David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 Fusion-io All rights reserved. |
| 3 | * Copyright (C) 2012 Intel Corp. All rights reserved. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public |
| 7 | * License v2 as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 12 | * General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public |
| 15 | * License along with this program; if not, write to the |
| 16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 17 | * Boston, MA 021110-1307, USA. |
| 18 | */ |
| 19 | #include <linux/sched.h> |
| 20 | #include <linux/wait.h> |
| 21 | #include <linux/bio.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/buffer_head.h> |
| 24 | #include <linux/blkdev.h> |
| 25 | #include <linux/random.h> |
| 26 | #include <linux/iocontext.h> |
| 27 | #include <linux/capability.h> |
| 28 | #include <linux/ratelimit.h> |
| 29 | #include <linux/kthread.h> |
| 30 | #include <linux/raid/pq.h> |
| 31 | #include <linux/hash.h> |
| 32 | #include <linux/list_sort.h> |
| 33 | #include <linux/raid/xor.h> |
| 34 | #include <asm/div64.h> |
| 35 | #include "compat.h" |
| 36 | #include "ctree.h" |
| 37 | #include "extent_map.h" |
| 38 | #include "disk-io.h" |
| 39 | #include "transaction.h" |
| 40 | #include "print-tree.h" |
| 41 | #include "volumes.h" |
| 42 | #include "raid56.h" |
| 43 | #include "async-thread.h" |
| 44 | #include "check-integrity.h" |
| 45 | #include "rcu-string.h" |
| 46 | |
| 47 | /* set when additional merges to this rbio are not allowed */ |
| 48 | #define RBIO_RMW_LOCKED_BIT 1 |
| 49 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 50 | /* |
| 51 | * set when this rbio is sitting in the hash, but it is just a cache |
| 52 | * of past RMW |
| 53 | */ |
| 54 | #define RBIO_CACHE_BIT 2 |
| 55 | |
| 56 | /* |
| 57 | * set when it is safe to trust the stripe_pages for caching |
| 58 | */ |
| 59 | #define RBIO_CACHE_READY_BIT 3 |
| 60 | |
| 61 | |
| 62 | #define RBIO_CACHE_SIZE 1024 |
| 63 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 64 | struct btrfs_raid_bio { |
| 65 | struct btrfs_fs_info *fs_info; |
| 66 | struct btrfs_bio *bbio; |
| 67 | |
| 68 | /* |
| 69 | * logical block numbers for the start of each stripe |
| 70 | * The last one or two are p/q. These are sorted, |
| 71 | * so raid_map[0] is the start of our full stripe |
| 72 | */ |
| 73 | u64 *raid_map; |
| 74 | |
| 75 | /* while we're doing rmw on a stripe |
| 76 | * we put it into a hash table so we can |
| 77 | * lock the stripe and merge more rbios |
| 78 | * into it. |
| 79 | */ |
| 80 | struct list_head hash_list; |
| 81 | |
| 82 | /* |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 83 | * LRU list for the stripe cache |
| 84 | */ |
| 85 | struct list_head stripe_cache; |
| 86 | |
| 87 | /* |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 88 | * for scheduling work in the helper threads |
| 89 | */ |
| 90 | struct btrfs_work work; |
| 91 | |
| 92 | /* |
| 93 | * bio list and bio_list_lock are used |
| 94 | * to add more bios into the stripe |
| 95 | * in hopes of avoiding the full rmw |
| 96 | */ |
| 97 | struct bio_list bio_list; |
| 98 | spinlock_t bio_list_lock; |
| 99 | |
| 100 | /* |
| 101 | * also protected by the bio_list_lock, the |
| 102 | * stripe locking code uses plug_list to hand off |
| 103 | * the stripe lock to the next pending IO |
| 104 | */ |
| 105 | struct list_head plug_list; |
| 106 | |
| 107 | /* |
| 108 | * flags that tell us if it is safe to |
| 109 | * merge with this bio |
| 110 | */ |
| 111 | unsigned long flags; |
| 112 | |
| 113 | /* size of each individual stripe on disk */ |
| 114 | int stripe_len; |
| 115 | |
| 116 | /* number of data stripes (no p/q) */ |
| 117 | int nr_data; |
| 118 | |
| 119 | /* |
| 120 | * set if we're doing a parity rebuild |
| 121 | * for a read from higher up, which is handled |
| 122 | * differently from a parity rebuild as part of |
| 123 | * rmw |
| 124 | */ |
| 125 | int read_rebuild; |
| 126 | |
| 127 | /* first bad stripe */ |
| 128 | int faila; |
| 129 | |
| 130 | /* second bad stripe (for raid6 use) */ |
| 131 | int failb; |
| 132 | |
| 133 | /* |
| 134 | * number of pages needed to represent the full |
| 135 | * stripe |
| 136 | */ |
| 137 | int nr_pages; |
| 138 | |
| 139 | /* |
| 140 | * size of all the bios in the bio_list. This |
| 141 | * helps us decide if the rbio maps to a full |
| 142 | * stripe or not |
| 143 | */ |
| 144 | int bio_list_bytes; |
| 145 | |
| 146 | atomic_t refs; |
| 147 | |
| 148 | /* |
| 149 | * these are two arrays of pointers. We allocate the |
| 150 | * rbio big enough to hold them both and setup their |
| 151 | * locations when the rbio is allocated |
| 152 | */ |
| 153 | |
| 154 | /* pointers to pages that we allocated for |
| 155 | * reading/writing stripes directly from the disk (including P/Q) |
| 156 | */ |
| 157 | struct page **stripe_pages; |
| 158 | |
| 159 | /* |
| 160 | * pointers to the pages in the bio_list. Stored |
| 161 | * here for faster lookup |
| 162 | */ |
| 163 | struct page **bio_pages; |
| 164 | }; |
| 165 | |
| 166 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); |
| 167 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); |
| 168 | static void rmw_work(struct btrfs_work *work); |
| 169 | static void read_rebuild_work(struct btrfs_work *work); |
| 170 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); |
| 171 | static void async_read_rebuild(struct btrfs_raid_bio *rbio); |
| 172 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); |
| 173 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); |
| 174 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); |
| 175 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); |
| 176 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); |
| 177 | |
| 178 | /* |
| 179 | * the stripe hash table is used for locking, and to collect |
| 180 | * bios in hopes of making a full stripe |
| 181 | */ |
| 182 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) |
| 183 | { |
| 184 | struct btrfs_stripe_hash_table *table; |
| 185 | struct btrfs_stripe_hash_table *x; |
| 186 | struct btrfs_stripe_hash *cur; |
| 187 | struct btrfs_stripe_hash *h; |
| 188 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; |
| 189 | int i; |
| 190 | |
| 191 | if (info->stripe_hash_table) |
| 192 | return 0; |
| 193 | |
| 194 | table = kzalloc(sizeof(*table) + sizeof(*h) * num_entries, GFP_NOFS); |
| 195 | if (!table) |
| 196 | return -ENOMEM; |
| 197 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 198 | spin_lock_init(&table->cache_lock); |
| 199 | INIT_LIST_HEAD(&table->stripe_cache); |
| 200 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 201 | h = table->table; |
| 202 | |
| 203 | for (i = 0; i < num_entries; i++) { |
| 204 | cur = h + i; |
| 205 | INIT_LIST_HEAD(&cur->hash_list); |
| 206 | spin_lock_init(&cur->lock); |
| 207 | init_waitqueue_head(&cur->wait); |
| 208 | } |
| 209 | |
| 210 | x = cmpxchg(&info->stripe_hash_table, NULL, table); |
| 211 | if (x) |
| 212 | kfree(x); |
| 213 | return 0; |
| 214 | } |
| 215 | |
| 216 | /* |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 217 | * caching an rbio means to copy anything from the |
| 218 | * bio_pages array into the stripe_pages array. We |
| 219 | * use the page uptodate bit in the stripe cache array |
| 220 | * to indicate if it has valid data |
| 221 | * |
| 222 | * once the caching is done, we set the cache ready |
| 223 | * bit. |
| 224 | */ |
| 225 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) |
| 226 | { |
| 227 | int i; |
| 228 | char *s; |
| 229 | char *d; |
| 230 | int ret; |
| 231 | |
| 232 | ret = alloc_rbio_pages(rbio); |
| 233 | if (ret) |
| 234 | return; |
| 235 | |
| 236 | for (i = 0; i < rbio->nr_pages; i++) { |
| 237 | if (!rbio->bio_pages[i]) |
| 238 | continue; |
| 239 | |
| 240 | s = kmap(rbio->bio_pages[i]); |
| 241 | d = kmap(rbio->stripe_pages[i]); |
| 242 | |
| 243 | memcpy(d, s, PAGE_CACHE_SIZE); |
| 244 | |
| 245 | kunmap(rbio->bio_pages[i]); |
| 246 | kunmap(rbio->stripe_pages[i]); |
| 247 | SetPageUptodate(rbio->stripe_pages[i]); |
| 248 | } |
| 249 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 250 | } |
| 251 | |
| 252 | /* |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 253 | * we hash on the first logical address of the stripe |
| 254 | */ |
| 255 | static int rbio_bucket(struct btrfs_raid_bio *rbio) |
| 256 | { |
| 257 | u64 num = rbio->raid_map[0]; |
