupt that had already fired hits its queue, and finally
1321 * scan all the queues to collect which interrupts are still present
1322 * in the queues, so we can set the "pending" flag on them and
1323 * they can be resent on restore.
1324 *
1325 * So we do it all when the "first" interrupt gets saved, all the
1326 * state is collected at that point, the rest of xive_get_source()
1327 * will merely collect and convert that state to the expected
1328 * userspace bit mask.
1329 */
1330 if (xive->saved_src_count == 0)
1331 xive_pre_save_scan(xive);
1332 xive->saved_src_count++;
1333
1334 /* Convert saved state into something compatible with xics */
1335 val = state->guest_server;
1336 prio = state->saved_scan_prio;
1337
1338 if (prio == MASKED) {
1339 val |= KVM_XICS_MASKED;
1340 prio = state->saved_priority;
1341 }
1342 val |= prio << KVM_XICS_PRIORITY_SHIFT;
1343 if (state->lsi) {
1344 val |= KVM_XICS_LEVEL_SENSITIVE;
1345 if (state->saved_p)
1346 val |= KVM_XICS_PENDING;
1347 } else {
1348 if (state->saved_p)
1349 val |= KVM_XICS_PRESENTED;
1350
1351 if (state->saved_q)
1352 val |= KVM_XICS_QUEUED;
1353
1354 /*
1355 * We mark it pending (which will attempt a re-delivery)
1356 * if we are in a queue *or* we were masked and had
1357 * Q set which is equivalent to the XICS "masked pending"
1358 * state
1359 */
1360 if (state->in_queue || (prio == MASKED && state->saved_q))
1361 val |= KVM_XICS_PENDING;
1362 }
1363
1364 /*
1365 * If that was the last interrupt saved, reset the
1366 * in_queue flags
1367 */
1368 if (xive->saved_src_count == xive->src_count)
1369 xive_post_save_scan(xive);
1370
1371 /* Copy the result to userspace */
1372 if (put_user(val, ubufp))
1373 return -EFAULT;
1374
1375 return 0;
1376}
1377
1378static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1379 int irq)
1380{
1381 struct kvm *kvm = xive->kvm;
1382 struct kvmppc_xive_src_block *sb;
1383 int i, bid;
1384
1385 bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1386
1387 mutex_lock(&kvm->lock);
1388
1389 /* block already exists - somebody else got here first */
1390 if (xive->src_blocks[bid])
1391 goto out;
1392
1393 /* Create the ICS */
1394 sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1395 if (!sb)
1396 goto out;
1397
1398 sb->id = bid;
1399
1400 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1401 sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1402 sb->irq_state[i].guest_priority = MASKED;
1403 sb->irq_state[i].saved_priority = MASKED;
1404 sb->irq_state[i].act_priority = MASKED;
1405 }
1406 smp_wmb();
1407 xive->src_blocks[bid] = sb;
1408
1409 if (bid > xive->max_sbid)
1410 xive->max_sbid = bid;
1411
1412out:
1413 mutex_unlock(&kvm->lock);
1414 return xive->src_blocks[bid];
1415}
1416
1417static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1418{
1419 struct kvm *kvm = xive->kvm;
1420 struct kvm_vcpu *vcpu = NULL;
1421 int i;
1422
1423 kvm_for_each_vcpu(i, vcpu, kvm) {
1424 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1425
1426 if (!xc)
1427 continue;
1428
1429 if (xc->delayed_irq == irq) {
1430 xc->delayed_irq = 0;
1431 xive->delayed_irqs--;
1432 return true;
1433 }
1434 }
1435 return false;
1436}
1437
1438static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1439{
1440 struct kvmppc_xive_src_block *sb;
1441 struct kvmppc_xive_irq_state *state;
1442 u64 __user *ubufp = (u64 __user *) addr;
1443 u16 idx;
1444 u64 val;
1445 u8 act_prio, guest_prio;
1446 u32 server;
1447 int rc = 0;
1448
1449 if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1450 return -ENOENT;
1451
1452 pr_devel("set_source(irq=0x%lx)\n", irq);
1453
1454 /* Find the source */
1455 sb = kvmppc_xive_find_source(xive, irq, &idx);
1456 if (!sb) {
1457 pr_devel("No source, creating source block...\n");
1458 sb = xive_create_src_block(xive, irq);
1459 if (!sb) {
1460 pr_devel("Failed to create block...\n");
1461 return -ENOMEM;
1462 }
1463 }
1464 state = &sb->irq_state[idx];
1465
1466 /* Read user passed data */
1467 if (get_user(val, ubufp)) {
1468 pr_devel("fault getting user info !\n");
1469 return -EFAULT;
1470 }
1471
1472 server = val & KVM_XICS_DESTINATION_MASK;
1473 guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1474
1475 pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1476 val, server, guest_prio);
1477 /*
1478 * If the source doesn't already have an IPI, allocate
1479 * one and get the corresponding data
1480 */
1481 if (!state->ipi_number) {
1482 state->ipi_number = xive_native_alloc_irq();
1483 if (state->ipi_number == 0) {
1484 pr_devel("Failed to allocate IPI !\n");
1485 return -ENOMEM;
1486 }
1487 xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1488 pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1489 }
1490
1491 /*
1492 * We use lock_and_mask() to set us in the right masked
1493 * state. We will override that state from the saved state
1494 * further down, but this will handle the cases of interrupts
1495 * that need FW masking. We set the initial guest_priority to
1496 * 0 before calling it to ensure it actually performs the masking.
