blob: f32c1ab3f724d0704bc38adb778dbe6bd5b9005f [file] [log] [blame]
James Hoganc992a4f2017-03-14 10:15:31 +00001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Support for hardware virtualization extensions
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Yann Le Du <ledu@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/preempt.h>
16#include <linux/vmalloc.h>
17#include <asm/cacheflush.h>
18#include <asm/cacheops.h>
19#include <asm/cmpxchg.h>
20#include <asm/fpu.h>
21#include <asm/hazards.h>
22#include <asm/inst.h>
23#include <asm/mmu_context.h>
24#include <asm/r4kcache.h>
25#include <asm/time.h>
26#include <asm/tlb.h>
27#include <asm/tlbex.h>
28
29#include <linux/kvm_host.h>
30
31#include "interrupt.h"
32
33#include "trace.h"
34
35/* Pointers to last VCPU loaded on each physical CPU */
36static struct kvm_vcpu *last_vcpu[NR_CPUS];
37/* Pointers to last VCPU executed on each physical CPU */
38static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
39
40/*
41 * Number of guest VTLB entries to use, so we can catch inconsistency between
42 * CPUs.
43 */
44static unsigned int kvm_vz_guest_vtlb_size;
45
46static inline long kvm_vz_read_gc0_ebase(void)
47{
48 if (sizeof(long) == 8 && cpu_has_ebase_wg)
49 return read_gc0_ebase_64();
50 else
51 return read_gc0_ebase();
52}
53
54static inline void kvm_vz_write_gc0_ebase(long v)
55{
56 /*
57 * First write with WG=1 to write upper bits, then write again in case
58 * WG should be left at 0.
59 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
60 */
61 if (sizeof(long) == 8 &&
62 (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
63 write_gc0_ebase_64(v | MIPS_EBASE_WG);
64 write_gc0_ebase_64(v);
65 } else {
66 write_gc0_ebase(v | MIPS_EBASE_WG);
67 write_gc0_ebase(v);
68 }
69}
70
71/*
72 * These Config bits may be writable by the guest:
73 * Config: [K23, KU] (!TLB), K0
74 * Config1: (none)
75 * Config2: [TU, SU] (impl)
76 * Config3: ISAOnExc
77 * Config4: FTLBPageSize
78 * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR
79 */
80
81static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
82{
83 return CONF_CM_CMASK;
84}
85
86static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
87{
88 return 0;
89}
90
91static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
92{
93 return 0;
94}
95
96static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
97{
98 return MIPS_CONF3_ISA_OE;
99}
100
101static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
102{
103 /* no need to be exact */
104 return MIPS_CONF4_VFTLBPAGESIZE;
105}
106
107static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
108{
109 unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
110
111 /* Permit MSAEn changes if MSA supported and enabled */
112 if (kvm_mips_guest_has_msa(&vcpu->arch))
113 mask |= MIPS_CONF5_MSAEN;
114
115 /*
116 * Permit guest FPU mode changes if FPU is enabled and the relevant
117 * feature exists according to FIR register.
118 */
119 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
120 if (cpu_has_ufr)
121 mask |= MIPS_CONF5_UFR;
122 if (cpu_has_fre)
123 mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
124 }
125
126 return mask;
127}
128
129/*
130 * VZ optionally allows these additional Config bits to be written by root:
131 * Config: M, [MT]
132 * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP
133 * Config2: M
James Hogandffe0422017-03-14 10:15:34 +0000134 * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
James Hoganc992a4f2017-03-14 10:15:31 +0000135 * VInt, SP, CDMM, MT, SM, TL]
136 * Config4: M, [VTLBSizeExt, MMUSizeExt]
137 * Config5: [MRP]
138 */
139
140static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
141{
142 return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
143}
144
145static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
146{
147 unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
148
149 /* Permit FPU to be present if FPU is supported */
150 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
151 mask |= MIPS_CONF1_FP;
152
153 return mask;
154}
155
156static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
157{
158 return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
159}
160
161static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
162{
163 unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
James Hogandffe0422017-03-14 10:15:34 +0000164 MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
James Hoganc992a4f2017-03-14 10:15:31 +0000165
166 /* Permit MSA to be present if MSA is supported */
167 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
168 mask |= MIPS_CONF3_MSA;
169
170 return mask;
171}
172
173static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
174{
175 return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
176}
177
178static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
179{
180 return kvm_vz_config5_guest_wrmask(vcpu);
181}
182
183static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
184{
185 /* VZ guest has already converted gva to gpa */
186 return gva;
187}
188
189static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
190{
191 set_bit(priority, &vcpu->arch.pending_exceptions);
192 clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
193}
194
195static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
196{
197 clear_bit(priority, &vcpu->arch.pending_exceptions);
198 set_bit(priority, &vcpu->arch.pending_exceptions_clr);
199}
200
201static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
202{
203 /*
204 * timer expiry is asynchronous to vcpu execution therefore defer guest
205 * cp0 accesses
206 */
207 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
208}
209
210static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
211{
212 /*
213 * timer expiry is asynchronous to vcpu execution therefore defer guest
214 * cp0 accesses
215 */
216 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
217}
218
219static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
220 struct kvm_mips_interrupt *irq)
221{
222 int intr = (int)irq->irq;
223
224 /*
225 * interrupts are asynchronous to vcpu execution therefore defer guest
226 * cp0 accesses
227 */
228 switch (intr) {
229 case 2:
230 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO);
231 break;
232
233 case 3:
234 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1);
235 break;
236
237 case 4:
238 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2);
239 break;
240
241 default:
242 break;
243 }
244
245}
246
247static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
248 struct kvm_mips_interrupt *irq)
249{
250 int intr = (int)irq->irq;
251
252 /*
253 * interrupts are asynchronous to vcpu execution therefore defer guest
254 * cp0 accesses
255 */
256 switch (intr) {
257 case -2:
258 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO);
259 break;
260
261 case -3:
262 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1);
263 break;
264
265 case -4:
266 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2);
267 break;
268
269 default:
270 break;
271 }
272
273}
274
275static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = {
276 [MIPS_EXC_INT_TIMER] = C_IRQ5,
277 [MIPS_EXC_INT_IO] = C_IRQ0,
278 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
279 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
280};
281
282static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
283 u32 cause)
284{
285 u32 irq = (priority < MIPS_EXC_MAX) ?
286 kvm_vz_priority_to_irq[priority] : 0;
287
288 switch (priority) {
289 case MIPS_EXC_INT_TIMER:
290 set_gc0_cause(C_TI);
291 break;
292
293 case MIPS_EXC_INT_IO:
294 case MIPS_EXC_INT_IPI_1:
295 case MIPS_EXC_INT_IPI_2:
296 if (cpu_has_guestctl2)
297 set_c0_guestctl2(irq);
298 else
299 set_gc0_cause(irq);
300 break;
301
302 default:
303 break;
304 }
305
306 clear_bit(priority, &vcpu->arch.pending_exceptions);
307 return 1;
308}
309
310static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
311 u32 cause)
312{
313 u32 irq = (priority < MIPS_EXC_MAX) ?
314 kvm_vz_priority_to_irq[priority] : 0;
315
316 switch (priority) {
317 case MIPS_EXC_INT_TIMER:
318 /*
319 * Call to kvm_write_c0_guest_compare() clears Cause.TI in
320 * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
321 * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
322 * supported or if not using GuestCtl2 Hardware Clear.