| 258 | |
| 259 | /* |
| 260 | * we shift down quite a bit. We're using byte |
| 261 | * addressing, and most of the lower bits are zeros. |
| 262 | * This tends to upset hash_64, and it consistently |
| 263 | * returns just one or two different values. |
| 264 | * |
| 265 | * shifting off the lower bits fixes things. |
| 266 | */ |
| 267 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); |
| 268 | } |
| 269 | |
| 270 | /* |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 271 | * stealing an rbio means taking all the uptodate pages from the stripe |
| 272 | * array in the source rbio and putting them into the destination rbio |
| 273 | */ |
| 274 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) |
| 275 | { |
| 276 | int i; |
| 277 | struct page *s; |
| 278 | struct page *d; |
| 279 | |
| 280 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) |
| 281 | return; |
| 282 | |
| 283 | for (i = 0; i < dest->nr_pages; i++) { |
| 284 | s = src->stripe_pages[i]; |
| 285 | if (!s || !PageUptodate(s)) { |
| 286 | continue; |
| 287 | } |
| 288 | |
| 289 | d = dest->stripe_pages[i]; |
| 290 | if (d) |
| 291 | __free_page(d); |
| 292 | |
| 293 | dest->stripe_pages[i] = s; |
| 294 | src->stripe_pages[i] = NULL; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /* |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 299 | * merging means we take the bio_list from the victim and |
| 300 | * splice it into the destination. The victim should |
| 301 | * be discarded afterwards. |
| 302 | * |
| 303 | * must be called with dest->rbio_list_lock held |
| 304 | */ |
| 305 | static void merge_rbio(struct btrfs_raid_bio *dest, |
| 306 | struct btrfs_raid_bio *victim) |
| 307 | { |
| 308 | bio_list_merge(&dest->bio_list, &victim->bio_list); |
| 309 | dest->bio_list_bytes += victim->bio_list_bytes; |
| 310 | bio_list_init(&victim->bio_list); |
| 311 | } |
| 312 | |
| 313 | /* |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 314 | * used to prune items that are in the cache. The caller |
| 315 | * must hold the hash table lock. |
| 316 | */ |
| 317 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| 318 | { |
| 319 | int bucket = rbio_bucket(rbio); |
| 320 | struct btrfs_stripe_hash_table *table; |
| 321 | struct btrfs_stripe_hash *h; |
| 322 | int freeit = 0; |
| 323 | |
| 324 | /* |
| 325 | * check the bit again under the hash table lock. |
| 326 | */ |
| 327 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 328 | return; |
| 329 | |
| 330 | table = rbio->fs_info->stripe_hash_table; |
| 331 | h = table->table + bucket; |
| 332 | |
| 333 | /* hold the lock for the bucket because we may be |
| 334 | * removing it from the hash table |
| 335 | */ |
| 336 | spin_lock(&h->lock); |
| 337 | |
| 338 | /* |
| 339 | * hold the lock for the bio list because we need |
| 340 | * to make sure the bio list is empty |
| 341 | */ |
| 342 | spin_lock(&rbio->bio_list_lock); |
| 343 | |
| 344 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| 345 | list_del_init(&rbio->stripe_cache); |
| 346 | table->cache_size -= 1; |
| 347 | freeit = 1; |
| 348 | |
| 349 | /* if the bio list isn't empty, this rbio is |
| 350 | * still involved in an IO. We take it out |
| 351 | * of the cache list, and drop the ref that |
| 352 | * was held for the list. |
| 353 | * |
| 354 | * If the bio_list was empty, we also remove |
| 355 | * the rbio from the hash_table, and drop |
| 356 | * the corresponding ref |
| 357 | */ |
| 358 | if (bio_list_empty(&rbio->bio_list)) { |
| 359 | if (!list_empty(&rbio->hash_list)) { |
| 360 | list_del_init(&rbio->hash_list); |
| 361 | atomic_dec(&rbio->refs); |
| 362 | BUG_ON(!list_empty(&rbio->plug_list)); |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | spin_unlock(&rbio->bio_list_lock); |
| 368 | spin_unlock(&h->lock); |
| 369 | |
| 370 | if (freeit) |
| 371 | __free_raid_bio(rbio); |
| 372 | } |
| 373 | |
| 374 | /* |
| 375 | * prune a given rbio from the cache |
| 376 | */ |
| 377 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) |
| 378 | { |
| 379 | struct btrfs_stripe_hash_table *table; |
| 380 | unsigned long flags; |
| 381 | |
| 382 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 383 | return; |
| 384 | |
| 385 | table = rbio->fs_info->stripe_hash_table; |
| 386 | |
| 387 | spin_lock_irqsave(&table->cache_lock, flags); |
| 388 | __remove_rbio_from_cache(rbio); |
| 389 | spin_unlock_irqrestore(&table->cache_lock, flags); |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * remove everything in the cache |
| 394 | */ |
| 395 | void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
| 396 | { |
| 397 | struct btrfs_stripe_hash_table *table; |
| 398 | unsigned long flags; |
| 399 | struct btrfs_raid_bio *rbio; |
| 400 | |
| 401 | table = info->stripe_hash_table; |
| 402 | |
| 403 | spin_lock_irqsave(&table->cache_lock, flags); |
| 404 | while (!list_empty(&table->stripe_cache)) { |
| 405 | rbio = list_entry(table->stripe_cache.next, |
| 406 | struct btrfs_raid_bio, |
| 407 | stripe_cache); |
| 408 | __remove_rbio_from_cache(rbio); |
| 409 | } |
| 410 | spin_unlock_irqrestore(&table->cache_lock, flags); |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * remove all cached entries and free the hash table |
| 415 | * used by unmount |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 416 | */ |
| 417 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) |
| 418 | { |
| 419 | if (!info->stripe_hash_table) |
| 420 | return; |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 421 | btrfs_clear_rbio_cache(info); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 422 | kfree(info->stripe_hash_table); |
| 423 | info->stripe_hash_table = NULL; |
| 424 | } |
| 425 | |
| 426 | /* |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 427 | * insert an rbio into the stripe cache. It |
| 428 | * must have already been prepared by calling |
| 429 | * cache_rbio_pages |
| 430 | * |
| 431 | * If this rbio was already cached, it gets |
| 432 | * moved to the front of the lru. |
| 433 | * |
| 434 | * If the size of the rbio cache is too big, we |
| 435 | * prune an item. |
| 436 | */ |
| 437 | static void cache_rbio(struct btrfs_raid_bio *rbio) |
| 438 | { |
| 439 | struct btrfs_stripe_hash_table *table; |
| 440 | unsigned long flags; |
| 441 | |
| 442 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) |
| 443 | return; |
| 444 | |
| 445 | table = rbio->fs_info->stripe_hash_table; |
| 446 | |
| 447 | spin_lock_irqsave(&table->cache_lock, flags); |
| 448 | spin_lock(&rbio->bio_list_lock); |
| 449 | |
| 450 | /* bump our ref if we were not in the list before */ |
| 451 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) |
| 452 | atomic_inc(&rbio->refs); |
| 453 | |
| 454 | if (!list_empty(&rbio->stripe_cache)){ |
| 455 | list_move(&rbio->stripe_cache, &table->stripe_cache); |
| 456 | } else { |
| 457 | list_add(&rbio->stripe_cache, &table->stripe_cache); |
| 458 | table->cache_size += 1; |
| 459 | } |
| 460 | |
| 461 | spin_unlock(&rbio->bio_list_lock); |
| 462 | |
| 463 | if (table->cache_size > RBIO_CACHE_SIZE) { |
| 464 | struct btrfs_raid_bio *found; |
| 465 | |
| 466 | found = list_entry(table->stripe_cache.prev, |
| 467 | struct btrfs_raid_bio, |
| 468 | stripe_cache); |
| 469 | |
| 470 | if (found != rbio) |
| 471 | __remove_rbio_from_cache(found); |
| 472 | } |
| 473 | |
| 474 | spin_unlock_irqrestore(&table->cache_lock, flags); |
| 475 | return; |
| 476 | } |
| 477 | |
| 478 | /* |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 479 | * helper function to run the xor_blocks api. It is only |
| 480 | * able to do MAX_XOR_BLOCKS at a time, so we need to |
| 481 | * loop through. |
| 482 | */ |
| 483 | static void run_xor(void **pages, int src_cnt, ssize_t len) |
| 484 | { |
| 485 | int src_off = 0; |
| 486 | int xor_src_cnt = 0; |
| 487 | void *dest = pages[src_cnt]; |
| 488 | |
| 489 | while(src_cnt > 0) { |
| 490 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); |
| 491 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); |
| 492 | |
| 493 | src_cnt -= xor_src_cnt; |
| 494 | src_off += xor_src_cnt; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * returns true if the bio list inside this rbio |
| 500 | * covers an entire stripe (no rmw required). |
| 501 | * Must be called with the bio list lock held, or |
| 502 | * at a time when you know it is impossible to add |
| 503 | * new bios into the list |
