blob: 2804db03e9d934eba256d964cd0fde3bb4dbf11e [file] [log] [blame]
Auke Kok9d5c8242008-01-24 02:22:38 -08001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
Alexander Duyck86d5d382009-02-06 23:23:12 +00004 Copyright(c) 2007-2009 Intel Corporation.
Auke Kok9d5c8242008-01-24 02:22:38 -08005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
Auke Kok9d5c8242008-01-24 02:22:38 -080039
Auke Kok9d5c8242008-01-24 02:22:38 -080040static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
41{
42 struct igb_adapter *adapter = hw->back;
43 u16 cap_offset;
44
45 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
46 if (!cap_offset)
47 return -E1000_ERR_CONFIG;
48
49 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
50
51 return 0;
52}
53
54/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070055 * igb_get_bus_info_pcie - Get PCIe bus information
Auke Kok9d5c8242008-01-24 02:22:38 -080056 * @hw: pointer to the HW structure
57 *
58 * Determines and stores the system bus information for a particular
59 * network interface. The following bus information is determined and stored:
60 * bus speed, bus width, type (PCIe), and PCIe function.
61 **/
62s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
63{
64 struct e1000_bus_info *bus = &hw->bus;
65 s32 ret_val;
Alexander Duyck5e8427e2008-12-10 01:09:53 -080066 u32 reg;
67 u16 pcie_link_status;
Auke Kok9d5c8242008-01-24 02:22:38 -080068
69 bus->type = e1000_bus_type_pci_express;
70 bus->speed = e1000_bus_speed_2500;
71
72 ret_val = igb_read_pcie_cap_reg(hw,
73 PCIE_LINK_STATUS,
74 &pcie_link_status);
75 if (ret_val)
76 bus->width = e1000_bus_width_unknown;
77 else
78 bus->width = (enum e1000_bus_width)((pcie_link_status &
79 PCIE_LINK_WIDTH_MASK) >>
80 PCIE_LINK_WIDTH_SHIFT);
81
Alexander Duyck5e8427e2008-12-10 01:09:53 -080082 reg = rd32(E1000_STATUS);
83 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
Auke Kok9d5c8242008-01-24 02:22:38 -080084
85 return 0;
86}
87
88/**
Jeff Kirsher733596b2008-06-27 10:59:59 -070089 * igb_clear_vfta - Clear VLAN filter table
Auke Kok9d5c8242008-01-24 02:22:38 -080090 * @hw: pointer to the HW structure
91 *
92 * Clears the register array which contains the VLAN filter table by
93 * setting all the values to 0.
94 **/
95void igb_clear_vfta(struct e1000_hw *hw)
96{
97 u32 offset;
98
99 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 array_wr32(E1000_VFTA, offset, 0);
101 wrfl();
102 }
103}
104
105/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700106 * igb_write_vfta - Write value to VLAN filter table
Auke Kok9d5c8242008-01-24 02:22:38 -0800107 * @hw: pointer to the HW structure
108 * @offset: register offset in VLAN filter table
109 * @value: register value written to VLAN filter table
110 *
111 * Writes value at the given offset in the register array which stores
112 * the VLAN filter table.
113 **/
114void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115{
116 array_wr32(E1000_VFTA, offset, value);
117 wrfl();
118}
119
120/**
Alexander Duyck4ae196d2009-02-19 20:40:07 -0800121 * igb_vfta_set - enable or disable vlan in VLAN filter table
122 * @hw: pointer to the HW structure
123 * @vid: VLAN id to add or remove
124 * @add: if true add filter, if false remove
125 *
126 * Sets or clears a bit in the VLAN filter table array based on VLAN id
127 * and if we are adding or removing the filter
128 **/
129void igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
130{
131 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
132 u32 mask = 1 < (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
133 u32 vfta;
134
135 vfta = array_rd32(E1000_VFTA, index);
136 if (add)
137 vfta |= mask;
138 else
139 vfta &= ~mask;
140
141 igb_write_vfta(hw, index, vfta);
142}
143
144/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700145 * igb_check_alt_mac_addr - Check for alternate MAC addr
Auke Kok9d5c8242008-01-24 02:22:38 -0800146 * @hw: pointer to the HW structure
147 *
148 * Checks the nvm for an alternate MAC address. An alternate MAC address
149 * can be setup by pre-boot software and must be treated like a permanent
150 * address and must override the actual permanent MAC address. If an
151 * alternate MAC address is fopund it is saved in the hw struct and
152 * prgrammed into RAR0 and the cuntion returns success, otherwise the
153 * fucntion returns an error.
154 **/
155s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
156{
157 u32 i;
158 s32 ret_val = 0;
159 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
160 u8 alt_mac_addr[ETH_ALEN];
161
Alexander Duyck312c75a2009-02-06 23:17:47 +0000162 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
Auke Kok9d5c8242008-01-24 02:22:38 -0800163 &nvm_alt_mac_addr_offset);
164 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700165 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800166 goto out;
167 }
168
169 if (nvm_alt_mac_addr_offset == 0xFFFF) {
170 ret_val = -(E1000_NOT_IMPLEMENTED);
171 goto out;
172 }
173
174 if (hw->bus.func == E1000_FUNC_1)
175 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
176
177 for (i = 0; i < ETH_ALEN; i += 2) {
178 offset = nvm_alt_mac_addr_offset + (i >> 1);
Alexander Duyck312c75a2009-02-06 23:17:47 +0000179 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800180 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700181 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800182 goto out;
183 }
184
185 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
186 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
187 }
188
189 /* if multicast bit is set, the alternate address will not be used */
190 if (alt_mac_addr[0] & 0x01) {
191 ret_val = -(E1000_NOT_IMPLEMENTED);
192 goto out;
193 }
194
195 for (i = 0; i < ETH_ALEN; i++)
196 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
197
198 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
199
200out:
201 return ret_val;
202}
203
204/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700205 * igb_rar_set - Set receive address register
Auke Kok9d5c8242008-01-24 02:22:38 -0800206 * @hw: pointer to the HW structure
207 * @addr: pointer to the receive address
208 * @index: receive address array register
209 *
210 * Sets the receive address array register at index to the address passed
211 * in by addr.
