blob: d279012d8dd586ddea4a1dd82b70964868cd700b [file] [log] [blame]
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
34#include "ubifs.h"
35
36/*
37 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
38 * @NAME_LESS: name corresponding to the first argument is less than second
39 * @NAME_MATCHES: names match
40 * @NAME_GREATER: name corresponding to the second argument is greater than
41 * first
42 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
43 *
44 * These constants were introduce to improve readability.
45 */
46enum {
47 NAME_LESS = 0,
48 NAME_MATCHES = 1,
49 NAME_GREATER = 2,
50 NOT_ON_MEDIA = 3,
51};
52
53/**
54 * insert_old_idx - record an index node obsoleted since the last commit start.
55 * @c: UBIFS file-system description object
56 * @lnum: LEB number of obsoleted index node
57 * @offs: offset of obsoleted index node
58 *
59 * Returns %0 on success, and a negative error code on failure.
60 *
61 * For recovery, there must always be a complete intact version of the index on
62 * flash at all times. That is called the "old index". It is the index as at the
63 * time of the last successful commit. Many of the index nodes in the old index
64 * may be dirty, but they must not be erased until the next successful commit
65 * (at which point that index becomes the old index).
66 *
67 * That means that the garbage collection and the in-the-gaps method of
68 * committing must be able to determine if an index node is in the old index.
69 * Most of the old index nodes can be found by looking up the TNC using the
70 * 'lookup_znode()' function. However, some of the old index nodes may have
71 * been deleted from the current index or may have been changed so much that
72 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
73 * That is what this function does. The RB-tree is ordered by LEB number and
74 * offset because they uniquely identify the old index node.
75 */
76static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
77{
78 struct ubifs_old_idx *old_idx, *o;
79 struct rb_node **p, *parent = NULL;
80
81 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
82 if (unlikely(!old_idx))
83 return -ENOMEM;
84 old_idx->lnum = lnum;
85 old_idx->offs = offs;
86
87 p = &c->old_idx.rb_node;
88 while (*p) {
89 parent = *p;
90 o = rb_entry(parent, struct ubifs_old_idx, rb);
91 if (lnum < o->lnum)
92 p = &(*p)->rb_left;
93 else if (lnum > o->lnum)
94 p = &(*p)->rb_right;
95 else if (offs < o->offs)
96 p = &(*p)->rb_left;
97 else if (offs > o->offs)
98 p = &(*p)->rb_right;
99 else {
100 ubifs_err("old idx added twice!");
101 kfree(old_idx);
102 return 0;
103 }
104 }
105 rb_link_node(&old_idx->rb, parent, p);
106 rb_insert_color(&old_idx->rb, &c->old_idx);
107 return 0;
108}
109
110/**
111 * insert_old_idx_znode - record a znode obsoleted since last commit start.
112 * @c: UBIFS file-system description object
113 * @znode: znode of obsoleted index node
114 *
115 * Returns %0 on success, and a negative error code on failure.
116 */
117int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
118{
119 if (znode->parent) {
120 struct ubifs_zbranch *zbr;
121
122 zbr = &znode->parent->zbranch[znode->iip];
123 if (zbr->len)
124 return insert_old_idx(c, zbr->lnum, zbr->offs);
125 } else
126 if (c->zroot.len)
127 return insert_old_idx(c, c->zroot.lnum,
128 c->zroot.offs);
129 return 0;
130}
131
132/**
133 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
134 * @c: UBIFS file-system description object
135 * @znode: znode of obsoleted index node
136 *
137 * Returns %0 on success, and a negative error code on failure.
138 */
139static int ins_clr_old_idx_znode(struct ubifs_info *c,
140 struct ubifs_znode *znode)
141{
142 int err;
143
144 if (znode->parent) {
145 struct ubifs_zbranch *zbr;
146
147 zbr = &znode->parent->zbranch[znode->iip];
148 if (zbr->len) {
149 err = insert_old_idx(c, zbr->lnum, zbr->offs);
150 if (err)
151 return err;
152 zbr->lnum = 0;
153 zbr->offs = 0;
154 zbr->len = 0;
155 }
156 } else
157 if (c->zroot.len) {
158 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
159 if (err)
160 return err;
161 c->zroot.lnum = 0;
162 c->zroot.offs = 0;
163 c->zroot.len = 0;
164 }
165 return 0;
166}
167
168/**
169 * destroy_old_idx - destroy the old_idx RB-tree.
170 * @c: UBIFS file-system description object
171 *
172 * During start commit, the old_idx RB-tree is used to avoid overwriting index
173 * nodes that were in the index last commit but have since been deleted. This
174 * is necessary for recovery i.e. the old index must be kept intact until the
175 * new index is successfully written. The old-idx RB-tree is used for the
176 * in-the-gaps method of writing index nodes and is destroyed every commit.
177 */
178void destroy_old_idx(struct ubifs_info *c)
179{
180 struct rb_node *this = c->old_idx.rb_node;
181 struct ubifs_old_idx *old_idx;
182
183 while (this) {
184 if (this->rb_left) {
185 this = this->rb_left;
186 continue;
187 } else if (this->rb_right) {
188 this = this->rb_right;
189 continue;
190 }
191 old_idx = rb_entry(this, struct ubifs_old_idx, rb);
192 this = rb_parent(this);
193 if (this) {
194 if (this->rb_left == &old_idx->rb)
195 this->rb_left = NULL;
196 else
197 this->rb_right = NULL;
198 }
199 kfree(old_idx);
200 }
201 c->old_idx = RB_ROOT;
202}
203
204/**
205 * copy_znode - copy a dirty znode.
206 * @c: UBIFS file-system description object
207 * @znode: znode to copy
208 *
209 * A dirty znode being committed may not be changed, so it is copied.
210 */
211static struct ubifs_znode *copy_znode(struct ubifs_info *c,
212 struct ubifs_znode *znode)
213{
214 struct ubifs_znode *zn;
215
216 zn = kmalloc(c->max_znode_sz, GFP_NOFS);
217 if (unlikely(!zn))
218 return ERR_PTR(-ENOMEM);
219
220 memcpy(zn, znode, c->max_znode_sz);
221 zn->cnext = NULL;
222 __set_bit(DIRTY_ZNODE, &zn->flags);
223 __clear_bit(COW_ZNODE, &zn->flags);
224
225 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
226 __set_bit(OBSOLETE_ZNODE, &znode->flags);
227
228 if (znode->level != 0) {
229 int i;
230 const int n = zn->child_cnt;
231
232 /* The children now have new parent */
233 for (i = 0; i < n; i++) {
234 struct ubifs_zbranch *zbr = &zn->zbranch[i];
235
236 if (zbr->znode)
237 zbr->znode->parent = zn;
238 }
239 }
240
241 atomic_long_inc(&c->dirty_zn_cnt);
242 return zn;
243}
244
245/**
246 * add_idx_dirt - add dirt due to a dirty znode.
247 * @c: UBIFS file-system description object
248 * @lnum: LEB number of index node
249 * @dirt: size of index node
250 *
251 * This function updates lprops dirty space and the new size of the index.
252 */
253static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
254{
255 c->calc_idx_sz -= ALIGN(dirt, 8);
256 return ubifs_add_dirt(c, lnum, dirt);
257}
258
259/**
260 * dirty_cow_znode - ensure a znode is not being committed.
261 * @c: UBIFS file-system description object
262 * @zbr: branch of znode to check
263 *
264 * Returns dirtied znode on success or negative error code on failure.
265 */
266static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
267 struct ubifs_zbranch *zbr)
268{
269 struct ubifs_znode *znode = zbr->znode;
270 struct ubifs_znode *zn;
271 int err;
272
273 if (!test_bit(COW_ZNODE, &znode->flags)) {
274 /* znode is not being committed */
275 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
276 atomic_long_inc(&c->dirty_zn_cnt);
277 atomic_long_dec(&c->clean_zn_cnt);
278 atomic_long_dec(&ubifs_clean_zn_cnt);
279 err = add_idx_dirt(c, zbr->lnum, zbr->len);
280 if (unlikely(err))
281 return ERR_PTR(err);
282 }
283 return znode;
284 }
285
286 zn = copy_znode(c, znode);
Hirofumi Nakagawa8d47aef2008-08-21 17:16:40 +0300287 if (IS_ERR(zn))
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300288 return zn;
289
290 if (zbr->len) {
291 err = insert_old_idx(c, zbr->lnum, zbr->offs);
292 if (unlikely(err))
293 return ERR_PTR(err);
294 err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 } else
296 err = 0;
297
298 zbr->znode = zn;
299 zbr->lnum = 0;
300 zbr->offs = 0;
301 zbr->len = 0;
302
303 if (unlikely(err))
304 return ERR_PTR(err);
305 return zn;
306}
307
308/**
309 * lnc_add - add a leaf node to the leaf node cache.
310 * @c: UBIFS file-system description object
311 * @zbr: zbranch of leaf node
312 * @node: leaf node
313 *
314 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
315 * purpose of the leaf node cache is to save re-reading the same leaf node over
316 * and over again. Most things are cached by VFS, however the file system must
317 * cache directory entries for readdir and for resolving hash collisions. The
318 * present implementation of the leaf node cache is extremely simple, and
319 * allows for error returns that are not used but that may be needed if a more
320 * complex implementation is created.
321 *
322 * Note, this function does not add the @node object to LNC directly, but
323 * allocates a copy of the object and adds the copy to LNC. The reason for this
324 * is that @node has been allocated outside of the TNC subsystem and will be
325 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
326 * may be changed at any time, e.g. freed by the shrinker.
327 */
328static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
329 const void *node)
330{
331 int err;
332 void *lnc_node;
333 const struct ubifs_dent_node *dent = node;
334
335 ubifs_assert(!zbr->leaf);
336 ubifs_assert(zbr->len != 0);
337 ubifs_assert(is_hash_key(c, &zbr->key));
338
339 err = ubifs_validate_entry(c, dent);
340 if (err) {
341 dbg_dump_stack();
342 dbg_dump_node(c, dent);
343 return err;
344 }
345
346 lnc_node = kmalloc(zbr->len, GFP_NOFS);
347 if (!lnc_node)
348 /* We don't have to have the cache, so no error */
349 return 0;
350
351 memcpy(lnc_node, node, zbr->len);
352 zbr->leaf = lnc_node;
353 return 0;
354}
355
356 /**
357 * lnc_add_directly - add a leaf node to the leaf-node-cache.
358 * @c: UBIFS file-system description object
359 * @zbr: zbranch of leaf node
360 * @node: leaf node
361 *
362 * This function is similar to 'lnc_add()', but it does not create a copy of
363 * @node but inserts @node to TNC directly.
364 */
365static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
366 void *node)
367{
368 int err;
369
370 ubifs_assert(!zbr->leaf);
371 ubifs_assert(zbr->len != 0);
372
373 err = ubifs_validate_entry(c, node);
374 if (err) {
375 dbg_dump_stack();
376 dbg_dump_node(c, node);
377 return err;
378 }
379
380 zbr->leaf = node;
381 return 0;
382}
383
384/**
385 * lnc_free - remove a leaf node from the leaf node cache.
386 * @zbr: zbranch of leaf node
387 * @node: leaf node
388 */
389static void lnc_free(struct ubifs_zbranch *zbr)
390{
391 if (!zbr->leaf)
392 return;
393 kfree(zbr->leaf);
394 zbr->leaf = NULL;
395}
396
397/**
398 * tnc_read_node_nm - read a "hashed" leaf node.
399 * @c: UBIFS file-system description object
400 * @zbr: key and position of the node
401 * @node: node is returned here
402 *
403 * This function reads a "hashed" node defined by @zbr from the leaf node cache
404 * (in it is there) or from the hash media, in which case the node is also
405 * added to LNC. Returns zero in case of success or a negative negative error
406 * code in case of failure.