| 504 | */ |
| 505 | static int __rbio_is_full(struct btrfs_raid_bio *rbio) |
| 506 | { |
| 507 | unsigned long size = rbio->bio_list_bytes; |
| 508 | int ret = 1; |
| 509 | |
| 510 | if (size != rbio->nr_data * rbio->stripe_len) |
| 511 | ret = 0; |
| 512 | |
| 513 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); |
| 514 | return ret; |
| 515 | } |
| 516 | |
| 517 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
| 518 | { |
| 519 | unsigned long flags; |
| 520 | int ret; |
| 521 | |
| 522 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| 523 | ret = __rbio_is_full(rbio); |
| 524 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| 525 | return ret; |
| 526 | } |
| 527 | |
| 528 | /* |
| 529 | * returns 1 if it is safe to merge two rbios together. |
| 530 | * The merging is safe if the two rbios correspond to |
| 531 | * the same stripe and if they are both going in the same |
| 532 | * direction (read vs write), and if neither one is |
| 533 | * locked for final IO |
| 534 | * |
| 535 | * The caller is responsible for locking such that |
| 536 | * rmw_locked is safe to test |
| 537 | */ |
| 538 | static int rbio_can_merge(struct btrfs_raid_bio *last, |
| 539 | struct btrfs_raid_bio *cur) |
| 540 | { |
| 541 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || |
| 542 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) |
| 543 | return 0; |
| 544 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 545 | /* |
| 546 | * we can't merge with cached rbios, since the |
| 547 | * idea is that when we merge the destination |
| 548 | * rbio is going to run our IO for us. We can |
| 549 | * steal from cached rbio's though, other functions |
| 550 | * handle that. |
| 551 | */ |
| 552 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || |
| 553 | test_bit(RBIO_CACHE_BIT, &cur->flags)) |
| 554 | return 0; |
| 555 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 556 | if (last->raid_map[0] != |
| 557 | cur->raid_map[0]) |
| 558 | return 0; |
| 559 | |
| 560 | /* reads can't merge with writes */ |
| 561 | if (last->read_rebuild != |
| 562 | cur->read_rebuild) { |
| 563 | return 0; |
| 564 | } |
| 565 | |
| 566 | return 1; |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * helper to index into the pstripe |
| 571 | */ |
| 572 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) |
| 573 | { |
| 574 | index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; |
| 575 | return rbio->stripe_pages[index]; |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * helper to index into the qstripe, returns null |
| 580 | * if there is no qstripe |
| 581 | */ |
| 582 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) |
| 583 | { |
| 584 | if (rbio->nr_data + 1 == rbio->bbio->num_stripes) |
| 585 | return NULL; |
| 586 | |
| 587 | index += ((rbio->nr_data + 1) * rbio->stripe_len) >> |
| 588 | PAGE_CACHE_SHIFT; |
| 589 | return rbio->stripe_pages[index]; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * The first stripe in the table for a logical address |
| 594 | * has the lock. rbios are added in one of three ways: |
| 595 | * |
| 596 | * 1) Nobody has the stripe locked yet. The rbio is given |
| 597 | * the lock and 0 is returned. The caller must start the IO |
| 598 | * themselves. |
| 599 | * |
| 600 | * 2) Someone has the stripe locked, but we're able to merge |
| 601 | * with the lock owner. The rbio is freed and the IO will |
| 602 | * start automatically along with the existing rbio. 1 is returned. |
| 603 | * |
| 604 | * 3) Someone has the stripe locked, but we're not able to merge. |
| 605 | * The rbio is added to the lock owner's plug list, or merged into |
| 606 | * an rbio already on the plug list. When the lock owner unlocks, |
| 607 | * the next rbio on the list is run and the IO is started automatically. |
| 608 | * 1 is returned |
| 609 | * |
| 610 | * If we return 0, the caller still owns the rbio and must continue with |
| 611 | * IO submission. If we return 1, the caller must assume the rbio has |
| 612 | * already been freed. |
| 613 | */ |
| 614 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) |
| 615 | { |
| 616 | int bucket = rbio_bucket(rbio); |
| 617 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; |
| 618 | struct btrfs_raid_bio *cur; |
| 619 | struct btrfs_raid_bio *pending; |
| 620 | unsigned long flags; |
| 621 | DEFINE_WAIT(wait); |
| 622 | struct btrfs_raid_bio *freeit = NULL; |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 623 | struct btrfs_raid_bio *cache_drop = NULL; |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 624 | int ret = 0; |
| 625 | int walk = 0; |
| 626 | |
| 627 | spin_lock_irqsave(&h->lock, flags); |
| 628 | list_for_each_entry(cur, &h->hash_list, hash_list) { |
| 629 | walk++; |
| 630 | if (cur->raid_map[0] == rbio->raid_map[0]) { |
| 631 | spin_lock(&cur->bio_list_lock); |
| 632 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 633 | /* can we steal this cached rbio's pages? */ |
| 634 | if (bio_list_empty(&cur->bio_list) && |
| 635 | list_empty(&cur->plug_list) && |
| 636 | test_bit(RBIO_CACHE_BIT, &cur->flags) && |
| 637 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { |
| 638 | list_del_init(&cur->hash_list); |
| 639 | atomic_dec(&cur->refs); |
| 640 | |
| 641 | steal_rbio(cur, rbio); |
| 642 | cache_drop = cur; |
| 643 | spin_unlock(&cur->bio_list_lock); |
| 644 | |
| 645 | goto lockit; |
| 646 | } |
| 647 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 648 | /* can we merge into the lock owner? */ |
| 649 | if (rbio_can_merge(cur, rbio)) { |
| 650 | merge_rbio(cur, rbio); |
| 651 | spin_unlock(&cur->bio_list_lock); |
| 652 | freeit = rbio; |
| 653 | ret = 1; |
| 654 | goto out; |
| 655 | } |
| 656 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 657 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 658 | /* |
| 659 | * we couldn't merge with the running |
| 660 | * rbio, see if we can merge with the |
| 661 | * pending ones. We don't have to |
| 662 | * check for rmw_locked because there |
| 663 | * is no way they are inside finish_rmw |
| 664 | * right now |
| 665 | */ |
| 666 | list_for_each_entry(pending, &cur->plug_list, |
| 667 | plug_list) { |
| 668 | if (rbio_can_merge(pending, rbio)) { |
| 669 | merge_rbio(pending, rbio); |
| 670 | spin_unlock(&cur->bio_list_lock); |
| 671 | freeit = rbio; |
| 672 | ret = 1; |
| 673 | goto out; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | /* no merging, put us on the tail of the plug list, |
| 678 | * our rbio will be started with the currently |
| 679 | * running rbio unlocks |
| 680 | */ |
| 681 | list_add_tail(&rbio->plug_list, &cur->plug_list); |
| 682 | spin_unlock(&cur->bio_list_lock); |
| 683 | ret = 1; |
| 684 | goto out; |
| 685 | } |
| 686 | } |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 687 | lockit: |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 688 | atomic_inc(&rbio->refs); |
| 689 | list_add(&rbio->hash_list, &h->hash_list); |
| 690 | out: |
| 691 | spin_unlock_irqrestore(&h->lock, flags); |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 692 | if (cache_drop) |
| 693 | remove_rbio_from_cache(cache_drop); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 694 | if (freeit) |
| 695 | __free_raid_bio(freeit); |
| 696 | return ret; |
| 697 | } |
| 698 | |
| 699 | /* |
| 700 | * called as rmw or parity rebuild is completed. If the plug list has more |
| 701 | * rbios waiting for this stripe, the next one on the list will be started |
| 702 | */ |
| 703 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) |
| 704 | { |
| 705 | int bucket; |
| 706 | struct btrfs_stripe_hash *h; |
| 707 | unsigned long flags; |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 708 | int keep_cache = 0; |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 709 | |
| 710 | bucket = rbio_bucket(rbio); |
| 711 | h = rbio->fs_info->stripe_hash_table->table + bucket; |
| 712 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 713 | if (list_empty(&rbio->plug_list)) |
| 714 | cache_rbio(rbio); |
| 715 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 716 | spin_lock_irqsave(&h->lock, flags); |
| 717 | spin_lock(&rbio->bio_list_lock); |
| 718 | |
| 719 | if (!list_empty(&rbio->hash_list)) { |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 720 | /* |
| 721 | * if we're still cached and there is no other IO |
| 722 | * to perform, just leave this rbio here for others |