1497 */
1498 state->guest_priority = 0;
1499 xive_lock_and_mask(xive, sb, state);
1500
1501 /*
1502 * Now, we select a target if we have one. If we don't we
1503 * leave the interrupt untargetted. It means that an interrupt
1504 * can become "untargetted" accross migration if it was masked
1505 * by set_xive() but there is little we can do about it.
1506 */
1507
1508 /* First convert prio and mark interrupt as untargetted */
1509 act_prio = xive_prio_from_guest(guest_prio);
1510 state->act_priority = MASKED;
1511 state->guest_server = server;
1512
1513 /*
1514 * We need to drop the lock due to the mutex below. Hopefully
1515 * nothing is touching that interrupt yet since it hasn't been
1516 * advertized to a running guest yet
1517 */
1518 arch_spin_unlock(&sb->lock);
1519
1520 /* If we have a priority target the interrupt */
1521 if (act_prio != MASKED) {
1522 /* First, check provisioning of queues */
1523 mutex_lock(&xive->kvm->lock);
1524 rc = xive_check_provisioning(xive->kvm, act_prio);
1525 mutex_unlock(&xive->kvm->lock);
1526
1527 /* Target interrupt */
1528 if (rc == 0)
1529 rc = xive_target_interrupt(xive->kvm, state,
1530 server, act_prio);
1531 /*
1532 * If provisioning or targetting failed, leave it
1533 * alone and masked. It will remain disabled until
1534 * the guest re-targets it.
1535 */
1536 }
1537
1538 /*
1539 * Find out if this was a delayed irq stashed in an ICP,
1540 * in which case, treat it as pending
1541 */
1542 if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1543 val |= KVM_XICS_PENDING;
1544 pr_devel(" Found delayed ! forcing PENDING !\n");
1545 }
1546
1547 /* Cleanup the SW state */
1548 state->old_p = false;
1549 state->old_q = false;
1550 state->lsi = false;
1551 state->asserted = false;
1552
1553 /* Restore LSI state */
1554 if (val & KVM_XICS_LEVEL_SENSITIVE) {
1555 state->lsi = true;
1556 if (val & KVM_XICS_PENDING)
1557 state->asserted = true;
1558 pr_devel(" LSI ! Asserted=%d\n", state->asserted);
1559 }
1560
1561 /*
1562 * Restore P and Q. If the interrupt was pending, we
1563 * force both P and Q, which will trigger a resend.
1564 *
1565 * That means that a guest that had both an interrupt
1566 * pending (queued) and Q set will restore with only
1567 * one instance of that interrupt instead of 2, but that
1568 * is perfectly fine as coalescing interrupts that haven't
1569 * been presented yet is always allowed.
1570 */
1571 if (val & KVM_XICS_PRESENTED || val & KVM_XICS_PENDING)
1572 state->old_p = true;
1573 if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1574 state->old_q = true;
1575
1576 pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q);
1577
1578 /*
1579 * If the interrupt was unmasked, update guest priority and
1580 * perform the appropriate state transition and do a
1581 * re-trigger if necessary.