212 **/
213void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
214{
215 u32 rar_low, rar_high;
216
217 /*
218 * HW expects these in little endian so we reverse the byte order
219 * from network order (big endian) to little endian
220 */
221 rar_low = ((u32) addr[0] |
222 ((u32) addr[1] << 8) |
223 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
224
225 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
226
Alexander Duyck86757372009-02-06 23:21:51 +0000227 /* If MAC address zero, no need to set the AV bit */
228 if (rar_low || rar_high)
Auke Kok9d5c8242008-01-24 02:22:38 -0800229 rar_high |= E1000_RAH_AV;
230
Alexander Duyck5e8427e2008-12-10 01:09:53 -0800231 wr32(E1000_RAL(index), rar_low);
232 wr32(E1000_RAH(index), rar_high);
Auke Kok9d5c8242008-01-24 02:22:38 -0800233}
234
235/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700236 * igb_mta_set - Set multicast filter table address
Auke Kok9d5c8242008-01-24 02:22:38 -0800237 * @hw: pointer to the HW structure
238 * @hash_value: determines the MTA register and bit to set
239 *
240 * The multicast table address is a register array of 32-bit registers.
241 * The hash_value is used to determine what register the bit is in, the
242 * current value is read, the new bit is OR'd in and the new value is
243 * written back into the register.
244 **/
Alexander Duyck549bdd82008-08-04 15:00:06 -0700245void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
Auke Kok9d5c8242008-01-24 02:22:38 -0800246{
247 u32 hash_bit, hash_reg, mta;
248
249 /*
250 * The MTA is a register array of 32-bit registers. It is
251 * treated like an array of (32*mta_reg_count) bits. We want to
252 * set bit BitArray[hash_value]. So we figure out what register
253 * the bit is in, read it, OR in the new bit, then write
254 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
255 * mask to bits 31:5 of the hash value which gives us the
256 * register we're modifying. The hash bit within that register
257 * is determined by the lower 5 bits of the hash value.
258 */
259 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
260 hash_bit = hash_value & 0x1F;
261
262 mta = array_rd32(E1000_MTA, hash_reg);
263
264 mta |= (1 << hash_bit);
265
266 array_wr32(E1000_MTA, hash_reg, mta);
267 wrfl();
268}
269
270/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700271 * igb_hash_mc_addr - Generate a multicast hash value
Auke Kok9d5c8242008-01-24 02:22:38 -0800272 * @hw: pointer to the HW structure
273 * @mc_addr: pointer to a multicast address
274 *
275 * Generates a multicast address hash value which is used to determine
276 * the multicast filter table array address and new table value. See
277 * igb_mta_set()
278 **/
Alexander Duyck2d064c02008-07-08 15:10:12 -0700279u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
Auke Kok9d5c8242008-01-24 02:22:38 -0800280{
281 u32 hash_value, hash_mask;
282 u8 bit_shift = 0;
283
284 /* Register count multiplied by bits per register */
285 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
286
287 /*
288 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
289 * where 0xFF would still fall within the hash mask.
290 */
291 while (hash_mask >> bit_shift != 0xFF)
292 bit_shift++;
293
294 /*
295 * The portion of the address that is used for the hash table
296 * is determined by the mc_filter_type setting.
297 * The algorithm is such that there is a total of 8 bits of shifting.
298 * The bit_shift for a mc_filter_type of 0 represents the number of
299 * left-shifts where the MSB of mc_addr[5] would still fall within
300 * the hash_mask. Case 0 does this exactly. Since there are a total
301 * of 8 bits of shifting, then mc_addr[4] will shift right the
302 * remaining number of bits. Thus 8 - bit_shift. The rest of the
303 * cases are a variation of this algorithm...essentially raising the
304 * number of bits to shift mc_addr[5] left, while still keeping the
305 * 8-bit shifting total.
306 *
307 * For example, given the following Destination MAC Address and an
308 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
309 * we can see that the bit_shift for case 0 is 4. These are the hash
310 * values resulting from each mc_filter_type...
311 * [0] [1] [2] [3] [4] [5]
312 * 01 AA 00 12 34 56
313 * LSB MSB
314 *
315 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
316 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
317 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
318 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
319 */
320 switch (hw->mac.mc_filter_type) {
321 default:
322 case 0:
323 break;
324 case 1:
325 bit_shift += 1;
326 break;
327 case 2:
328 bit_shift += 2;
329 break;
330 case 3:
331 bit_shift += 4;
332 break;
333 }
334
335 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
336 (((u16) mc_addr[5]) << bit_shift)));
337
338 return hash_value;
339}
340
341/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700342 * igb_clear_hw_cntrs_base - Clear base hardware counters
Auke Kok9d5c8242008-01-24 02:22:38 -0800343 * @hw: pointer to the HW structure
344 *
345 * Clears the base hardware counters by reading the counter registers.
