blob: 5208f16a6815530c0f479dd7e4560046c2cf77b3 [file] [log] [blame]
Christoph Hellwig71102302016-07-06 21:55:52 +09001/*
2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15#include <linux/delay.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/err.h>
20#include <linux/string.h>
21#include <linux/jiffies.h>
22#include <linux/atomic.h>
23#include <linux/blk-mq.h>
24#include <linux/types.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/scatterlist.h>
28#include <linux/nvme.h>
29#include <linux/t10-pi.h>
30#include <asm/unaligned.h>
31
32#include <rdma/ib_verbs.h>
33#include <rdma/rdma_cm.h>
34#include <rdma/ib_cm.h>
35#include <linux/nvme-rdma.h>
36
37#include "nvme.h"
38#include "fabrics.h"
39
40
41#define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
42
43#define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
44
45#define NVME_RDMA_MAX_SEGMENTS 256
46
47#define NVME_RDMA_MAX_INLINE_SEGMENTS 1
48
49#define NVME_RDMA_MAX_PAGES_PER_MR 512
50
51#define NVME_RDMA_DEF_RECONNECT_DELAY 20
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_RDMA_NR_AEN_COMMANDS 1
58#define NVME_RDMA_AQ_BLKMQ_DEPTH \
59 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
60
61struct nvme_rdma_device {
62 struct ib_device *dev;
63 struct ib_pd *pd;
64 struct ib_mr *mr;
65 struct kref ref;
66 struct list_head entry;
67};
68
69struct nvme_rdma_qe {
70 struct ib_cqe cqe;
71 void *data;
72 u64 dma;
73};
74
75struct nvme_rdma_queue;
76struct nvme_rdma_request {
77 struct ib_mr *mr;
78 struct nvme_rdma_qe sqe;
79 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
80 u32 num_sge;
81 int nents;
82 bool inline_data;
83 bool need_inval;
84 struct ib_reg_wr reg_wr;
85 struct ib_cqe reg_cqe;
86 struct nvme_rdma_queue *queue;
87 struct sg_table sg_table;
88 struct scatterlist first_sgl[];
89};
90
91enum nvme_rdma_queue_flags {
92 NVME_RDMA_Q_CONNECTED = (1 << 0),
93};
94
95struct nvme_rdma_queue {
96 struct nvme_rdma_qe *rsp_ring;
97 u8 sig_count;
98 int queue_size;
99 size_t cmnd_capsule_len;
100 struct nvme_rdma_ctrl *ctrl;
101 struct nvme_rdma_device *device;
102 struct ib_cq *ib_cq;
103 struct ib_qp *qp;
104
105 unsigned long flags;
106 struct rdma_cm_id *cm_id;
107 int cm_error;
108 struct completion cm_done;
109};
110
111struct nvme_rdma_ctrl {
112 /* read and written in the hot path */
113 spinlock_t lock;
114
115 /* read only in the hot path */
116 struct nvme_rdma_queue *queues;
117 u32 queue_count;
118
119 /* other member variables */
120 unsigned short tl_retry_count;
121 struct blk_mq_tag_set tag_set;
122 struct work_struct delete_work;
123 struct work_struct reset_work;
124 struct work_struct err_work;
125
126 struct nvme_rdma_qe async_event_sqe;
127
128 int reconnect_delay;
129 struct delayed_work reconnect_work;
130
131 struct list_head list;
132
133 struct blk_mq_tag_set admin_tag_set;
134 struct nvme_rdma_device *device;
135
136 u64 cap;
137 u32 max_fr_pages;
138
139 union {
140 struct sockaddr addr;
141 struct sockaddr_in addr_in;
142 };
143
144 struct nvme_ctrl ctrl;
145};
146
147static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
148{
149 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
150}
151
152static LIST_HEAD(device_list);
153static DEFINE_MUTEX(device_list_mutex);
154
155static LIST_HEAD(nvme_rdma_ctrl_list);
156static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
157
158static struct workqueue_struct *nvme_rdma_wq;
159
160/*
161 * Disabling this option makes small I/O goes faster, but is fundamentally
162 * unsafe. With it turned off we will have to register a global rkey that
163 * allows read and write access to all physical memory.
164 */
165static bool register_always = true;
166module_param(register_always, bool, 0444);
167MODULE_PARM_DESC(register_always,
168 "Use memory registration even for contiguous memory regions");
169
170static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
171 struct rdma_cm_event *event);
172static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
173static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl);
174
175/* XXX: really should move to a generic header sooner or later.. */
176static inline void put_unaligned_le24(u32 val, u8 *p)
177{
178 *p++ = val;
179 *p++ = val >> 8;
180 *p++ = val >> 16;
181}
182
183static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
184{
185 return queue - queue->ctrl->queues;
186}
187
188static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
189{
190 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
191}
192
193static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
194 size_t capsule_size, enum dma_data_direction dir)
195{
196 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
197 kfree(qe->data);
198}
199
200static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
201 size_t capsule_size, enum dma_data_direction dir)
202{
203 qe->data = kzalloc(capsule_size, GFP_KERNEL);
204 if (!qe->data)
205 return -ENOMEM;
206
207 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
208 if (ib_dma_mapping_error(ibdev, qe->dma)) {
209 kfree(qe->data);
210 return -ENOMEM;
211 }
212
213 return 0;
214}
215
216static void nvme_rdma_free_ring(struct ib_device *ibdev,
217 struct nvme_rdma_qe *ring, size_t ib_queue_size,
218 size_t capsule_size, enum dma_data_direction dir)
219{
220 int i;
221
222 for (i = 0; i < ib_queue_size; i++)
223 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
224 kfree(ring);
225}
226
227static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
228 size_t ib_queue_size, size_t capsule_size,
229 enum dma_data_direction dir)
230{
231 struct nvme_rdma_qe *ring;
232 int i;
233
234 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
235 if (!ring)
236 return NULL;
237
238 for (i = 0; i < ib_queue_size; i++) {
239 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
240 goto out_free_ring;
241 }
242
243 return ring;
244
245out_free_ring:
246 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
247 return NULL;
248}
249
250static void nvme_rdma_qp_event(struct ib_event *event, void *context)
251{
252 pr_debug("QP event %d\n", event->event);
253}
254
255static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
256{
257 wait_for_completion_interruptible_timeout(&queue->cm_done,
258 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
259 return queue->cm_error;
260}
261
262static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
263{
264 struct nvme_rdma_device *dev = queue->device;
265 struct ib_qp_init_attr init_attr;
266 int ret;
267
268 memset(&init_attr, 0, sizeof(init_attr));
269 init_attr.event_handler = nvme_rdma_qp_event;
270 /* +1 for drain */