1582 */
1583 if (val & KVM_XICS_MASKED) {
1584 pr_devel(" masked, saving prio\n");
1585 state->guest_priority = MASKED;
1586 state->saved_priority = guest_prio;
1587 } else {
1588 pr_devel(" unmasked, restoring to prio %d\n", guest_prio);
1589 xive_finish_unmask(xive, sb, state, guest_prio);
1590 state->saved_priority = guest_prio;
1591 }
1592
1593 /* Increment the number of valid sources and mark this one valid */
1594 if (!state->valid)
1595 xive->src_count++;
1596 state->valid = true;
1597
1598 return 0;
1599}
1600
1601int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1602 bool line_status)
1603{
1604 struct kvmppc_xive *xive = kvm->arch.xive;
1605 struct kvmppc_xive_src_block *sb;
1606 struct kvmppc_xive_irq_state *state;
1607 u16 idx;
1608
1609 if (!xive)
1610 return -ENODEV;
1611
1612 sb = kvmppc_xive_find_source(xive, irq, &idx);
1613 if (!sb)
1614 return -EINVAL;
1615
1616 /* Perform locklessly .... (we need to do some RCUisms here...) */
1617 state = &sb->irq_state[idx];
1618 if (!state->valid)
1619 return -EINVAL;
1620
1621 /* We don't allow a trigger on a passed-through interrupt */
1622 if (state->pt_number)
1623 return -EINVAL;
1624
1625 if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1626 state->asserted = 1;
1627 else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1628 state->asserted = 0;
1629 return 0;
1630 }
1631
1632 /* Trigger the IPI */
1633 xive_irq_trigger(&state->ipi_data);
1634
1635 return 0;
1636}
1637
1638static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1639{
1640 struct kvmppc_xive *xive = dev->private;
1641
1642 /* We honor the existing XICS ioctl */
1643 switch (attr->group) {
1644 case KVM_DEV_XICS_GRP_SOURCES:
1645 return xive_set_source(xive, attr->attr, attr->addr);
1646 }
1647 return -ENXIO;
1648}
1649
1650static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1651{
1652 struct kvmppc_xive *xive = dev->private;
1653
1654 /* We honor the existing XICS ioctl */
1655 switch (attr->group) {
1656 case KVM_DEV_XICS_GRP_SOURCES:
1657 return xive_get_source(xive, attr->attr, attr->addr);
1658 }
1659 return -ENXIO;
1660}
1661
1662static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1663{
1664 /* We honor the same limits as XICS, at least for now */
1665 switch (attr->group) {
1666 case KVM_DEV_XICS_GRP_SOURCES:
1667 if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1668 attr->attr < KVMPPC_XICS_NR_IRQS)
1669 return 0;
1670 break;
1671 }
1672 return -ENXIO;
1673}
1674
1675static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1676{
1677 xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1678 xive_native_configure_irq(hw_num, 0, MASKED, 0);
1679 xive_cleanup_irq_data(xd);
1680}
1681
1682static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1683{
1684 int i;
1685
1686 for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1687 struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1688
1689 if (!state->valid)
1690 continue;
1691
1692 kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1693 xive_native_free_irq(state->ipi_number);
1694
1695 /* Pass-through, cleanup too */
1696 if (state->pt_number)
1697 kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1698
1699 state->valid = false;
1700 }
1701}
1702
1703static void kvmppc_xive_free(struct kvm_device *dev)
1704{
1705 struct kvmppc_xive *xive = dev->private;
1706 struct kvm *kvm = xive->kvm;
1707 int i;
1708
1709 debugfs_remove(xive->dentry);
1710
1711 if (kvm)
1712 kvm->arch.xive = NULL;
1713
1714 /* Mask and free interrupts */
1715 for (i = 0; i <= xive->max_sbid; i++) {
1716 if (xive->src_blocks[i])
1717 kvmppc_xive_free_sources(xive->src_blocks[i]);
1718 kfree(xive->src_blocks[i]);
1719 xive->src_blocks[i] = NULL;
1720 }
1721
1722 if (xive->vp_base != XIVE_INVALID_VP)
1723 xive_native_free_vp_block(xive->vp_base);
1724
1725
1726 kfree(xive);
1727 kfree(dev);
1728}
1729
1730static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1731{
1732 struct kvmppc_xive *xive;
1733 struct kvm *kvm = dev->kvm;
1734 int ret = 0;
1735
1736 pr_devel("Creating xive for partition\n");
1737
1738 xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1739 if (!xive)
1740 return -ENOMEM;
1741