346 **/
347void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
348{
349 u32 temp;
350
351 temp = rd32(E1000_CRCERRS);
352 temp = rd32(E1000_SYMERRS);
353 temp = rd32(E1000_MPC);
354 temp = rd32(E1000_SCC);
355 temp = rd32(E1000_ECOL);
356 temp = rd32(E1000_MCC);
357 temp = rd32(E1000_LATECOL);
358 temp = rd32(E1000_COLC);
359 temp = rd32(E1000_DC);
360 temp = rd32(E1000_SEC);
361 temp = rd32(E1000_RLEC);
362 temp = rd32(E1000_XONRXC);
363 temp = rd32(E1000_XONTXC);
364 temp = rd32(E1000_XOFFRXC);
365 temp = rd32(E1000_XOFFTXC);
366 temp = rd32(E1000_FCRUC);
367 temp = rd32(E1000_GPRC);
368 temp = rd32(E1000_BPRC);
369 temp = rd32(E1000_MPRC);
370 temp = rd32(E1000_GPTC);
371 temp = rd32(E1000_GORCL);
372 temp = rd32(E1000_GORCH);
373 temp = rd32(E1000_GOTCL);
374 temp = rd32(E1000_GOTCH);
375 temp = rd32(E1000_RNBC);
376 temp = rd32(E1000_RUC);
377 temp = rd32(E1000_RFC);
378 temp = rd32(E1000_ROC);
379 temp = rd32(E1000_RJC);
380 temp = rd32(E1000_TORL);
381 temp = rd32(E1000_TORH);
382 temp = rd32(E1000_TOTL);
383 temp = rd32(E1000_TOTH);
384 temp = rd32(E1000_TPR);
385 temp = rd32(E1000_TPT);
386 temp = rd32(E1000_MPTC);
387 temp = rd32(E1000_BPTC);
388}
389
390/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700391 * igb_check_for_copper_link - Check for link (Copper)
Auke Kok9d5c8242008-01-24 02:22:38 -0800392 * @hw: pointer to the HW structure
393 *
394 * Checks to see of the link status of the hardware has changed. If a
395 * change in link status has been detected, then we read the PHY registers
396 * to get the current speed/duplex if link exists.
397 **/
398s32 igb_check_for_copper_link(struct e1000_hw *hw)
399{
400 struct e1000_mac_info *mac = &hw->mac;
401 s32 ret_val;
402 bool link;
403
404 /*
405 * We only want to go out to the PHY registers to see if Auto-Neg
406 * has completed and/or if our link status has changed. The
407 * get_link_status flag is set upon receiving a Link Status
408 * Change or Rx Sequence Error interrupt.
409 */
410 if (!mac->get_link_status) {
411 ret_val = 0;
412 goto out;
413 }
414
415 /*
416 * First we want to see if the MII Status Register reports
417 * link. If so, then we want to get the current speed/duplex
418 * of the PHY.
419 */
420 ret_val = igb_phy_has_link(hw, 1, 0, &link);
421 if (ret_val)
422 goto out;
423
424 if (!link)
425 goto out; /* No link detected */
426
427 mac->get_link_status = false;
428
429 /*
430 * Check if there was DownShift, must be checked
431 * immediately after link-up
432 */
433 igb_check_downshift(hw);
434
435 /*
436 * If we are forcing speed/duplex, then we simply return since
437 * we have already determined whether we have link or not.
438 */
439 if (!mac->autoneg) {
440 ret_val = -E1000_ERR_CONFIG;
441 goto out;
442 }
443
444 /*
445 * Auto-Neg is enabled. Auto Speed Detection takes care
446 * of MAC speed/duplex configuration. So we only need to
447 * configure Collision Distance in the MAC.
448 */
449 igb_config_collision_dist(hw);
450
451 /*
452 * Configure Flow Control now that Auto-Neg has completed.
453 * First, we need to restore the desired flow control
454 * settings because we may have had to re-autoneg with a
455 * different link partner.
456 */
457 ret_val = igb_config_fc_after_link_up(hw);
458 if (ret_val)
Auke Kok652fff32008-06-27 11:00:18 -0700459 hw_dbg("Error configuring flow control\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800460
461out:
462 return ret_val;
463}
464
465/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700466 * igb_setup_link - Setup flow control and link settings
Auke Kok9d5c8242008-01-24 02:22:38 -0800467 * @hw: pointer to the HW structure
468 *
469 * Determines which flow control settings to use, then configures flow
470 * control. Calls the appropriate media-specific link configuration
471 * function. Assuming the adapter has a valid link partner, a valid link
472 * should be established. Assumes the hardware has previously been reset
473 * and the transmitter and receiver are not enabled.
474 **/
475s32 igb_setup_link(struct e1000_hw *hw)
476{
477 s32 ret_val = 0;
478
479 /*
480 * In the case of the phy reset being blocked, we already have a link.
481 * We do not need to set it up again.
482 */
483 if (igb_check_reset_block(hw))
484 goto out;
485
486 ret_val = igb_set_default_fc(hw);
487 if (ret_val)
488 goto out;
489
490 /*
491 * We want to save off the original Flow Control configuration just
492 * in case we get disconnected and then reconnected into a different
493 * hub or switch with different Flow Control capabilities.
494 */
495 hw->fc.original_type = hw->fc.type;
496
Auke Kok652fff32008-06-27 11:00:18 -0700497 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
Auke Kok9d5c8242008-01-24 02:22:38 -0800498
499 /* Call the necessary media_type subroutine to configure the link. */
500 ret_val = hw->mac.ops.setup_physical_interface(hw);
501 if (ret_val)
502 goto out;
503
504 /*
505 * Initialize the flow control address, type, and PAUSE timer
506 * registers to their default values. This is done even if flow
507 * control is disabled, because it does not hurt anything to
508 * initialize these registers.
509 */
Auke Kok652fff32008-06-27 11:00:18 -0700510 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800511 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
512 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
513 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
514
515 wr32(E1000_FCTTV, hw->fc.pause_time);
516
517 ret_val = igb_set_fc_watermarks(hw);
518
519out:
520 return ret_val;
521}
522
523/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700524 * igb_config_collision_dist - Configure collision distance
Auke Kok9d5c8242008-01-24 02:22:38 -0800525 * @hw: pointer to the HW structure
526 *
527 * Configures the collision distance to the default value and is used
528 * during link setup. Currently no func pointer exists and all
529 * implementations are handled in the generic version of this function.
530 **/
531void igb_config_collision_dist(struct e1000_hw *hw)
532{
533 u32 tctl;
534
535 tctl = rd32(E1000_TCTL);
536
537 tctl &= ~E1000_TCTL_COLD;
538 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
539
540 wr32(E1000_TCTL, tctl);
541 wrfl();
542}
543
544/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700545 * igb_set_fc_watermarks - Set flow control high/low watermarks
Auke Kok9d5c8242008-01-24 02:22:38 -0800546 * @hw: pointer to the HW structure
547 *
548 * Sets the flow control high/low threshold (watermark) registers. If
549 * flow control XON frame transmission is enabled, then set XON frame
550 * tansmission as well.