323 */
324 if (cpu_has_guestctl2) {
325 if (!(read_c0_guestctl2() & (irq << 14)))
326 clear_c0_guestctl2(irq);
327 } else {
328 clear_gc0_cause(irq);
329 }
330 break;
331
332 case MIPS_EXC_INT_IO:
333 case MIPS_EXC_INT_IPI_1:
334 case MIPS_EXC_INT_IPI_2:
335 /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
336 if (cpu_has_guestctl2) {
337 if (!(read_c0_guestctl2() & (irq << 14)))
338 clear_c0_guestctl2(irq);
339 } else {
340 clear_gc0_cause(irq);
341 }
342 break;
343
344 default:
345 break;
346 }
347
348 clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
349 return 1;
350}
351
352/*
353 * VZ guest timer handling.
354 */
355
356/**
357 * _kvm_vz_restore_stimer() - Restore soft timer state.
358 * @vcpu: Virtual CPU.
359 * @compare: CP0_Compare register value, restored by caller.
360 * @cause: CP0_Cause register to restore.
361 *
362 * Restore VZ state relating to the soft timer.
363 */
364static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
365 u32 cause)
366{
367 /*
368 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
369 * after Guest CP0_Compare.
370 */
371 write_c0_gtoffset(compare - read_c0_count());
372
373 back_to_back_c0_hazard();
374 write_gc0_cause(cause);
375}
376
377/**
378 * kvm_vz_restore_timer() - Restore guest timer state.
379 * @vcpu: Virtual CPU.
380 *
381 * Restore soft timer state from saved context.
382 */
383static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
384{
385 struct mips_coproc *cop0 = vcpu->arch.cop0;
386 u32 cause, compare;
387
388 compare = kvm_read_sw_gc0_compare(cop0);
389 cause = kvm_read_sw_gc0_cause(cop0);
390
391 write_gc0_compare(compare);
392 _kvm_vz_restore_stimer(vcpu, compare, cause);
393}
394
395/**
396 * kvm_vz_save_timer() - Save guest timer state.
397 * @vcpu: Virtual CPU.
398 *
399 * Save VZ guest timer state.
400 */
401static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
402{
403 struct mips_coproc *cop0 = vcpu->arch.cop0;
404 u32 compare, cause;
405
406 compare = read_gc0_compare();
407 cause = read_gc0_cause();
408
409 /* save timer-related state to VCPU context */
410 kvm_write_sw_gc0_cause(cop0, cause);
411 kvm_write_sw_gc0_compare(cop0, compare);
412}
413
414/**
James Hogan4b7de022017-03-14 10:15:35 +0000415 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
416 * @inst: 32-bit instruction encoding.
417 *
418 * Finds whether @inst encodes an EVA memory access instruction, which would
419 * indicate that emulation of it should access the user mode address space
420 * instead of the kernel mode address space. This matters for MUSUK segments
421 * which are TLB mapped for user mode but unmapped for kernel mode.
422 *
423 * Returns: Whether @inst encodes an EVA accessor instruction.
424 */
425static bool is_eva_access(union mips_instruction inst)
426{
427 if (inst.spec3_format.opcode != spec3_op)
428 return false;
429
430 switch (inst.spec3_format.func) {
431 case lwle_op:
432 case lwre_op:
433 case cachee_op:
434 case sbe_op:
435 case she_op:
436 case sce_op:
437 case swe_op:
438 case swle_op:
439 case swre_op:
440 case prefe_op:
441 case lbue_op:
442 case lhue_op:
443 case lbe_op:
444 case lhe_op:
445 case lle_op:
446 case lwe_op:
447 return true;
448 default:
449 return false;
450 }
451}
452
453/**
454 * is_eva_am_mapped() - Find whether an access mode is mapped.
455 * @vcpu: KVM VCPU state.
456 * @am: 3-bit encoded access mode.
457 * @eu: Segment becomes unmapped and uncached when Status.ERL=1.
458 *
459 * Decode @am to find whether it encodes a mapped segment for the current VCPU
460 * state. Where necessary @eu and the actual instruction causing the fault are
461 * taken into account to make the decision.
462 *
463 * Returns: Whether the VCPU faulted on a TLB mapped address.
464 */
465static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
466{
467 u32 am_lookup;
468 int err;
469
470 /*
471 * Interpret access control mode. We assume address errors will already
472 * have been caught by the guest, leaving us with:
473 * AM UM SM KM 31..24 23..16
474 * UK 0 000 Unm 0 0
475 * MK 1 001 TLB 1
476 * MSK 2 010 TLB TLB 1
477 * MUSK 3 011 TLB TLB TLB 1
478 * MUSUK 4 100 TLB TLB Unm 0 1
479 * USK 5 101 Unm Unm 0 0
480 * - 6 110 0 0
481 * UUSK 7 111 Unm Unm Unm 0 0
482 *
483 * We shift a magic value by AM across the sign bit to find if always
484 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
485 */
486 am_lookup = 0x70080000 << am;
487 if ((s32)am_lookup < 0) {
488 /*
489 * MK, MSK, MUSK
490 * Always TLB mapped, unless SegCtl.EU && ERL
491 */
492 if (!eu || !(read_gc0_status() & ST0_ERL))
493 return true;
494 } else {
495 am_lookup <<= 8;
496 if ((s32)am_lookup < 0) {
497 union mips_instruction inst;
498 unsigned int status;
499 u32 *opc;
500
501 /*
502 * MUSUK
503 * TLB mapped if not in kernel mode
504 */
505 status = read_gc0_status();
506 if (!(status & (ST0_EXL | ST0_ERL)) &&
507 (status & ST0_KSU))
508 return true;
509 /*
510 * EVA access instructions in kernel
511 * mode access user address space.
512 */
513 opc = (u32 *)vcpu->arch.pc;
514 if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
515 opc += 1;
516 err = kvm_get_badinstr(opc, vcpu, &inst.word);
517 if (!err && is_eva_access(inst))
518 return true;
519 }
520 }
521
522 return false;
523}
524
525/**
James Hoganc992a4f2017-03-14 10:15:31 +0000526 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
527 * @vcpu: KVM VCPU state.
528 * @gva: Guest virtual address to convert.
529 * @gpa: Output guest physical address.
530 *
531 * Convert a guest virtual address (GVA) which is valid according to the guest
532 * context, to a guest physical address (GPA).
533 *
534 * Returns: 0 on success.
535 * -errno on failure.
536 */
537static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
538 unsigned long *gpa)
539{
540 u32 gva32 = gva;
James Hogan4b7de022017-03-14 10:15:35 +0000541 unsigned long segctl;
James Hoganc992a4f2017-03-14 10:15:31 +0000542
543 if ((long)gva == (s32)gva32) {
544 /* Handle canonical 32-bit virtual address */
James Hogan4b7de022017-03-14 10:15:35 +0000545 if (cpu_guest_has_segments) {
546 unsigned long mask, pa;
547
548 switch (gva32 >> 29) {
549 case 0:
550 case 1: /* CFG5 (1GB) */
551 segctl = read_gc0_segctl2() >> 16;
552 mask = (unsigned long)0xfc0000000ull;
553 break;
554 case 2:
555 case 3: /* CFG4 (1GB) */
556 segctl = read_gc0_segctl2();
557 mask = (unsigned long)0xfc0000000ull;
558 break;
559 case 4: /* CFG3 (512MB) */
560 segctl = read_gc0_segctl1() >> 16;
561 mask = (unsigned long)0xfe0000000ull;
562 break;
563 case 5: /* CFG2 (512MB) */
564 segctl = read_gc0_segctl1();
565 mask = (unsigned long)0xfe0000000ull;
566 break;
567 case 6: /* CFG1 (512MB) */
568 segctl = read_gc0_segctl0() >> 16;
569 mask = (unsigned long)0xfe0000000ull;
570 break;
571 case 7: /* CFG0 (512MB) */
572 segctl = read_gc0_segctl0();
573 mask = (unsigned long)0xfe0000000ull;
574 break;
575 default:
576 /*
577 * GCC 4.9 isn't smart enough to figure out that
578 * segctl and mask are always initialised.