| 723 | * to steal from later |
| 724 | */ |
| 725 | if (list_empty(&rbio->plug_list) && |
| 726 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { |
| 727 | keep_cache = 1; |
| 728 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 729 | BUG_ON(!bio_list_empty(&rbio->bio_list)); |
| 730 | goto done; |
| 731 | } |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 732 | |
| 733 | list_del_init(&rbio->hash_list); |
| 734 | atomic_dec(&rbio->refs); |
| 735 | |
| 736 | /* |
| 737 | * we use the plug list to hold all the rbios |
| 738 | * waiting for the chance to lock this stripe. |
| 739 | * hand the lock over to one of them. |
| 740 | */ |
| 741 | if (!list_empty(&rbio->plug_list)) { |
| 742 | struct btrfs_raid_bio *next; |
| 743 | struct list_head *head = rbio->plug_list.next; |
| 744 | |
| 745 | next = list_entry(head, struct btrfs_raid_bio, |
| 746 | plug_list); |
| 747 | |
| 748 | list_del_init(&rbio->plug_list); |
| 749 | |
| 750 | list_add(&next->hash_list, &h->hash_list); |
| 751 | atomic_inc(&next->refs); |
| 752 | spin_unlock(&rbio->bio_list_lock); |
| 753 | spin_unlock_irqrestore(&h->lock, flags); |
| 754 | |
| 755 | if (next->read_rebuild) |
| 756 | async_read_rebuild(next); |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 757 | else { |
| 758 | steal_rbio(rbio, next); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 759 | async_rmw_stripe(next); |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 760 | } |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 761 | |
| 762 | goto done_nolock; |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 763 | } else if (waitqueue_active(&h->wait)) { |
| 764 | spin_unlock(&rbio->bio_list_lock); |
| 765 | spin_unlock_irqrestore(&h->lock, flags); |
| 766 | wake_up(&h->wait); |
| 767 | goto done_nolock; |
| 768 | } |
| 769 | } |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 770 | done: |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 771 | spin_unlock(&rbio->bio_list_lock); |
| 772 | spin_unlock_irqrestore(&h->lock, flags); |
| 773 | |
| 774 | done_nolock: |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 775 | if (!keep_cache) |
| 776 | remove_rbio_from_cache(rbio); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 777 | } |
| 778 | |
| 779 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) |
| 780 | { |
| 781 | int i; |
| 782 | |
| 783 | WARN_ON(atomic_read(&rbio->refs) < 0); |
| 784 | if (!atomic_dec_and_test(&rbio->refs)) |
| 785 | return; |
| 786 | |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 787 | WARN_ON(!list_empty(&rbio->stripe_cache)); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 788 | WARN_ON(!list_empty(&rbio->hash_list)); |
| 789 | WARN_ON(!bio_list_empty(&rbio->bio_list)); |
| 790 | |
| 791 | for (i = 0; i < rbio->nr_pages; i++) { |
| 792 | if (rbio->stripe_pages[i]) { |
| 793 | __free_page(rbio->stripe_pages[i]); |
| 794 | rbio->stripe_pages[i] = NULL; |
| 795 | } |
| 796 | } |
| 797 | kfree(rbio->raid_map); |
| 798 | kfree(rbio->bbio); |
| 799 | kfree(rbio); |
| 800 | } |
| 801 | |
| 802 | static void free_raid_bio(struct btrfs_raid_bio *rbio) |
| 803 | { |
| 804 | unlock_stripe(rbio); |
| 805 | __free_raid_bio(rbio); |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * this frees the rbio and runs through all the bios in the |
| 810 | * bio_list and calls end_io on them |
| 811 | */ |
| 812 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) |
| 813 | { |
| 814 | struct bio *cur = bio_list_get(&rbio->bio_list); |
| 815 | struct bio *next; |
| 816 | free_raid_bio(rbio); |
| 817 | |
| 818 | while (cur) { |
| 819 | next = cur->bi_next; |
| 820 | cur->bi_next = NULL; |
| 821 | if (uptodate) |
| 822 | set_bit(BIO_UPTODATE, &cur->bi_flags); |
| 823 | bio_endio(cur, err); |
| 824 | cur = next; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * end io function used by finish_rmw. When we finally |
| 830 | * get here, we've written a full stripe |
| 831 | */ |
| 832 | static void raid_write_end_io(struct bio *bio, int err) |
| 833 | { |
| 834 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 835 | |
| 836 | if (err) |
| 837 | fail_bio_stripe(rbio, bio); |
| 838 | |
| 839 | bio_put(bio); |
| 840 | |
| 841 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) |
| 842 | return; |
| 843 | |
| 844 | err = 0; |
| 845 | |
| 846 | /* OK, we have read all the stripes we need to. */ |
| 847 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) |
| 848 | err = -EIO; |
| 849 | |
| 850 | rbio_orig_end_io(rbio, err, 0); |
| 851 | return; |
| 852 | } |
| 853 | |
| 854 | /* |
| 855 | * the read/modify/write code wants to use the original bio for |
| 856 | * any pages it included, and then use the rbio for everything |
| 857 | * else. This function decides if a given index (stripe number) |
| 858 | * and page number in that stripe fall inside the original bio |
| 859 | * or the rbio. |
| 860 | * |
| 861 | * if you set bio_list_only, you'll get a NULL back for any ranges |
| 862 | * that are outside the bio_list |
| 863 | * |
| 864 | * This doesn't take any refs on anything, you get a bare page pointer |
| 865 | * and the caller must bump refs as required. |
| 866 | * |
| 867 | * You must call index_rbio_pages once before you can trust |
| 868 | * the answers from this function. |
| 869 | */ |
| 870 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, |
| 871 | int index, int pagenr, int bio_list_only) |
| 872 | { |
| 873 | int chunk_page; |
| 874 | struct page *p = NULL; |
| 875 | |
| 876 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; |
| 877 | |
| 878 | spin_lock_irq(&rbio->bio_list_lock); |
| 879 | p = rbio->bio_pages[chunk_page]; |
| 880 | spin_unlock_irq(&rbio->bio_list_lock); |
| 881 | |
| 882 | if (p || bio_list_only) |
| 883 | return p; |
| 884 | |
| 885 | return rbio->stripe_pages[chunk_page]; |
| 886 | } |
| 887 | |
| 888 | /* |
| 889 | * number of pages we need for the entire stripe across all the |
| 890 | * drives |
| 891 | */ |
| 892 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) |
| 893 | { |
| 894 | unsigned long nr = stripe_len * nr_stripes; |
| 895 | return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 896 | } |
| 897 | |
| 898 | /* |
| 899 | * allocation and initial setup for the btrfs_raid_bio. Not |
| 900 | * this does not allocate any pages for rbio->pages. |
| 901 | */ |
| 902 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, |
| 903 | struct btrfs_bio *bbio, u64 *raid_map, |
| 904 | u64 stripe_len) |
| 905 | { |
| 906 | struct btrfs_raid_bio *rbio; |
| 907 | int nr_data = 0; |
| 908 | int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes); |
| 909 | void *p; |
| 910 | |
| 911 | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2, |
| 912 | GFP_NOFS); |
| 913 | if (!rbio) { |
| 914 | kfree(raid_map); |
| 915 | kfree(bbio); |
| 916 | return ERR_PTR(-ENOMEM); |
| 917 | } |
| 918 | |
| 919 | bio_list_init(&rbio->bio_list); |
| 920 | INIT_LIST_HEAD(&rbio->plug_list); |
| 921 | spin_lock_init(&rbio->bio_list_lock); |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 922 | INIT_LIST_HEAD(&rbio->stripe_cache); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 923 | INIT_LIST_HEAD(&rbio->hash_list); |
| 924 | rbio->bbio = bbio; |
| 925 | rbio->raid_map = raid_map; |
| 926 | rbio->fs_info = root->fs_info; |
| 927 | rbio->stripe_len = stripe_len; |
| 928 | rbio->nr_pages = num_pages; |
| 929 | rbio->faila = -1; |
| 930 | rbio->failb = -1; |
| 931 | atomic_set(&rbio->refs, 1); |
| 932 | |
| 933 | /* |
| 934 | * the stripe_pages and bio_pages array point to the extra |
| 935 | * memory we allocated past the end of the rbio |
| 936 | */ |
| 937 | p = rbio + 1; |
| 938 | rbio->stripe_pages = p; |
| 939 | rbio->bio_pages = p + sizeof(struct page *) * num_pages; |
| 940 | |
| 941 | if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE) |
| 942 | nr_data = bbio->num_stripes - 2; |
| 943 | else |
| 944 | nr_data = bbio->num_stripes - 1; |
| 945 | |
| 946 | rbio->nr_data = nr_data; |
| 947 | return rbio; |
| 948 | } |
| 949 | |
| 950 | /* allocate pages for all the stripes in the bio, including parity */ |
| 951 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) |
| 952 | { |
| 953 | int i; |
| 954 | struct page *page; |
| 955 | |
| 956 | for (i = 0; i < rbio->nr_pages; i++) { |
| 957 | if (rbio->stripe_pages[i]) |
| 958 | continue; |
| 959 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 960 | if (!page) |