551 **/
552static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
553{
554 s32 ret_val = 0;
555 u32 fcrtl = 0, fcrth = 0;
556
557 /*
558 * Set the flow control receive threshold registers. Normally,
559 * these registers will be set to a default threshold that may be
560 * adjusted later by the driver's runtime code. However, if the
561 * ability to transmit pause frames is not enabled, then these
562 * registers will be set to 0.
563 */
564 if (hw->fc.type & e1000_fc_tx_pause) {
565 /*
566 * We need to set up the Receive Threshold high and low water
567 * marks as well as (optionally) enabling the transmission of
568 * XON frames.
569 */
570 fcrtl = hw->fc.low_water;
571 if (hw->fc.send_xon)
572 fcrtl |= E1000_FCRTL_XONE;
573
574 fcrth = hw->fc.high_water;
575 }
576 wr32(E1000_FCRTL, fcrtl);
577 wr32(E1000_FCRTH, fcrth);
578
579 return ret_val;
580}
581
582/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700583 * igb_set_default_fc - Set flow control default values
Auke Kok9d5c8242008-01-24 02:22:38 -0800584 * @hw: pointer to the HW structure
585 *
586 * Read the EEPROM for the default values for flow control and store the
587 * values.
588 **/
589static s32 igb_set_default_fc(struct e1000_hw *hw)
590{
591 s32 ret_val = 0;
592 u16 nvm_data;
593
594 /*
595 * Read and store word 0x0F of the EEPROM. This word contains bits
596 * that determine the hardware's default PAUSE (flow control) mode,
597 * a bit that determines whether the HW defaults to enabling or
598 * disabling auto-negotiation, and the direction of the
599 * SW defined pins. If there is no SW over-ride of the flow
600 * control setting, then the variable hw->fc will
601 * be initialized based on a value in the EEPROM.
602 */
Alexander Duyck312c75a2009-02-06 23:17:47 +0000603 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
Auke Kok9d5c8242008-01-24 02:22:38 -0800604
605 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700606 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800607 goto out;
608 }
609
610 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
611 hw->fc.type = e1000_fc_none;
612 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
613 NVM_WORD0F_ASM_DIR)
614 hw->fc.type = e1000_fc_tx_pause;
615 else
616 hw->fc.type = e1000_fc_full;
617
618out:
619 return ret_val;
620}
621
622/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700623 * igb_force_mac_fc - Force the MAC's flow control settings
Auke Kok9d5c8242008-01-24 02:22:38 -0800624 * @hw: pointer to the HW structure
625 *
626 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
627 * device control register to reflect the adapter settings. TFCE and RFCE
628 * need to be explicitly set by software when a copper PHY is used because
629 * autonegotiation is managed by the PHY rather than the MAC. Software must
630 * also configure these bits when link is forced on a fiber connection.
631 **/
632s32 igb_force_mac_fc(struct e1000_hw *hw)
633{
634 u32 ctrl;
635 s32 ret_val = 0;
636
637 ctrl = rd32(E1000_CTRL);
638
639 /*
640 * Because we didn't get link via the internal auto-negotiation
641 * mechanism (we either forced link or we got link via PHY
642 * auto-neg), we have to manually enable/disable transmit an
643 * receive flow control.
644 *
645 * The "Case" statement below enables/disable flow control
646 * according to the "hw->fc.type" parameter.
647 *
648 * The possible values of the "fc" parameter are:
649 * 0: Flow control is completely disabled
650 * 1: Rx flow control is enabled (we can receive pause
651 * frames but not send pause frames).
652 * 2: Tx flow control is enabled (we can send pause frames
653 * frames but we do not receive pause frames).
654 * 3: Both Rx and TX flow control (symmetric) is enabled.
655 * other: No other values should be possible at this point.
656 */
Auke Kok652fff32008-06-27 11:00:18 -0700657 hw_dbg("hw->fc.type = %u\n", hw->fc.type);
Auke Kok9d5c8242008-01-24 02:22:38 -0800658
659 switch (hw->fc.type) {
660 case e1000_fc_none:
661 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
662 break;
663 case e1000_fc_rx_pause:
664 ctrl &= (~E1000_CTRL_TFCE);
665 ctrl |= E1000_CTRL_RFCE;
666 break;
667 case e1000_fc_tx_pause:
668 ctrl &= (~E1000_CTRL_RFCE);
669 ctrl |= E1000_CTRL_TFCE;
670 break;
671 case e1000_fc_full:
672 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
673 break;
674 default:
Auke Kok652fff32008-06-27 11:00:18 -0700675 hw_dbg("Flow control param set incorrectly\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800676 ret_val = -E1000_ERR_CONFIG;
677 goto out;
678 }
679
680 wr32(E1000_CTRL, ctrl);
681
682out:
683 return ret_val;
684}
685
686/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700687 * igb_config_fc_after_link_up - Configures flow control after link
Auke Kok9d5c8242008-01-24 02:22:38 -0800688 * @hw: pointer to the HW structure
689 *
690 * Checks the status of auto-negotiation after link up to ensure that the
691 * speed and duplex were not forced. If the link needed to be forced, then
692 * flow control needs to be forced also. If auto-negotiation is enabled
693 * and did not fail, then we configure flow control based on our link
694 * partner.
695 **/
696s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
697{
698 struct e1000_mac_info *mac = &hw->mac;
699 s32 ret_val = 0;
700 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
701 u16 speed, duplex;
702
703 /*
704 * Check for the case where we have fiber media and auto-neg failed
705 * so we had to force link. In this case, we need to force the
706 * configuration of the MAC to match the "fc" parameter.