579 */
580 unreachable();
581 }
582
583 if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
584 segctl & 0x0008))
585 goto tlb_mapped;
586
587 /* Unmapped, find guest physical address */
588 pa = (segctl << 20) & mask;
589 pa |= gva32 & ~mask;
590 *gpa = pa;
591 return 0;
592 } else if ((s32)gva32 < (s32)0xc0000000) {
James Hoganc992a4f2017-03-14 10:15:31 +0000593 /* legacy unmapped KSeg0 or KSeg1 */
594 *gpa = gva32 & 0x1fffffff;
595 return 0;
596 }
597#ifdef CONFIG_64BIT
598 } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
599 /* XKPHYS */
James Hogan4b7de022017-03-14 10:15:35 +0000600 if (cpu_guest_has_segments) {
601 /*
602 * Each of the 8 regions can be overridden by SegCtl2.XR
603 * to use SegCtl1.XAM.
604 */
605 segctl = read_gc0_segctl2();
606 if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
607 segctl = read_gc0_segctl1();
608 if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
609 0))
610 goto tlb_mapped;
611 }
612
613 }
James Hoganc992a4f2017-03-14 10:15:31 +0000614 /*
615 * Traditionally fully unmapped.
616 * Bits 61:59 specify the CCA, which we can just mask off here.
617 * Bits 58:PABITS should be zero, but we shouldn't have got here
618 * if it wasn't.
619 */
620 *gpa = gva & 0x07ffffffffffffff;
621 return 0;
622#endif
623 }
624
James Hogan4b7de022017-03-14 10:15:35 +0000625tlb_mapped:
James Hoganc992a4f2017-03-14 10:15:31 +0000626 return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
627}
628
629/**
630 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
631 * @vcpu: KVM VCPU state.
632 * @badvaddr: Root BadVAddr.
633 * @gpa: Output guest physical address.
634 *
635 * VZ implementations are permitted to report guest virtual addresses (GVA) in
636 * BadVAddr on a root exception during guest execution, instead of the more
637 * convenient guest physical addresses (GPA). When we get a GVA, this function
638 * converts it to a GPA, taking into account guest segmentation and guest TLB
639 * state.
640 *
641 * Returns: 0 on success.
642 * -errno on failure.
643 */
644static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
645 unsigned long *gpa)
646{
647 unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
648 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
649
650 /* If BadVAddr is GPA, then all is well in the world */
651 if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
652 *gpa = badvaddr;
653 return 0;
654 }
655
656 /* Otherwise we'd expect it to be GVA ... */
657 if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
658 "Unexpected gexccode %#x\n", gexccode))
659 return -EINVAL;
660
661 /* ... and we need to perform the GVA->GPA translation in software */
662 return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
663}
664
665static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
666{
667 u32 *opc = (u32 *) vcpu->arch.pc;
668 u32 cause = vcpu->arch.host_cp0_cause;
669 u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
670 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
671 u32 inst = 0;
672
673 /*
674 * Fetch the instruction.
675 */
676 if (cause & CAUSEF_BD)
677 opc += 1;
678 kvm_get_badinstr(opc, vcpu, &inst);
679
680 kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
681 exccode, opc, inst, badvaddr,
682 read_gc0_status());
683 kvm_arch_vcpu_dump_regs(vcpu);
684 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
685 return RESUME_HOST;
686}
687
688static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
689 u32 *opc, u32 cause,
690 struct kvm_run *run,
691 struct kvm_vcpu *vcpu)
692{
693 struct mips_coproc *cop0 = vcpu->arch.cop0;
694 enum emulation_result er = EMULATE_DONE;
695 u32 rt, rd, sel;
696 unsigned long curr_pc;
697 unsigned long val;
698
699 /*
700 * Update PC and hold onto current PC in case there is
701 * an error and we want to rollback the PC
702 */
703 curr_pc = vcpu->arch.pc;
704 er = update_pc(vcpu, cause);
705 if (er == EMULATE_FAIL)
706 return er;
707
708 if (inst.co_format.co) {
709 switch (inst.co_format.func) {
710 case wait_op:
711 er = kvm_mips_emul_wait(vcpu);
712 break;
713 default:
714 er = EMULATE_FAIL;
715 }
716 } else {
717 rt = inst.c0r_format.rt;
718 rd = inst.c0r_format.rd;
719 sel = inst.c0r_format.sel;
720
721 switch (inst.c0r_format.rs) {
722 case dmfc_op:
723 case mfc_op:
724#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
725 cop0->stat[rd][sel]++;
726#endif
727 if (rd == MIPS_CP0_COUNT &&
728 sel == 0) { /* Count */
729 val = kvm_mips_read_count(vcpu);
730 } else if (rd == MIPS_CP0_COMPARE &&
731 sel == 0) { /* Compare */
732 val = read_gc0_compare();
733 } else if ((rd == MIPS_CP0_PRID &&
734 (sel == 0 || /* PRid */
735 sel == 2 || /* CDMMBase */
736 sel == 3)) || /* CMGCRBase */
737 (rd == MIPS_CP0_STATUS &&
738 (sel == 2 || /* SRSCtl */
739 sel == 3)) || /* SRSMap */
740 (rd == MIPS_CP0_CONFIG &&
741 (sel == 7)) || /* Config7 */
742 (rd == MIPS_CP0_ERRCTL &&
743 (sel == 0))) { /* ErrCtl */
744 val = cop0->reg[rd][sel];
745 } else {
746 val = 0;
747 er = EMULATE_FAIL;
748 }
749
750 if (er != EMULATE_FAIL) {
751 /* Sign extend */
752 if (inst.c0r_format.rs == mfc_op)
753 val = (int)val;
754 vcpu->arch.gprs[rt] = val;
755 }
756
757 trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
758 KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
759 KVM_TRACE_COP0(rd, sel), val);
760 break;
761
762 case dmtc_op:
763 case mtc_op:
764#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
765 cop0->stat[rd][sel]++;
766#endif
767 val = vcpu->arch.gprs[rt];
768 trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
769 KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
770 KVM_TRACE_COP0(rd, sel), val);
771
772 if (rd == MIPS_CP0_COUNT &&
773 sel == 0) { /* Count */
774 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
775 } else if (rd == MIPS_CP0_COMPARE &&
776 sel == 0) { /* Compare */
777 kvm_mips_write_compare(vcpu,
778 vcpu->arch.gprs[rt],
779 true);
780 } else if (rd == MIPS_CP0_ERRCTL &&
781 (sel == 0)) { /* ErrCtl */
782 /* ignore the written value */
783 } else {
784 er = EMULATE_FAIL;
785 }
786 break;
787
788 default:
789 er = EMULATE_FAIL;
790 break;
791 }
792 }
793 /* Rollback PC only if emulation was unsuccessful */
794 if (er == EMULATE_FAIL) {
795 kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
796 curr_pc, __func__, inst.word);
797
798 vcpu->arch.pc = curr_pc;
799 }
800
801 return er;
802}
803
804static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
805 u32 *opc, u32 cause,
806 struct kvm_run *run,
807 struct kvm_vcpu *vcpu)
808{
809 enum emulation_result er = EMULATE_DONE;
810 u32 cache, op_inst, op, base;
811 s16 offset;
812 struct kvm_vcpu_arch *arch = &vcpu->arch;
813 unsigned long va, curr_pc;
814
815 /*
816 * Update PC and hold onto current PC in case there is
817 * an error and we want to rollback the PC
818 */
819 curr_pc = vcpu->arch.pc;
820 er = update_pc(vcpu, cause);
821 if (er == EMULATE_FAIL)
822 return er;
823
824 base = inst.i_format.rs;
825 op_inst = inst.i_format.rt;
826 if (cpu_has_mips_r6)
827 offset = inst.spec3_format.simmediate;
828 else
829 offset = inst.i_format.simmediate;
830 cache = op_inst & CacheOp_Cache;
831 op = op_inst & CacheOp_Op;
832
833 va = arch->gprs[base] + offset;
834
835 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
836 cache, op, base, arch->gprs[base], offset);
837
838 /* Secondary or tirtiary cache ops ignored */
839 if (cache != Cache_I && cache != Cache_D)
840 return EMULATE_DONE;
841
842 switch (op_inst) {
843 case Index_Invalidate_I:
844 flush_icache_line_indexed(va);
845 return EMULATE_DONE;
846 case Index_Writeback_Inv_D:
847 flush_dcache_line_indexed(va);
848 return EMULATE_DONE;
849 default:
850 break;
851 };
852
853 kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
854 curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
855 offset);
856 /* Rollback PC */
857 vcpu->arch.pc = curr_pc;
858
859 return EMULATE_FAIL;
860}
861
862static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
863 struct kvm_vcpu *vcpu)
864{
865 enum emulation_result er = EMULATE_DONE;
866 struct kvm_vcpu_arch *arch = &vcpu->arch;
867 struct kvm_run *run = vcpu->run;
868 union mips_instruction inst;
869 int rd, rt, sel;
870 int err;
871
872 /*
873 * Fetch the instruction.