407 */
408static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
409 void *node)
410{
411 int err;
412
413 ubifs_assert(is_hash_key(c, &zbr->key));
414
415 if (zbr->leaf) {
416 /* Read from the leaf node cache */
417 ubifs_assert(zbr->len != 0);
418 memcpy(node, zbr->leaf, zbr->len);
419 return 0;
420 }
421
422 err = ubifs_tnc_read_node(c, zbr, node);
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
446 */
447static int try_read_node(const struct ubifs_info *c, void *buf, int type,
448 int len, int lnum, int offs)
449{
450 int err, node_len;
451 struct ubifs_ch *ch = buf;
452 uint32_t crc, node_crc;
453
454 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
455
456 err = ubi_read(c->ubi, lnum, buf, offs, len);
457 if (err) {
458 ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
459 type, lnum, offs, err);
460 return err;
461 }
462
463 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
464 return 0;
465
466 if (ch->node_type != type)
467 return 0;
468
469 node_len = le32_to_cpu(ch->len);
470 if (node_len != len)
471 return 0;
472
473 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
474 node_crc = le32_to_cpu(ch->crc);
475 if (crc != node_crc)
476 return 0;
477
478 return 1;
479}
480
481/**
482 * fallible_read_node - try to read a leaf node.
483 * @c: UBIFS file-system description object
484 * @key: key of node to read
485 * @zbr: position of node
486 * @node: node returned
487 *
488 * This function tries to read a node and returns %1 if the node is read, %0
489 * if the node is not present, and a negative error code in the case of error.
490 */
491static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
492 struct ubifs_zbranch *zbr, void *node)
493{
494 int ret;
495
496 dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
497
498 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
499 zbr->offs);
500 if (ret == 1) {
501 union ubifs_key node_key;
502 struct ubifs_dent_node *dent = node;
503
504 /* All nodes have key in the same place */
505 key_read(c, &dent->key, &node_key);
506 if (keys_cmp(c, key, &node_key) != 0)
507 ret = 0;
508 }
Adrian Hunter601c0bc2008-08-22 14:23:35 +0300509 if (ret == 0 && c->replaying)
Artem Bityutskiy1e517642008-07-14 19:08:37 +0300510 dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
511 zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
512 return ret;
513}
514
515/**
516 * matches_name - determine if a direntry or xattr entry matches a given name.
517 * @c: UBIFS file-system description object
518 * @zbr: zbranch of dent
519 * @nm: name to match
520 *
521 * This function checks if xentry/direntry referred by zbranch @zbr matches name
522 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
523 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
524 * of failure, a negative error code is returned.
525 */
526static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
527 const struct qstr *nm)
528{
529 struct ubifs_dent_node *dent;
530 int nlen, err;
531
532 /* If possible, match against the dent in the leaf node cache */
533 if (!zbr->leaf) {
534 dent = kmalloc(zbr->len, GFP_NOFS);
535 if (!dent)
536 return -ENOMEM;
537
538 err = ubifs_tnc_read_node(c, zbr, dent);
539 if (err)
540 goto out_free;
541
542 /* Add the node to the leaf node cache */
543 err = lnc_add_directly(c, zbr, dent);
544 if (err)
545 goto out_free;
546 } else
547 dent = zbr->leaf;
548
549 nlen = le16_to_cpu(dent->nlen);
550 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
551 if (err == 0) {
552 if (nlen == nm->len)
553 return NAME_MATCHES;
554 else if (nlen < nm->len)
555 return NAME_LESS;
556 else
557 return NAME_GREATER;
558 } else if (err < 0)
559 return NAME_LESS;
560 else
561 return NAME_GREATER;
562
563out_free:
564 kfree(dent);
565 return err;
566}
567
568/**
569 * get_znode - get a TNC znode that may not be loaded yet.
570 * @c: UBIFS file-system description object
571 * @znode: parent znode
572 * @n: znode branch slot number
573 *
574 * This function returns the znode or a negative error code.
575 */
576static struct ubifs_znode *get_znode(struct ubifs_info *c,
577 struct ubifs_znode *znode, int n)
578{
579 struct ubifs_zbranch *zbr;
580
581 zbr = &znode->zbranch[n];
582 if (zbr->znode)
583 znode = zbr->znode;
584 else
585 znode = ubifs_load_znode(c, zbr, znode, n);
586 return znode;
587}
588
589/**
590 * tnc_next - find next TNC entry.
591 * @c: UBIFS file-system description object
592 * @zn: znode is passed and returned here
593 * @n: znode branch slot number is passed and returned here
594 *
595 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
596 * no next entry, or a negative error code otherwise.
597 */
598static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
599{
600 struct ubifs_znode *znode = *zn;
601 int nn = *n;
602
603 nn += 1;
604 if (nn < znode->child_cnt) {
605 *n = nn;
606 return 0;
607 }
608 while (1) {
609 struct ubifs_znode *zp;
610
611 zp = znode->parent;
612 if (!zp)
613 return -ENOENT;
614 nn = znode->iip + 1;
615 znode = zp;
616 if (nn < znode->child_cnt) {
617 znode = get_znode(c, znode, nn);
618 if (IS_ERR(znode))
619 return PTR_ERR(znode);
620 while (znode->level != 0) {
621 znode = get_znode(c, znode, 0);
622 if (IS_ERR(znode))
623 return PTR_ERR(znode);
624 }
625 nn = 0;
626 break;
627 }
628 }
629 *zn = znode;
630 *n = nn;
631 return 0;
632}
633
634/**
635 * tnc_prev - find previous TNC entry.
636 * @c: UBIFS file-system description object
637 * @zn: znode is returned here
638 * @n: znode branch slot number is passed and returned here
639 *
640 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
641 * there is no next entry, or a negative error code otherwise.
642 */
643static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
644{
645 struct ubifs_znode *znode = *zn;
646 int nn = *n;
647
648 if (nn > 0) {
649 *n = nn - 1;
650 return 0;
651 }
652 while (1) {
653 struct ubifs_znode *zp;
654
655 zp = znode->parent;
656 if (!zp)
657 return -ENOENT;
658 nn = znode->iip - 1;
659 znode = zp;
660 if (nn >= 0) {
661 znode = get_znode(c, znode, nn);
662 if (IS_ERR(znode))
663 return PTR_ERR(znode);
664 while (znode->level != 0) {
665 nn = znode->child_cnt - 1;
666 znode = get_znode(c, znode, nn);
667 if (IS_ERR(znode))
668 return PTR_ERR(znode);
669 }
670 nn = znode->child_cnt - 1;
671 break;
672 }
673 }
674 *zn = znode;
675 *n = nn;
676 return 0;
677}
678
679/**
680 * resolve_collision - resolve a collision.
681 * @c: UBIFS file-system description object
682 * @key: key of a directory or extended attribute entry
683 * @zn: znode is returned here
684 * @n: zbranch number is passed and returned here
685 * @nm: name of the entry
686 *
687 * This function is called for "hashed" keys to make sure that the found key
688 * really corresponds to the looked up node (directory or extended attribute
689 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
690 * %0 is returned if @nm is not found and @zn and @n are set to the previous
691 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
692 * This means that @n may be set to %-1 if the leftmost key in @zn is the
693 * previous one. A negative error code is returned on failures.
694 */
695static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
696 struct ubifs_znode **zn, int *n,
697 const struct qstr *nm)
698{
699 int err;
700
701 err = matches_name(c, &(*zn)->zbranch[*n], nm);
702 if (unlikely(err < 0))
703 return err;
704 if (err == NAME_MATCHES)
705 return 1;
706
707 if (err == NAME_GREATER) {
708 /* Look left */
709 while (1) {
710 err = tnc_prev(c, zn, n);
711 if (err == -ENOENT) {
712 ubifs_assert(*n == 0);
713 *n = -1;
714 return 0;
715 }
716 if (err < 0)
717 return err;
718 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
719 /*
720 * We have found the branch after which we would
721 * like to insert, but inserting in this znode
722 * may still be wrong. Consider the following 3
723 * znodes, in the case where we are resolving a
724 * collision with Key2.
725 *
726 * znode zp
727 * ----------------------
728 * level 1 | Key0 | Key1 |
729 * -----------------------
730 * | |
731 * znode za | | znode zb
732 * ------------ ------------
733 * level 0 | Key0 | | Key2 |
734 * ------------ ------------
735 *
736 * The lookup finds Key2 in znode zb. Lets say
737 * there is no match and the name is greater so
738 * we look left. When we find Key0, we end up
739 * here. If we return now, we will insert into
740 * znode za at slot n = 1. But that is invalid
741 * according to the parent's keys. Key2 must
742 * be inserted into znode zb.
743 *
744 * Note, this problem is not relevant for the
745 * case when we go right, because
746 * 'tnc_insert()' would correct the parent key.
747 */
748 if (*n == (*zn)->child_cnt - 1) {
749 err = tnc_next(c, zn, n);
750 if (err) {
751 /* Should be impossible */
752 ubifs_assert(0);
753 if (err == -ENOENT)
754 err = -EINVAL;
755 return err;
756 }
757 ubifs_assert(*n == 0);
758 *n = -1;
759 }
760 return 0;
761 }
762 err = matches_name(c, &(*zn)->zbranch[*n], nm);
763 if (err < 0)
764 return err;
765 if (err == NAME_LESS)
766 return 0;
767 if (err == NAME_MATCHES)
768 return 1;
769 ubifs_assert(err == NAME_GREATER);
770 }
771 } else {
772 int nn = *n;
773 struct ubifs_znode *znode = *zn;
774
775 /* Look right */
776 while (1) {
777 err = tnc_next(c, &znode, &nn);
778 if (err == -ENOENT)
779 return 0;
780 if (err < 0)
781 return err;
782 if (keys_cmp(c, &znode->zbranch[nn].key, key))
783 return 0;
784 err = matches_name(c, &znode->zbranch[nn], nm);
785 if (err < 0)
786 return err;
787 if (err == NAME_GREATER)
788 return 0;
789 *zn = znode;
790 *n = nn;
791 if (err == NAME_MATCHES)
792 return 1;
793 ubifs_assert(err == NAME_LESS);
794 }
795 }
796}
797
798/**
799 * fallible_matches_name - determine if a dent matches a given name.
800 * @c: UBIFS file-system description object
801 * @zbr: zbranch of dent
802 * @nm: name to match
803 *
804 * This is a "fallible" version of 'matches_name()' function which does not
805 * panic if the direntry/xentry referred by @zbr does not exist on the media.
806 *
807 * This function checks if xentry/direntry referred by zbranch @zbr matches name
808 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
809 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
810 * if xentry/direntry referred by @zbr does not exist on the media. A negative
811 * error code is returned in case of failure.
812 */
813static int fallible_matches_name(struct ubifs_info *c,
814 struct ubifs_zbranch *zbr,
815 const struct qstr *nm)
816{
817 struct ubifs_dent_node *dent;
818 int nlen, err;
819
820 /* If possible, match against the dent in the leaf node cache */
821 if (!zbr->leaf) {
822 dent = kmalloc(zbr->len, GFP_NOFS);
823 if (!dent)
824 return -ENOMEM;
825
826 err = fallible_read_node(c, &zbr->key, zbr, dent);
827 if (err < 0)
828 goto out_free;
829 if (err == 0) {
830 /* The node was not present */
831 err = NOT_ON_MEDIA;
832 goto out_free;
833 }
834 ubifs_assert(err == 1);
835
836 err = lnc_add_directly(c, zbr, dent);
837 if (err)
838 goto out_free;
839 } else
840 dent = zbr->leaf;
841
842 nlen = le16_to_cpu(dent->nlen);
843 err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
844 if (err == 0) {
845 if (nlen == nm->len)
846 return NAME_MATCHES;
847 else if (nlen < nm->len)
848 return NAME_LESS;
849 else
850 return NAME_GREATER;
851 } else if (err < 0)
852 return NAME_LESS;
853 else
854 return NAME_GREATER;
855
856out_free:
857 kfree(dent);
858 return err;
859}
860
861/**
862 * fallible_resolve_collision - resolve a collision even if nodes are missing.
863 * @c: UBIFS file-system description object
864 * @key: key
865 * @zn: znode is returned here
866 * @n: branch number is passed and returned here
867 * @nm: name of directory entry
868 * @adding: indicates caller is adding a key to the TNC
869 *
870 * This is a "fallible" version of the 'resolve_collision()' function which
871 * does not panic if one of the nodes referred to by TNC does not exist on the
872 * media. This may happen when replaying the journal if a deleted node was
873 * Garbage-collected and the commit was not done. A branch that refers to a node
874 * that is not present is called a dangling branch. The following are the return
875 * codes for this function:
876 * o if @nm was found, %1 is returned and @zn and @n are set to the found
877 * branch;
878 * o if we are @adding and @nm was not found, %0 is returned;
879 * o if we are not @adding and @nm was not found, but a dangling branch was
880 * found, then %1 is returned and @zn and @n are set to the dangling branch;
881 * o a negative error code is returned in case of failure.