707 */
708 if (mac->autoneg_failed) {
709 if (hw->phy.media_type == e1000_media_type_fiber ||
710 hw->phy.media_type == e1000_media_type_internal_serdes)
711 ret_val = igb_force_mac_fc(hw);
712 } else {
713 if (hw->phy.media_type == e1000_media_type_copper)
714 ret_val = igb_force_mac_fc(hw);
715 }
716
717 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700718 hw_dbg("Error forcing flow control settings\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800719 goto out;
720 }
721
722 /*
723 * Check for the case where we have copper media and auto-neg is
724 * enabled. In this case, we need to check and see if Auto-Neg
725 * has completed, and if so, how the PHY and link partner has
726 * flow control configured.
727 */
728 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
729 /*
730 * Read the MII Status Register and check to see if AutoNeg
731 * has completed. We read this twice because this reg has
732 * some "sticky" (latched) bits.
733 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000734 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
Auke Kok9d5c8242008-01-24 02:22:38 -0800735 &mii_status_reg);
736 if (ret_val)
737 goto out;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000738 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
Auke Kok9d5c8242008-01-24 02:22:38 -0800739 &mii_status_reg);
740 if (ret_val)
741 goto out;
742
743 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
Auke Kok652fff32008-06-27 11:00:18 -0700744 hw_dbg("Copper PHY and Auto Neg "
Auke Kok9d5c8242008-01-24 02:22:38 -0800745 "has not completed.\n");
746 goto out;
747 }
748
749 /*
750 * The AutoNeg process has completed, so we now need to
751 * read both the Auto Negotiation Advertisement
752 * Register (Address 4) and the Auto_Negotiation Base
753 * Page Ability Register (Address 5) to determine how
754 * flow control was negotiated.
755 */
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000756 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
Auke Kok9d5c8242008-01-24 02:22:38 -0800757 &mii_nway_adv_reg);
758 if (ret_val)
759 goto out;
Alexander Duycka8d2a0c2009-02-06 23:17:26 +0000760 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
Auke Kok9d5c8242008-01-24 02:22:38 -0800761 &mii_nway_lp_ability_reg);
762 if (ret_val)
763 goto out;
764
765 /*
766 * Two bits in the Auto Negotiation Advertisement Register
767 * (Address 4) and two bits in the Auto Negotiation Base
768 * Page Ability Register (Address 5) determine flow control
769 * for both the PHY and the link partner. The following
770 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
771 * 1999, describes these PAUSE resolution bits and how flow
772 * control is determined based upon these settings.
773 * NOTE: DC = Don't Care
774 *
775 * LOCAL DEVICE | LINK PARTNER
776 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
777 *-------|---------|-------|---------|--------------------
778 * 0 | 0 | DC | DC | e1000_fc_none
779 * 0 | 1 | 0 | DC | e1000_fc_none
780 * 0 | 1 | 1 | 0 | e1000_fc_none
781 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
782 * 1 | 0 | 0 | DC | e1000_fc_none
783 * 1 | DC | 1 | DC | e1000_fc_full
784 * 1 | 1 | 0 | 0 | e1000_fc_none
785 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
786 *
787 * Are both PAUSE bits set to 1? If so, this implies
788 * Symmetric Flow Control is enabled at both ends. The
789 * ASM_DIR bits are irrelevant per the spec.
790 *
791 * For Symmetric Flow Control:
792 *
793 * LOCAL DEVICE | LINK PARTNER
794 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
795 *-------|---------|-------|---------|--------------------
796 * 1 | DC | 1 | DC | E1000_fc_full
797 *
798 */
799 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
800 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
801 /*
802 * Now we need to check if the user selected RX ONLY
803 * of pause frames. In this case, we had to advertise
804 * FULL flow control because we could not advertise RX
805 * ONLY. Hence, we must now check to see if we need to
806 * turn OFF the TRANSMISSION of PAUSE frames.
807 */
808 if (hw->fc.original_type == e1000_fc_full) {
809 hw->fc.type = e1000_fc_full;
Auke Kok652fff32008-06-27 11:00:18 -0700810 hw_dbg("Flow Control = FULL.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800811 } else {
812 hw->fc.type = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700813 hw_dbg("Flow Control = "
814 "RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800815 }
816 }
817 /*
818 * For receiving PAUSE frames ONLY.
819 *
820 * LOCAL DEVICE | LINK PARTNER
821 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
822 *-------|---------|-------|---------|--------------------
823 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
824 */
825 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
826 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
827 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
828 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
829 hw->fc.type = e1000_fc_tx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700830 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800831 }
832 /*
833 * For transmitting PAUSE frames ONLY.
834 *
835 * LOCAL DEVICE | LINK PARTNER
836 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
837 *-------|---------|-------|---------|--------------------
838 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
839 */
840 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
841 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
842 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
843 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
844 hw->fc.type = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700845 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800846 }
847 /*
848 * Per the IEEE spec, at this point flow control should be
849 * disabled. However, we want to consider that we could
850 * be connected to a legacy switch that doesn't advertise
851 * desired flow control, but can be forced on the link
852 * partner. So if we advertised no flow control, that is
853 * what we will resolve to. If we advertised some kind of
854 * receive capability (Rx Pause Only or Full Flow Control)
855 * and the link partner advertised none, we will configure
856 * ourselves to enable Rx Flow Control only. We can do
857 * this safely for two reasons: If the link partner really
858 * didn't want flow control enabled, and we enable Rx, no
859 * harm done since we won't be receiving any PAUSE frames
860 * anyway. If the intent on the link partner was to have
861 * flow control enabled, then by us enabling RX only, we
862 * can at least receive pause frames and process them.
863 * This is a good idea because in most cases, since we are
864 * predominantly a server NIC, more times than not we will
865 * be asked to delay transmission of packets than asking
866 * our link partner to pause transmission of frames.
867 */
868 else if ((hw->fc.original_type == e1000_fc_none ||
869 hw->fc.original_type == e1000_fc_tx_pause) ||
870 hw->fc.strict_ieee) {
871 hw->fc.type = e1000_fc_none;
Auke Kok652fff32008-06-27 11:00:18 -0700872 hw_dbg("Flow Control = NONE.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800873 } else {
874 hw->fc.type = e1000_fc_rx_pause;
Auke Kok652fff32008-06-27 11:00:18 -0700875 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800876 }
877
878 /*
879 * Now we need to do one last check... If we auto-
880 * negotiated to HALF DUPLEX, flow control should not be
881 * enabled per IEEE 802.3 spec.