271 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
272 /* +1 for drain */
273 init_attr.cap.max_recv_wr = queue->queue_size + 1;
274 init_attr.cap.max_recv_sge = 1;
275 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
276 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
277 init_attr.qp_type = IB_QPT_RC;
278 init_attr.send_cq = queue->ib_cq;
279 init_attr.recv_cq = queue->ib_cq;
280
281 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
282
283 queue->qp = queue->cm_id->qp;
284 return ret;
285}
286
287static int nvme_rdma_reinit_request(void *data, struct request *rq)
288{
289 struct nvme_rdma_ctrl *ctrl = data;
290 struct nvme_rdma_device *dev = ctrl->device;
291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292 int ret = 0;
293
294 if (!req->need_inval)
295 goto out;
296
297 ib_dereg_mr(req->mr);
298
299 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
300 ctrl->max_fr_pages);
301 if (IS_ERR(req->mr)) {
Christoph Hellwig71102302016-07-06 21:55:52 +0900302 ret = PTR_ERR(req->mr);
Wei Yongjun458a9632016-07-12 11:06:17 +0000303 req->mr = NULL;
Christoph Hellwig71102302016-07-06 21:55:52 +0900304 }
305
306 req->need_inval = false;
307
308out:
309 return ret;
310}
311
312static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
313 struct request *rq, unsigned int queue_idx)
314{
315 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
316 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
317 struct nvme_rdma_device *dev = queue->device;
318
319 if (req->mr)
320 ib_dereg_mr(req->mr);
321
322 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
323 DMA_TO_DEVICE);
324}
325
326static void nvme_rdma_exit_request(void *data, struct request *rq,
327 unsigned int hctx_idx, unsigned int rq_idx)
328{
329 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
330}
331
332static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
333 unsigned int hctx_idx, unsigned int rq_idx)
334{
335 return __nvme_rdma_exit_request(data, rq, 0);
336}
337
338static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
339 struct request *rq, unsigned int queue_idx)
340{
341 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
342 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
343 struct nvme_rdma_device *dev = queue->device;
344 struct ib_device *ibdev = dev->dev;
345 int ret;
346
347 BUG_ON(queue_idx >= ctrl->queue_count);
348
349 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
350 DMA_TO_DEVICE);
351 if (ret)
352 return ret;
353
354 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
355 ctrl->max_fr_pages);
356 if (IS_ERR(req->mr)) {
357 ret = PTR_ERR(req->mr);
358 goto out_free_qe;
359 }
360
361 req->queue = queue;
362
363 return 0;
364
365out_free_qe:
366 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
367 DMA_TO_DEVICE);
368 return -ENOMEM;
369}
370
371static int nvme_rdma_init_request(void *data, struct request *rq,
372 unsigned int hctx_idx, unsigned int rq_idx,
373 unsigned int numa_node)
374{
375 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
376}
377
378static int nvme_rdma_init_admin_request(void *data, struct request *rq,
379 unsigned int hctx_idx, unsigned int rq_idx,
380 unsigned int numa_node)
381{
382 return __nvme_rdma_init_request(data, rq, 0);
383}
384
385static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
386 unsigned int hctx_idx)
387{
388 struct nvme_rdma_ctrl *ctrl = data;
389 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
390
391 BUG_ON(hctx_idx >= ctrl->queue_count);
392
393 hctx->driver_data = queue;
394 return 0;
395}
396
397static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 unsigned int hctx_idx)
399{
400 struct nvme_rdma_ctrl *ctrl = data;
401 struct nvme_rdma_queue *queue = &ctrl->queues[0];
402
403 BUG_ON(hctx_idx != 0);
404
405 hctx->driver_data = queue;
406 return 0;
407}
408
409static void nvme_rdma_free_dev(struct kref *ref)
410{
411 struct nvme_rdma_device *ndev =
412 container_of(ref, struct nvme_rdma_device, ref);
413
414 mutex_lock(&device_list_mutex);
415 list_del(&ndev->entry);
416 mutex_unlock(&device_list_mutex);
417
418 if (!register_always)
419 ib_dereg_mr(ndev->mr);
420 ib_dealloc_pd(ndev->pd);
421
422 kfree(ndev);
423}
424
425static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
426{
427 kref_put(&dev->ref, nvme_rdma_free_dev);
428}
429
430static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
431{
432 return kref_get_unless_zero(&dev->ref);
433}
434
435static struct nvme_rdma_device *
436nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
437{
438 struct nvme_rdma_device *ndev;
439
440 mutex_lock(&device_list_mutex);
441 list_for_each_entry(ndev, &device_list, entry) {
442 if (ndev->dev->node_guid == cm_id->device->node_guid &&
443 nvme_rdma_dev_get(ndev))
444 goto out_unlock;
445 }
446
447 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
448 if (!ndev)
449 goto out_err;
450
451 ndev->dev = cm_id->device;
452 kref_init(&ndev->ref);
453
454 ndev->pd = ib_alloc_pd(ndev->dev);
455 if (IS_ERR(ndev->pd))
456 goto out_free_dev;
457
458 if (!register_always) {
459 ndev->mr = ib_get_dma_mr(ndev->pd,
460 IB_ACCESS_LOCAL_WRITE |
461 IB_ACCESS_REMOTE_READ |
462 IB_ACCESS_REMOTE_WRITE);
463 if (IS_ERR(ndev->mr))
464 goto out_free_pd;
465 }
466
467 if (!(ndev->dev->attrs.device_cap_flags &
468 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
469 dev_err(&ndev->dev->dev,
470 "Memory registrations not supported.\n");
471 goto out_free_mr;
472 }
473
474 list_add(&ndev->entry, &device_list);
475out_unlock:
476 mutex_unlock(&device_list_mutex);
477 return ndev;
478
479out_free_mr:
480 if (!register_always)
481 ib_dereg_mr(ndev->mr);
482out_free_pd:
483 ib_dealloc_pd(ndev->pd);
484out_free_dev:
485 kfree(ndev);
486out_err:
487 mutex_unlock(&device_list_mutex);
488 return NULL;
489}
490
491static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
492{
493 struct nvme_rdma_device *dev = queue->device;
494 struct ib_device *ibdev = dev->dev;
495
496 rdma_destroy_qp(queue->cm_id);
497 ib_free_cq(queue->ib_cq);
498
499 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
500 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
501
502 nvme_rdma_dev_put(dev);
503}
504
505static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
506 struct nvme_rdma_device *dev)
507{
508 struct ib_device *ibdev = dev->dev;
509 const int send_wr_factor = 3; /* MR, SEND, INV */
510 const int cq_factor = send_wr_factor + 1; /* + RECV */
511 int comp_vector, idx = nvme_rdma_queue_idx(queue);
512
513 int ret;
514
515 queue->device = dev;
516
517 /*
518 * The admin queue is barely used once the controller is live, so don't
519 * bother to spread it out.