882 */
883static int fallible_resolve_collision(struct ubifs_info *c,
884 const union ubifs_key *key,
885 struct ubifs_znode **zn, int *n,
886 const struct qstr *nm, int adding)
887{
888 struct ubifs_znode *o_znode = NULL, *znode = *zn;
889 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
890
891 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
892 if (unlikely(cmp < 0))
893 return cmp;
894 if (cmp == NAME_MATCHES)
895 return 1;
896 if (cmp == NOT_ON_MEDIA) {
897 o_znode = znode;
898 o_n = nn;
899 /*
900 * We are unlucky and hit a dangling branch straight away.
901 * Now we do not really know where to go to find the needed
902 * branch - to the left or to the right. Well, let's try left.
903 */
904 unsure = 1;
905 } else if (!adding)
906 unsure = 1; /* Remove a dangling branch wherever it is */
907
908 if (cmp == NAME_GREATER || unsure) {
909 /* Look left */
910 while (1) {
911 err = tnc_prev(c, zn, n);
912 if (err == -ENOENT) {
913 ubifs_assert(*n == 0);
914 *n = -1;
915 break;
916 }
917 if (err < 0)
918 return err;
919 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
920 /* See comments in 'resolve_collision()' */
921 if (*n == (*zn)->child_cnt - 1) {
922 err = tnc_next(c, zn, n);
923 if (err) {
924 /* Should be impossible */
925 ubifs_assert(0);
926 if (err == -ENOENT)
927 err = -EINVAL;
928 return err;
929 }
930 ubifs_assert(*n == 0);
931 *n = -1;
932 }
933 break;
934 }
935 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
936 if (err < 0)
937 return err;
938 if (err == NAME_MATCHES)
939 return 1;
940 if (err == NOT_ON_MEDIA) {
941 o_znode = *zn;
942 o_n = *n;
943 continue;
944 }
945 if (!adding)
946 continue;
947 if (err == NAME_LESS)
948 break;
949 else
950 unsure = 0;
951 }
952 }
953
954 if (cmp == NAME_LESS || unsure) {
955 /* Look right */
956 *zn = znode;
957 *n = nn;
958 while (1) {
959 err = tnc_next(c, &znode, &nn);
960 if (err == -ENOENT)
961 break;
962 if (err < 0)
963 return err;
964 if (keys_cmp(c, &znode->zbranch[nn].key, key))
965 break;
966 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
967 if (err < 0)
968 return err;
969 if (err == NAME_GREATER)
970 break;
971 *zn = znode;
972 *n = nn;
973 if (err == NAME_MATCHES)
974 return 1;
975 if (err == NOT_ON_MEDIA) {
976 o_znode = znode;
977 o_n = nn;
978 }
979 }
980 }
981
982 /* Never match a dangling branch when adding */
983 if (adding || !o_znode)
984 return 0;
985
986 dbg_mnt("dangling match LEB %d:%d len %d %s",
987 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
988 o_znode->zbranch[o_n].len, DBGKEY(key));
989 *zn = o_znode;
990 *n = o_n;
991 return 1;
992}
993
994/**
995 * matches_position - determine if a zbranch matches a given position.
996 * @zbr: zbranch of dent
997 * @lnum: LEB number of dent to match
998 * @offs: offset of dent to match
999 *
1000 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1001 */
1002static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1003{
1004 if (zbr->lnum == lnum && zbr->offs == offs)
1005 return 1;
1006 else
1007 return 0;
1008}
1009
1010/**
1011 * resolve_collision_directly - resolve a collision directly.
1012 * @c: UBIFS file-system description object
1013 * @key: key of directory entry
1014 * @zn: znode is passed and returned here
1015 * @n: zbranch number is passed and returned here
1016 * @lnum: LEB number of dent node to match
1017 * @offs: offset of dent node to match
1018 *
1019 * This function is used for "hashed" keys to make sure the found directory or
1020 * extended attribute entry node is what was looked for. It is used when the
1021 * flash address of the right node is known (@lnum:@offs) which makes it much
1022 * easier to resolve collisions (no need to read entries and match full
1023 * names). This function returns %1 and sets @zn and @n if the collision is
1024 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1025 * previous directory entry. Otherwise a negative error code is returned.
1026 */
1027static int resolve_collision_directly(struct ubifs_info *c,
1028 const union ubifs_key *key,
1029 struct ubifs_znode **zn, int *n,
1030 int lnum, int offs)
1031{
1032 struct ubifs_znode *znode;
1033 int nn, err;
1034
1035 znode = *zn;
1036 nn = *n;
1037 if (matches_position(&znode->zbranch[nn], lnum, offs))
1038 return 1;
1039
1040 /* Look left */
1041 while (1) {
1042 err = tnc_prev(c, &znode, &nn);
1043 if (err == -ENOENT)
1044 break;
1045 if (err < 0)
1046 return err;
1047 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1048 break;
1049 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1050 *zn = znode;
1051 *n = nn;
1052 return 1;
1053 }
1054 }
1055
1056 /* Look right */
1057 znode = *zn;
1058 nn = *n;
1059 while (1) {
1060 err = tnc_next(c, &znode, &nn);
1061 if (err == -ENOENT)
1062 return 0;
1063 if (err < 0)
1064 return err;
1065 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1066 return 0;
1067 *zn = znode;
1068 *n = nn;
1069 if (matches_position(&znode->zbranch[nn], lnum, offs))
1070 return 1;
1071 }
1072}
1073
1074/**
1075 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1076 * @c: UBIFS file-system description object
1077 * @znode: znode to dirty
1078 *
1079 * If we do not have a unique key that resides in a znode, then we cannot
1080 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1081 * This function records the path back to the last dirty ancestor, and then
1082 * dirties the znodes on that path.
1083 */
1084static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1085 struct ubifs_znode *znode)
1086{
1087 struct ubifs_znode *zp;
1088 int *path = c->bottom_up_buf, p = 0;
1089
1090 ubifs_assert(c->zroot.znode);
1091 ubifs_assert(znode);
1092 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1093 kfree(c->bottom_up_buf);
1094 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1095 GFP_NOFS);
1096 if (!c->bottom_up_buf)
1097 return ERR_PTR(-ENOMEM);
1098 path = c->bottom_up_buf;
1099 }
1100 if (c->zroot.znode->level) {
1101 /* Go up until parent is dirty */
1102 while (1) {
1103 int n;
1104
1105 zp = znode->parent;
1106 if (!zp)
1107 break;
1108 n = znode->iip;
1109 ubifs_assert(p < c->zroot.znode->level);
1110 path[p++] = n;
1111 if (!zp->cnext && ubifs_zn_dirty(znode))
1112 break;
1113 znode = zp;
1114 }
1115 }
1116
1117 /* Come back down, dirtying as we go */
1118 while (1) {
1119 struct ubifs_zbranch *zbr;
1120
1121 zp = znode->parent;
1122 if (zp) {
1123 ubifs_assert(path[p - 1] >= 0);
1124 ubifs_assert(path[p - 1] < zp->child_cnt);
1125 zbr = &zp->zbranch[path[--p]];
1126 znode = dirty_cow_znode(c, zbr);
1127 } else {
1128 ubifs_assert(znode == c->zroot.znode);
1129 znode = dirty_cow_znode(c, &c->zroot);
1130 }
Hirofumi Nakagawa8d47aef2008-08-21 17:16:40 +03001131 if (IS_ERR(znode) || !p)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001132 break;
1133 ubifs_assert(path[p - 1] >= 0);
1134 ubifs_assert(path[p - 1] < znode->child_cnt);
1135 znode = znode->zbranch[path[p - 1]].znode;
1136 }
1137
1138 return znode;
1139}
1140
1141/**
1142 * ubifs_lookup_level0 - search for zero-level znode.
1143 * @c: UBIFS file-system description object
1144 * @key: key to lookup
1145 * @zn: znode is returned here
1146 * @n: znode branch slot number is returned here
1147 *
1148 * This function looks up the TNC tree and search for zero-level znode which
1149 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1150 * cases:
1151 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1152 * is returned and slot number of the matched branch is stored in @n;
1153 * o not exact match, which means that zero-level znode does not contain
1154 * @key, then %0 is returned and slot number of the closed branch is stored
1155 * in @n;
1156 * o @key is so small that it is even less than the lowest key of the
1157 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1158 *
1159 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1160 * function reads corresponding indexing nodes and inserts them to TNC. In
1161 * case of failure, a negative error code is returned.
1162 */
1163int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1164 struct ubifs_znode **zn, int *n)
1165{
1166 int err, exact;
1167 struct ubifs_znode *znode;
1168 unsigned long time = get_seconds();
1169
1170 dbg_tnc("search key %s", DBGKEY(key));
1171
1172 znode = c->zroot.znode;
1173 if (unlikely(!znode)) {
1174 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1175 if (IS_ERR(znode))
1176 return PTR_ERR(znode);
1177 }
1178
1179 znode->time = time;
1180
1181 while (1) {
1182 struct ubifs_zbranch *zbr;
1183
1184 exact = ubifs_search_zbranch(c, znode, key, n);
1185
1186 if (znode->level == 0)
1187 break;
1188
1189 if (*n < 0)
1190 *n = 0;
1191 zbr = &znode->zbranch[*n];
1192
1193 if (zbr->znode) {
1194 znode->time = time;
1195 znode = zbr->znode;
1196 continue;
1197 }
1198
1199 /* znode is not in TNC cache, load it from the media */
1200 znode = ubifs_load_znode(c, zbr, znode, *n);
1201 if (IS_ERR(znode))
1202 return PTR_ERR(znode);
1203 }
1204
1205 *zn = znode;
1206 if (exact || !is_hash_key(c, key) || *n != -1) {
1207 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1208 return exact;
1209 }
1210
1211 /*
1212 * Here is a tricky place. We have not found the key and this is a
1213 * "hashed" key, which may collide. The rest of the code deals with
1214 * situations like this:
1215 *
1216 * | 3 | 5 |
1217 * / \
1218 * | 3 | 5 | | 6 | 7 | (x)
1219 *
1220 * Or more a complex example:
1221 *
1222 * | 1 | 5 |
1223 * / \
1224 * | 1 | 3 | | 5 | 8 |
1225 * \ /
1226 * | 5 | 5 | | 6 | 7 | (x)
1227 *
1228 * In the examples, if we are looking for key "5", we may reach nodes
1229 * marked with "(x)". In this case what we have do is to look at the
1230 * left and see if there is "5" key there. If there is, we have to
1231 * return it.
1232 *
1233 * Note, this whole situation is possible because we allow to have
1234 * elements which are equivalent to the next key in the parent in the
1235 * children of current znode. For example, this happens if we split a
1236 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1237 * like this:
1238 * | 3 | 5 |
1239 * / \
1240 * | 3 | 5 | | 5 | 6 | 7 |
1241 * ^
1242 * And this becomes what is at the first "picture" after key "5" marked
1243 * with "^" is removed. What could be done is we could prohibit
1244 * splitting in the middle of the colliding sequence. Also, when
1245 * removing the leftmost key, we would have to correct the key of the
1246 * parent node, which would introduce additional complications. Namely,
1247 * if we changed the the leftmost key of the parent znode, the garbage
1248 * collector would be unable to find it (GC is doing this when GC'ing
1249 * indexing LEBs). Although we already have an additional RB-tree where
1250 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1251 * after the commit. But anyway, this does not look easy to implement
1252 * so we did not try this.
1253 */
1254 err = tnc_prev(c, &znode, n);
1255 if (err == -ENOENT) {
1256 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1257 *n = -1;
1258 return 0;
1259 }
1260 if (unlikely(err < 0))
1261 return err;
1262 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1263 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1264 *n = -1;
1265 return 0;
1266 }
1267
1268 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1269 *zn = znode;
1270 return 1;
1271}
1272
1273/**
1274 * lookup_level0_dirty - search for zero-level znode dirtying.