882 */
883 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
884 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700885 hw_dbg("Error getting link speed and duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800886 goto out;
887 }
888
889 if (duplex == HALF_DUPLEX)
890 hw->fc.type = e1000_fc_none;
891
892 /*
893 * Now we call a subroutine to actually force the MAC
894 * controller to use the correct flow control settings.
895 */
896 ret_val = igb_force_mac_fc(hw);
897 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -0700898 hw_dbg("Error forcing flow control settings\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800899 goto out;
900 }
901 }
902
903out:
904 return ret_val;
905}
906
907/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700908 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
Auke Kok9d5c8242008-01-24 02:22:38 -0800909 * @hw: pointer to the HW structure
910 * @speed: stores the current speed
911 * @duplex: stores the current duplex
912 *
913 * Read the status register for the current speed/duplex and store the current
914 * speed and duplex for copper connections.
915 **/
916s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
917 u16 *duplex)
918{
919 u32 status;
920
921 status = rd32(E1000_STATUS);
922 if (status & E1000_STATUS_SPEED_1000) {
923 *speed = SPEED_1000;
Auke Kok652fff32008-06-27 11:00:18 -0700924 hw_dbg("1000 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800925 } else if (status & E1000_STATUS_SPEED_100) {
926 *speed = SPEED_100;
Auke Kok652fff32008-06-27 11:00:18 -0700927 hw_dbg("100 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800928 } else {
929 *speed = SPEED_10;
Auke Kok652fff32008-06-27 11:00:18 -0700930 hw_dbg("10 Mbs, ");
Auke Kok9d5c8242008-01-24 02:22:38 -0800931 }
932
933 if (status & E1000_STATUS_FD) {
934 *duplex = FULL_DUPLEX;
Auke Kok652fff32008-06-27 11:00:18 -0700935 hw_dbg("Full Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800936 } else {
937 *duplex = HALF_DUPLEX;
Auke Kok652fff32008-06-27 11:00:18 -0700938 hw_dbg("Half Duplex\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800939 }
940
941 return 0;
942}
943
944/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700945 * igb_get_hw_semaphore - Acquire hardware semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -0800946 * @hw: pointer to the HW structure
947 *
948 * Acquire the HW semaphore to access the PHY or NVM
949 **/
950s32 igb_get_hw_semaphore(struct e1000_hw *hw)
951{
952 u32 swsm;
953 s32 ret_val = 0;
954 s32 timeout = hw->nvm.word_size + 1;
955 s32 i = 0;
956
957 /* Get the SW semaphore */
958 while (i < timeout) {
959 swsm = rd32(E1000_SWSM);
960 if (!(swsm & E1000_SWSM_SMBI))
961 break;
962
963 udelay(50);
964 i++;
965 }
966
967 if (i == timeout) {
Auke Kok652fff32008-06-27 11:00:18 -0700968 hw_dbg("Driver can't access device - SMBI bit is set.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800969 ret_val = -E1000_ERR_NVM;
970 goto out;
971 }
972
973 /* Get the FW semaphore. */
974 for (i = 0; i < timeout; i++) {
975 swsm = rd32(E1000_SWSM);
976 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
977
978 /* Semaphore acquired if bit latched */
979 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
980 break;
981
982 udelay(50);
983 }
984
985 if (i == timeout) {
986 /* Release semaphores */
987 igb_put_hw_semaphore(hw);
Auke Kok652fff32008-06-27 11:00:18 -0700988 hw_dbg("Driver can't access the NVM\n");
Auke Kok9d5c8242008-01-24 02:22:38 -0800989 ret_val = -E1000_ERR_NVM;
990 goto out;
991 }
992
993out:
994 return ret_val;
995}
996
997/**
Jeff Kirsher733596b2008-06-27 10:59:59 -0700998 * igb_put_hw_semaphore - Release hardware semaphore
Auke Kok9d5c8242008-01-24 02:22:38 -0800999 * @hw: pointer to the HW structure
1000 *
1001 * Release hardware semaphore used to access the PHY or NVM
1002 **/
1003void igb_put_hw_semaphore(struct e1000_hw *hw)
1004{
1005 u32 swsm;
1006
1007 swsm = rd32(E1000_SWSM);
1008
1009 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1010
1011 wr32(E1000_SWSM, swsm);
1012}
1013
1014/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001015 * igb_get_auto_rd_done - Check for auto read completion
Auke Kok9d5c8242008-01-24 02:22:38 -08001016 * @hw: pointer to the HW structure
1017 *
1018 * Check EEPROM for Auto Read done bit.
1019 **/
1020s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1021{
1022 s32 i = 0;
1023 s32 ret_val = 0;
1024
1025
1026 while (i < AUTO_READ_DONE_TIMEOUT) {
1027 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1028 break;
1029 msleep(1);
1030 i++;
1031 }
1032
1033 if (i == AUTO_READ_DONE_TIMEOUT) {
Auke Kok652fff32008-06-27 11:00:18 -07001034 hw_dbg("Auto read by HW from NVM has not completed.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001035 ret_val = -E1000_ERR_RESET;
1036 goto out;
1037 }
1038
1039out:
1040 return ret_val;
1041}
1042
1043/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001044 * igb_valid_led_default - Verify a valid default LED config
Auke Kok9d5c8242008-01-24 02:22:38 -08001045 * @hw: pointer to the HW structure
1046 * @data: pointer to the NVM (EEPROM)
1047 *
1048 * Read the EEPROM for the current default LED configuration. If the
1049 * LED configuration is not valid, set to a valid LED configuration.