| 961 | return -ENOMEM; |
| 962 | rbio->stripe_pages[i] = page; |
| 963 | ClearPageUptodate(page); |
| 964 | } |
| 965 | return 0; |
| 966 | } |
| 967 | |
| 968 | /* allocate pages for just the p/q stripes */ |
| 969 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
| 970 | { |
| 971 | int i; |
| 972 | struct page *page; |
| 973 | |
| 974 | i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; |
| 975 | |
| 976 | for (; i < rbio->nr_pages; i++) { |
| 977 | if (rbio->stripe_pages[i]) |
| 978 | continue; |
| 979 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); |
| 980 | if (!page) |
| 981 | return -ENOMEM; |
| 982 | rbio->stripe_pages[i] = page; |
| 983 | } |
| 984 | return 0; |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * add a single page from a specific stripe into our list of bios for IO |
| 989 | * this will try to merge into existing bios if possible, and returns |
| 990 | * zero if all went well. |
| 991 | */ |
| 992 | int rbio_add_io_page(struct btrfs_raid_bio *rbio, |
| 993 | struct bio_list *bio_list, |
| 994 | struct page *page, |
| 995 | int stripe_nr, |
| 996 | unsigned long page_index, |
| 997 | unsigned long bio_max_len) |
| 998 | { |
| 999 | struct bio *last = bio_list->tail; |
| 1000 | u64 last_end = 0; |
| 1001 | int ret; |
| 1002 | struct bio *bio; |
| 1003 | struct btrfs_bio_stripe *stripe; |
| 1004 | u64 disk_start; |
| 1005 | |
| 1006 | stripe = &rbio->bbio->stripes[stripe_nr]; |
| 1007 | disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); |
| 1008 | |
| 1009 | /* if the device is missing, just fail this stripe */ |
| 1010 | if (!stripe->dev->bdev) |
| 1011 | return fail_rbio_index(rbio, stripe_nr); |
| 1012 | |
| 1013 | /* see if we can add this page onto our existing bio */ |
| 1014 | if (last) { |
| 1015 | last_end = (u64)last->bi_sector << 9; |
| 1016 | last_end += last->bi_size; |
| 1017 | |
| 1018 | /* |
| 1019 | * we can't merge these if they are from different |
| 1020 | * devices or if they are not contiguous |
| 1021 | */ |
| 1022 | if (last_end == disk_start && stripe->dev->bdev && |
| 1023 | test_bit(BIO_UPTODATE, &last->bi_flags) && |
| 1024 | last->bi_bdev == stripe->dev->bdev) { |
| 1025 | ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); |
| 1026 | if (ret == PAGE_CACHE_SIZE) |
| 1027 | return 0; |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | /* put a new bio on the list */ |
| 1032 | bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); |
| 1033 | if (!bio) |
| 1034 | return -ENOMEM; |
| 1035 | |
| 1036 | bio->bi_size = 0; |
| 1037 | bio->bi_bdev = stripe->dev->bdev; |
| 1038 | bio->bi_sector = disk_start >> 9; |
| 1039 | set_bit(BIO_UPTODATE, &bio->bi_flags); |
| 1040 | |
| 1041 | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); |
| 1042 | bio_list_add(bio_list, bio); |
| 1043 | return 0; |
| 1044 | } |
| 1045 | |
| 1046 | /* |
| 1047 | * while we're doing the read/modify/write cycle, we could |
| 1048 | * have errors in reading pages off the disk. This checks |
| 1049 | * for errors and if we're not able to read the page it'll |
| 1050 | * trigger parity reconstruction. The rmw will be finished |
| 1051 | * after we've reconstructed the failed stripes |
| 1052 | */ |
| 1053 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) |
| 1054 | { |
| 1055 | if (rbio->faila >= 0 || rbio->failb >= 0) { |
| 1056 | BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1); |
| 1057 | __raid56_parity_recover(rbio); |
| 1058 | } else { |
| 1059 | finish_rmw(rbio); |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | /* |
| 1064 | * these are just the pages from the rbio array, not from anything |
| 1065 | * the FS sent down to us |
| 1066 | */ |
| 1067 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) |
| 1068 | { |
| 1069 | int index; |
| 1070 | index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); |
| 1071 | index += page; |
| 1072 | return rbio->stripe_pages[index]; |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * helper function to walk our bio list and populate the bio_pages array with |
| 1077 | * the result. This seems expensive, but it is faster than constantly |
| 1078 | * searching through the bio list as we setup the IO in finish_rmw or stripe |
| 1079 | * reconstruction. |
| 1080 | * |
| 1081 | * This must be called before you trust the answers from page_in_rbio |
| 1082 | */ |
| 1083 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) |
| 1084 | { |
| 1085 | struct bio *bio; |
| 1086 | u64 start; |
| 1087 | unsigned long stripe_offset; |
| 1088 | unsigned long page_index; |
| 1089 | struct page *p; |
| 1090 | int i; |
| 1091 | |
| 1092 | spin_lock_irq(&rbio->bio_list_lock); |
| 1093 | bio_list_for_each(bio, &rbio->bio_list) { |
| 1094 | start = (u64)bio->bi_sector << 9; |
| 1095 | stripe_offset = start - rbio->raid_map[0]; |
| 1096 | page_index = stripe_offset >> PAGE_CACHE_SHIFT; |
| 1097 | |
| 1098 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 1099 | p = bio->bi_io_vec[i].bv_page; |
| 1100 | rbio->bio_pages[page_index + i] = p; |
| 1101 | } |
| 1102 | } |
| 1103 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * this is called from one of two situations. We either |
| 1108 | * have a full stripe from the higher layers, or we've read all |
| 1109 | * the missing bits off disk. |
| 1110 | * |
| 1111 | * This will calculate the parity and then send down any |
| 1112 | * changed blocks. |
| 1113 | */ |
| 1114 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) |
| 1115 | { |
| 1116 | struct btrfs_bio *bbio = rbio->bbio; |
| 1117 | void *pointers[bbio->num_stripes]; |
| 1118 | int stripe_len = rbio->stripe_len; |
| 1119 | int nr_data = rbio->nr_data; |
| 1120 | int stripe; |
| 1121 | int pagenr; |
| 1122 | int p_stripe = -1; |
| 1123 | int q_stripe = -1; |
| 1124 | struct bio_list bio_list; |
| 1125 | struct bio *bio; |
| 1126 | int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; |
| 1127 | int ret; |
| 1128 | |
| 1129 | bio_list_init(&bio_list); |
| 1130 | |
| 1131 | if (bbio->num_stripes - rbio->nr_data == 1) { |
| 1132 | p_stripe = bbio->num_stripes - 1; |
| 1133 | } else if (bbio->num_stripes - rbio->nr_data == 2) { |
| 1134 | p_stripe = bbio->num_stripes - 2; |
| 1135 | q_stripe = bbio->num_stripes - 1; |
| 1136 | } else { |
| 1137 | BUG(); |
| 1138 | } |
| 1139 | |
| 1140 | /* at this point we either have a full stripe, |
| 1141 | * or we've read the full stripe from the drive. |
| 1142 | * recalculate the parity and write the new results. |
| 1143 | * |
| 1144 | * We're not allowed to add any new bios to the |
| 1145 | * bio list here, anyone else that wants to |
| 1146 | * change this stripe needs to do their own rmw. |
| 1147 | */ |
| 1148 | spin_lock_irq(&rbio->bio_list_lock); |
| 1149 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 1150 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1151 | |
| 1152 | atomic_set(&rbio->bbio->error, 0); |
| 1153 | |
| 1154 | /* |
| 1155 | * now that we've set rmw_locked, run through the |
| 1156 | * bio list one last time and map the page pointers |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 1157 | * |
| 1158 | * We don't cache full rbios because we're assuming |
| 1159 | * the higher layers are unlikely to use this area of |
| 1160 | * the disk again soon. If they do use it again, |
| 1161 | * hopefully they will send another full bio. |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1162 | */ |
| 1163 | index_rbio_pages(rbio); |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 1164 | if (!rbio_is_full(rbio)) |
| 1165 | cache_rbio_pages(rbio); |
| 1166 | else |
| 1167 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1168 | |
| 1169 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { |
| 1170 | struct page *p; |
| 1171 | /* first collect one page from each data stripe */ |
| 1172 | for (stripe = 0; stripe < nr_data; stripe++) { |
| 1173 | p = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1174 | pointers[stripe] = kmap(p); |
| 1175 | } |
| 1176 | |
| 1177 | /* then add the parity stripe */ |
| 1178 | p = rbio_pstripe_page(rbio, pagenr); |
| 1179 | SetPageUptodate(p); |
| 1180 | pointers[stripe++] = kmap(p); |
| 1181 | |
| 1182 | if (q_stripe != -1) { |
| 1183 | |
| 1184 | /* |
| 1185 | * raid6, add the qstripe and call the |
| 1186 | * library function to fill in our p/q |
| 1187 | */ |
| 1188 | p = rbio_qstripe_page(rbio, pagenr); |
| 1189 | SetPageUptodate(p); |