1275 * @c: UBIFS file-system description object
1276 * @key: key to lookup
1277 * @zn: znode is returned here
1278 * @n: znode branch slot number is returned here
1279 *
1280 * This function looks up the TNC tree and search for zero-level znode which
1281 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1282 * cases:
1283 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1284 * is returned and slot number of the matched branch is stored in @n;
1285 * o not exact match, which means that zero-level znode does not contain @key
1286 * then %0 is returned and slot number of the closed branch is stored in
1287 * @n;
1288 * o @key is so small that it is even less than the lowest key of the
1289 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1290 *
1291 * Additionally all znodes in the path from the root to the located zero-level
1292 * znode are marked as dirty.
1293 *
1294 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1295 * function reads corresponding indexing nodes and inserts them to TNC. In
1296 * case of failure, a negative error code is returned.
1297 */
1298static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1299 struct ubifs_znode **zn, int *n)
1300{
1301 int err, exact;
1302 struct ubifs_znode *znode;
1303 unsigned long time = get_seconds();
1304
1305 dbg_tnc("search and dirty key %s", DBGKEY(key));
1306
1307 znode = c->zroot.znode;
1308 if (unlikely(!znode)) {
1309 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1310 if (IS_ERR(znode))
1311 return PTR_ERR(znode);
1312 }
1313
1314 znode = dirty_cow_znode(c, &c->zroot);
1315 if (IS_ERR(znode))
1316 return PTR_ERR(znode);
1317
1318 znode->time = time;
1319
1320 while (1) {
1321 struct ubifs_zbranch *zbr;
1322
1323 exact = ubifs_search_zbranch(c, znode, key, n);
1324
1325 if (znode->level == 0)
1326 break;
1327
1328 if (*n < 0)
1329 *n = 0;
1330 zbr = &znode->zbranch[*n];
1331
1332 if (zbr->znode) {
1333 znode->time = time;
1334 znode = dirty_cow_znode(c, zbr);
1335 if (IS_ERR(znode))
1336 return PTR_ERR(znode);
1337 continue;
1338 }
1339
1340 /* znode is not in TNC cache, load it from the media */
1341 znode = ubifs_load_znode(c, zbr, znode, *n);
1342 if (IS_ERR(znode))
1343 return PTR_ERR(znode);
1344 znode = dirty_cow_znode(c, zbr);
1345 if (IS_ERR(znode))
1346 return PTR_ERR(znode);
1347 }
1348
1349 *zn = znode;
1350 if (exact || !is_hash_key(c, key) || *n != -1) {
1351 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1352 return exact;
1353 }
1354
1355 /*
1356 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1357 * code.
1358 */
1359 err = tnc_prev(c, &znode, n);
1360 if (err == -ENOENT) {
1361 *n = -1;
1362 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1363 return 0;
1364 }
1365 if (unlikely(err < 0))
1366 return err;
1367 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1368 *n = -1;
1369 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1370 return 0;
1371 }
1372
1373 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1374 znode = dirty_cow_bottom_up(c, znode);
1375 if (IS_ERR(znode))
1376 return PTR_ERR(znode);
1377 }
1378
1379 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1380 *zn = znode;
1381 return 1;
1382}
1383
1384/**
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001385 * maybe_leb_gced - determine if a LEB may have been garbage collected.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001386 * @c: UBIFS file-system description object
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001387 * @lnum: LEB number
1388 * @gc_seq1: garbage collection sequence number
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001389 *
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001390 * This function determines if @lnum may have been garbage collected since
1391 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1392 * %0 is returned.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001393 */
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001394static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001395{
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001396 int gc_seq2, gced_lnum;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001397
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001398 gced_lnum = c->gced_lnum;
1399 smp_rmb();
1400 gc_seq2 = c->gc_seq;
1401 /* Same seq means no GC */
1402 if (gc_seq1 == gc_seq2)
1403 return 0;
1404 /* Different by more than 1 means we don't know */
1405 if (gc_seq1 + 1 != gc_seq2)
1406 return 1;
1407 /*
1408 * We have seen the sequence number has increased by 1. Now we need to
1409 * be sure we read the right LEB number, so read it again.
1410 */
1411 smp_rmb();
1412 if (gced_lnum != c->gced_lnum)
1413 return 1;
1414 /* Finally we can check lnum */
1415 if (gced_lnum == lnum)
1416 return 1;
1417 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001418}
1419
1420/**
1421 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1422 * @c: UBIFS file-system description object
1423 * @key: node key to lookup
1424 * @node: the node is returned here
1425 * @lnum: LEB number is returned here
1426 * @offs: offset is returned here
1427 *
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001428 * This function look up and reads node with key @key. The caller has to make
1429 * sure the @node buffer is large enough to fit the node. Returns zero in case
1430 * of success, %-ENOENT if the node was not found, and a negative error code in
1431 * case of failure. The node location can be returned in @lnum and @offs.
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001432 */
1433int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1434 void *node, int *lnum, int *offs)
1435{
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001436 int found, n, err, safely = 0, gc_seq1;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001437 struct ubifs_znode *znode;
1438 struct ubifs_zbranch zbr, *zt;
1439
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001440again:
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001441 mutex_lock(&c->tnc_mutex);
1442 found = ubifs_lookup_level0(c, key, &znode, &n);
1443 if (!found) {
1444 err = -ENOENT;
1445 goto out;
1446 } else if (found < 0) {
1447 err = found;
1448 goto out;
1449 }
1450 zt = &znode->zbranch[n];
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001451 if (lnum) {
1452 *lnum = zt->lnum;
1453 *offs = zt->offs;
1454 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001455 if (is_hash_key(c, key)) {
1456 /*
1457 * In this case the leaf node cache gets used, so we pass the
1458 * address of the zbranch and keep the mutex locked
1459 */
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001460 err = tnc_read_node_nm(c, zt, node);
1461 goto out;
1462 }
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001463 if (safely) {
1464 err = ubifs_tnc_read_node(c, zt, node);
1465 goto out;
1466 }
1467 /* Drop the TNC mutex prematurely and race with garbage collection */
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001468 zbr = znode->zbranch[n];
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001469 gc_seq1 = c->gc_seq;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001470 mutex_unlock(&c->tnc_mutex);
1471
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001472 if (ubifs_get_wbuf(c, zbr.lnum)) {
1473 /* We do not GC journal heads */
1474 err = ubifs_tnc_read_node(c, &zbr, node);
1475 return err;
1476 }
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001477
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001478 err = fallible_read_node(c, key, &zbr, node);
Adrian Hunter6dcfac42008-09-12 12:27:47 +03001479 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
Adrian Hunter601c0bc2008-08-22 14:23:35 +03001480 /*
1481 * The node may have been GC'ed out from under us so try again
1482 * while keeping the TNC mutex locked.
1483 */
1484 safely = 1;
1485 goto again;
1486 }
1487 return 0;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001488
1489out:
1490 mutex_unlock(&c->tnc_mutex);
1491 return err;
1492}
1493
1494/**
Adrian Hunter4793e7c2008-09-02 16:29:46 +03001495 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1496 * @c: UBIFS file-system description object
1497 * @bu: bulk-read parameters and results
1498 *
1499 * Lookup consecutive data node keys for the same inode that reside
1500 * consecutively in the same LEB.
1501 */
1502int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1503{
1504 int n, err = 0, lnum = -1, uninitialized_var(offs);
1505 int uninitialized_var(len);
1506 unsigned int block = key_block(c, &bu->key);
1507 struct ubifs_znode *znode;
1508
1509 bu->cnt = 0;
1510 bu->blk_cnt = 0;
1511 bu->eof = 0;
1512
1513 mutex_lock(&c->tnc_mutex);
1514 /* Find first key */
1515 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1516 if (err < 0)
1517 goto out;
1518 if (err) {
1519 /* Key found */
1520 len = znode->zbranch[n].len;
1521 /* The buffer must be big enough for at least 1 node */
1522 if (len > bu->buf_len) {
1523 err = -EINVAL;
1524 goto out;
1525 }
1526 /* Add this key */
1527 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1528 bu->blk_cnt += 1;
1529 lnum = znode->zbranch[n].lnum;
1530 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1531 }
1532 while (1) {
1533 struct ubifs_zbranch *zbr;
1534 union ubifs_key *key;
1535 unsigned int next_block;
1536
1537 /* Find next key */
1538 err = tnc_next(c, &znode, &n);
1539 if (err)
1540 goto out;
1541 zbr = &znode->zbranch[n];
1542 key = &zbr->key;
1543 /* See if there is another data key for this file */
1544 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1545 key_type(c, key) != UBIFS_DATA_KEY) {
1546 err = -ENOENT;
1547 goto out;
1548 }
1549 if (lnum < 0) {
1550 /* First key found */
1551 lnum = zbr->lnum;
1552 offs = ALIGN(zbr->offs + zbr->len, 8);
1553 len = zbr->len;
1554 if (len > bu->buf_len) {
1555 err = -EINVAL;
1556 goto out;
1557 }
1558 } else {
1559 /*
1560 * The data nodes must be in consecutive positions in
1561 * the same LEB.
1562 */
1563 if (zbr->lnum != lnum || zbr->offs != offs)
1564 goto out;
1565 offs += ALIGN(zbr->len, 8);
1566 len = ALIGN(len, 8) + zbr->len;
1567 /* Must not exceed buffer length */
1568 if (len > bu->buf_len)
1569 goto out;
1570 }
1571 /* Allow for holes */
1572 next_block = key_block(c, key);
1573 bu->blk_cnt += (next_block - block - 1);
1574 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1575 goto out;
1576 block = next_block;
1577 /* Add this key */
1578 bu->zbranch[bu->cnt++] = *zbr;
1579 bu->blk_cnt += 1;
1580 /* See if we have room for more */
1581 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1582 goto out;
1583 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1584 goto out;
1585 }
1586out:
1587 if (err == -ENOENT) {
1588 bu->eof = 1;
1589 err = 0;
1590 }
1591 bu->gc_seq = c->gc_seq;
1592 mutex_unlock(&c->tnc_mutex);
1593 if (err)
1594 return err;
1595 /*
1596 * An enormous hole could cause bulk-read to encompass too many
1597 * page cache pages, so limit the number here.
1598 */
1599 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1600 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1601 /*
1602 * Ensure that bulk-read covers a whole number of page cache
1603 * pages.
1604 */
1605 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1606 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1607 return 0;
1608 if (bu->eof) {
1609 /* At the end of file we can round up */
1610 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1611 return 0;
1612 }
1613 /* Exclude data nodes that do not make up a whole page cache page */
1614 block = key_block(c, &bu->key) + bu->blk_cnt;
1615 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1616 while (bu->cnt) {
1617 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1618 break;
1619 bu->cnt -= 1;
1620 }
1621 return 0;
1622}
1623
1624/**
1625 * read_wbuf - bulk-read from a LEB with a wbuf.
1626 * @wbuf: wbuf that may overlap the read
1627 * @buf: buffer into which to read
1628 * @len: read length
1629 * @lnum: LEB number from which to read
1630 * @offs: offset from which to read
1631 *
1632 * This functions returns %0 on success or a negative error code on failure.
1633 */
1634static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1635 int offs)
1636{
1637 const struct ubifs_info *c = wbuf->c;
1638 int rlen, overlap;
1639
1640 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1641 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1642 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1643 ubifs_assert(offs + len <= c->leb_size);
1644
1645 spin_lock(&wbuf->lock);
1646 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1647 if (!overlap) {
1648 /* We may safely unlock the write-buffer and read the data */
1649 spin_unlock(&wbuf->lock);
1650 return ubi_read(c->ubi, lnum, buf, offs, len);
1651 }
1652
1653 /* Don't read under wbuf */
1654 rlen = wbuf->offs - offs;
1655 if (rlen < 0)
1656 rlen = 0;
1657
1658 /* Copy the rest from the write-buffer */
1659 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1660 spin_unlock(&wbuf->lock);
1661
1662 if (rlen > 0)
1663 /* Read everything that goes before write-buffer */
1664 return ubi_read(c->ubi, lnum, buf, offs, rlen);
1665
1666 return 0;
1667}
1668
1669/**
1670 * validate_data_node - validate data nodes for bulk-read.