874 */
875 if (cause & CAUSEF_BD)
876 opc += 1;
877 err = kvm_get_badinstr(opc, vcpu, &inst.word);
878 if (err)
879 return EMULATE_FAIL;
880
881 switch (inst.r_format.opcode) {
882 case cop0_op:
883 er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu);
884 break;
885#ifndef CONFIG_CPU_MIPSR6
886 case cache_op:
887 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
888 er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
889 break;
890#endif
891 case spec3_op:
892 switch (inst.spec3_format.func) {
893#ifdef CONFIG_CPU_MIPSR6
894 case cache6_op:
895 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
896 er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
897 break;
898#endif
899 case rdhwr_op:
900 if (inst.r_format.rs || (inst.r_format.re >> 3))
901 goto unknown;
902
903 rd = inst.r_format.rd;
904 rt = inst.r_format.rt;
905 sel = inst.r_format.re & 0x7;
906
907 switch (rd) {
908 case MIPS_HWR_CC: /* Read count register */
909 arch->gprs[rt] =
910 (long)(int)kvm_mips_read_count(vcpu);
911 break;
912 default:
913 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
914 KVM_TRACE_HWR(rd, sel), 0);
915 goto unknown;
916 };
917
918 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
919 KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
920
921 er = update_pc(vcpu, cause);
922 break;
923 default:
924 goto unknown;
925 };
926 break;
927unknown:
928
929 default:
930 kvm_err("GPSI exception not supported (%p/%#x)\n",
931 opc, inst.word);
932 kvm_arch_vcpu_dump_regs(vcpu);
933 er = EMULATE_FAIL;
934 break;
935 }
936
937 return er;
938}
939
940static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
941 struct kvm_vcpu *vcpu)
942{
943 enum emulation_result er = EMULATE_DONE;
944 struct kvm_vcpu_arch *arch = &vcpu->arch;
945 union mips_instruction inst;
946 int err;
947
948 /*
949 * Fetch the instruction.
950 */
951 if (cause & CAUSEF_BD)
952 opc += 1;
953 err = kvm_get_badinstr(opc, vcpu, &inst.word);
954 if (err)
955 return EMULATE_FAIL;
956
957 /* complete MTC0 on behalf of guest and advance EPC */
958 if (inst.c0r_format.opcode == cop0_op &&
959 inst.c0r_format.rs == mtc_op &&
960 inst.c0r_format.z == 0) {
961 int rt = inst.c0r_format.rt;
962 int rd = inst.c0r_format.rd;
963 int sel = inst.c0r_format.sel;
964 unsigned int val = arch->gprs[rt];
965 unsigned int old_val, change;
966
967 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
968 val);
969
970 if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
971 /* FR bit should read as zero if no FPU */
972 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
973 val &= ~(ST0_CU1 | ST0_FR);
974
975 /*
976 * Also don't allow FR to be set if host doesn't support
977 * it.
978 */
979 if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
980 val &= ~ST0_FR;
981
982 old_val = read_gc0_status();
983 change = val ^ old_val;
984
985 if (change & ST0_FR) {
986 /*
987 * FPU and Vector register state is made
988 * UNPREDICTABLE by a change of FR, so don't
989 * even bother saving it.
990 */
991 kvm_drop_fpu(vcpu);
992 }
993
994 /*
995 * If MSA state is already live, it is undefined how it
996 * interacts with FR=0 FPU state, and we don't want to
997 * hit reserved instruction exceptions trying to save
998 * the MSA state later when CU=1 && FR=1, so play it
999 * safe and save it first.
1000 */
1001 if (change & ST0_CU1 && !(val & ST0_FR) &&
1002 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1003 kvm_lose_fpu(vcpu);
1004
1005 write_gc0_status(val);
1006 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1007 u32 old_cause = read_gc0_cause();
1008 u32 change = old_cause ^ val;
1009
1010 /* DC bit enabling/disabling timer? */
1011 if (change & CAUSEF_DC) {
1012 if (val & CAUSEF_DC)
1013 kvm_mips_count_disable_cause(vcpu);
1014 else
1015 kvm_mips_count_enable_cause(vcpu);
1016 }
1017
1018 /* Only certain bits are RW to the guest */
1019 change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1020 CAUSEF_IP0 | CAUSEF_IP1);
1021
1022 /* WP can only be cleared */
1023 change &= ~CAUSEF_WP | old_cause;
1024
1025 write_gc0_cause(old_cause ^ change);
1026 } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1027 write_gc0_intctl(val);
1028 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1029 old_val = read_gc0_config5();
1030 change = val ^ old_val;
1031 /* Handle changes in FPU/MSA modes */
1032 preempt_disable();
1033
1034 /*
1035 * Propagate FRE changes immediately if the FPU
1036 * context is already loaded.
1037 */
1038 if (change & MIPS_CONF5_FRE &&
1039 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1040 change_c0_config5(MIPS_CONF5_FRE, val);
1041
1042 preempt_enable();
1043
1044 val = old_val ^
1045 (change & kvm_vz_config5_guest_wrmask(vcpu));
1046 write_gc0_config5(val);
1047 } else {
1048 kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1049 opc, inst.word);
1050 er = EMULATE_FAIL;
1051 }
1052
1053 if (er != EMULATE_FAIL)
1054 er = update_pc(vcpu, cause);
1055 } else {
1056 kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1057 opc, inst.word);
1058 er = EMULATE_FAIL;
1059 }
1060
1061 return er;
1062}
1063
1064static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1065 struct kvm_vcpu *vcpu)
1066{
1067 enum emulation_result er;
1068 union mips_instruction inst;
1069 unsigned long curr_pc;
1070 int err;
1071
1072 if (cause & CAUSEF_BD)
1073 opc += 1;
1074 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1075 if (err)
1076 return EMULATE_FAIL;
1077
1078 /*
1079 * Update PC and hold onto current PC in case there is
1080 * an error and we want to rollback the PC
1081 */
1082 curr_pc = vcpu->arch.pc;
1083 er = update_pc(vcpu, cause);
1084 if (er == EMULATE_FAIL)
1085 return er;
1086
1087 er = kvm_mips_emul_hypcall(vcpu, inst);
1088 if (er == EMULATE_FAIL)
1089 vcpu->arch.pc = curr_pc;
1090
1091 return er;
1092}
1093
1094static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1095 u32 cause,
1096 u32 *opc,
1097 struct kvm_vcpu *vcpu)
1098{
1099 u32 inst;
1100
1101 /*
1102 * Fetch the instruction.