| 1190 | pointers[stripe++] = kmap(p); |
| 1191 | |
| 1192 | raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE, |
| 1193 | pointers); |
| 1194 | } else { |
| 1195 | /* raid5 */ |
| 1196 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); |
| 1197 | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); |
| 1198 | } |
| 1199 | |
| 1200 | |
| 1201 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) |
| 1202 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * time to start writing. Make bios for everything from the |
| 1207 | * higher layers (the bio_list in our rbio) and our p/q. Ignore |
| 1208 | * everything else. |
| 1209 | */ |
| 1210 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { |
| 1211 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { |
| 1212 | struct page *page; |
| 1213 | if (stripe < rbio->nr_data) { |
| 1214 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 1215 | if (!page) |
| 1216 | continue; |
| 1217 | } else { |
| 1218 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1219 | } |
| 1220 | |
| 1221 | ret = rbio_add_io_page(rbio, &bio_list, |
| 1222 | page, stripe, pagenr, rbio->stripe_len); |
| 1223 | if (ret) |
| 1224 | goto cleanup; |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list)); |
| 1229 | BUG_ON(atomic_read(&bbio->stripes_pending) == 0); |
| 1230 | |
| 1231 | while (1) { |
| 1232 | bio = bio_list_pop(&bio_list); |
| 1233 | if (!bio) |
| 1234 | break; |
| 1235 | |
| 1236 | bio->bi_private = rbio; |
| 1237 | bio->bi_end_io = raid_write_end_io; |
| 1238 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); |
| 1239 | submit_bio(WRITE, bio); |
| 1240 | } |
| 1241 | return; |
| 1242 | |
| 1243 | cleanup: |
| 1244 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1245 | } |
| 1246 | |
| 1247 | /* |
| 1248 | * helper to find the stripe number for a given bio. Used to figure out which |
| 1249 | * stripe has failed. This expects the bio to correspond to a physical disk, |
| 1250 | * so it looks up based on physical sector numbers. |
| 1251 | */ |
| 1252 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1253 | struct bio *bio) |
| 1254 | { |
| 1255 | u64 physical = bio->bi_sector; |
| 1256 | u64 stripe_start; |
| 1257 | int i; |
| 1258 | struct btrfs_bio_stripe *stripe; |
| 1259 | |
| 1260 | physical <<= 9; |
| 1261 | |
| 1262 | for (i = 0; i < rbio->bbio->num_stripes; i++) { |
| 1263 | stripe = &rbio->bbio->stripes[i]; |
| 1264 | stripe_start = stripe->physical; |
| 1265 | if (physical >= stripe_start && |
| 1266 | physical < stripe_start + rbio->stripe_len) { |
| 1267 | return i; |
| 1268 | } |
| 1269 | } |
| 1270 | return -1; |
| 1271 | } |
| 1272 | |
| 1273 | /* |
| 1274 | * helper to find the stripe number for a given |
| 1275 | * bio (before mapping). Used to figure out which stripe has |
| 1276 | * failed. This looks up based on logical block numbers. |
| 1277 | */ |
| 1278 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1279 | struct bio *bio) |
| 1280 | { |
| 1281 | u64 logical = bio->bi_sector; |
| 1282 | u64 stripe_start; |
| 1283 | int i; |
| 1284 | |
| 1285 | logical <<= 9; |
| 1286 | |
| 1287 | for (i = 0; i < rbio->nr_data; i++) { |
| 1288 | stripe_start = rbio->raid_map[i]; |
| 1289 | if (logical >= stripe_start && |
| 1290 | logical < stripe_start + rbio->stripe_len) { |
| 1291 | return i; |
| 1292 | } |
| 1293 | } |
| 1294 | return -1; |
| 1295 | } |
| 1296 | |
| 1297 | /* |
| 1298 | * returns -EIO if we had too many failures |
| 1299 | */ |
| 1300 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) |
| 1301 | { |
| 1302 | unsigned long flags; |
| 1303 | int ret = 0; |
| 1304 | |
| 1305 | spin_lock_irqsave(&rbio->bio_list_lock, flags); |
| 1306 | |
| 1307 | /* we already know this stripe is bad, move on */ |
| 1308 | if (rbio->faila == failed || rbio->failb == failed) |
| 1309 | goto out; |
| 1310 | |
| 1311 | if (rbio->faila == -1) { |
| 1312 | /* first failure on this rbio */ |
| 1313 | rbio->faila = failed; |
| 1314 | atomic_inc(&rbio->bbio->error); |
| 1315 | } else if (rbio->failb == -1) { |
| 1316 | /* second failure on this rbio */ |
| 1317 | rbio->failb = failed; |
| 1318 | atomic_inc(&rbio->bbio->error); |
| 1319 | } else { |
| 1320 | ret = -EIO; |
| 1321 | } |
| 1322 | out: |
| 1323 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); |
| 1324 | |
| 1325 | return ret; |
| 1326 | } |
| 1327 | |
| 1328 | /* |
| 1329 | * helper to fail a stripe based on a physical disk |
| 1330 | * bio. |
| 1331 | */ |
| 1332 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, |
| 1333 | struct bio *bio) |
| 1334 | { |
| 1335 | int failed = find_bio_stripe(rbio, bio); |
| 1336 | |
| 1337 | if (failed < 0) |
| 1338 | return -EIO; |
| 1339 | |
| 1340 | return fail_rbio_index(rbio, failed); |
| 1341 | } |
| 1342 | |
| 1343 | /* |
| 1344 | * this sets each page in the bio uptodate. It should only be used on private |
| 1345 | * rbio pages, nothing that comes in from the higher layers |
| 1346 | */ |
| 1347 | static void set_bio_pages_uptodate(struct bio *bio) |
| 1348 | { |
| 1349 | int i; |
| 1350 | struct page *p; |
| 1351 | |
| 1352 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 1353 | p = bio->bi_io_vec[i].bv_page; |
| 1354 | SetPageUptodate(p); |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | /* |
| 1359 | * end io for the read phase of the rmw cycle. All the bios here are physical |
| 1360 | * stripe bios we've read from the disk so we can recalculate the parity of the |
| 1361 | * stripe. |
| 1362 | * |
| 1363 | * This will usually kick off finish_rmw once all the bios are read in, but it |
| 1364 | * may trigger parity reconstruction if we had any errors along the way |
| 1365 | */ |
| 1366 | static void raid_rmw_end_io(struct bio *bio, int err) |
| 1367 | { |
| 1368 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 1369 | |
| 1370 | if (err) |
| 1371 | fail_bio_stripe(rbio, bio); |
| 1372 | else |
| 1373 | set_bio_pages_uptodate(bio); |
| 1374 | |
| 1375 | bio_put(bio); |
| 1376 | |
| 1377 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) |
| 1378 | return; |
| 1379 | |
| 1380 | err = 0; |
| 1381 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) |
| 1382 | goto cleanup; |
| 1383 | |
| 1384 | /* |
| 1385 | * this will normally call finish_rmw to start our write |
| 1386 | * but if there are any failed stripes we'll reconstruct |
| 1387 | * from parity first |
| 1388 | */ |
| 1389 | validate_rbio_for_rmw(rbio); |
| 1390 | return; |
| 1391 | |
| 1392 | cleanup: |
| 1393 | |
| 1394 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1395 | } |
| 1396 | |
| 1397 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) |
| 1398 | { |
| 1399 | rbio->work.flags = 0; |
| 1400 | rbio->work.func = rmw_work; |
| 1401 | |
| 1402 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, |
| 1403 | &rbio->work); |
| 1404 | } |
| 1405 | |
| 1406 | static void async_read_rebuild(struct btrfs_raid_bio *rbio) |
| 1407 | { |
| 1408 | rbio->work.flags = 0; |
| 1409 | rbio->work.func = read_rebuild_work; |
| 1410 | |
| 1411 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, |
| 1412 | &rbio->work); |
| 1413 | } |
| 1414 | |
| 1415 | /* |
| 1416 | * the stripe must be locked by the caller. It will |
| 1417 | * unlock after all the writes are done |
| 1418 | */ |
| 1419 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) |
| 1420 | { |
| 1421 | int bios_to_read = 0; |
| 1422 | struct btrfs_bio *bbio = rbio->bbio; |
| 1423 | struct bio_list bio_list; |
| 1424 | int ret; |
| 1425 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 1426 | int pagenr; |
| 1427 | int stripe; |
| 1428 | struct bio *bio; |
| 1429 | |
| 1430 | bio_list_init(&bio_list); |
| 1431 | |
| 1432 | ret = alloc_rbio_pages(rbio); |
| 1433 | if (ret) |
| 1434 | goto cleanup; |
| 1435 | |
| 1436 | index_rbio_pages(rbio); |
| 1437 | |
| 1438 | atomic_set(&rbio->bbio->error, 0); |
| 1439 | /* |
| 1440 | * build a list of bios to read all the missing parts of this |
| 1441 | * stripe |
| 1442 | */ |
| 1443 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { |
| 1444 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { |
| 1445 | struct page *page; |
| 1446 | /* |
| 1447 | * we want to find all the pages missing from |
| 1448 | * the rbio and read them from the disk. If |
| 1449 | * page_in_rbio finds a page in the bio list |
| 1450 | * we don't need to read it off the stripe. |
| 1451 | */ |