1671 * @c: UBIFS file-system description object
1672 * @buf: buffer containing data node to validate
1673 * @zbr: zbranch of data node to validate
1674 *
1675 * This functions returns %0 on success or a negative error code on failure.
1676 */
1677static int validate_data_node(struct ubifs_info *c, void *buf,
1678 struct ubifs_zbranch *zbr)
1679{
1680 union ubifs_key key1;
1681 struct ubifs_ch *ch = buf;
1682 int err, len;
1683
1684 if (ch->node_type != UBIFS_DATA_NODE) {
1685 ubifs_err("bad node type (%d but expected %d)",
1686 ch->node_type, UBIFS_DATA_NODE);
1687 goto out_err;
1688 }
1689
1690 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0);
1691 if (err) {
1692 ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1693 goto out;
1694 }
1695
1696 len = le32_to_cpu(ch->len);
1697 if (len != zbr->len) {
1698 ubifs_err("bad node length %d, expected %d", len, zbr->len);
1699 goto out_err;
1700 }
1701
1702 /* Make sure the key of the read node is correct */
1703 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1704 if (!keys_eq(c, &zbr->key, &key1)) {
1705 ubifs_err("bad key in node at LEB %d:%d",
1706 zbr->lnum, zbr->offs);
1707 dbg_tnc("looked for key %s found node's key %s",
1708 DBGKEY(&zbr->key), DBGKEY1(&key1));
1709 goto out_err;
1710 }
1711
1712 return 0;
1713
1714out_err:
1715 err = -EINVAL;
1716out:
1717 ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1718 dbg_dump_node(c, buf);
1719 dbg_dump_stack();
1720 return err;
1721}
1722
1723/**
1724 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1725 * @c: UBIFS file-system description object
1726 * @bu: bulk-read parameters and results
1727 *
1728 * This functions reads and validates the data nodes that were identified by the
1729 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1730 * -EAGAIN to indicate a race with GC, or another negative error code on
1731 * failure.
1732 */
1733int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1734{
1735 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1736 struct ubifs_wbuf *wbuf;
1737 void *buf;
1738
1739 len = bu->zbranch[bu->cnt - 1].offs;
1740 len += bu->zbranch[bu->cnt - 1].len - offs;
1741 if (len > bu->buf_len) {
1742 ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1743 return -EINVAL;
1744 }
1745
1746 /* Do the read */
1747 wbuf = ubifs_get_wbuf(c, lnum);
1748 if (wbuf)
1749 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1750 else
1751 err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1752
1753 /* Check for a race with GC */
1754 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1755 return -EAGAIN;
1756
1757 if (err && err != -EBADMSG) {
1758 ubifs_err("failed to read from LEB %d:%d, error %d",
1759 lnum, offs, err);
1760 dbg_dump_stack();
1761 dbg_tnc("key %s", DBGKEY(&bu->key));
1762 return err;
1763 }
1764
1765 /* Validate the nodes read */
1766 buf = bu->buf;
1767 for (i = 0; i < bu->cnt; i++) {
1768 err = validate_data_node(c, buf, &bu->zbranch[i]);
1769 if (err)
1770 return err;
1771 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1772 }
1773
1774 return 0;
1775}
1776
1777/**
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001778 * do_lookup_nm- look up a "hashed" node.
1779 * @c: UBIFS file-system description object
1780 * @key: node key to lookup
1781 * @node: the node is returned here
1782 * @nm: node name
1783 *
1784 * This function look up and reads a node which contains name hash in the key.
1785 * Since the hash may have collisions, there may be many nodes with the same
1786 * key, so we have to sequentially look to all of them until the needed one is
1787 * found. This function returns zero in case of success, %-ENOENT if the node
1788 * was not found, and a negative error code in case of failure.
1789 */
1790static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1791 void *node, const struct qstr *nm)
1792{
1793 int found, n, err;
1794 struct ubifs_znode *znode;
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001795
1796 dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1797 mutex_lock(&c->tnc_mutex);
1798 found = ubifs_lookup_level0(c, key, &znode, &n);
1799 if (!found) {
1800 err = -ENOENT;
1801 goto out_unlock;
1802 } else if (found < 0) {
1803 err = found;
1804 goto out_unlock;
1805 }
1806
1807 ubifs_assert(n >= 0);
1808
1809 err = resolve_collision(c, key, &znode, &n, nm);
1810 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1811 if (unlikely(err < 0))
1812 goto out_unlock;
1813 if (err == 0) {
1814 err = -ENOENT;
1815 goto out_unlock;
1816 }
1817
Adrian Hunter761e29f2008-08-20 16:32:40 +03001818 err = tnc_read_node_nm(c, &znode->zbranch[n], node);
Artem Bityutskiy1e517642008-07-14 19:08:37 +03001819
1820out_unlock:
1821 mutex_unlock(&c->tnc_mutex);
1822 return err;
1823}
1824
1825/**
1826 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1827 * @c: UBIFS file-system description object
1828 * @key: node key to lookup
1829 * @node: the node is returned here
1830 * @nm: node name
1831 *
1832 * This function look up and reads a node which contains name hash in the key.
1833 * Since the hash may have collisions, there may be many nodes with the same
1834 * key, so we have to sequentially look to all of them until the needed one is
1835 * found. This function returns zero in case of success, %-ENOENT if the node
1836 * was not found, and a negative error code in case of failure.
1837 */
1838int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1839 void *node, const struct qstr *nm)
1840{
1841 int err, len;
1842 const struct ubifs_dent_node *dent = node;
1843
1844 /*
1845 * We assume that in most of the cases there are no name collisions and
1846 * 'ubifs_tnc_lookup()' returns us the right direntry.
1847 */
1848 err = ubifs_tnc_lookup(c, key, node);
1849 if (err)
1850 return err;
1851
1852 len = le16_to_cpu(dent->nlen);
1853 if (nm->len == len && !memcmp(dent->name, nm->name, len))
1854 return 0;
1855
1856 /*
1857 * Unluckily, there are hash collisions and we have to iterate over
1858 * them look at each direntry with colliding name hash sequentially.
1859 */
1860 return do_lookup_nm(c, key, node, nm);
1861}
1862
1863/**
1864 * correct_parent_keys - correct parent znodes' keys.
1865 * @c: UBIFS file-system description object
1866 * @znode: znode to correct parent znodes for
1867 *
1868 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1869 * zbranch changes, keys of parent znodes have to be corrected. This helper
1870 * function is called in such situations and corrects the keys if needed.
1871 */
1872static void correct_parent_keys(const struct ubifs_info *c,
1873 struct ubifs_znode *znode)
1874{
1875 union ubifs_key *key, *key1;
1876
1877 ubifs_assert(znode->parent);
1878 ubifs_assert(znode->iip == 0);
1879
1880 key = &znode->zbranch[0].key;
1881 key1 = &znode->parent->zbranch[0].key;
1882
1883 while (keys_cmp(c, key, key1) < 0) {
1884 key_copy(c, key, key1);
1885 znode = znode->parent;
1886 znode->alt = 1;
1887 if (!znode->parent || znode->iip)
1888 break;
1889 key1 = &znode->parent->zbranch[0].key;
1890 }
1891}
1892
1893/**
1894 * insert_zbranch - insert a zbranch into a znode.
1895 * @znode: znode into which to insert
1896 * @zbr: zbranch to insert
1897 * @n: slot number to insert to
1898 *
1899 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1900 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1901 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1902 * slot, zbranches starting from @n have to be moved right.
1903 */
1904static void insert_zbranch(struct ubifs_znode *znode,
1905 const struct ubifs_zbranch *zbr, int n)
1906{
1907 int i;
1908
1909 ubifs_assert(ubifs_zn_dirty(znode));
1910
1911 if (znode->level) {
1912 for (i = znode->child_cnt; i > n; i--) {
1913 znode->zbranch[i] = znode->zbranch[i - 1];
1914 if (znode->zbranch[i].znode)
1915 znode->zbranch[i].znode->iip = i;
1916 }
1917 if (zbr->znode)
1918 zbr->znode->iip = n;
1919 } else
1920 for (i = znode->child_cnt; i > n; i--)
1921 znode->zbranch[i] = znode->zbranch[i - 1];
1922
1923 znode->zbranch[n] = *zbr;
1924 znode->child_cnt += 1;
1925
1926 /*
1927 * After inserting at slot zero, the lower bound of the key range of
1928 * this znode may have changed. If this znode is subsequently split
1929 * then the upper bound of the key range may change, and furthermore
1930 * it could change to be lower than the original lower bound. If that
1931 * happens, then it will no longer be possible to find this znode in the
1932 * TNC using the key from the index node on flash. That is bad because
1933 * if it is not found, we will assume it is obsolete and may overwrite
1934 * it. Then if there is an unclean unmount, we will start using the
1935 * old index which will be broken.
1936 *
1937 * So we first mark znodes that have insertions at slot zero, and then
1938 * if they are split we add their lnum/offs to the old_idx tree.
1939 */
1940 if (n == 0)
1941 znode->alt = 1;
1942}
1943
1944/**
1945 * tnc_insert - insert a node into TNC.
1946 * @c: UBIFS file-system description object
1947 * @znode: znode to insert into
1948 * @zbr: branch to insert
1949 * @n: slot number to insert new zbranch to
1950 *
1951 * This function inserts a new node described by @zbr into znode @znode. If
1952 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1953 * are splat as well if needed. Returns zero in case of success or a negative
1954 * error code in case of failure.
1955 */
1956static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1957 struct ubifs_zbranch *zbr, int n)
1958{
1959 struct ubifs_znode *zn, *zi, *zp;
1960 int i, keep, move, appending = 0;
1961 union ubifs_key *key = &zbr->key;
1962
1963 ubifs_assert(n >= 0 && n <= c->fanout);
1964
1965 /* Implement naive insert for now */
1966again:
1967 zp = znode->parent;
1968 if (znode->child_cnt < c->fanout) {
1969 ubifs_assert(n != c->fanout);
1970 dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1971 DBGKEY(key));
1972
1973 insert_zbranch(znode, zbr, n);
1974
1975 /* Ensure parent's key is correct */
1976 if (n == 0 && zp && znode->iip == 0)
1977 correct_parent_keys(c, znode);
1978
1979 return 0;
1980 }
1981
1982 /*
1983 * Unfortunately, @znode does not have more empty slots and we have to
1984 * split it.
1985 */
1986 dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
1987
1988 if (znode->alt)
1989 /*
1990 * We can no longer be sure of finding this znode by key, so we
1991 * record it in the old_idx tree.
1992 */
1993 ins_clr_old_idx_znode(c, znode);
1994
1995 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
1996 if (!zn)
1997 return -ENOMEM;
1998 zn->parent = zp;
1999 zn->level = znode->level;
2000
2001 /* Decide where to split */
2002 if (znode->level == 0 && n == c->fanout &&
2003 key_type(c, key) == UBIFS_DATA_KEY) {
2004 union ubifs_key *key1;
2005
2006 /*
2007 * If this is an inode which is being appended - do not split
2008 * it because no other zbranches can be inserted between
2009 * zbranches of consecutive data nodes anyway.
2010 */
2011 key1 = &znode->zbranch[n - 1].key;
2012 if (key_inum(c, key1) == key_inum(c, key) &&
2013 key_type(c, key1) == UBIFS_DATA_KEY &&
2014 key_block(c, key1) == key_block(c, key) - 1)
2015 appending = 1;
2016 }
2017
2018 if (appending) {
2019 keep = c->fanout;
2020 move = 0;
2021 } else {
2022 keep = (c->fanout + 1) / 2;
2023 move = c->fanout - keep;
2024 }
2025
2026 /*
2027 * Although we don't at present, we could look at the neighbors and see
2028 * if we can move some zbranches there.