520 */
521 if (idx == 0)
522 comp_vector = 0;
523 else
524 comp_vector = idx % ibdev->num_comp_vectors;
525
526
527 /* +1 for ib_stop_cq */
528 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
529 cq_factor * queue->queue_size + 1, comp_vector,
530 IB_POLL_SOFTIRQ);
531 if (IS_ERR(queue->ib_cq)) {
532 ret = PTR_ERR(queue->ib_cq);
533 goto out;
534 }
535
536 ret = nvme_rdma_create_qp(queue, send_wr_factor);
537 if (ret)
538 goto out_destroy_ib_cq;
539
540 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
541 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
542 if (!queue->rsp_ring) {
543 ret = -ENOMEM;
544 goto out_destroy_qp;
545 }
546
547 return 0;
548
549out_destroy_qp:
550 ib_destroy_qp(queue->qp);
551out_destroy_ib_cq:
552 ib_free_cq(queue->ib_cq);
553out:
554 return ret;
555}
556
557static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
558 int idx, size_t queue_size)
559{
560 struct nvme_rdma_queue *queue;
561 int ret;
562
563 queue = &ctrl->queues[idx];
564 queue->ctrl = ctrl;
565 init_completion(&queue->cm_done);
566
567 if (idx > 0)
568 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
569 else
570 queue->cmnd_capsule_len = sizeof(struct nvme_command);
571
572 queue->queue_size = queue_size;
573
574 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
575 RDMA_PS_TCP, IB_QPT_RC);
576 if (IS_ERR(queue->cm_id)) {
577 dev_info(ctrl->ctrl.device,
578 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
579 return PTR_ERR(queue->cm_id);
580 }
581
582 queue->cm_error = -ETIMEDOUT;
583 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
584 NVME_RDMA_CONNECT_TIMEOUT_MS);
585 if (ret) {
586 dev_info(ctrl->ctrl.device,
587 "rdma_resolve_addr failed (%d).\n", ret);
588 goto out_destroy_cm_id;
589 }
590
591 ret = nvme_rdma_wait_for_cm(queue);
592 if (ret) {
593 dev_info(ctrl->ctrl.device,
594 "rdma_resolve_addr wait failed (%d).\n", ret);
595 goto out_destroy_cm_id;
596 }
597
598 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
599
600 return 0;
601
602out_destroy_cm_id:
603 rdma_destroy_id(queue->cm_id);
604 return ret;
605}
606
607static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
608{
609 rdma_disconnect(queue->cm_id);
610 ib_drain_qp(queue->qp);
611}
612
613static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
614{
615 nvme_rdma_destroy_queue_ib(queue);
616 rdma_destroy_id(queue->cm_id);
617}
618
619static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
620{
621 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
622 return;
623 nvme_rdma_stop_queue(queue);
624 nvme_rdma_free_queue(queue);
625}
626
627static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
628{
629 int i;
630
631 for (i = 1; i < ctrl->queue_count; i++)
632 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
633}
634
635static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
636{
637 int i, ret = 0;
638
639 for (i = 1; i < ctrl->queue_count; i++) {
640 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
641 if (ret)
642 break;
643 }
644
645 return ret;
646}
647
648static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
649{
650 int i, ret;
651
652 for (i = 1; i < ctrl->queue_count; i++) {
653 ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
654 if (ret) {
655 dev_info(ctrl->ctrl.device,
656 "failed to initialize i/o queue: %d\n", ret);
657 goto out_free_queues;
658 }
659 }
660
661 return 0;
662
663out_free_queues:
664 for (; i >= 1; i--)
665 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
666
667 return ret;
668}
669
670static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
671{
672 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
673 sizeof(struct nvme_command), DMA_TO_DEVICE);
674 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
675 blk_cleanup_queue(ctrl->ctrl.admin_q);
676 blk_mq_free_tag_set(&ctrl->admin_tag_set);
677 nvme_rdma_dev_put(ctrl->device);
678}
679
680static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
681{
682 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
683
684 if (list_empty(&ctrl->list))
685 goto free_ctrl;
686
687 mutex_lock(&nvme_rdma_ctrl_mutex);
688 list_del(&ctrl->list);
689 mutex_unlock(&nvme_rdma_ctrl_mutex);
690
691 if (ctrl->ctrl.tagset) {
692 blk_cleanup_queue(ctrl->ctrl.connect_q);
693 blk_mq_free_tag_set(&ctrl->tag_set);
694 nvme_rdma_dev_put(ctrl->device);
695 }
696 kfree(ctrl->queues);
697 nvmf_free_options(nctrl->opts);
698free_ctrl:
699 kfree(ctrl);
700}
701
702static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
703{
704 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
705 struct nvme_rdma_ctrl, reconnect_work);
706 bool changed;
707 int ret;
708
709 if (ctrl->queue_count > 1) {
710 nvme_rdma_free_io_queues(ctrl);
711
712 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
713 if (ret)
714 goto requeue;
715 }
716
717 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
718
719 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
720 if (ret)
721 goto requeue;
722
723 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
724 if (ret)
725 goto requeue;
726
727 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
728
729 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
730 if (ret)
731 goto stop_admin_q;
732
733 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
734 if (ret)
735 goto stop_admin_q;
736
737 nvme_start_keep_alive(&ctrl->ctrl);
738
739 if (ctrl->queue_count > 1) {
740 ret = nvme_rdma_init_io_queues(ctrl);
741 if (ret)
742 goto stop_admin_q;
743
744 ret = nvme_rdma_connect_io_queues(ctrl);
745 if (ret)
746 goto stop_admin_q;
747 }
748
749 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
750 WARN_ON_ONCE(!changed);
751
752 if (ctrl->queue_count > 1)
753 nvme_start_queues(&ctrl->ctrl);
754
755 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
756
757 return;
758
759stop_admin_q:
760 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
761requeue:
762 /* Make sure we are not resetting/deleting */
763 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
764 dev_info(ctrl->ctrl.device,
765 "Failed reconnect attempt, requeueing...\n");
766 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
767 ctrl->reconnect_delay * HZ);
768 }
769}
770
771static void nvme_rdma_error_recovery_work(struct work_struct *work)
772{
773 struct nvme_rdma_ctrl *ctrl = container_of(work,
774 struct nvme_rdma_ctrl, err_work);
775
776 nvme_stop_keep_alive(&ctrl->ctrl);
777 if (ctrl->queue_count > 1)
778 nvme_stop_queues(&ctrl->ctrl);
779 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
780
781 /* We must take care of fastfail/requeue all our inflight requests */
782 if (ctrl->queue_count > 1)
783 blk_mq_tagset_busy_iter(&ctrl->tag_set,
784 nvme_cancel_request, &ctrl->ctrl);
785 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
786 nvme_cancel_request, &ctrl->ctrl);
787
788 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
789 ctrl->reconnect_delay);
790
791 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
792 ctrl->reconnect_delay * HZ);
793}
794
795static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
796{
797 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
798 return;
799
800 queue_work(nvme_rdma_wq, &ctrl->err_work);
801}
802
803static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
804 const char *op)
805{
806 struct nvme_rdma_queue *queue = cq->cq_context;
807 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