1050 **/
1051static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1052{
1053 s32 ret_val;
1054
Alexander Duyck312c75a2009-02-06 23:17:47 +00001055 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
Auke Kok9d5c8242008-01-24 02:22:38 -08001056 if (ret_val) {
Auke Kok652fff32008-06-27 11:00:18 -07001057 hw_dbg("NVM Read Error\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001058 goto out;
1059 }
1060
1061 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1062 *data = ID_LED_DEFAULT;
1063
1064out:
1065 return ret_val;
1066}
1067
1068/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001069 * igb_id_led_init -
Auke Kok9d5c8242008-01-24 02:22:38 -08001070 * @hw: pointer to the HW structure
1071 *
1072 **/
1073s32 igb_id_led_init(struct e1000_hw *hw)
1074{
1075 struct e1000_mac_info *mac = &hw->mac;
1076 s32 ret_val;
1077 const u32 ledctl_mask = 0x000000FF;
1078 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1079 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1080 u16 data, i, temp;
1081 const u16 led_mask = 0x0F;
1082
1083 ret_val = igb_valid_led_default(hw, &data);
1084 if (ret_val)
1085 goto out;
1086
1087 mac->ledctl_default = rd32(E1000_LEDCTL);
1088 mac->ledctl_mode1 = mac->ledctl_default;
1089 mac->ledctl_mode2 = mac->ledctl_default;
1090
1091 for (i = 0; i < 4; i++) {
1092 temp = (data >> (i << 2)) & led_mask;
1093 switch (temp) {
1094 case ID_LED_ON1_DEF2:
1095 case ID_LED_ON1_ON2:
1096 case ID_LED_ON1_OFF2:
1097 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1098 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1099 break;
1100 case ID_LED_OFF1_DEF2:
1101 case ID_LED_OFF1_ON2:
1102 case ID_LED_OFF1_OFF2:
1103 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1104 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1105 break;
1106 default:
1107 /* Do nothing */
1108 break;
1109 }
1110 switch (temp) {
1111 case ID_LED_DEF1_ON2:
1112 case ID_LED_ON1_ON2:
1113 case ID_LED_OFF1_ON2:
1114 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1115 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1116 break;
1117 case ID_LED_DEF1_OFF2:
1118 case ID_LED_ON1_OFF2:
1119 case ID_LED_OFF1_OFF2:
1120 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1121 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1122 break;
1123 default:
1124 /* Do nothing */
1125 break;
1126 }
1127 }
1128
1129out:
1130 return ret_val;
1131}
1132
1133/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001134 * igb_cleanup_led - Set LED config to default operation
Auke Kok9d5c8242008-01-24 02:22:38 -08001135 * @hw: pointer to the HW structure
1136 *
1137 * Remove the current LED configuration and set the LED configuration
1138 * to the default value, saved from the EEPROM.
1139 **/
1140s32 igb_cleanup_led(struct e1000_hw *hw)
1141{
1142 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1143 return 0;
1144}
1145
1146/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001147 * igb_blink_led - Blink LED
Auke Kok9d5c8242008-01-24 02:22:38 -08001148 * @hw: pointer to the HW structure
1149 *
1150 * Blink the led's which are set to be on.
1151 **/
1152s32 igb_blink_led(struct e1000_hw *hw)
1153{
1154 u32 ledctl_blink = 0;
1155 u32 i;
1156
1157 if (hw->phy.media_type == e1000_media_type_fiber) {
1158 /* always blink LED0 for PCI-E fiber */
1159 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1160 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1161 } else {
1162 /*
1163 * set the blink bit for each LED that's "on" (0x0E)
1164 * in ledctl_mode2
1165 */
1166 ledctl_blink = hw->mac.ledctl_mode2;
1167 for (i = 0; i < 4; i++)
1168 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1169 E1000_LEDCTL_MODE_LED_ON)
1170 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1171 (i * 8));
1172 }
1173
1174 wr32(E1000_LEDCTL, ledctl_blink);
1175
1176 return 0;
1177}
1178
1179/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001180 * igb_led_off - Turn LED off
Auke Kok9d5c8242008-01-24 02:22:38 -08001181 * @hw: pointer to the HW structure
1182 *
1183 * Turn LED off.
1184 **/
1185s32 igb_led_off(struct e1000_hw *hw)
1186{
1187 u32 ctrl;
1188
1189 switch (hw->phy.media_type) {
1190 case e1000_media_type_fiber:
1191 ctrl = rd32(E1000_CTRL);
1192 ctrl |= E1000_CTRL_SWDPIN0;
1193 ctrl |= E1000_CTRL_SWDPIO0;
1194 wr32(E1000_CTRL, ctrl);
1195 break;
1196 case e1000_media_type_copper:
1197 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1198 break;
1199 default:
1200 break;
1201 }
1202
1203 return 0;
1204}
1205
1206/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001207 * igb_disable_pcie_master - Disables PCI-express master access
Auke Kok9d5c8242008-01-24 02:22:38 -08001208 * @hw: pointer to the HW structure
1209 *
1210 * Returns 0 (0) if successful, else returns -10
1211 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1212 * the master requests to be disabled.
1213 *
1214 * Disables PCI-Express master access and verifies there are no pending
1215 * requests.
1216 **/
1217s32 igb_disable_pcie_master(struct e1000_hw *hw)
1218{
1219 u32 ctrl;
1220 s32 timeout = MASTER_DISABLE_TIMEOUT;
1221 s32 ret_val = 0;
1222
1223 if (hw->bus.type != e1000_bus_type_pci_express)
1224 goto out;
1225
1226 ctrl = rd32(E1000_CTRL);
1227 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1228 wr32(E1000_CTRL, ctrl);
1229
1230 while (timeout) {
1231 if (!(rd32(E1000_STATUS) &
1232 E1000_STATUS_GIO_MASTER_ENABLE))
1233 break;
1234 udelay(100);
1235 timeout--;
1236 }
1237
1238 if (!timeout) {
Auke Kok652fff32008-06-27 11:00:18 -07001239 hw_dbg("Master requests are pending.\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001240 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1241 goto out;
1242 }
1243
1244out:
1245 return ret_val;
1246}
1247
1248/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001249 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
Auke Kok9d5c8242008-01-24 02:22:38 -08001250 * @hw: pointer to the HW structure
1251 *
1252 * Reset the Adaptive Interframe Spacing throttle to default values.