1103 */
1104 if (cause & CAUSEF_BD)
1105 opc += 1;
1106 kvm_get_badinstr(opc, vcpu, &inst);
1107
1108 kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n",
1109 gexccode, opc, inst, read_gc0_status());
1110
1111 return EMULATE_FAIL;
1112}
1113
1114static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1115{
1116 u32 *opc = (u32 *) vcpu->arch.pc;
1117 u32 cause = vcpu->arch.host_cp0_cause;
1118 enum emulation_result er = EMULATE_DONE;
1119 u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1120 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1121 int ret = RESUME_GUEST;
1122
1123 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1124 switch (gexccode) {
1125 case MIPS_GCTL0_GEXC_GPSI:
1126 ++vcpu->stat.vz_gpsi_exits;
1127 er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1128 break;
1129 case MIPS_GCTL0_GEXC_GSFC:
1130 ++vcpu->stat.vz_gsfc_exits;
1131 er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1132 break;
1133 case MIPS_GCTL0_GEXC_HC:
1134 ++vcpu->stat.vz_hc_exits;
1135 er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1136 break;
1137 case MIPS_GCTL0_GEXC_GRR:
1138 ++vcpu->stat.vz_grr_exits;
1139 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1140 vcpu);
1141 break;
1142 case MIPS_GCTL0_GEXC_GVA:
1143 ++vcpu->stat.vz_gva_exits;
1144 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1145 vcpu);
1146 break;
1147 case MIPS_GCTL0_GEXC_GHFC:
1148 ++vcpu->stat.vz_ghfc_exits;
1149 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1150 vcpu);
1151 break;
1152 case MIPS_GCTL0_GEXC_GPA:
1153 ++vcpu->stat.vz_gpa_exits;
1154 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1155 vcpu);
1156 break;
1157 default:
1158 ++vcpu->stat.vz_resvd_exits;
1159 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1160 vcpu);
1161 break;
1162
1163 }
1164
1165 if (er == EMULATE_DONE) {
1166 ret = RESUME_GUEST;
1167 } else if (er == EMULATE_HYPERCALL) {
1168 ret = kvm_mips_handle_hypcall(vcpu);
1169 } else {
1170 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1171 ret = RESUME_HOST;
1172 }
1173 return ret;
1174}
1175
1176/**
1177 * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1178 * @vcpu: Virtual CPU context.
1179 *
1180 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1181 * by the root context.
1182 */
1183static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1184{
1185 struct kvm_run *run = vcpu->run;
1186 u32 cause = vcpu->arch.host_cp0_cause;
1187 enum emulation_result er = EMULATE_FAIL;
1188 int ret = RESUME_GUEST;
1189
1190 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1191 /*
1192 * If guest FPU not present, the FPU operation should have been
1193 * treated as a reserved instruction!
1194 * If FPU already in use, we shouldn't get this at all.
1195 */
1196 if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1197 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1198 preempt_enable();
1199 return EMULATE_FAIL;
1200 }
1201
1202 kvm_own_fpu(vcpu);
1203 er = EMULATE_DONE;
1204 }
1205 /* other coprocessors not handled */
1206
1207 switch (er) {
1208 case EMULATE_DONE:
1209 ret = RESUME_GUEST;
1210 break;
1211
1212 case EMULATE_FAIL:
1213 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1214 ret = RESUME_HOST;
1215 break;
1216
1217 default:
1218 BUG();
1219 }
1220 return ret;
1221}
1222
1223/**
1224 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1225 * @vcpu: Virtual CPU context.
1226 *
1227 * Handle when the guest attempts to use MSA when it is disabled in the root
1228 * context.
1229 */
1230static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1231{
1232 struct kvm_run *run = vcpu->run;
1233
1234 /*
1235 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1236 * should have been treated as a reserved instruction!
1237 * Same if CU1=1, FR=0.
1238 * If MSA already in use, we shouldn't get this at all.
1239 */
1240 if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1241 (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1242 !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1243 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1244 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1245 return RESUME_HOST;
1246 }
1247
1248 kvm_own_msa(vcpu);
1249
1250 return RESUME_GUEST;
1251}
1252
1253static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1254{
1255 struct kvm_run *run = vcpu->run;
1256 u32 *opc = (u32 *) vcpu->arch.pc;
1257 u32 cause = vcpu->arch.host_cp0_cause;
1258 ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1259 union mips_instruction inst;
1260 enum emulation_result er = EMULATE_DONE;
1261 int err, ret = RESUME_GUEST;
1262
1263 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1264 /* A code fetch fault doesn't count as an MMIO */
1265 if (kvm_is_ifetch_fault(&vcpu->arch)) {
1266 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1267 return RESUME_HOST;
1268 }
1269
1270 /* Fetch the instruction */
1271 if (cause & CAUSEF_BD)
1272 opc += 1;
1273 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1274 if (err) {
1275 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1276 return RESUME_HOST;
1277 }
1278
1279 /* Treat as MMIO */
1280 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1281 if (er == EMULATE_FAIL) {
1282 kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1283 opc, badvaddr);
1284 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1285 }
1286 }
1287
1288 if (er == EMULATE_DONE) {
1289 ret = RESUME_GUEST;
1290 } else if (er == EMULATE_DO_MMIO) {
1291 run->exit_reason = KVM_EXIT_MMIO;
1292 ret = RESUME_HOST;
1293 } else {
1294 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1295 ret = RESUME_HOST;
1296 }
1297 return ret;
1298}
1299
1300static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1301{
1302 struct kvm_run *run = vcpu->run;
1303 u32 *opc = (u32 *) vcpu->arch.pc;
1304 u32 cause = vcpu->arch.host_cp0_cause;
1305 ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1306 union mips_instruction inst;
1307 enum emulation_result er = EMULATE_DONE;