808
809 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
810 dev_info(ctrl->ctrl.device,
811 "%s for CQE 0x%p failed with status %s (%d)\n",
812 op, wc->wr_cqe,
813 ib_wc_status_msg(wc->status), wc->status);
814 nvme_rdma_error_recovery(ctrl);
815}
816
817static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
818{
819 if (unlikely(wc->status != IB_WC_SUCCESS))
820 nvme_rdma_wr_error(cq, wc, "MEMREG");
821}
822
823static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
824{
825 if (unlikely(wc->status != IB_WC_SUCCESS))
826 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
827}
828
829static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
830 struct nvme_rdma_request *req)
831{
832 struct ib_send_wr *bad_wr;
833 struct ib_send_wr wr = {
834 .opcode = IB_WR_LOCAL_INV,
835 .next = NULL,
836 .num_sge = 0,
837 .send_flags = 0,
838 .ex.invalidate_rkey = req->mr->rkey,
839 };
840
841 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
842 wr.wr_cqe = &req->reg_cqe;
843
844 return ib_post_send(queue->qp, &wr, &bad_wr);
845}
846
847static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
848 struct request *rq)
849{
850 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
851 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
852 struct nvme_rdma_device *dev = queue->device;
853 struct ib_device *ibdev = dev->dev;
854 int res;
855
856 if (!blk_rq_bytes(rq))
857 return;
858
859 if (req->need_inval) {
860 res = nvme_rdma_inv_rkey(queue, req);
861 if (res < 0) {
862 dev_err(ctrl->ctrl.device,
863 "Queueing INV WR for rkey %#x failed (%d)\n",
864 req->mr->rkey, res);
865 nvme_rdma_error_recovery(queue->ctrl);
866 }
867 }
868
869 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
870 req->nents, rq_data_dir(rq) ==
871 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
872
873 nvme_cleanup_cmd(rq);
874 sg_free_table_chained(&req->sg_table, true);
875}
876
877static int nvme_rdma_set_sg_null(struct nvme_command *c)
878{
879 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
880
881 sg->addr = 0;
882 put_unaligned_le24(0, sg->length);
883 put_unaligned_le32(0, sg->key);
884 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
885 return 0;
886}
887
888static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
889 struct nvme_rdma_request *req, struct nvme_command *c)
890{
891 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
892
893 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
894 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
895 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
896
897 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
898 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
899 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
900
901 req->inline_data = true;
902 req->num_sge++;
903 return 0;
904}
905
906static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
907 struct nvme_rdma_request *req, struct nvme_command *c)
908{
909 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
910
911 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
912 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
913 put_unaligned_le32(queue->device->mr->rkey, sg->key);
914 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
915 return 0;
916}
917
918static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
919 struct nvme_rdma_request *req, struct nvme_command *c,
920 int count)
921{
922 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
923 int nr;
924
925 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
926 if (nr < count) {
927 if (nr < 0)
928 return nr;
929 return -EINVAL;
930 }
931
932 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
933
934 req->reg_cqe.done = nvme_rdma_memreg_done;
935 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
936 req->reg_wr.wr.opcode = IB_WR_REG_MR;
937 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
938 req->reg_wr.wr.num_sge = 0;
939 req->reg_wr.mr = req->mr;
940 req->reg_wr.key = req->mr->rkey;
941 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
942 IB_ACCESS_REMOTE_READ |
943 IB_ACCESS_REMOTE_WRITE;
944
945 req->need_inval = true;
946
947 sg->addr = cpu_to_le64(req->mr->iova);
948 put_unaligned_le24(req->mr->length, sg->length);
949 put_unaligned_le32(req->mr->rkey, sg->key);
950 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
951 NVME_SGL_FMT_INVALIDATE;
952
953 return 0;
954}
955
956static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
957 struct request *rq, unsigned int map_len,
958 struct nvme_command *c)
959{
960 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
961 struct nvme_rdma_device *dev = queue->device;
962 struct ib_device *ibdev = dev->dev;
963 int nents, count;
964 int ret;
965
966 req->num_sge = 1;
967 req->inline_data = false;
968 req->need_inval = false;
969
970 c->common.flags |= NVME_CMD_SGL_METABUF;
971
972 if (!blk_rq_bytes(rq))
973 return nvme_rdma_set_sg_null(c);
974
975 req->sg_table.sgl = req->first_sgl;
976 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
977 req->sg_table.sgl);
978 if (ret)
979 return -ENOMEM;
980
981 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
982 BUG_ON(nents > rq->nr_phys_segments);
983 req->nents = nents;
984
985 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
986 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
987 if (unlikely(count <= 0)) {
988 sg_free_table_chained(&req->sg_table, true);
989 return -EIO;
990 }
991
992 if (count == 1) {
993 if (rq_data_dir(rq) == WRITE &&
994 map_len <= nvme_rdma_inline_data_size(queue) &&
995 nvme_rdma_queue_idx(queue))
996 return nvme_rdma_map_sg_inline(queue, req, c);
997
998 if (!register_always)
999 return nvme_rdma_map_sg_single(queue, req, c);
1000 }
1001
1002 return nvme_rdma_map_sg_fr(queue, req, c, count);
1003}
1004
1005static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1006{
1007 if (unlikely(wc->status != IB_WC_SUCCESS))
1008 nvme_rdma_wr_error(cq, wc, "SEND");
1009}
1010
1011static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1012 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1013 struct ib_send_wr *first, bool flush)
1014{
1015 struct ib_send_wr wr, *bad_wr;
1016 int ret;
1017
1018 sge->addr = qe->dma;
1019 sge->length = sizeof(struct nvme_command),
1020 sge->lkey = queue->device->pd->local_dma_lkey;
1021
1022 qe->cqe.done = nvme_rdma_send_done;
1023
1024 wr.next = NULL;
1025 wr.wr_cqe = &qe->cqe;
1026 wr.sg_list = sge;
1027 wr.num_sge = num_sge;
1028 wr.opcode = IB_WR_SEND;
1029 wr.send_flags = 0;
1030
1031 /*
1032 * Unsignalled send completions are another giant desaster in the
1033 * IB Verbs spec: If we don't regularly post signalled sends
1034 * the send queue will fill up and only a QP reset will rescue us.
1035 * Would have been way to obvious to handle this in hardware or
1036 * at least the RDMA stack..
1037 *
1038 * This messy and racy code sniplet is copy and pasted from the iSER
1039 * initiator, and the magic '32' comes from there as well.
1040 *
1041 * Always signal the flushes. The magic request used for the flush
1042 * sequencer is not allocated in our driver's tagset and it's
1043 * triggered to be freed by blk_cleanup_queue(). So we need to
1044 * always mark it as signaled to ensure that the "wr_cqe", which is
1045 * embeded in request's payload, is not freed when __ib_process_cq()
1046 * calls wr_cqe->done().