1253 **/
1254void igb_reset_adaptive(struct e1000_hw *hw)
1255{
1256 struct e1000_mac_info *mac = &hw->mac;
1257
1258 if (!mac->adaptive_ifs) {
Auke Kok652fff32008-06-27 11:00:18 -07001259 hw_dbg("Not in Adaptive IFS mode!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001260 goto out;
1261 }
1262
1263 if (!mac->ifs_params_forced) {
1264 mac->current_ifs_val = 0;
1265 mac->ifs_min_val = IFS_MIN;
1266 mac->ifs_max_val = IFS_MAX;
1267 mac->ifs_step_size = IFS_STEP;
1268 mac->ifs_ratio = IFS_RATIO;
1269 }
1270
1271 mac->in_ifs_mode = false;
1272 wr32(E1000_AIT, 0);
1273out:
1274 return;
1275}
1276
1277/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001278 * igb_update_adaptive - Update Adaptive Interframe Spacing
Auke Kok9d5c8242008-01-24 02:22:38 -08001279 * @hw: pointer to the HW structure
1280 *
1281 * Update the Adaptive Interframe Spacing Throttle value based on the
1282 * time between transmitted packets and time between collisions.
1283 **/
1284void igb_update_adaptive(struct e1000_hw *hw)
1285{
1286 struct e1000_mac_info *mac = &hw->mac;
1287
1288 if (!mac->adaptive_ifs) {
Auke Kok652fff32008-06-27 11:00:18 -07001289 hw_dbg("Not in Adaptive IFS mode!\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001290 goto out;
1291 }
1292
1293 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1294 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1295 mac->in_ifs_mode = true;
1296 if (mac->current_ifs_val < mac->ifs_max_val) {
1297 if (!mac->current_ifs_val)
1298 mac->current_ifs_val = mac->ifs_min_val;
1299 else
1300 mac->current_ifs_val +=
1301 mac->ifs_step_size;
1302 wr32(E1000_AIT,
1303 mac->current_ifs_val);
1304 }
1305 }
1306 } else {
1307 if (mac->in_ifs_mode &&
1308 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1309 mac->current_ifs_val = 0;
1310 mac->in_ifs_mode = false;
1311 wr32(E1000_AIT, 0);
1312 }
1313 }
1314out:
1315 return;
1316}
1317
1318/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001319 * igb_validate_mdi_setting - Verify MDI/MDIx settings
Auke Kok9d5c8242008-01-24 02:22:38 -08001320 * @hw: pointer to the HW structure
1321 *
1322 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1323 * set, which is forced to MDI mode only.
1324 **/
1325s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1326{
1327 s32 ret_val = 0;
1328
1329 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
Auke Kok652fff32008-06-27 11:00:18 -07001330 hw_dbg("Invalid MDI setting detected\n");
Auke Kok9d5c8242008-01-24 02:22:38 -08001331 hw->phy.mdix = 1;
1332 ret_val = -E1000_ERR_CONFIG;
1333 goto out;
1334 }
1335
1336out:
1337 return ret_val;
1338}
1339
1340/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001341 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
Auke Kok9d5c8242008-01-24 02:22:38 -08001342 * @hw: pointer to the HW structure
1343 * @reg: 32bit register offset such as E1000_SCTL
1344 * @offset: register offset to write to
1345 * @data: data to write at register offset
1346 *
1347 * Writes an address/data control type register. There are several of these
1348 * and they all have the format address << 8 | data and bit 31 is polled for
1349 * completion.
1350 **/
1351s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1352 u32 offset, u8 data)
1353{
1354 u32 i, regvalue = 0;
1355 s32 ret_val = 0;
1356
1357 /* Set up the address and data */
1358 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1359 wr32(reg, regvalue);
1360
1361 /* Poll the ready bit to see if the MDI read completed */
1362 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1363 udelay(5);
1364 regvalue = rd32(reg);
1365 if (regvalue & E1000_GEN_CTL_READY)
1366 break;
1367 }
1368 if (!(regvalue & E1000_GEN_CTL_READY)) {
Auke Kok652fff32008-06-27 11:00:18 -07001369 hw_dbg("Reg %08x did not indicate ready\n", reg);
Auke Kok9d5c8242008-01-24 02:22:38 -08001370 ret_val = -E1000_ERR_PHY;
1371 goto out;
1372 }
1373
1374out:
1375 return ret_val;
1376}
1377
1378/**
Jeff Kirsher733596b2008-06-27 10:59:59 -07001379 * igb_enable_mng_pass_thru - Enable processing of ARP's
Auke Kok9d5c8242008-01-24 02:22:38 -08001380 * @hw: pointer to the HW structure
1381 *
1382 * Verifies the hardware needs to allow ARPs to be processed by the host.
1383 **/
1384bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1385{
1386 u32 manc;
1387 u32 fwsm, factps;
1388 bool ret_val = false;
1389
1390 if (!hw->mac.asf_firmware_present)
1391 goto out;
1392
1393 manc = rd32(E1000_MANC);
1394
1395 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1396 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1397 goto out;
1398
1399 if (hw->mac.arc_subsystem_valid) {
1400 fwsm = rd32(E1000_FWSM);
1401 factps = rd32(E1000_FACTPS);
1402
1403 if (!(factps & E1000_FACTPS_MNGCG) &&
1404 ((fwsm & E1000_FWSM_MODE_MASK) ==
1405 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1406 ret_val = true;
1407 goto out;
1408 }
1409 } else {
1410 if ((manc & E1000_MANC_SMBUS_EN) &&
1411 !(manc & E1000_MANC_ASF_EN)) {
1412 ret_val = true;
1413 goto out;
1414 }
1415 }
1416
1417out:
1418 return ret_val;
1419}