2029 */
2030
2031 if (n < keep) {
2032 /* Insert into existing znode */
2033 zi = znode;
2034 move += 1;
2035 keep -= 1;
2036 } else {
2037 /* Insert into new znode */
2038 zi = zn;
2039 n -= keep;
2040 /* Re-parent */
2041 if (zn->level != 0)
2042 zbr->znode->parent = zn;
2043 }
2044
2045 __set_bit(DIRTY_ZNODE, &zn->flags);
2046 atomic_long_inc(&c->dirty_zn_cnt);
2047
2048 zn->child_cnt = move;
2049 znode->child_cnt = keep;
2050
2051 dbg_tnc("moving %d, keeping %d", move, keep);
2052
2053 /* Move zbranch */
2054 for (i = 0; i < move; i++) {
2055 zn->zbranch[i] = znode->zbranch[keep + i];
2056 /* Re-parent */
2057 if (zn->level != 0)
2058 if (zn->zbranch[i].znode) {
2059 zn->zbranch[i].znode->parent = zn;
2060 zn->zbranch[i].znode->iip = i;
2061 }
2062 }
2063
2064 /* Insert new key and branch */
2065 dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2066
2067 insert_zbranch(zi, zbr, n);
2068
2069 /* Insert new znode (produced by spitting) into the parent */
2070 if (zp) {
2071 i = n;
2072 /* Locate insertion point */
2073 n = znode->iip + 1;
2074 if (appending && n != c->fanout)
2075 appending = 0;
2076
2077 if (i == 0 && zi == znode && znode->iip == 0)
2078 correct_parent_keys(c, znode);
2079
2080 /* Tail recursion */
2081 zbr->key = zn->zbranch[0].key;
2082 zbr->znode = zn;
2083 zbr->lnum = 0;
2084 zbr->offs = 0;
2085 zbr->len = 0;
2086 znode = zp;
2087
2088 goto again;
2089 }
2090
2091 /* We have to split root znode */
2092 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2093
2094 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2095 if (!zi)
2096 return -ENOMEM;
2097
2098 zi->child_cnt = 2;
2099 zi->level = znode->level + 1;
2100
2101 __set_bit(DIRTY_ZNODE, &zi->flags);
2102 atomic_long_inc(&c->dirty_zn_cnt);
2103
2104 zi->zbranch[0].key = znode->zbranch[0].key;
2105 zi->zbranch[0].znode = znode;
2106 zi->zbranch[0].lnum = c->zroot.lnum;
2107 zi->zbranch[0].offs = c->zroot.offs;
2108 zi->zbranch[0].len = c->zroot.len;
2109 zi->zbranch[1].key = zn->zbranch[0].key;
2110 zi->zbranch[1].znode = zn;
2111
2112 c->zroot.lnum = 0;
2113 c->zroot.offs = 0;
2114 c->zroot.len = 0;
2115 c->zroot.znode = zi;
2116
2117 zn->parent = zi;
2118 zn->iip = 1;
2119 znode->parent = zi;
2120 znode->iip = 0;
2121
2122 return 0;
2123}
2124
2125/**
2126 * ubifs_tnc_add - add a node to TNC.
2127 * @c: UBIFS file-system description object
2128 * @key: key to add
2129 * @lnum: LEB number of node
2130 * @offs: node offset
2131 * @len: node length
2132 *
2133 * This function adds a node with key @key to TNC. The node may be new or it may
2134 * obsolete some existing one. Returns %0 on success or negative error code on
2135 * failure.
2136 */
2137int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2138 int offs, int len)
2139{
2140 int found, n, err = 0;
2141 struct ubifs_znode *znode;
2142
2143 mutex_lock(&c->tnc_mutex);
2144 dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2145 found = lookup_level0_dirty(c, key, &znode, &n);
2146 if (!found) {
2147 struct ubifs_zbranch zbr;
2148
2149 zbr.znode = NULL;
2150 zbr.lnum = lnum;
2151 zbr.offs = offs;
2152 zbr.len = len;
2153 key_copy(c, key, &zbr.key);
2154 err = tnc_insert(c, znode, &zbr, n + 1);
2155 } else if (found == 1) {
2156 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2157
2158 lnc_free(zbr);
2159 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2160 zbr->lnum = lnum;
2161 zbr->offs = offs;
2162 zbr->len = len;
2163 } else
2164 err = found;
2165 if (!err)
2166 err = dbg_check_tnc(c, 0);
2167 mutex_unlock(&c->tnc_mutex);
2168
2169 return err;
2170}
2171
2172/**
2173 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2174 * @c: UBIFS file-system description object
2175 * @key: key to add
2176 * @old_lnum: LEB number of old node
2177 * @old_offs: old node offset
2178 * @lnum: LEB number of node
2179 * @offs: node offset
2180 * @len: node length
2181 *
2182 * This function replaces a node with key @key in the TNC only if the old node
2183 * is found. This function is called by garbage collection when node are moved.
2184 * Returns %0 on success or negative error code on failure.
2185 */
2186int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2187 int old_lnum, int old_offs, int lnum, int offs, int len)
2188{
2189 int found, n, err = 0;
2190 struct ubifs_znode *znode;
2191
2192 mutex_lock(&c->tnc_mutex);
2193 dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2194 old_offs, lnum, offs, len, DBGKEY(key));
2195 found = lookup_level0_dirty(c, key, &znode, &n);
2196 if (found < 0) {
2197 err = found;
2198 goto out_unlock;
2199 }
2200
2201 if (found == 1) {
2202 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2203
2204 found = 0;
2205 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2206 lnc_free(zbr);
2207 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2208 if (err)
2209 goto out_unlock;
2210 zbr->lnum = lnum;
2211 zbr->offs = offs;
2212 zbr->len = len;
2213 found = 1;
2214 } else if (is_hash_key(c, key)) {
2215 found = resolve_collision_directly(c, key, &znode, &n,
2216 old_lnum, old_offs);
2217 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2218 found, znode, n, old_lnum, old_offs);
2219 if (found < 0) {
2220 err = found;
2221 goto out_unlock;
2222 }
2223
2224 if (found) {
2225 /* Ensure the znode is dirtied */
2226 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2227 znode = dirty_cow_bottom_up(c,
2228 znode);
2229 if (IS_ERR(znode)) {
2230 err = PTR_ERR(znode);
2231 goto out_unlock;
2232 }
2233 }
2234 zbr = &znode->zbranch[n];
2235 lnc_free(zbr);
2236 err = ubifs_add_dirt(c, zbr->lnum,
2237 zbr->len);
2238 if (err)
2239 goto out_unlock;
2240 zbr->lnum = lnum;
2241 zbr->offs = offs;
2242 zbr->len = len;
2243 }
2244 }
2245 }
2246
2247 if (!found)
2248 err = ubifs_add_dirt(c, lnum, len);
2249
2250 if (!err)
2251 err = dbg_check_tnc(c, 0);
2252
2253out_unlock:
2254 mutex_unlock(&c->tnc_mutex);
2255 return err;
2256}
2257
2258/**
2259 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2260 * @c: UBIFS file-system description object
2261 * @key: key to add
2262 * @lnum: LEB number of node
2263 * @offs: node offset
2264 * @len: node length
2265 * @nm: node name
2266 *
2267 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2268 * may have collisions, like directory entry keys.
2269 */
2270int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2271 int lnum, int offs, int len, const struct qstr *nm)
2272{
2273 int found, n, err = 0;
2274 struct ubifs_znode *znode;
2275
2276 mutex_lock(&c->tnc_mutex);
2277 dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2278 DBGKEY(key));
2279 found = lookup_level0_dirty(c, key, &znode, &n);
2280 if (found < 0) {
2281 err = found;
2282 goto out_unlock;
2283 }
2284
2285 if (found == 1) {
2286 if (c->replaying)
2287 found = fallible_resolve_collision(c, key, &znode, &n,
2288 nm, 1);
2289 else
2290 found = resolve_collision(c, key, &znode, &n, nm);
2291 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2292 if (found < 0) {
2293 err = found;
2294 goto out_unlock;
2295 }
2296
2297 /* Ensure the znode is dirtied */
2298 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2299 znode = dirty_cow_bottom_up(c, znode);
2300 if (IS_ERR(znode)) {
2301 err = PTR_ERR(znode);
2302 goto out_unlock;
2303 }
2304 }
2305
2306 if (found == 1) {
2307 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2308
2309 lnc_free(zbr);
2310 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2311 zbr->lnum = lnum;
2312 zbr->offs = offs;
2313 zbr->len = len;
2314 goto out_unlock;
2315 }
2316 }
2317
2318 if (!found) {
2319 struct ubifs_zbranch zbr;
2320
2321 zbr.znode = NULL;
2322 zbr.lnum = lnum;
2323 zbr.offs = offs;
2324 zbr.len = len;
2325 key_copy(c, key, &zbr.key);
2326 err = tnc_insert(c, znode, &zbr, n + 1);
2327 if (err)
2328 goto out_unlock;
2329 if (c->replaying) {
2330 /*
2331 * We did not find it in the index so there may be a
2332 * dangling branch still in the index. So we remove it
2333 * by passing 'ubifs_tnc_remove_nm()' the same key but
2334 * an unmatchable name.
2335 */
2336 struct qstr noname = { .len = 0, .name = "" };
2337
2338 err = dbg_check_tnc(c, 0);
2339 mutex_unlock(&c->tnc_mutex);
2340 if (err)
2341 return err;
2342 return ubifs_tnc_remove_nm(c, key, &noname);
2343 }
2344 }
2345
2346out_unlock:
2347 if (!err)
2348 err = dbg_check_tnc(c, 0);
2349 mutex_unlock(&c->tnc_mutex);
2350 return err;
2351}
2352
2353/**
2354 * tnc_delete - delete a znode form TNC.
2355 * @c: UBIFS file-system description object
2356 * @znode: znode to delete from
2357 * @n: zbranch slot number to delete
2358 *
2359 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2360 * case of success and a negative error code in case of failure.
2361 */
2362static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2363{
2364 struct ubifs_zbranch *zbr;
2365 struct ubifs_znode *zp;
2366 int i, err;
2367
2368 /* Delete without merge for now */
2369 ubifs_assert(znode->level == 0);
2370 ubifs_assert(n >= 0 && n < c->fanout);
2371 dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2372
2373 zbr = &znode->zbranch[n];
2374 lnc_free(zbr);
2375
2376 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2377 if (err) {
2378 dbg_dump_znode(c, znode);
2379 return err;
2380 }
2381
2382 /* We do not "gap" zbranch slots */
2383 for (i = n; i < znode->child_cnt - 1; i++)
2384 znode->zbranch[i] = znode->zbranch[i + 1];
2385 znode->child_cnt -= 1;
2386
2387 if (znode->child_cnt > 0)
2388 return 0;
2389
2390 /*
2391 * This was the last zbranch, we have to delete this znode from the
2392 * parent.
2393 */
2394
2395 do {
2396 ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2397 ubifs_assert(ubifs_zn_dirty(znode));
2398
2399 zp = znode->parent;
2400 n = znode->iip;
2401
2402 atomic_long_dec(&c->dirty_zn_cnt);
2403
2404 err = insert_old_idx_znode(c, znode);
2405 if (err)
2406 return err;
2407
2408 if (znode->cnext) {
2409 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2410 atomic_long_inc(&c->clean_zn_cnt);
2411 atomic_long_inc(&ubifs_clean_zn_cnt);
2412 } else
2413 kfree(znode);
2414 znode = zp;
2415 } while (znode->child_cnt == 1); /* while removing last child */
2416
2417 /* Remove from znode, entry n - 1 */
2418 znode->child_cnt -= 1;
2419 ubifs_assert(znode->level != 0);
2420 for (i = n; i < znode->child_cnt; i++) {
2421 znode->zbranch[i] = znode->zbranch[i + 1];
2422 if (znode->zbranch[i].znode)
2423 znode->zbranch[i].znode->iip = i;
2424 }
2425
2426 /*
2427 * If this is the root and it has only 1 child then
2428 * collapse the tree.
2429 */
2430 if (!znode->parent) {
2431 while (znode->child_cnt == 1 && znode->level != 0) {
2432 zp = znode;
2433 zbr = &znode->zbranch[0];
2434 znode = get_znode(c, znode, 0);
2435 if (IS_ERR(znode))
2436 return PTR_ERR(znode);
2437 znode = dirty_cow_znode(c, zbr);
2438 if (IS_ERR(znode))
2439 return PTR_ERR(znode);
2440 znode->parent = NULL;
2441 znode->iip = 0;
2442 if (c->zroot.len) {
2443 err = insert_old_idx(c, c->zroot.lnum,
2444 c->zroot.offs);
2445 if (err)
2446 return err;
2447 }
2448 c->zroot.lnum = zbr->lnum;
2449 c->zroot.offs = zbr->offs;
2450 c->zroot.len = zbr->len;
2451 c->zroot.znode = znode;
2452 ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2453 &zp->flags));
2454 ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2455 atomic_long_dec(&c->dirty_zn_cnt);
2456
2457 if (zp->cnext) {
2458 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2459 atomic_long_inc(&c->clean_zn_cnt);
2460 atomic_long_inc(&ubifs_clean_zn_cnt);
2461 } else
2462 kfree(zp);
2463 }
2464 }
2465
2466 return 0;
2467}
2468
2469/**
2470 * ubifs_tnc_remove - remove an index entry of a node.