1047 */
1048 if ((++queue->sig_count % 32) == 0 || flush)
1049 wr.send_flags |= IB_SEND_SIGNALED;
1050
1051 if (first)
1052 first->next = &wr;
1053 else
1054 first = &wr;
1055
1056 ret = ib_post_send(queue->qp, first, &bad_wr);
1057 if (ret) {
1058 dev_err(queue->ctrl->ctrl.device,
1059 "%s failed with error code %d\n", __func__, ret);
1060 }
1061 return ret;
1062}
1063
1064static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1065 struct nvme_rdma_qe *qe)
1066{
1067 struct ib_recv_wr wr, *bad_wr;
1068 struct ib_sge list;
1069 int ret;
1070
1071 list.addr = qe->dma;
1072 list.length = sizeof(struct nvme_completion);
1073 list.lkey = queue->device->pd->local_dma_lkey;
1074
1075 qe->cqe.done = nvme_rdma_recv_done;
1076
1077 wr.next = NULL;
1078 wr.wr_cqe = &qe->cqe;
1079 wr.sg_list = &list;
1080 wr.num_sge = 1;
1081
1082 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1083 if (ret) {
1084 dev_err(queue->ctrl->ctrl.device,
1085 "%s failed with error code %d\n", __func__, ret);
1086 }
1087 return ret;
1088}
1089
1090static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1091{
1092 u32 queue_idx = nvme_rdma_queue_idx(queue);
1093
1094 if (queue_idx == 0)
1095 return queue->ctrl->admin_tag_set.tags[queue_idx];
1096 return queue->ctrl->tag_set.tags[queue_idx - 1];
1097}
1098
1099static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1100{
1101 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1102 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1103 struct ib_device *dev = queue->device->dev;
1104 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1105 struct nvme_command *cmd = sqe->data;
1106 struct ib_sge sge;
1107 int ret;
1108
1109 if (WARN_ON_ONCE(aer_idx != 0))
1110 return;
1111
1112 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1113
1114 memset(cmd, 0, sizeof(*cmd));
1115 cmd->common.opcode = nvme_admin_async_event;
1116 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1117 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1118 nvme_rdma_set_sg_null(cmd);
1119
1120 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1121 DMA_TO_DEVICE);
1122
1123 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1124 WARN_ON_ONCE(ret);
1125}
1126
1127static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1128 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1129{
1130 u16 status = le16_to_cpu(cqe->status);
1131 struct request *rq;
1132 struct nvme_rdma_request *req;
1133 int ret = 0;
1134
1135 status >>= 1;
1136
1137 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1138 if (!rq) {
1139 dev_err(queue->ctrl->ctrl.device,
1140 "tag 0x%x on QP %#x not found\n",
1141 cqe->command_id, queue->qp->qp_num);
1142 nvme_rdma_error_recovery(queue->ctrl);
1143 return ret;
1144 }
1145 req = blk_mq_rq_to_pdu(rq);
1146
1147 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1148 memcpy(rq->special, cqe, sizeof(*cqe));
1149
1150 if (rq->tag == tag)
1151 ret = 1;
1152
1153 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1154 wc->ex.invalidate_rkey == req->mr->rkey)
1155 req->need_inval = false;
1156
1157 blk_mq_complete_request(rq, status);
1158
1159 return ret;
1160}
1161
1162static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1163{
1164 struct nvme_rdma_qe *qe =
1165 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1166 struct nvme_rdma_queue *queue = cq->cq_context;
1167 struct ib_device *ibdev = queue->device->dev;
1168 struct nvme_completion *cqe = qe->data;
1169 const size_t len = sizeof(struct nvme_completion);
1170 int ret = 0;
1171
1172 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1173 nvme_rdma_wr_error(cq, wc, "RECV");
1174 return 0;
1175 }
1176
1177 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1178 /*
1179 * AEN requests are special as they don't time out and can
1180 * survive any kind of queue freeze and often don't respond to
1181 * aborts. We don't even bother to allocate a struct request
1182 * for them but rather special case them here.
1183 */
1184 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1185 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1186 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1187 else
1188 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1189 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1190
1191 nvme_rdma_post_recv(queue, qe);
1192 return ret;
1193}
1194
1195static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1196{
1197 __nvme_rdma_recv_done(cq, wc, -1);
1198}
1199
1200static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1201{
1202 int ret, i;
1203
1204 for (i = 0; i < queue->queue_size; i++) {
1205 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1206 if (ret)
1207 goto out_destroy_queue_ib;
1208 }
1209
1210 return 0;
1211
1212out_destroy_queue_ib:
1213 nvme_rdma_destroy_queue_ib(queue);
1214 return ret;
1215}
1216
1217static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1218 struct rdma_cm_event *ev)
1219{
1220 if (ev->param.conn.private_data_len) {
1221 struct nvme_rdma_cm_rej *rej =
1222 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1223
1224 dev_err(queue->ctrl->ctrl.device,
1225 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1226 /* XXX: Think of something clever to do here... */
1227 } else {
1228 dev_err(queue->ctrl->ctrl.device,
1229 "Connect rejected, no private data.\n");
1230 }
1231
1232 return -ECONNRESET;
1233}
1234
1235static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1236{
1237 struct nvme_rdma_device *dev;
1238 int ret;
1239
1240 dev = nvme_rdma_find_get_device(queue->cm_id);
1241 if (!dev) {
1242 dev_err(queue->cm_id->device->dma_device,
1243 "no client data found!\n");
1244 return -ECONNREFUSED;
1245 }
1246
1247 ret = nvme_rdma_create_queue_ib(queue, dev);
1248 if (ret) {
1249 nvme_rdma_dev_put(dev);
1250 goto out;
1251 }
1252
1253 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1254 if (ret) {
1255 dev_err(queue->ctrl->ctrl.device,
1256 "rdma_resolve_route failed (%d).\n",
1257 queue->cm_error);
1258 goto out_destroy_queue;
1259 }
1260
1261 return 0;
1262
1263out_destroy_queue:
1264 nvme_rdma_destroy_queue_ib(queue);
1265out:
1266 return ret;
1267}
1268
1269static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1270{
1271 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1272 struct rdma_conn_param param = { };
1273 struct nvme_rdma_cm_req priv;
1274 int ret;
1275
1276 param.qp_num = queue->qp->qp_num;
1277 param.flow_control = 1;
1278
1279 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1280 /* rdma_cm will clamp down to max QP retry count (7) */
1281 param.retry_count = ctrl->tl_retry_count;
1282 param.rnr_retry_count = 7;
1283 param.private_data = &priv;
1284 param.private_data_len = sizeof(priv);
1285
1286 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1287 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1288 priv.hrqsize = cpu_to_le16(queue->queue_size);
1289 priv.hsqsize = cpu_to_le16(queue->queue_size);
1290
1291 ret = rdma_connect(queue->cm_id, &param);
1292 if (ret) {
1293 dev_err(ctrl->ctrl.device,
1294 "rdma_connect failed (%d).\n", ret);
1295 goto out_destroy_queue_ib;
1296 }
1297
1298 return 0;
1299
1300out_destroy_queue_ib:
1301 nvme_rdma_destroy_queue_ib(queue);
1302 return ret;
1303}
1304
1305/**
1306 * nvme_rdma_device_unplug() - Handle RDMA device unplug
1307 * @queue: Queue that owns the cm_id that caught the event
1308 *
1309 * DEVICE_REMOVAL event notifies us that the RDMA device is about
1310 * to unplug so we should take care of destroying our RDMA resources.
1311 * This event will be generated for each allocated cm_id.
1312 *
1313 * In our case, the RDMA resources are managed per controller and not
1314 * only per queue. So the way we handle this is we trigger an implicit
1315 * controller deletion upon the first DEVICE_REMOVAL event we see, and
1316 * hold the event inflight until the controller deletion is completed.
1317 *
1318 * One exception that we need to handle is the destruction of the cm_id
1319 * that caught the event. Since we hold the callout until the controller
1320 * deletion is completed, we'll deadlock if the controller deletion will
1321 * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1322 * of destroying this queue before-hand, destroy the queue resources
1323 * after the controller deletion completed with the exception of destroying
1324 * the cm_id implicitely by returning a non-zero rc to the callout.