1308 int err;
1309 int ret = RESUME_GUEST;
1310
1311 /* Just try the access again if we couldn't do the translation */
1312 if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1313 return RESUME_GUEST;
1314 vcpu->arch.host_cp0_badvaddr = badvaddr;
1315
1316 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1317 /* Fetch the instruction */
1318 if (cause & CAUSEF_BD)
1319 opc += 1;
1320 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1321 if (err) {
1322 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1323 return RESUME_HOST;
1324 }
1325
1326 /* Treat as MMIO */
1327 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1328 if (er == EMULATE_FAIL) {
1329 kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1330 opc, badvaddr);
1331 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1332 }
1333 }
1334
1335 if (er == EMULATE_DONE) {
1336 ret = RESUME_GUEST;
1337 } else if (er == EMULATE_DO_MMIO) {
1338 run->exit_reason = KVM_EXIT_MMIO;
1339 ret = RESUME_HOST;
1340 } else {
1341 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1342 ret = RESUME_HOST;
1343 }
1344 return ret;
1345}
1346
1347static u64 kvm_vz_get_one_regs[] = {
1348 KVM_REG_MIPS_CP0_INDEX,
1349 KVM_REG_MIPS_CP0_ENTRYLO0,
1350 KVM_REG_MIPS_CP0_ENTRYLO1,
1351 KVM_REG_MIPS_CP0_CONTEXT,
1352 KVM_REG_MIPS_CP0_PAGEMASK,
1353 KVM_REG_MIPS_CP0_PAGEGRAIN,
1354 KVM_REG_MIPS_CP0_WIRED,
1355 KVM_REG_MIPS_CP0_HWRENA,
1356 KVM_REG_MIPS_CP0_BADVADDR,
1357 KVM_REG_MIPS_CP0_COUNT,
1358 KVM_REG_MIPS_CP0_ENTRYHI,
1359 KVM_REG_MIPS_CP0_COMPARE,
1360 KVM_REG_MIPS_CP0_STATUS,
1361 KVM_REG_MIPS_CP0_INTCTL,
1362 KVM_REG_MIPS_CP0_CAUSE,
1363 KVM_REG_MIPS_CP0_EPC,
1364 KVM_REG_MIPS_CP0_PRID,
1365 KVM_REG_MIPS_CP0_EBASE,
1366 KVM_REG_MIPS_CP0_CONFIG,
1367 KVM_REG_MIPS_CP0_CONFIG1,
1368 KVM_REG_MIPS_CP0_CONFIG2,
1369 KVM_REG_MIPS_CP0_CONFIG3,
1370 KVM_REG_MIPS_CP0_CONFIG4,
1371 KVM_REG_MIPS_CP0_CONFIG5,
1372#ifdef CONFIG_64BIT
1373 KVM_REG_MIPS_CP0_XCONTEXT,
1374#endif
1375 KVM_REG_MIPS_CP0_ERROREPC,
1376
1377 KVM_REG_MIPS_COUNT_CTL,
1378 KVM_REG_MIPS_COUNT_RESUME,
1379 KVM_REG_MIPS_COUNT_HZ,
1380};
1381
James Hogandffe0422017-03-14 10:15:34 +00001382static u64 kvm_vz_get_one_regs_contextconfig[] = {
1383 KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1384#ifdef CONFIG_64BIT
1385 KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1386#endif
1387};
1388
James Hogan4b7de022017-03-14 10:15:35 +00001389static u64 kvm_vz_get_one_regs_segments[] = {
1390 KVM_REG_MIPS_CP0_SEGCTL0,
1391 KVM_REG_MIPS_CP0_SEGCTL1,
1392 KVM_REG_MIPS_CP0_SEGCTL2,
1393};
1394
James Hoganc992a4f2017-03-14 10:15:31 +00001395static u64 kvm_vz_get_one_regs_kscratch[] = {
1396 KVM_REG_MIPS_CP0_KSCRATCH1,
1397 KVM_REG_MIPS_CP0_KSCRATCH2,
1398 KVM_REG_MIPS_CP0_KSCRATCH3,
1399 KVM_REG_MIPS_CP0_KSCRATCH4,
1400 KVM_REG_MIPS_CP0_KSCRATCH5,
1401 KVM_REG_MIPS_CP0_KSCRATCH6,
1402};
1403
1404static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1405{
1406 unsigned long ret;
1407
1408 ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1409 if (cpu_guest_has_userlocal)
1410 ++ret;
James Hoganedc89262017-03-14 10:15:33 +00001411 if (cpu_guest_has_badinstr)
1412 ++ret;
1413 if (cpu_guest_has_badinstrp)
1414 ++ret;
James Hogandffe0422017-03-14 10:15:34 +00001415 if (cpu_guest_has_contextconfig)
1416 ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
James Hogan4b7de022017-03-14 10:15:35 +00001417 if (cpu_guest_has_segments)
1418 ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
James Hoganc992a4f2017-03-14 10:15:31 +00001419 ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1420
1421 return ret;
1422}
1423
1424static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1425{
1426 u64 index;
1427 unsigned int i;
1428
1429 if (copy_to_user(indices, kvm_vz_get_one_regs,
1430 sizeof(kvm_vz_get_one_regs)))
1431 return -EFAULT;
1432 indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1433
1434 if (cpu_guest_has_userlocal) {
1435 index = KVM_REG_MIPS_CP0_USERLOCAL;
1436 if (copy_to_user(indices, &index, sizeof(index)))
1437 return -EFAULT;
1438 ++indices;
1439 }
James Hoganedc89262017-03-14 10:15:33 +00001440 if (cpu_guest_has_badinstr) {
1441 index = KVM_REG_MIPS_CP0_BADINSTR;
1442 if (copy_to_user(indices, &index, sizeof(index)))
1443 return -EFAULT;
1444 ++indices;
1445 }
1446 if (cpu_guest_has_badinstrp) {
1447 index = KVM_REG_MIPS_CP0_BADINSTRP;
1448 if (copy_to_user(indices, &index, sizeof(index)))
1449 return -EFAULT;
1450 ++indices;
1451 }
James Hogandffe0422017-03-14 10:15:34 +00001452 if (cpu_guest_has_contextconfig) {
1453 if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1454 sizeof(kvm_vz_get_one_regs_contextconfig)))
1455 return -EFAULT;
1456 indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1457 }
James Hogan4b7de022017-03-14 10:15:35 +00001458 if (cpu_guest_has_segments) {
1459 if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1460 sizeof(kvm_vz_get_one_regs_segments)))
1461 return -EFAULT;
1462 indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1463 }
James Hoganc992a4f2017-03-14 10:15:31 +00001464 for (i = 0; i < 6; ++i) {
1465 if (!cpu_guest_has_kscr(i + 2))
1466 continue;
1467
1468 if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1469 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1470 return -EFAULT;
1471 ++indices;
1472 }
1473
1474 return 0;
1475}
1476
1477static inline s64 entrylo_kvm_to_user(unsigned long v)
1478{
1479 s64 mask, ret = v;
1480
1481 if (BITS_PER_LONG == 32) {
1482 /*
1483 * KVM API exposes 64-bit version of the register, so move the
1484 * RI/XI bits up into place.
1485 */
1486 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1487 ret &= ~mask;
1488 ret |= ((s64)v & mask) << 32;
1489 }
1490 return ret;
1491}
1492
1493static inline unsigned long entrylo_user_to_kvm(s64 v)
1494{
1495 unsigned long mask, ret = v;
1496
1497 if (BITS_PER_LONG == 32) {
1498 /*
1499 * KVM API exposes 64-bit versiono of the register, so move the
1500 * RI/XI bits down into place.