| 1452 | page = page_in_rbio(rbio, stripe, pagenr, 1); |
| 1453 | if (page) |
| 1454 | continue; |
| 1455 | |
| 1456 | page = rbio_stripe_page(rbio, stripe, pagenr); |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 1457 | /* |
| 1458 | * the bio cache may have handed us an uptodate |
| 1459 | * page. If so, be happy and use it |
| 1460 | */ |
| 1461 | if (PageUptodate(page)) |
| 1462 | continue; |
| 1463 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1464 | ret = rbio_add_io_page(rbio, &bio_list, page, |
| 1465 | stripe, pagenr, rbio->stripe_len); |
| 1466 | if (ret) |
| 1467 | goto cleanup; |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | bios_to_read = bio_list_size(&bio_list); |
| 1472 | if (!bios_to_read) { |
| 1473 | /* |
| 1474 | * this can happen if others have merged with |
| 1475 | * us, it means there is nothing left to read. |
| 1476 | * But if there are missing devices it may not be |
| 1477 | * safe to do the full stripe write yet. |
| 1478 | */ |
| 1479 | goto finish; |
| 1480 | } |
| 1481 | |
| 1482 | /* |
| 1483 | * the bbio may be freed once we submit the last bio. Make sure |
| 1484 | * not to touch it after that |
| 1485 | */ |
| 1486 | atomic_set(&bbio->stripes_pending, bios_to_read); |
| 1487 | while (1) { |
| 1488 | bio = bio_list_pop(&bio_list); |
| 1489 | if (!bio) |
| 1490 | break; |
| 1491 | |
| 1492 | bio->bi_private = rbio; |
| 1493 | bio->bi_end_io = raid_rmw_end_io; |
| 1494 | |
| 1495 | btrfs_bio_wq_end_io(rbio->fs_info, bio, |
| 1496 | BTRFS_WQ_ENDIO_RAID56); |
| 1497 | |
| 1498 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); |
| 1499 | submit_bio(READ, bio); |
| 1500 | } |
| 1501 | /* the actual write will happen once the reads are done */ |
| 1502 | return 0; |
| 1503 | |
| 1504 | cleanup: |
| 1505 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1506 | return -EIO; |
| 1507 | |
| 1508 | finish: |
| 1509 | validate_rbio_for_rmw(rbio); |
| 1510 | return 0; |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * if the upper layers pass in a full stripe, we thank them by only allocating |
| 1515 | * enough pages to hold the parity, and sending it all down quickly. |
| 1516 | */ |
| 1517 | static int full_stripe_write(struct btrfs_raid_bio *rbio) |
| 1518 | { |
| 1519 | int ret; |
| 1520 | |
| 1521 | ret = alloc_rbio_parity_pages(rbio); |
| 1522 | if (ret) |
| 1523 | return ret; |
| 1524 | |
| 1525 | ret = lock_stripe_add(rbio); |
| 1526 | if (ret == 0) |
| 1527 | finish_rmw(rbio); |
| 1528 | return 0; |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * partial stripe writes get handed over to async helpers. |
| 1533 | * We're really hoping to merge a few more writes into this |
| 1534 | * rbio before calculating new parity |
| 1535 | */ |
| 1536 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) |
| 1537 | { |
| 1538 | int ret; |
| 1539 | |
| 1540 | ret = lock_stripe_add(rbio); |
| 1541 | if (ret == 0) |
| 1542 | async_rmw_stripe(rbio); |
| 1543 | return 0; |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | * sometimes while we were reading from the drive to |
| 1548 | * recalculate parity, enough new bios come into create |
| 1549 | * a full stripe. So we do a check here to see if we can |
| 1550 | * go directly to finish_rmw |
| 1551 | */ |
| 1552 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) |
| 1553 | { |
| 1554 | /* head off into rmw land if we don't have a full stripe */ |
| 1555 | if (!rbio_is_full(rbio)) |
| 1556 | return partial_stripe_write(rbio); |
| 1557 | return full_stripe_write(rbio); |
| 1558 | } |
| 1559 | |
| 1560 | /* |
| 1561 | * our main entry point for writes from the rest of the FS. |
| 1562 | */ |
| 1563 | int raid56_parity_write(struct btrfs_root *root, struct bio *bio, |
| 1564 | struct btrfs_bio *bbio, u64 *raid_map, |
| 1565 | u64 stripe_len) |
| 1566 | { |
| 1567 | struct btrfs_raid_bio *rbio; |
| 1568 | |
| 1569 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); |
| 1570 | if (IS_ERR(rbio)) { |
| 1571 | kfree(raid_map); |
| 1572 | kfree(bbio); |
| 1573 | return PTR_ERR(rbio); |
| 1574 | } |
| 1575 | bio_list_add(&rbio->bio_list, bio); |
| 1576 | rbio->bio_list_bytes = bio->bi_size; |
| 1577 | return __raid56_parity_write(rbio); |
| 1578 | } |
| 1579 | |
| 1580 | /* |
| 1581 | * all parity reconstruction happens here. We've read in everything |
| 1582 | * we can find from the drives and this does the heavy lifting of |
| 1583 | * sorting the good from the bad. |
| 1584 | */ |
| 1585 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) |
| 1586 | { |
| 1587 | int pagenr, stripe; |
| 1588 | void **pointers; |
| 1589 | int faila = -1, failb = -1; |
| 1590 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 1591 | struct page *page; |
| 1592 | int err; |
| 1593 | int i; |
| 1594 | |
| 1595 | pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *), |
| 1596 | GFP_NOFS); |
| 1597 | if (!pointers) { |
| 1598 | err = -ENOMEM; |
| 1599 | goto cleanup_io; |
| 1600 | } |
| 1601 | |
| 1602 | faila = rbio->faila; |
| 1603 | failb = rbio->failb; |
| 1604 | |
| 1605 | if (rbio->read_rebuild) { |
| 1606 | spin_lock_irq(&rbio->bio_list_lock); |
| 1607 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
| 1608 | spin_unlock_irq(&rbio->bio_list_lock); |
| 1609 | } |
| 1610 | |
| 1611 | index_rbio_pages(rbio); |
| 1612 | |
| 1613 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { |
| 1614 | /* setup our array of pointers with pages |
| 1615 | * from each stripe |
| 1616 | */ |
| 1617 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { |
| 1618 | /* |
| 1619 | * if we're rebuilding a read, we have to use |
| 1620 | * pages from the bio list |
| 1621 | */ |
| 1622 | if (rbio->read_rebuild && |
| 1623 | (stripe == faila || stripe == failb)) { |
| 1624 | page = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1625 | } else { |
| 1626 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1627 | } |
| 1628 | pointers[stripe] = kmap(page); |
| 1629 | } |
| 1630 | |
| 1631 | /* all raid6 handling here */ |
| 1632 | if (rbio->raid_map[rbio->bbio->num_stripes - 1] == |
| 1633 | RAID6_Q_STRIPE) { |
| 1634 | |
| 1635 | /* |
| 1636 | * single failure, rebuild from parity raid5 |
| 1637 | * style |
| 1638 | */ |
| 1639 | if (failb < 0) { |
| 1640 | if (faila == rbio->nr_data) { |
| 1641 | /* |
| 1642 | * Just the P stripe has failed, without |
| 1643 | * a bad data or Q stripe. |
| 1644 | * TODO, we should redo the xor here. |
| 1645 | */ |
| 1646 | err = -EIO; |
| 1647 | goto cleanup; |
| 1648 | } |
| 1649 | /* |
| 1650 | * a single failure in raid6 is rebuilt |
| 1651 | * in the pstripe code below |
| 1652 | */ |
| 1653 | goto pstripe; |
| 1654 | } |
| 1655 | |
| 1656 | /* make sure our ps and qs are in order */ |
| 1657 | if (faila > failb) { |
| 1658 | int tmp = failb; |
| 1659 | failb = faila; |
| 1660 | faila = tmp; |
| 1661 | } |
| 1662 | |
| 1663 | /* if the q stripe is failed, do a pstripe reconstruction |
| 1664 | * from the xors. |
| 1665 | * If both the q stripe and the P stripe are failed, we're |
| 1666 | * here due to a crc mismatch and we can't give them the |
| 1667 | * data they want |
| 1668 | */ |
| 1669 | if (rbio->raid_map[failb] == RAID6_Q_STRIPE) { |
| 1670 | if (rbio->raid_map[faila] == RAID5_P_STRIPE) { |
| 1671 | err = -EIO; |
| 1672 | goto cleanup; |
| 1673 | } |
| 1674 | /* |
| 1675 | * otherwise we have one bad data stripe and |
| 1676 | * a good P stripe. raid5! |
| 1677 | */ |
| 1678 | goto pstripe; |
| 1679 | } |
| 1680 | |
| 1681 | if (rbio->raid_map[failb] == RAID5_P_STRIPE) { |
| 1682 | raid6_datap_recov(rbio->bbio->num_stripes, |
| 1683 | PAGE_SIZE, faila, pointers); |
| 1684 | } else { |
| 1685 | raid6_2data_recov(rbio->bbio->num_stripes, |
| 1686 | PAGE_SIZE, faila, failb, |
| 1687 | pointers); |
| 1688 | } |
| 1689 | } else { |
| 1690 | void *p; |
| 1691 | |
| 1692 | /* rebuild from P stripe here (raid5 or raid6) */ |
| 1693 | BUG_ON(failb != -1); |
| 1694 | pstripe: |
| 1695 | /* Copy parity block into failed block to start with */ |
| 1696 | memcpy(pointers[faila], |
| 1697 | pointers[rbio->nr_data], |
| 1698 | PAGE_CACHE_SIZE); |
| 1699 | |
| 1700 | /* rearrange the pointer array */ |
| 1701 | p = pointers[faila]; |
| 1702 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) |
| 1703 | pointers[stripe] = pointers[stripe + 1]; |
| 1704 | pointers[rbio->nr_data - 1] = p; |
| 1705 | |
| 1706 | /* xor in the rest */ |