1325 */
1326static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1327{
1328 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1329 int ret, ctrl_deleted = 0;
1330
1331 /* First disable the queue so ctrl delete won't free it */
1332 if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
1333 goto out;
1334
1335 /* delete the controller */
1336 ret = __nvme_rdma_del_ctrl(ctrl);
1337 if (!ret) {
1338 dev_warn(ctrl->ctrl.device,
1339 "Got rdma device removal event, deleting ctrl\n");
1340 flush_work(&ctrl->delete_work);
1341
1342 /* Return non-zero so the cm_id will destroy implicitly */
1343 ctrl_deleted = 1;
1344
1345 /* Free this queue ourselves */
1346 rdma_disconnect(queue->cm_id);
1347 ib_drain_qp(queue->qp);
1348 nvme_rdma_destroy_queue_ib(queue);
1349 }
1350
1351out:
1352 return ctrl_deleted;
1353}
1354
1355static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1356 struct rdma_cm_event *ev)
1357{
1358 struct nvme_rdma_queue *queue = cm_id->context;
1359 int cm_error = 0;
1360
1361 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1362 rdma_event_msg(ev->event), ev->event,
1363 ev->status, cm_id);
1364
1365 switch (ev->event) {
1366 case RDMA_CM_EVENT_ADDR_RESOLVED:
1367 cm_error = nvme_rdma_addr_resolved(queue);
1368 break;
1369 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1370 cm_error = nvme_rdma_route_resolved(queue);
1371 break;
1372 case RDMA_CM_EVENT_ESTABLISHED:
1373 queue->cm_error = nvme_rdma_conn_established(queue);
1374 /* complete cm_done regardless of success/failure */
1375 complete(&queue->cm_done);
1376 return 0;
1377 case RDMA_CM_EVENT_REJECTED:
1378 cm_error = nvme_rdma_conn_rejected(queue, ev);
1379 break;
1380 case RDMA_CM_EVENT_ADDR_ERROR:
1381 case RDMA_CM_EVENT_ROUTE_ERROR:
1382 case RDMA_CM_EVENT_CONNECT_ERROR:
1383 case RDMA_CM_EVENT_UNREACHABLE:
1384 dev_dbg(queue->ctrl->ctrl.device,
1385 "CM error event %d\n", ev->event);
1386 cm_error = -ECONNRESET;
1387 break;
1388 case RDMA_CM_EVENT_DISCONNECTED:
1389 case RDMA_CM_EVENT_ADDR_CHANGE:
1390 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1391 dev_dbg(queue->ctrl->ctrl.device,
1392 "disconnect received - connection closed\n");
1393 nvme_rdma_error_recovery(queue->ctrl);
1394 break;
1395 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1396 /* return 1 means impliciy CM ID destroy */
1397 return nvme_rdma_device_unplug(queue);
1398 default:
1399 dev_err(queue->ctrl->ctrl.device,
1400 "Unexpected RDMA CM event (%d)\n", ev->event);
1401 nvme_rdma_error_recovery(queue->ctrl);
1402 break;
1403 }
1404
1405 if (cm_error) {
1406 queue->cm_error = cm_error;
1407 complete(&queue->cm_done);
1408 }
1409
1410 return 0;
1411}
1412
1413static enum blk_eh_timer_return
1414nvme_rdma_timeout(struct request *rq, bool reserved)
1415{
1416 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1417
1418 /* queue error recovery */
1419 nvme_rdma_error_recovery(req->queue->ctrl);
1420
1421 /* fail with DNR on cmd timeout */
1422 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1423
1424 return BLK_EH_HANDLED;
1425}
1426
1427static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1428 const struct blk_mq_queue_data *bd)
1429{
1430 struct nvme_ns *ns = hctx->queue->queuedata;
1431 struct nvme_rdma_queue *queue = hctx->driver_data;
1432 struct request *rq = bd->rq;
1433 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1434 struct nvme_rdma_qe *sqe = &req->sqe;
1435 struct nvme_command *c = sqe->data;
1436 bool flush = false;
1437 struct ib_device *dev;
1438 unsigned int map_len;
1439 int ret;
1440
1441 WARN_ON_ONCE(rq->tag < 0);
1442
1443 dev = queue->device->dev;
1444 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1445 sizeof(struct nvme_command), DMA_TO_DEVICE);
1446
1447 ret = nvme_setup_cmd(ns, rq, c);
1448 if (ret)
1449 return ret;
1450
1451 c->common.command_id = rq->tag;
1452 blk_mq_start_request(rq);
1453
1454 map_len = nvme_map_len(rq);
1455 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1456 if (ret < 0) {
1457 dev_err(queue->ctrl->ctrl.device,
1458 "Failed to map data (%d)\n", ret);
1459 nvme_cleanup_cmd(rq);
1460 goto err;
1461 }
1462
1463 ib_dma_sync_single_for_device(dev, sqe->dma,
1464 sizeof(struct nvme_command), DMA_TO_DEVICE);
1465
1466 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1467 flush = true;
1468 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1469 req->need_inval ? &req->reg_wr.wr : NULL, flush);
1470 if (ret) {
1471 nvme_rdma_unmap_data(queue, rq);
1472 goto err;
1473 }
1474
1475 return BLK_MQ_RQ_QUEUE_OK;
1476err:
1477 return (ret == -ENOMEM || ret == -EAGAIN) ?
1478 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1479}
1480
1481static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1482{
1483 struct nvme_rdma_queue *queue = hctx->driver_data;
1484 struct ib_cq *cq = queue->ib_cq;
1485 struct ib_wc wc;
1486 int found = 0;
1487
1488 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1489 while (ib_poll_cq(cq, 1, &wc) > 0) {
1490 struct ib_cqe *cqe = wc.wr_cqe;
1491
1492 if (cqe) {
1493 if (cqe->done == nvme_rdma_recv_done)
1494 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1495 else
1496 cqe->done(cq, &wc);
1497 }
1498 }
1499
1500 return found;
1501}
1502
1503static void nvme_rdma_complete_rq(struct request *rq)
1504{
1505 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1506 struct nvme_rdma_queue *queue = req->queue;
1507 int error = 0;
1508
1509 nvme_rdma_unmap_data(queue, rq);
1510
1511 if (unlikely(rq->errors)) {
1512 if (nvme_req_needs_retry(rq, rq->errors)) {
1513 nvme_requeue_req(rq);
1514 return;
1515 }
1516
1517 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1518 error = rq->errors;
1519 else
1520 error = nvme_error_status(rq->errors);
1521 }
1522
1523 blk_mq_end_request(rq, error);
1524}
1525
1526static struct blk_mq_ops nvme_rdma_mq_ops = {
1527 .queue_rq = nvme_rdma_queue_rq,
1528 .complete = nvme_rdma_complete_rq,
1529 .map_queue = blk_mq_map_queue,
1530 .init_request = nvme_rdma_init_request,
1531 .exit_request = nvme_rdma_exit_request,
1532 .reinit_request = nvme_rdma_reinit_request,
1533 .init_hctx = nvme_rdma_init_hctx,
1534 .poll = nvme_rdma_poll,
1535 .timeout = nvme_rdma_timeout,
1536};
1537
1538static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1539 .queue_rq = nvme_rdma_queue_rq,
1540 .complete = nvme_rdma_complete_rq,
1541 .map_queue = blk_mq_map_queue,
1542 .init_request = nvme_rdma_init_admin_request,
1543 .exit_request = nvme_rdma_exit_admin_request,
1544 .reinit_request = nvme_rdma_reinit_request,
1545 .init_hctx = nvme_rdma_init_admin_hctx,
1546 .timeout = nvme_rdma_timeout,
1547};
1548
1549static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1550{
1551 int error;
1552
1553 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1554 if (error)
1555 return error;
1556
1557 ctrl->device = ctrl->queues[0].device;
1558
1559 /*
1560 * We need a reference on the device as long as the tag_set is alive,
1561 * as the MRs in the request structures need a valid ib_device.