1501 */
1502 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1503 ret &= ~mask;
1504 ret |= (v >> 32) & mask;
1505 }
1506 return ret;
1507}
1508
1509static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1510 const struct kvm_one_reg *reg,
1511 s64 *v)
1512{
1513 struct mips_coproc *cop0 = vcpu->arch.cop0;
1514 unsigned int idx;
1515
1516 switch (reg->id) {
1517 case KVM_REG_MIPS_CP0_INDEX:
1518 *v = (long)read_gc0_index();
1519 break;
1520 case KVM_REG_MIPS_CP0_ENTRYLO0:
1521 *v = entrylo_kvm_to_user(read_gc0_entrylo0());
1522 break;
1523 case KVM_REG_MIPS_CP0_ENTRYLO1:
1524 *v = entrylo_kvm_to_user(read_gc0_entrylo1());
1525 break;
1526 case KVM_REG_MIPS_CP0_CONTEXT:
1527 *v = (long)read_gc0_context();
1528 break;
James Hogandffe0422017-03-14 10:15:34 +00001529 case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1530 if (!cpu_guest_has_contextconfig)
1531 return -EINVAL;
1532 *v = read_gc0_contextconfig();
1533 break;
James Hoganc992a4f2017-03-14 10:15:31 +00001534 case KVM_REG_MIPS_CP0_USERLOCAL:
1535 if (!cpu_guest_has_userlocal)
1536 return -EINVAL;
1537 *v = read_gc0_userlocal();
1538 break;
James Hogandffe0422017-03-14 10:15:34 +00001539#ifdef CONFIG_64BIT
1540 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1541 if (!cpu_guest_has_contextconfig)
1542 return -EINVAL;
1543 *v = read_gc0_xcontextconfig();
1544 break;
1545#endif
James Hoganc992a4f2017-03-14 10:15:31 +00001546 case KVM_REG_MIPS_CP0_PAGEMASK:
1547 *v = (long)read_gc0_pagemask();
1548 break;
1549 case KVM_REG_MIPS_CP0_PAGEGRAIN:
1550 *v = (long)read_gc0_pagegrain();
1551 break;
James Hogan4b7de022017-03-14 10:15:35 +00001552 case KVM_REG_MIPS_CP0_SEGCTL0:
1553 if (!cpu_guest_has_segments)
1554 return -EINVAL;
1555 *v = read_gc0_segctl0();
1556 break;
1557 case KVM_REG_MIPS_CP0_SEGCTL1:
1558 if (!cpu_guest_has_segments)
1559 return -EINVAL;
1560 *v = read_gc0_segctl1();
1561 break;
1562 case KVM_REG_MIPS_CP0_SEGCTL2:
1563 if (!cpu_guest_has_segments)
1564 return -EINVAL;
1565 *v = read_gc0_segctl2();
1566 break;
James Hoganc992a4f2017-03-14 10:15:31 +00001567 case KVM_REG_MIPS_CP0_WIRED:
1568 *v = (long)read_gc0_wired();
1569 break;
1570 case KVM_REG_MIPS_CP0_HWRENA:
1571 *v = (long)read_gc0_hwrena();
1572 break;
1573 case KVM_REG_MIPS_CP0_BADVADDR:
1574 *v = (long)read_gc0_badvaddr();
1575 break;
James Hoganedc89262017-03-14 10:15:33 +00001576 case KVM_REG_MIPS_CP0_BADINSTR:
1577 if (!cpu_guest_has_badinstr)
1578 return -EINVAL;
1579 *v = read_gc0_badinstr();
1580 break;
1581 case KVM_REG_MIPS_CP0_BADINSTRP:
1582 if (!cpu_guest_has_badinstrp)
1583 return -EINVAL;
1584 *v = read_gc0_badinstrp();
1585 break;
James Hoganc992a4f2017-03-14 10:15:31 +00001586 case KVM_REG_MIPS_CP0_COUNT:
1587 *v = kvm_mips_read_count(vcpu);
1588 break;
1589 case KVM_REG_MIPS_CP0_ENTRYHI:
1590 *v = (long)read_gc0_entryhi();
1591 break;
1592 case KVM_REG_MIPS_CP0_COMPARE:
1593 *v = (long)read_gc0_compare();
1594 break;
1595 case KVM_REG_MIPS_CP0_STATUS:
1596 *v = (long)read_gc0_status();
1597 break;
1598 case KVM_REG_MIPS_CP0_INTCTL:
1599 *v = read_gc0_intctl();
1600 break;
1601 case KVM_REG_MIPS_CP0_CAUSE:
1602 *v = (long)read_gc0_cause();
1603 break;
1604 case KVM_REG_MIPS_CP0_EPC:
1605 *v = (long)read_gc0_epc();
1606 break;
1607 case KVM_REG_MIPS_CP0_PRID:
1608 *v = (long)kvm_read_c0_guest_prid(cop0);
1609 break;
1610 case KVM_REG_MIPS_CP0_EBASE:
1611 *v = kvm_vz_read_gc0_ebase();
1612 break;
1613 case KVM_REG_MIPS_CP0_CONFIG:
1614 *v = read_gc0_config();
1615 break;
1616 case KVM_REG_MIPS_CP0_CONFIG1:
1617 if (!cpu_guest_has_conf1)
1618 return -EINVAL;
1619 *v = read_gc0_config1();
1620 break;
1621 case KVM_REG_MIPS_CP0_CONFIG2:
1622 if (!cpu_guest_has_conf2)
1623 return -EINVAL;
1624 *v = read_gc0_config2();
1625 break;
1626 case KVM_REG_MIPS_CP0_CONFIG3:
1627 if (!cpu_guest_has_conf3)
1628 return -EINVAL;
1629 *v = read_gc0_config3();
1630 break;
1631 case KVM_REG_MIPS_CP0_CONFIG4:
1632 if (!cpu_guest_has_conf4)
1633 return -EINVAL;
1634 *v = read_gc0_config4();
1635 break;
1636 case KVM_REG_MIPS_CP0_CONFIG5:
1637 if (!cpu_guest_has_conf5)
1638 return -EINVAL;
1639 *v = read_gc0_config5();
1640 break;
1641#ifdef CONFIG_64BIT
1642 case KVM_REG_MIPS_CP0_XCONTEXT:
1643 *v = read_gc0_xcontext();
1644 break;
1645#endif
1646 case KVM_REG_MIPS_CP0_ERROREPC:
1647 *v = (long)read_gc0_errorepc();
1648 break;
1649 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1650 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1651 if (!cpu_guest_has_kscr(idx))
1652 return -EINVAL;
1653 switch (idx) {
1654 case 2:
1655 *v = (long)read_gc0_kscratch1();
1656 break;
1657 case 3:
1658 *v = (long)read_gc0_kscratch2();
1659 break;
1660 case 4:
1661 *v = (long)read_gc0_kscratch3();
1662 break;
1663 case 5:
1664 *v = (long)read_gc0_kscratch4();
1665 break;
1666 case 6:
1667 *v = (long)read_gc0_kscratch5();
1668 break;
1669 case 7:
1670 *v = (long)read_gc0_kscratch6();
1671 break;
1672 }
1673 break;
1674 case KVM_REG_MIPS_COUNT_CTL:
1675 *v = vcpu->arch.count_ctl;
1676 break;
1677 case KVM_REG_MIPS_COUNT_RESUME:
1678 *v = ktime_to_ns(vcpu->arch.count_resume);
1679 break;
1680 case KVM_REG_MIPS_COUNT_HZ:
1681 *v = vcpu->arch.count_hz;
1682 break;
1683 default:
1684 return -EINVAL;
1685 }
1686 return 0;
1687}
1688
1689static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
1690 const struct kvm_one_reg *reg,
1691 s64 v)
1692{
1693 struct mips_coproc *cop0 = vcpu->arch.cop0;
1694 unsigned int idx;
1695 int ret = 0;
1696 unsigned int cur, change;
1697
1698 switch (reg->id) {
1699 case KVM_REG_MIPS_CP0_INDEX:
1700 write_gc0_index(v);
1701 break;
1702 case KVM_REG_MIPS_CP0_ENTRYLO0:
1703 write_gc0_entrylo0(entrylo_user_to_kvm(v));
1704 break;
1705 case KVM_REG_MIPS_CP0_ENTRYLO1:
1706 write_gc0_entrylo1(entrylo_user_to_kvm(v));
1707 break;
1708 case KVM_REG_MIPS_CP0_CONTEXT:
1709 write_gc0_context(v);
1710 break;
James Hogandffe0422017-03-14 10:15:34 +00001711 case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1712 if (!cpu_guest_has_contextconfig)
1713 return -EINVAL;
1714 write_gc0_contextconfig(v);
1715 break;
James Hoganc992a4f2017-03-14 10:15:31 +00001716 case KVM_REG_MIPS_CP0_USERLOCAL:
1717 if (!cpu_guest_has_userlocal)
1718 return -EINVAL;
1719 write_gc0_userlocal(v);
1720 break;