| 1707 | run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); |
| 1708 | } |
| 1709 | /* if we're doing this rebuild as part of an rmw, go through |
| 1710 | * and set all of our private rbio pages in the |
| 1711 | * failed stripes as uptodate. This way finish_rmw will |
| 1712 | * know they can be trusted. If this was a read reconstruction, |
| 1713 | * other endio functions will fiddle the uptodate bits |
| 1714 | */ |
| 1715 | if (!rbio->read_rebuild) { |
| 1716 | for (i = 0; i < nr_pages; i++) { |
| 1717 | if (faila != -1) { |
| 1718 | page = rbio_stripe_page(rbio, faila, i); |
| 1719 | SetPageUptodate(page); |
| 1720 | } |
| 1721 | if (failb != -1) { |
| 1722 | page = rbio_stripe_page(rbio, failb, i); |
| 1723 | SetPageUptodate(page); |
| 1724 | } |
| 1725 | } |
| 1726 | } |
| 1727 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { |
| 1728 | /* |
| 1729 | * if we're rebuilding a read, we have to use |
| 1730 | * pages from the bio list |
| 1731 | */ |
| 1732 | if (rbio->read_rebuild && |
| 1733 | (stripe == faila || stripe == failb)) { |
| 1734 | page = page_in_rbio(rbio, stripe, pagenr, 0); |
| 1735 | } else { |
| 1736 | page = rbio_stripe_page(rbio, stripe, pagenr); |
| 1737 | } |
| 1738 | kunmap(page); |
| 1739 | } |
| 1740 | } |
| 1741 | |
| 1742 | err = 0; |
| 1743 | cleanup: |
| 1744 | kfree(pointers); |
| 1745 | |
| 1746 | cleanup_io: |
| 1747 | |
| 1748 | if (rbio->read_rebuild) { |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 1749 | if (err == 0) |
| 1750 | cache_rbio_pages(rbio); |
| 1751 | else |
| 1752 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
| 1753 | |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1754 | rbio_orig_end_io(rbio, err, err == 0); |
| 1755 | } else if (err == 0) { |
| 1756 | rbio->faila = -1; |
| 1757 | rbio->failb = -1; |
| 1758 | finish_rmw(rbio); |
| 1759 | } else { |
| 1760 | rbio_orig_end_io(rbio, err, 0); |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | /* |
| 1765 | * This is called only for stripes we've read from disk to |
| 1766 | * reconstruct the parity. |
| 1767 | */ |
| 1768 | static void raid_recover_end_io(struct bio *bio, int err) |
| 1769 | { |
| 1770 | struct btrfs_raid_bio *rbio = bio->bi_private; |
| 1771 | |
| 1772 | /* |
| 1773 | * we only read stripe pages off the disk, set them |
| 1774 | * up to date if there were no errors |
| 1775 | */ |
| 1776 | if (err) |
| 1777 | fail_bio_stripe(rbio, bio); |
| 1778 | else |
| 1779 | set_bio_pages_uptodate(bio); |
| 1780 | bio_put(bio); |
| 1781 | |
| 1782 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) |
| 1783 | return; |
| 1784 | |
| 1785 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) |
| 1786 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1787 | else |
| 1788 | __raid_recover_end_io(rbio); |
| 1789 | } |
| 1790 | |
| 1791 | /* |
| 1792 | * reads everything we need off the disk to reconstruct |
| 1793 | * the parity. endio handlers trigger final reconstruction |
| 1794 | * when the IO is done. |
| 1795 | * |
| 1796 | * This is used both for reads from the higher layers and for |
| 1797 | * parity construction required to finish a rmw cycle. |
| 1798 | */ |
| 1799 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) |
| 1800 | { |
| 1801 | int bios_to_read = 0; |
| 1802 | struct btrfs_bio *bbio = rbio->bbio; |
| 1803 | struct bio_list bio_list; |
| 1804 | int ret; |
| 1805 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
| 1806 | int pagenr; |
| 1807 | int stripe; |
| 1808 | struct bio *bio; |
| 1809 | |
| 1810 | bio_list_init(&bio_list); |
| 1811 | |
| 1812 | ret = alloc_rbio_pages(rbio); |
| 1813 | if (ret) |
| 1814 | goto cleanup; |
| 1815 | |
| 1816 | atomic_set(&rbio->bbio->error, 0); |
| 1817 | |
| 1818 | /* |
Chris Mason | 4ae10b3 | 2013-01-31 14:42:09 -0500 | [diff] [blame^] | 1819 | * read everything that hasn't failed. Thanks to the |
| 1820 | * stripe cache, it is possible that some or all of these |
| 1821 | * pages are going to be uptodate. |
David Woodhouse | 53b381b | 2013-01-29 18:40:14 -0500 | [diff] [blame] | 1822 | */ |
| 1823 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { |
| 1824 | if (rbio->faila == stripe || |
| 1825 | rbio->failb == stripe) |
| 1826 | continue; |
| 1827 | |
| 1828 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { |
| 1829 | struct page *p; |
| 1830 | |
| 1831 | /* |
| 1832 | * the rmw code may have already read this |
| 1833 | * page in |
| 1834 | */ |
| 1835 | p = rbio_stripe_page(rbio, stripe, pagenr); |
| 1836 | if (PageUptodate(p)) |
| 1837 | continue; |
| 1838 | |
| 1839 | ret = rbio_add_io_page(rbio, &bio_list, |
| 1840 | rbio_stripe_page(rbio, stripe, pagenr), |
| 1841 | stripe, pagenr, rbio->stripe_len); |
| 1842 | if (ret < 0) |
| 1843 | goto cleanup; |
| 1844 | } |
| 1845 | } |
| 1846 | |
| 1847 | bios_to_read = bio_list_size(&bio_list); |
| 1848 | if (!bios_to_read) { |
| 1849 | /* |
| 1850 | * we might have no bios to read just because the pages |
| 1851 | * were up to date, or we might have no bios to read because |
| 1852 | * the devices were gone. |
| 1853 | */ |
| 1854 | if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) { |
| 1855 | __raid_recover_end_io(rbio); |
| 1856 | goto out; |
| 1857 | } else { |
| 1858 | goto cleanup; |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | /* |
| 1863 | * the bbio may be freed once we submit the last bio. Make sure |
| 1864 | * not to touch it after that |
| 1865 | */ |
| 1866 | atomic_set(&bbio->stripes_pending, bios_to_read); |
| 1867 | while (1) { |
| 1868 | bio = bio_list_pop(&bio_list); |
| 1869 | if (!bio) |
| 1870 | break; |
| 1871 | |
| 1872 | bio->bi_private = rbio; |
| 1873 | bio->bi_end_io = raid_recover_end_io; |
| 1874 | |
| 1875 | btrfs_bio_wq_end_io(rbio->fs_info, bio, |
| 1876 | BTRFS_WQ_ENDIO_RAID56); |
| 1877 | |
| 1878 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); |
| 1879 | submit_bio(READ, bio); |
| 1880 | } |
| 1881 | out: |
| 1882 | return 0; |
| 1883 | |
| 1884 | cleanup: |
| 1885 | if (rbio->read_rebuild) |
| 1886 | rbio_orig_end_io(rbio, -EIO, 0); |
| 1887 | return -EIO; |
| 1888 | } |
| 1889 | |
| 1890 | /* |
| 1891 | * the main entry point for reads from the higher layers. This |
| 1892 | * is really only called when the normal read path had a failure, |
| 1893 | * so we assume the bio they send down corresponds to a failed part |
| 1894 | * of the drive. |
| 1895 | */ |
| 1896 | int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, |
| 1897 | struct btrfs_bio *bbio, u64 *raid_map, |
| 1898 | u64 stripe_len, int mirror_num) |
| 1899 | { |
| 1900 | struct btrfs_raid_bio *rbio; |
| 1901 | int ret; |
| 1902 | |
| 1903 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); |
| 1904 | if (IS_ERR(rbio)) { |
| 1905 | return PTR_ERR(rbio); |
| 1906 | } |
| 1907 | |
| 1908 | rbio->read_rebuild = 1; |
| 1909 | bio_list_add(&rbio->bio_list, bio); |
| 1910 | rbio->bio_list_bytes = bio->bi_size; |
| 1911 | |
| 1912 | rbio->faila = find_logical_bio_stripe(rbio, bio); |
| 1913 | if (rbio->faila == -1) { |
| 1914 | BUG(); |
| 1915 | kfree(rbio); |
| 1916 | return -EIO; |
| 1917 | } |
| 1918 | |
| 1919 | /* |
| 1920 | * reconstruct from the q stripe if they are |
| 1921 | * asking for mirror 3 |
| 1922 | */ |
| 1923 | if (mirror_num == 3) |
| 1924 | rbio->failb = bbio->num_stripes - 2; |
| 1925 | |
| 1926 | ret = lock_stripe_add(rbio); |
| 1927 | |
| 1928 | /* |
| 1929 | * __raid56_parity_recover will end the bio with |
| 1930 | * any errors it hits. We don't want to return |
| 1931 | * its error value up the stack because our caller |
| 1932 | * will end up calling bio_endio with any nonzero |
| 1933 | * return |
| 1934 | */ |
| 1935 | if (ret == 0) |
| 1936 | __raid56_parity_recover(rbio); |
| 1937 | /* |
| 1938 | * our rbio has been added to the list of |
| 1939 | * rbios that will be handled after the |
| 1940 | * currently lock owner is done |
| 1941 | */ |
| 1942 | return 0; |
| 1943 | |
| 1944 | } |
| 1945 | |
| 1946 | static void rmw_work(struct btrfs_work *work) |
| 1947 | { |
| 1948 | struct btrfs_raid_bio *rbio; |
| 1949 | |
| 1950 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 1951 | raid56_rmw_stripe(rbio); |
| 1952 | } |
| 1953 | |
| 1954 | static void read_rebuild_work(struct btrfs_work *work) |
| 1955 | { |
| 1956 | struct btrfs_raid_bio *rbio; |
| 1957 | |
| 1958 | rbio = container_of(work, struct btrfs_raid_bio, work); |
| 1959 | __raid56_parity_recover(rbio); |
| 1960 | } |