1562 */
1563 error = -EINVAL;
1564 if (!nvme_rdma_dev_get(ctrl->device))
1565 goto out_free_queue;
1566
1567 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1568 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1569
1570 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1571 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1572 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1573 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1574 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1575 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1576 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1577 ctrl->admin_tag_set.driver_data = ctrl;
1578 ctrl->admin_tag_set.nr_hw_queues = 1;
1579 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1580
1581 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1582 if (error)
1583 goto out_put_dev;
1584
1585 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1586 if (IS_ERR(ctrl->ctrl.admin_q)) {
1587 error = PTR_ERR(ctrl->ctrl.admin_q);
1588 goto out_free_tagset;
1589 }
1590
1591 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1592 if (error)
1593 goto out_cleanup_queue;
1594
1595 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1596 if (error) {
1597 dev_err(ctrl->ctrl.device,
1598 "prop_get NVME_REG_CAP failed\n");
1599 goto out_cleanup_queue;
1600 }
1601
1602 ctrl->ctrl.sqsize =
1603 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1604
1605 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1606 if (error)
1607 goto out_cleanup_queue;
1608
1609 ctrl->ctrl.max_hw_sectors =
1610 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1611
1612 error = nvme_init_identify(&ctrl->ctrl);
1613 if (error)
1614 goto out_cleanup_queue;
1615
1616 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1617 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1618 DMA_TO_DEVICE);
1619 if (error)
1620 goto out_cleanup_queue;
1621
1622 nvme_start_keep_alive(&ctrl->ctrl);
1623
1624 return 0;
1625
1626out_cleanup_queue:
1627 blk_cleanup_queue(ctrl->ctrl.admin_q);
1628out_free_tagset:
1629 /* disconnect and drain the queue before freeing the tagset */
1630 nvme_rdma_stop_queue(&ctrl->queues[0]);
1631 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1632out_put_dev:
1633 nvme_rdma_dev_put(ctrl->device);
1634out_free_queue:
1635 nvme_rdma_free_queue(&ctrl->queues[0]);
1636 return error;
1637}
1638
1639static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1640{
1641 nvme_stop_keep_alive(&ctrl->ctrl);
1642 cancel_work_sync(&ctrl->err_work);
1643 cancel_delayed_work_sync(&ctrl->reconnect_work);
1644
1645 if (ctrl->queue_count > 1) {
1646 nvme_stop_queues(&ctrl->ctrl);
1647 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1648 nvme_cancel_request, &ctrl->ctrl);
1649 nvme_rdma_free_io_queues(ctrl);
1650 }
1651
1652 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1653 nvme_shutdown_ctrl(&ctrl->ctrl);
1654
1655 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1656 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1657 nvme_cancel_request, &ctrl->ctrl);
1658 nvme_rdma_destroy_admin_queue(ctrl);
1659}
1660
1661static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1662{
1663 struct nvme_rdma_ctrl *ctrl = container_of(work,
1664 struct nvme_rdma_ctrl, delete_work);
1665
1666 nvme_remove_namespaces(&ctrl->ctrl);
1667 nvme_rdma_shutdown_ctrl(ctrl);
1668 nvme_uninit_ctrl(&ctrl->ctrl);
1669 nvme_put_ctrl(&ctrl->ctrl);
1670}
1671
1672static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1673{
1674 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1675 return -EBUSY;
1676
1677 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1678 return -EBUSY;
1679
1680 return 0;
1681}
1682
1683static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1684{
1685 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1686 int ret;
1687
1688 ret = __nvme_rdma_del_ctrl(ctrl);
1689 if (ret)
1690 return ret;
1691
1692 flush_work(&ctrl->delete_work);
1693
1694 return 0;
1695}
1696
1697static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1698{
1699 struct nvme_rdma_ctrl *ctrl = container_of(work,
1700 struct nvme_rdma_ctrl, delete_work);
1701
1702 nvme_remove_namespaces(&ctrl->ctrl);
1703 nvme_uninit_ctrl(&ctrl->ctrl);
1704 nvme_put_ctrl(&ctrl->ctrl);
1705}
1706
1707static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1708{
1709 struct nvme_rdma_ctrl *ctrl = container_of(work,
1710 struct nvme_rdma_ctrl, reset_work);
1711 int ret;
1712 bool changed;
1713
1714 nvme_rdma_shutdown_ctrl(ctrl);
1715
1716 ret = nvme_rdma_configure_admin_queue(ctrl);
1717 if (ret) {
1718 /* ctrl is already shutdown, just remove the ctrl */
1719 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1720 goto del_dead_ctrl;
1721 }
1722
1723 if (ctrl->queue_count > 1) {
1724 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1725 if (ret)
1726 goto del_dead_ctrl;
1727
1728 ret = nvme_rdma_init_io_queues(ctrl);
1729 if (ret)
1730 goto del_dead_ctrl;
1731
1732 ret = nvme_rdma_connect_io_queues(ctrl);
1733 if (ret)
1734 goto del_dead_ctrl;
1735 }
1736
1737 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1738 WARN_ON_ONCE(!changed);
1739
1740 if (ctrl->queue_count > 1) {
1741 nvme_start_queues(&ctrl->ctrl);
1742 nvme_queue_scan(&ctrl->ctrl);
1743 }
1744
1745 return;
1746
1747del_dead_ctrl:
1748 /* Deleting this dead controller... */
1749 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1750 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1751}
1752
1753static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1754{
1755 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1756
1757 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1758 return -EBUSY;
1759
1760 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1761 return -EBUSY;
1762
1763 flush_work(&ctrl->reset_work);
1764
1765 return 0;
1766}
1767
1768static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1769 .name = "rdma",
1770 .module = THIS_MODULE,
1771 .is_fabrics = true,
1772 .reg_read32 = nvmf_reg_read32,
1773 .reg_read64 = nvmf_reg_read64,
1774 .reg_write32 = nvmf_reg_write32,
1775 .reset_ctrl = nvme_rdma_reset_ctrl,
1776 .free_ctrl = nvme_rdma_free_ctrl,
1777 .submit_async_event = nvme_rdma_submit_async_event,
1778 .delete_ctrl = nvme_rdma_del_ctrl,
1779 .get_subsysnqn = nvmf_get_subsysnqn,
1780 .get_address = nvmf_get_address,
1781};
1782
1783static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1784{
1785 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1786 int ret;
1787
1788 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1789 if (ret)
1790 return ret;
1791
1792 ctrl->queue_count = opts->nr_io_queues + 1;
1793 if (ctrl->queue_count < 2)
1794 return 0;
1795
1796 dev_info(ctrl->ctrl.device,
1797 "creating %d I/O queues.\n", opts->nr_io_queues);
1798
1799 ret = nvme_rdma_init_io_queues(ctrl);
1800 if (ret)
1801 return ret;
1802
1803 /*
1804 * We need a reference on the device as long as the tag_set is alive,
1805 * as the MRs in the request structures need a valid ib_device.