1742 dev->private = xive;
1743 xive->dev = dev;
1744 xive->kvm = kvm;
1745
1746 /* Already there ? */
1747 if (kvm->arch.xive)
1748 ret = -EEXIST;
1749 else
1750 kvm->arch.xive = xive;
1751
1752 /* We use the default queue size set by the host */
1753 xive->q_order = xive_native_default_eq_shift();
1754 if (xive->q_order < PAGE_SHIFT)
1755 xive->q_page_order = 0;
1756 else
1757 xive->q_page_order = xive->q_order - PAGE_SHIFT;
1758
1759 /* Allocate a bunch of VPs */
1760 xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1761 pr_devel("VP_Base=%x\n", xive->vp_base);
1762
1763 if (xive->vp_base == XIVE_INVALID_VP)
1764 ret = -ENOMEM;
1765
1766 if (ret) {
1767 kfree(xive);
1768 return ret;
1769 }
1770
1771 return 0;
1772}
1773
1774
1775static int xive_debug_show(struct seq_file *m, void *private)
1776{
1777 struct kvmppc_xive *xive = m->private;
1778 struct kvm *kvm = xive->kvm;
1779 struct kvm_vcpu *vcpu;
1780 u64 t_rm_h_xirr = 0;
1781 u64 t_rm_h_ipoll = 0;
1782 u64 t_rm_h_cppr = 0;
1783 u64 t_rm_h_eoi = 0;
1784 u64 t_rm_h_ipi = 0;
1785 u64 t_vm_h_xirr = 0;
1786 u64 t_vm_h_ipoll = 0;
1787 u64 t_vm_h_cppr = 0;
1788 u64 t_vm_h_eoi = 0;
1789 u64 t_vm_h_ipi = 0;
1790 unsigned int i;
1791
1792 if (!kvm)
1793 return 0;
1794
1795 seq_printf(m, "=========\nVCPU state\n=========\n");
1796
1797 kvm_for_each_vcpu(i, vcpu, kvm) {
1798 struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1799
1800 if (!xc)
1801 continue;
1802
1803 seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1804 " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1805 xc->server_num, xc->cppr, xc->hw_cppr,
1806 xc->mfrr, xc->pending,
1807 xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1808
1809 t_rm_h_xirr += xc->stat_rm_h_xirr;
1810 t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1811 t_rm_h_cppr += xc->stat_rm_h_cppr;
1812 t_rm_h_eoi += xc->stat_rm_h_eoi;
1813 t_rm_h_ipi += xc->stat_rm_h_ipi;
1814 t_vm_h_xirr += xc->stat_vm_h_xirr;
1815 t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1816 t_vm_h_cppr += xc->stat_vm_h_cppr;
1817 t_vm_h_eoi += xc->stat_vm_h_eoi;
1818 t_vm_h_ipi += xc->stat_vm_h_ipi;
1819 }
1820
1821 seq_printf(m, "Hcalls totals\n");
1822 seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1823 seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1824 seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1825 seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1826 seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1827
1828 return 0;
1829}
1830
1831static int xive_debug_open(struct inode *inode, struct file *file)
1832{
1833 return single_open(file, xive_debug_show, inode->i_private);
1834}
1835
1836static const struct file_operations xive_debug_fops = {
1837 .open = xive_debug_open,
1838 .read = seq_read,
1839 .llseek = seq_lseek,
1840 .release = single_release,
1841};
1842
1843static void xive_debugfs_init(struct kvmppc_xive *xive)
1844{
1845 char *name;
1846
1847 name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1848 if (!name) {
1849 pr_err("%s: no memory for name\n", __func__);
1850 return;
1851 }
1852
1853 xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1854 xive, &xive_debug_fops);
1855
1856 pr_debug("%s: created %s\n", __func__, name);
1857 kfree(name);
1858}
1859
1860static void kvmppc_xive_init(struct kvm_device *dev)
1861{
1862 struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1863
1864 /* Register some debug interfaces */
1865 xive_debugfs_init(xive);
1866}
1867
1868struct kvm_device_ops kvm_xive_ops = {
1869 .name = "kvm-xive",
1870 .create = kvmppc_xive_create,
1871 .init = kvmppc_xive_init,
1872 .destroy = kvmppc_xive_free,
1873 .set_attr = xive_set_attr,
1874 .get_attr = xive_get_attr,
1875 .has_attr = xive_has_attr,
1876};
1877
1878void kvmppc_xive_init_module(void)
1879{
1880 __xive_vm_h_xirr = xive_vm_h_xirr;
1881 __xive_vm_h_ipoll = xive_vm_h_ipoll;
1882 __xive_vm_h_ipi = xive_vm_h_ipi;
1883 __xive_vm_h_cppr = xive_vm_h_cppr;
1884 __xive_vm_h_eoi = xive_vm_h_eoi;
1885}
1886
1887void kvmppc_xive_exit_module(void)
1888{
1889 __xive_vm_h_xirr = NULL;
1890 __xive_vm_h_ipoll = NULL;
1891 __xive_vm_h_ipi = NULL;
1892 __xive_vm_h_cppr = NULL;
1893 __xive_vm_h_eoi = NULL;
1894}