2471 * @c: UBIFS file-system description object
2472 * @key: key of node
2473 *
2474 * Returns %0 on success or negative error code on failure.
2475 */
2476int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2477{
2478 int found, n, err = 0;
2479 struct ubifs_znode *znode;
2480
2481 mutex_lock(&c->tnc_mutex);
2482 dbg_tnc("key %s", DBGKEY(key));
2483 found = lookup_level0_dirty(c, key, &znode, &n);
2484 if (found < 0) {
2485 err = found;
2486 goto out_unlock;
2487 }
2488 if (found == 1)
2489 err = tnc_delete(c, znode, n);
2490 if (!err)
2491 err = dbg_check_tnc(c, 0);
2492
2493out_unlock:
2494 mutex_unlock(&c->tnc_mutex);
2495 return err;
2496}
2497
2498/**
2499 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2500 * @c: UBIFS file-system description object
2501 * @key: key of node
2502 * @nm: directory entry name
2503 *
2504 * Returns %0 on success or negative error code on failure.
2505 */
2506int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2507 const struct qstr *nm)
2508{
2509 int n, err;
2510 struct ubifs_znode *znode;
2511
2512 mutex_lock(&c->tnc_mutex);
2513 dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2514 err = lookup_level0_dirty(c, key, &znode, &n);
2515 if (err < 0)
2516 goto out_unlock;
2517
2518 if (err) {
2519 if (c->replaying)
2520 err = fallible_resolve_collision(c, key, &znode, &n,
2521 nm, 0);
2522 else
2523 err = resolve_collision(c, key, &znode, &n, nm);
2524 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2525 if (err < 0)
2526 goto out_unlock;
2527 if (err) {
2528 /* Ensure the znode is dirtied */
2529 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2530 znode = dirty_cow_bottom_up(c, znode);
2531 if (IS_ERR(znode)) {
2532 err = PTR_ERR(znode);
2533 goto out_unlock;
2534 }
2535 }
2536 err = tnc_delete(c, znode, n);
2537 }
2538 }
2539
2540out_unlock:
2541 if (!err)
2542 err = dbg_check_tnc(c, 0);
2543 mutex_unlock(&c->tnc_mutex);
2544 return err;
2545}
2546
2547/**
2548 * key_in_range - determine if a key falls within a range of keys.
2549 * @c: UBIFS file-system description object
2550 * @key: key to check
2551 * @from_key: lowest key in range
2552 * @to_key: highest key in range
2553 *
2554 * This function returns %1 if the key is in range and %0 otherwise.
2555 */
2556static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2557 union ubifs_key *from_key, union ubifs_key *to_key)
2558{
2559 if (keys_cmp(c, key, from_key) < 0)
2560 return 0;
2561 if (keys_cmp(c, key, to_key) > 0)
2562 return 0;
2563 return 1;
2564}
2565
2566/**
2567 * ubifs_tnc_remove_range - remove index entries in range.
2568 * @c: UBIFS file-system description object
2569 * @from_key: lowest key to remove
2570 * @to_key: highest key to remove
2571 *
2572 * This function removes index entries starting at @from_key and ending at
2573 * @to_key. This function returns zero in case of success and a negative error
2574 * code in case of failure.
2575 */
2576int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2577 union ubifs_key *to_key)
2578{
2579 int i, n, k, err = 0;
2580 struct ubifs_znode *znode;
2581 union ubifs_key *key;
2582
2583 mutex_lock(&c->tnc_mutex);
2584 while (1) {
2585 /* Find first level 0 znode that contains keys to remove */
2586 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2587 if (err < 0)
2588 goto out_unlock;
2589
2590 if (err)
2591 key = from_key;
2592 else {
2593 err = tnc_next(c, &znode, &n);
2594 if (err == -ENOENT) {
2595 err = 0;
2596 goto out_unlock;
2597 }
2598 if (err < 0)
2599 goto out_unlock;
2600 key = &znode->zbranch[n].key;
2601 if (!key_in_range(c, key, from_key, to_key)) {
2602 err = 0;
2603 goto out_unlock;
2604 }
2605 }
2606
2607 /* Ensure the znode is dirtied */
2608 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2609 znode = dirty_cow_bottom_up(c, znode);
2610 if (IS_ERR(znode)) {
2611 err = PTR_ERR(znode);
2612 goto out_unlock;
2613 }
2614 }
2615
2616 /* Remove all keys in range except the first */
2617 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2618 key = &znode->zbranch[i].key;
2619 if (!key_in_range(c, key, from_key, to_key))
2620 break;
2621 lnc_free(&znode->zbranch[i]);
2622 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2623 znode->zbranch[i].len);
2624 if (err) {
2625 dbg_dump_znode(c, znode);
2626 goto out_unlock;
2627 }
2628 dbg_tnc("removing %s", DBGKEY(key));
2629 }
2630 if (k) {
2631 for (i = n + 1 + k; i < znode->child_cnt; i++)
2632 znode->zbranch[i - k] = znode->zbranch[i];
2633 znode->child_cnt -= k;
2634 }
2635
2636 /* Now delete the first */
2637 err = tnc_delete(c, znode, n);
2638 if (err)
2639 goto out_unlock;
2640 }
2641
2642out_unlock:
2643 if (!err)
2644 err = dbg_check_tnc(c, 0);
2645 mutex_unlock(&c->tnc_mutex);
2646 return err;
2647}
2648
2649/**
2650 * ubifs_tnc_remove_ino - remove an inode from TNC.
2651 * @c: UBIFS file-system description object
2652 * @inum: inode number to remove
2653 *
2654 * This function remove inode @inum and all the extended attributes associated
2655 * with the anode from TNC and returns zero in case of success or a negative
2656 * error code in case of failure.
2657 */
2658int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2659{
2660 union ubifs_key key1, key2;
2661 struct ubifs_dent_node *xent, *pxent = NULL;
2662 struct qstr nm = { .name = NULL };
2663
2664 dbg_tnc("ino %lu", inum);
2665
2666 /*
2667 * Walk all extended attribute entries and remove them together with
2668 * corresponding extended attribute inodes.
2669 */
2670 lowest_xent_key(c, &key1, inum);
2671 while (1) {
2672 ino_t xattr_inum;
2673 int err;
2674
2675 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2676 if (IS_ERR(xent)) {
2677 err = PTR_ERR(xent);
2678 if (err == -ENOENT)
2679 break;
2680 return err;
2681 }
2682
2683 xattr_inum = le64_to_cpu(xent->inum);
2684 dbg_tnc("xent '%s', ino %lu", xent->name, xattr_inum);
2685
2686 nm.name = xent->name;
2687 nm.len = le16_to_cpu(xent->nlen);
2688 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2689 if (err) {
2690 kfree(xent);
2691 return err;
2692 }
2693
2694 lowest_ino_key(c, &key1, xattr_inum);
2695 highest_ino_key(c, &key2, xattr_inum);
2696 err = ubifs_tnc_remove_range(c, &key1, &key2);
2697 if (err) {
2698 kfree(xent);
2699 return err;
2700 }
2701
2702 kfree(pxent);
2703 pxent = xent;
2704 key_read(c, &xent->key, &key1);
2705 }
2706
2707 kfree(pxent);
2708 lowest_ino_key(c, &key1, inum);
2709 highest_ino_key(c, &key2, inum);
2710
2711 return ubifs_tnc_remove_range(c, &key1, &key2);
2712}
2713
2714/**
2715 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2716 * @c: UBIFS file-system description object
2717 * @key: key of last entry
2718 * @nm: name of last entry found or %NULL
2719 *
2720 * This function finds and reads the next directory or extended attribute entry
2721 * after the given key (@key) if there is one. @nm is used to resolve
2722 * collisions.
2723 *
2724 * If the name of the current entry is not known and only the key is known,
2725 * @nm->name has to be %NULL. In this case the semantics of this function is a
2726 * little bit different and it returns the entry corresponding to this key, not
2727 * the next one. If the key was not found, the closest "right" entry is
2728 * returned.
2729 *
2730 * If the fist entry has to be found, @key has to contain the lowest possible
2731 * key value for this inode and @name has to be %NULL.
2732 *
2733 * This function returns the found directory or extended attribute entry node
2734 * in case of success, %-ENOENT is returned if no entry was found, and a
2735 * negative error code is returned in case of failure.
2736 */
2737struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2738 union ubifs_key *key,
2739 const struct qstr *nm)
2740{
2741 int n, err, type = key_type(c, key);
2742 struct ubifs_znode *znode;
2743 struct ubifs_dent_node *dent;
2744 struct ubifs_zbranch *zbr;
2745 union ubifs_key *dkey;
2746
2747 dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2748 ubifs_assert(is_hash_key(c, key));
2749
2750 mutex_lock(&c->tnc_mutex);
2751 err = ubifs_lookup_level0(c, key, &znode, &n);
2752 if (unlikely(err < 0))
2753 goto out_unlock;
2754
2755 if (nm->name) {
2756 if (err) {
2757 /* Handle collisions */
2758 err = resolve_collision(c, key, &znode, &n, nm);
2759 dbg_tnc("rc returned %d, znode %p, n %d",
2760 err, znode, n);
2761 if (unlikely(err < 0))
2762 goto out_unlock;
2763 }
2764
2765 /* Now find next entry */
2766 err = tnc_next(c, &znode, &n);
2767 if (unlikely(err))
2768 goto out_unlock;
2769 } else {
2770 /*
2771 * The full name of the entry was not given, in which case the
2772 * behavior of this function is a little different and it
2773 * returns current entry, not the next one.
2774 */
2775 if (!err) {
2776 /*
2777 * However, the given key does not exist in the TNC
2778 * tree and @znode/@n variables contain the closest
2779 * "preceding" element. Switch to the next one.
2780 */
2781 err = tnc_next(c, &znode, &n);
2782 if (err)
2783 goto out_unlock;
2784 }
2785 }
2786
2787 zbr = &znode->zbranch[n];
2788 dent = kmalloc(zbr->len, GFP_NOFS);
2789 if (unlikely(!dent)) {
2790 err = -ENOMEM;
2791 goto out_unlock;
2792 }
2793
2794 /*
2795 * The above 'tnc_next()' call could lead us to the next inode, check
2796 * this.
2797 */
2798 dkey = &zbr->key;
2799 if (key_inum(c, dkey) != key_inum(c, key) ||
2800 key_type(c, dkey) != type) {
2801 err = -ENOENT;
2802 goto out_free;
2803 }
2804
2805 err = tnc_read_node_nm(c, zbr, dent);
2806 if (unlikely(err))
2807 goto out_free;
2808
2809 mutex_unlock(&c->tnc_mutex);
2810 return dent;
2811
2812out_free:
2813 kfree(dent);
2814out_unlock:
2815 mutex_unlock(&c->tnc_mutex);
2816 return ERR_PTR(err);
2817}
2818
2819/**
2820 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2821 * @c: UBIFS file-system description object
2822 *
2823 * Destroy left-over obsolete znodes from a failed commit.
2824 */
2825static void tnc_destroy_cnext(struct ubifs_info *c)
2826{
2827 struct ubifs_znode *cnext;
2828
2829 if (!c->cnext)
2830 return;
2831 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2832 cnext = c->cnext;
2833 do {
2834 struct ubifs_znode *znode = cnext;
2835
2836 cnext = cnext->cnext;
2837 if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2838 kfree(znode);
2839 } while (cnext && cnext != c->cnext);
2840}
2841
2842/**
2843 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2844 * @c: UBIFS file-system description object
2845 */
2846void ubifs_tnc_close(struct ubifs_info *c)
2847{
2848 long clean_freed;
2849
2850 tnc_destroy_cnext(c);
2851 if (c->zroot.znode) {
2852 clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2853 atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2854 }
2855 kfree(c->gap_lebs);
2856 kfree(c->ilebs);
2857 destroy_old_idx(c);
2858}
2859
2860/**
2861 * left_znode - get the znode to the left.