1806 */
1807 ret = -EINVAL;
1808 if (!nvme_rdma_dev_get(ctrl->device))
1809 goto out_free_io_queues;
1810
1811 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1812 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1813 ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
1814 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1815 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1816 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1817 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1818 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1819 ctrl->tag_set.driver_data = ctrl;
1820 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1821 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1822
1823 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1824 if (ret)
1825 goto out_put_dev;
1826 ctrl->ctrl.tagset = &ctrl->tag_set;
1827
1828 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1829 if (IS_ERR(ctrl->ctrl.connect_q)) {
1830 ret = PTR_ERR(ctrl->ctrl.connect_q);
1831 goto out_free_tag_set;
1832 }
1833
1834 ret = nvme_rdma_connect_io_queues(ctrl);
1835 if (ret)
1836 goto out_cleanup_connect_q;
1837
1838 return 0;
1839
1840out_cleanup_connect_q:
1841 blk_cleanup_queue(ctrl->ctrl.connect_q);
1842out_free_tag_set:
1843 blk_mq_free_tag_set(&ctrl->tag_set);
1844out_put_dev:
1845 nvme_rdma_dev_put(ctrl->device);
1846out_free_io_queues:
1847 nvme_rdma_free_io_queues(ctrl);
1848 return ret;
1849}
1850
1851static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1852{
1853 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1854 size_t buflen = strlen(p);
1855
1856 /* XXX: handle IPv6 addresses */
1857
1858 if (buflen > INET_ADDRSTRLEN)
1859 return -EINVAL;
1860 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1861 return -EINVAL;
1862 in_addr->sin_family = AF_INET;
1863 return 0;
1864}
1865
1866static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1867 struct nvmf_ctrl_options *opts)
1868{
1869 struct nvme_rdma_ctrl *ctrl;
1870 int ret;
1871 bool changed;
1872
1873 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1874 if (!ctrl)
1875 return ERR_PTR(-ENOMEM);
1876 ctrl->ctrl.opts = opts;
1877 INIT_LIST_HEAD(&ctrl->list);
1878
1879 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1880 if (ret) {
1881 pr_err("malformed IP address passed: %s\n", opts->traddr);
1882 goto out_free_ctrl;
1883 }
1884
1885 if (opts->mask & NVMF_OPT_TRSVCID) {
1886 u16 port;
1887
1888 ret = kstrtou16(opts->trsvcid, 0, &port);
1889 if (ret)
1890 goto out_free_ctrl;
1891
1892 ctrl->addr_in.sin_port = cpu_to_be16(port);
1893 } else {
1894 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1895 }
1896
1897 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1898 0 /* no quirks, we're perfect! */);
1899 if (ret)
1900 goto out_free_ctrl;
1901
1902 ctrl->reconnect_delay = opts->reconnect_delay;
1903 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1904 nvme_rdma_reconnect_ctrl_work);
1905 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1906 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1907 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1908 spin_lock_init(&ctrl->lock);
1909
1910 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1911 ctrl->ctrl.sqsize = opts->queue_size;
1912 ctrl->tl_retry_count = opts->tl_retry_count;
1913 ctrl->ctrl.kato = opts->kato;
1914
1915 ret = -ENOMEM;
1916 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1917 GFP_KERNEL);
1918 if (!ctrl->queues)
1919 goto out_uninit_ctrl;
1920
1921 ret = nvme_rdma_configure_admin_queue(ctrl);
1922 if (ret)
1923 goto out_kfree_queues;
1924
1925 /* sanity check icdoff */
1926 if (ctrl->ctrl.icdoff) {
1927 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1928 goto out_remove_admin_queue;
1929 }
1930
1931 /* sanity check keyed sgls */
1932 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1933 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1934 goto out_remove_admin_queue;
1935 }
1936
1937 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1938 /* warn if maxcmd is lower than queue_size */
1939 dev_warn(ctrl->ctrl.device,
1940 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1941 opts->queue_size, ctrl->ctrl.maxcmd);
1942 opts->queue_size = ctrl->ctrl.maxcmd;
1943 }
1944
1945 if (opts->nr_io_queues) {
1946 ret = nvme_rdma_create_io_queues(ctrl);
1947 if (ret)
1948 goto out_remove_admin_queue;
1949 }
1950
1951 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1952 WARN_ON_ONCE(!changed);
1953
1954 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1955 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1956
1957 kref_get(&ctrl->ctrl.kref);
1958
1959 mutex_lock(&nvme_rdma_ctrl_mutex);
1960 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1961 mutex_unlock(&nvme_rdma_ctrl_mutex);
1962
1963 if (opts->nr_io_queues) {
1964 nvme_queue_scan(&ctrl->ctrl);
1965 nvme_queue_async_events(&ctrl->ctrl);
1966 }
1967
1968 return &ctrl->ctrl;
1969
1970out_remove_admin_queue:
1971 nvme_stop_keep_alive(&ctrl->ctrl);
1972 nvme_rdma_destroy_admin_queue(ctrl);
1973out_kfree_queues:
1974 kfree(ctrl->queues);
1975out_uninit_ctrl:
1976 nvme_uninit_ctrl(&ctrl->ctrl);
1977 nvme_put_ctrl(&ctrl->ctrl);
1978 if (ret > 0)
1979 ret = -EIO;
1980 return ERR_PTR(ret);
1981out_free_ctrl:
1982 kfree(ctrl);
1983 return ERR_PTR(ret);
1984}
1985
1986static struct nvmf_transport_ops nvme_rdma_transport = {
1987 .name = "rdma",
1988 .required_opts = NVMF_OPT_TRADDR,
1989 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_TL_RETRY_COUNT |
1990 NVMF_OPT_RECONNECT_DELAY,
1991 .create_ctrl = nvme_rdma_create_ctrl,
1992};
1993
1994static int __init nvme_rdma_init_module(void)
1995{
1996 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
1997 if (!nvme_rdma_wq)
1998 return -ENOMEM;
1999
2000 nvmf_register_transport(&nvme_rdma_transport);
2001 return 0;
2002}
2003
2004static void __exit nvme_rdma_cleanup_module(void)
2005{
2006 struct nvme_rdma_ctrl *ctrl;
2007
2008 nvmf_unregister_transport(&nvme_rdma_transport);
2009
2010 mutex_lock(&nvme_rdma_ctrl_mutex);
2011 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2012 __nvme_rdma_del_ctrl(ctrl);
2013 mutex_unlock(&nvme_rdma_ctrl_mutex);
2014
2015 destroy_workqueue(nvme_rdma_wq);
2016}
2017
2018module_init(nvme_rdma_init_module);
2019module_exit(nvme_rdma_cleanup_module);
2020
2021MODULE_LICENSE("GPL v2");