2862 * @c: UBIFS file-system description object
2863 * @znode: znode
2864 *
2865 * This function returns a pointer to the znode to the left of @znode or NULL if
2866 * there is not one. A negative error code is returned on failure.
2867 */
2868static struct ubifs_znode *left_znode(struct ubifs_info *c,
2869 struct ubifs_znode *znode)
2870{
2871 int level = znode->level;
2872
2873 while (1) {
2874 int n = znode->iip - 1;
2875
2876 /* Go up until we can go left */
2877 znode = znode->parent;
2878 if (!znode)
2879 return NULL;
2880 if (n >= 0) {
2881 /* Now go down the rightmost branch to 'level' */
2882 znode = get_znode(c, znode, n);
2883 if (IS_ERR(znode))
2884 return znode;
2885 while (znode->level != level) {
2886 n = znode->child_cnt - 1;
2887 znode = get_znode(c, znode, n);
2888 if (IS_ERR(znode))
2889 return znode;
2890 }
2891 break;
2892 }
2893 }
2894 return znode;
2895}
2896
2897/**
2898 * right_znode - get the znode to the right.
2899 * @c: UBIFS file-system description object
2900 * @znode: znode
2901 *
2902 * This function returns a pointer to the znode to the right of @znode or NULL
2903 * if there is not one. A negative error code is returned on failure.
2904 */
2905static struct ubifs_znode *right_znode(struct ubifs_info *c,
2906 struct ubifs_znode *znode)
2907{
2908 int level = znode->level;
2909
2910 while (1) {
2911 int n = znode->iip + 1;
2912
2913 /* Go up until we can go right */
2914 znode = znode->parent;
2915 if (!znode)
2916 return NULL;
2917 if (n < znode->child_cnt) {
2918 /* Now go down the leftmost branch to 'level' */
2919 znode = get_znode(c, znode, n);
2920 if (IS_ERR(znode))
2921 return znode;
2922 while (znode->level != level) {
2923 znode = get_znode(c, znode, 0);
2924 if (IS_ERR(znode))
2925 return znode;
2926 }
2927 break;
2928 }
2929 }
2930 return znode;
2931}
2932
2933/**
2934 * lookup_znode - find a particular indexing node from TNC.
2935 * @c: UBIFS file-system description object
2936 * @key: index node key to lookup
2937 * @level: index node level
2938 * @lnum: index node LEB number
2939 * @offs: index node offset
2940 *
2941 * This function searches an indexing node by its first key @key and its
2942 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2943 * nodes it traverses to TNC. This function is called fro indexing nodes which
2944 * were found on the media by scanning, for example when garbage-collecting or
2945 * when doing in-the-gaps commit. This means that the indexing node which is
2946 * looked for does not have to have exactly the same leftmost key @key, because
2947 * the leftmost key may have been changed, in which case TNC will contain a
2948 * dirty znode which still refers the same @lnum:@offs. This function is clever
2949 * enough to recognize such indexing nodes.
2950 *
2951 * Note, if a znode was deleted or changed too much, then this function will
2952 * not find it. For situations like this UBIFS has the old index RB-tree
2953 * (indexed by @lnum:@offs).
2954 *
2955 * This function returns a pointer to the znode found or %NULL if it is not
2956 * found. A negative error code is returned on failure.
2957 */
2958static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2959 union ubifs_key *key, int level,
2960 int lnum, int offs)
2961{
2962 struct ubifs_znode *znode, *zn;
2963 int n, nn;
2964
2965 /*
2966 * The arguments have probably been read off flash, so don't assume
2967 * they are valid.
2968 */
2969 if (level < 0)
2970 return ERR_PTR(-EINVAL);
2971
2972 /* Get the root znode */
2973 znode = c->zroot.znode;
2974 if (!znode) {
2975 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
2976 if (IS_ERR(znode))
2977 return znode;
2978 }
2979 /* Check if it is the one we are looking for */
2980 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
2981 return znode;
2982 /* Descend to the parent level i.e. (level + 1) */
2983 if (level >= znode->level)
2984 return NULL;
2985 while (1) {
2986 ubifs_search_zbranch(c, znode, key, &n);
2987 if (n < 0) {
2988 /*
2989 * We reached a znode where the leftmost key is greater
2990 * than the key we are searching for. This is the same
2991 * situation as the one described in a huge comment at
2992 * the end of the 'ubifs_lookup_level0()' function. And
2993 * for exactly the same reasons we have to try to look
2994 * left before giving up.
2995 */
2996 znode = left_znode(c, znode);
2997 if (!znode)
2998 return NULL;
2999 if (IS_ERR(znode))
3000 return znode;
3001 ubifs_search_zbranch(c, znode, key, &n);
3002 ubifs_assert(n >= 0);
3003 }
3004 if (znode->level == level + 1)
3005 break;
3006 znode = get_znode(c, znode, n);
3007 if (IS_ERR(znode))
3008 return znode;
3009 }
3010 /* Check if the child is the one we are looking for */
3011 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3012 return get_znode(c, znode, n);
3013 /* If the key is unique, there is nowhere else to look */
3014 if (!is_hash_key(c, key))
3015 return NULL;
3016 /*
3017 * The key is not unique and so may be also in the znodes to either
3018 * side.
3019 */
3020 zn = znode;
3021 nn = n;
3022 /* Look left */
3023 while (1) {
3024 /* Move one branch to the left */
3025 if (n)
3026 n -= 1;
3027 else {
3028 znode = left_znode(c, znode);
3029 if (!znode)
3030 break;
3031 if (IS_ERR(znode))
3032 return znode;
3033 n = znode->child_cnt - 1;
3034 }
3035 /* Check it */
3036 if (znode->zbranch[n].lnum == lnum &&
3037 znode->zbranch[n].offs == offs)
3038 return get_znode(c, znode, n);
3039 /* Stop if the key is less than the one we are looking for */
3040 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3041 break;
3042 }
3043 /* Back to the middle */
3044 znode = zn;
3045 n = nn;
3046 /* Look right */
3047 while (1) {
3048 /* Move one branch to the right */
3049 if (++n >= znode->child_cnt) {
3050 znode = right_znode(c, znode);
3051 if (!znode)
3052 break;
3053 if (IS_ERR(znode))
3054 return znode;
3055 n = 0;
3056 }
3057 /* Check it */
3058 if (znode->zbranch[n].lnum == lnum &&
3059 znode->zbranch[n].offs == offs)
3060 return get_znode(c, znode, n);
3061 /* Stop if the key is greater than the one we are looking for */
3062 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3063 break;
3064 }
3065 return NULL;
3066}
3067
3068/**
3069 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3070 * @c: UBIFS file-system description object
3071 * @key: key of index node
3072 * @level: index node level
3073 * @lnum: LEB number of index node
3074 * @offs: offset of index node
3075 *
3076 * This function returns %0 if the index node is not referred to in the TNC, %1
3077 * if the index node is referred to in the TNC and the corresponding znode is
3078 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3079 * znode is clean, and a negative error code in case of failure.
3080 *
3081 * Note, the @key argument has to be the key of the first child. Also note,
3082 * this function relies on the fact that 0:0 is never a valid LEB number and
3083 * offset for a main-area node.
3084 */
3085int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3086 int lnum, int offs)
3087{
3088 struct ubifs_znode *znode;
3089
3090 znode = lookup_znode(c, key, level, lnum, offs);
3091 if (!znode)
3092 return 0;
3093 if (IS_ERR(znode))
3094 return PTR_ERR(znode);
3095
3096 return ubifs_zn_dirty(znode) ? 1 : 2;
3097}
3098
3099/**
3100 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3101 * @c: UBIFS file-system description object
3102 * @key: node key
3103 * @lnum: node LEB number
3104 * @offs: node offset
3105 *
3106 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3107 * not, and a negative error code in case of failure.
3108 *
3109 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3110 * and offset for a main-area node.
3111 */
3112static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3113 int lnum, int offs)
3114{
3115 struct ubifs_zbranch *zbr;
3116 struct ubifs_znode *znode, *zn;
3117 int n, found, err, nn;
3118 const int unique = !is_hash_key(c, key);
3119
3120 found = ubifs_lookup_level0(c, key, &znode, &n);
3121 if (found < 0)
3122 return found; /* Error code */
3123 if (!found)
3124 return 0;
3125 zbr = &znode->zbranch[n];
3126 if (lnum == zbr->lnum && offs == zbr->offs)
3127 return 1; /* Found it */
3128 if (unique)
3129 return 0;
3130 /*
3131 * Because the key is not unique, we have to look left
3132 * and right as well
3133 */
3134 zn = znode;
3135 nn = n;
3136 /* Look left */
3137 while (1) {
3138 err = tnc_prev(c, &znode, &n);
3139 if (err == -ENOENT)
3140 break;
3141 if (err)
3142 return err;
3143 if (keys_cmp(c, key, &znode->zbranch[n].key))
3144 break;
3145 zbr = &znode->zbranch[n];
3146 if (lnum == zbr->lnum && offs == zbr->offs)
3147 return 1; /* Found it */
3148 }
3149 /* Look right */
3150 znode = zn;
3151 n = nn;
3152 while (1) {
3153 err = tnc_next(c, &znode, &n);
3154 if (err) {
3155 if (err == -ENOENT)
3156 return 0;
3157 return err;
3158 }
3159 if (keys_cmp(c, key, &znode->zbranch[n].key))
3160 break;
3161 zbr = &znode->zbranch[n];
3162 if (lnum == zbr->lnum && offs == zbr->offs)
3163 return 1; /* Found it */
3164 }
3165 return 0;
3166}
3167
3168/**
3169 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3170 * @c: UBIFS file-system description object
3171 * @key: node key
3172 * @level: index node level (if it is an index node)
3173 * @lnum: node LEB number
3174 * @offs: node offset
3175 * @is_idx: non-zero if the node is an index node
3176 *
3177 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3178 * negative error code in case of failure. For index nodes, @key has to be the
3179 * key of the first child. An index node is considered to be in the TNC only if
3180 * the corresponding znode is clean or has not been loaded.
3181 */
3182int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3183 int lnum, int offs, int is_idx)
3184{
3185 int err;
3186
3187 mutex_lock(&c->tnc_mutex);
3188 if (is_idx) {
3189 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3190 if (err < 0)
3191 goto out_unlock;
3192 if (err == 1)
3193 /* The index node was found but it was dirty */
3194 err = 0;
3195 else if (err == 2)
3196 /* The index node was found and it was clean */
3197 err = 1;
3198 else
3199 BUG_ON(err != 0);
3200 } else
3201 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3202
3203out_unlock:
3204 mutex_unlock(&c->tnc_mutex);
3205 return err;
3206}
3207
3208/**
3209 * ubifs_dirty_idx_node - dirty an index node.
3210 * @c: UBIFS file-system description object
3211 * @key: index node key
3212 * @level: index node level
3213 * @lnum: index node LEB number
3214 * @offs: index node offset
3215 *
3216 * This function loads and dirties an index node so that it can be garbage
3217 * collected. The @key argument has to be the key of the first child. This
3218 * function relies on the fact that 0:0 is never a valid LEB number and offset
3219 * for a main-area node. Returns %0 on success and a negative error code on
3220 * failure.
3221 */
3222int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3223 int lnum, int offs)
3224{
3225 struct ubifs_znode *znode;
3226 int err = 0;
3227
3228 mutex_lock(&c->tnc_mutex);
3229 znode = lookup_znode(c, key, level, lnum, offs);
3230 if (!znode)
3231 goto out_unlock;
3232 if (IS_ERR(znode)) {
3233 err = PTR_ERR(znode);
3234 goto out_unlock;
3235 }
3236 znode = dirty_cow_bottom_up(c, znode);
3237 if (IS_ERR(znode)) {
3238 err = PTR_ERR(znode);
3239 goto out_unlock;
3240 }
3241
3242out_unlock:
3243 mutex_unlock(&c->tnc_mutex);
3244 return err;
3245}