James Hogandffe0422017-03-14 10:15:34 +00001721#ifdef CONFIG_64BIT
1722 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1723 if (!cpu_guest_has_contextconfig)
1724 return -EINVAL;
1725 write_gc0_xcontextconfig(v);
1726 break;
1727#endif
James Hoganc992a4f2017-03-14 10:15:31 +00001728 case KVM_REG_MIPS_CP0_PAGEMASK:
1729 write_gc0_pagemask(v);
1730 break;
1731 case KVM_REG_MIPS_CP0_PAGEGRAIN:
1732 write_gc0_pagegrain(v);
1733 break;
James Hogan4b7de022017-03-14 10:15:35 +00001734 case KVM_REG_MIPS_CP0_SEGCTL0:
1735 if (!cpu_guest_has_segments)
1736 return -EINVAL;
1737 write_gc0_segctl0(v);
1738 break;
1739 case KVM_REG_MIPS_CP0_SEGCTL1:
1740 if (!cpu_guest_has_segments)
1741 return -EINVAL;
1742 write_gc0_segctl1(v);
1743 break;
1744 case KVM_REG_MIPS_CP0_SEGCTL2:
1745 if (!cpu_guest_has_segments)
1746 return -EINVAL;
1747 write_gc0_segctl2(v);
1748 break;
James Hoganc992a4f2017-03-14 10:15:31 +00001749 case KVM_REG_MIPS_CP0_WIRED:
1750 change_gc0_wired(MIPSR6_WIRED_WIRED, v);
1751 break;
1752 case KVM_REG_MIPS_CP0_HWRENA:
1753 write_gc0_hwrena(v);
1754 break;
1755 case KVM_REG_MIPS_CP0_BADVADDR:
1756 write_gc0_badvaddr(v);
1757 break;
James Hoganedc89262017-03-14 10:15:33 +00001758 case KVM_REG_MIPS_CP0_BADINSTR:
1759 if (!cpu_guest_has_badinstr)
1760 return -EINVAL;
1761 write_gc0_badinstr(v);
1762 break;
1763 case KVM_REG_MIPS_CP0_BADINSTRP:
1764 if (!cpu_guest_has_badinstrp)
1765 return -EINVAL;
1766 write_gc0_badinstrp(v);
1767 break;
James Hoganc992a4f2017-03-14 10:15:31 +00001768 case KVM_REG_MIPS_CP0_COUNT:
1769 kvm_mips_write_count(vcpu, v);
1770 break;
1771 case KVM_REG_MIPS_CP0_ENTRYHI:
1772 write_gc0_entryhi(v);
1773 break;
1774 case KVM_REG_MIPS_CP0_COMPARE:
1775 kvm_mips_write_compare(vcpu, v, false);
1776 break;
1777 case KVM_REG_MIPS_CP0_STATUS:
1778 write_gc0_status(v);
1779 break;
1780 case KVM_REG_MIPS_CP0_INTCTL:
1781 write_gc0_intctl(v);
1782 break;
1783 case KVM_REG_MIPS_CP0_CAUSE:
1784 /*
1785 * If the timer is stopped or started (DC bit) it must look
1786 * atomic with changes to the timer interrupt pending bit (TI).
1787 * A timer interrupt should not happen in between.
1788 */
1789 if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
1790 if (v & CAUSEF_DC) {
1791 /* disable timer first */
1792 kvm_mips_count_disable_cause(vcpu);
1793 change_gc0_cause((u32)~CAUSEF_DC, v);
1794 } else {
1795 /* enable timer last */
1796 change_gc0_cause((u32)~CAUSEF_DC, v);
1797 kvm_mips_count_enable_cause(vcpu);
1798 }
1799 } else {
1800 write_gc0_cause(v);
1801 }
1802 break;
1803 case KVM_REG_MIPS_CP0_EPC:
1804 write_gc0_epc(v);
1805 break;
1806 case KVM_REG_MIPS_CP0_PRID:
1807 kvm_write_c0_guest_prid(cop0, v);
1808 break;
1809 case KVM_REG_MIPS_CP0_EBASE:
1810 kvm_vz_write_gc0_ebase(v);
1811 break;
1812 case KVM_REG_MIPS_CP0_CONFIG:
1813 cur = read_gc0_config();
1814 change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
1815 if (change) {
1816 v = cur ^ change;
1817 write_gc0_config(v);
1818 }
1819 break;
1820 case KVM_REG_MIPS_CP0_CONFIG1:
1821 if (!cpu_guest_has_conf1)
1822 break;
1823 cur = read_gc0_config1();
1824 change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
1825 if (change) {
1826 v = cur ^ change;
1827 write_gc0_config1(v);
1828 }
1829 break;
1830 case KVM_REG_MIPS_CP0_CONFIG2:
1831 if (!cpu_guest_has_conf2)
1832 break;
1833 cur = read_gc0_config2();
1834 change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
1835 if (change) {
1836 v = cur ^ change;
1837 write_gc0_config2(v);
1838 }
1839 break;
1840 case KVM_REG_MIPS_CP0_CONFIG3:
1841 if (!cpu_guest_has_conf3)
1842 break;
1843 cur = read_gc0_config3();
1844 change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
1845 if (change) {
1846 v = cur ^ change;
1847 write_gc0_config3(v);
1848 }
1849 break;
1850 case KVM_REG_MIPS_CP0_CONFIG4:
1851 if (!cpu_guest_has_conf4)
1852 break;
1853 cur = read_gc0_config4();
1854 change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
1855 if (change) {
1856 v = cur ^ change;
1857 write_gc0_config4(v);
1858 }
1859 break;
1860 case KVM_REG_MIPS_CP0_CONFIG5:
1861 if (!cpu_guest_has_conf5)
1862 break;
1863 cur = read_gc0_config5();
1864 change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
1865 if (change) {
1866 v = cur ^ change;
1867 write_gc0_config5(v);
1868 }
1869 break;
1870#ifdef CONFIG_64BIT
1871 case KVM_REG_MIPS_CP0_XCONTEXT:
1872 write_gc0_xcontext(v);
1873 break;
1874#endif
1875 case KVM_REG_MIPS_CP0_ERROREPC:
1876 write_gc0_errorepc(v);
1877 break;
1878 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1879 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1880 if (!cpu_guest_has_kscr(idx))
1881 return -EINVAL;
1882 switch (idx) {
1883 case 2:
1884 write_gc0_kscratch1(v);
1885 break;
1886 case 3:
1887 write_gc0_kscratch2(v);
1888 break;
1889 case 4:
1890 write_gc0_kscratch3(v);
1891 break;
1892 case 5:
1893 write_gc0_kscratch4(v);
1894 break;
1895 case 6:
1896 write_gc0_kscratch5(v);
1897 break;
1898 case 7:
1899 write_gc0_kscratch6(v);
1900 break;
1901 }
1902 break;
1903 case KVM_REG_MIPS_COUNT_CTL:
1904 ret = kvm_mips_set_count_ctl(vcpu, v);
1905 break;
1906 case KVM_REG_MIPS_COUNT_RESUME:
1907 ret = kvm_mips_set_count_resume(vcpu, v);
1908 break;
1909 case KVM_REG_MIPS_COUNT_HZ:
1910 ret = kvm_mips_set_count_hz(vcpu, v);
1911 break;
1912 default:
1913 return -EINVAL;
1914 }
1915 return ret;
1916}
1917
1918#define guestid_cache(cpu) (cpu_data[cpu].guestid_cache)
1919static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
1920{
1921 unsigned long guestid = guestid_cache(cpu);
1922
1923 if (!(++guestid & GUESTID_MASK)) {
1924 if (cpu_has_vtag_icache)
1925 flush_icache_all();
1926
1927 if (!guestid) /* fix version if needed */
1928 guestid = GUESTID_FIRST_VERSION;
1929
1930 ++guestid; /* guestid 0 reserved for root */
1931
1932 /* start new guestid cycle */
1933 kvm_vz_local_flush_roottlb_all_guests();
1934 kvm_vz_local_flush_guesttlb_all();
1935 }
1936
1937 guestid_cache(cpu) = guestid;
1938}
1939
1940/* Returns 1 if the guest TLB may be clobbered */
1941static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
1942{
1943 int ret = 0;
1944 int i;
1945
1946 if (!vcpu->requests)
1947 return 0;
1948
1949 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
1950 if (cpu_has_guestid) {
1951 /* Drop all GuestIDs for this VCPU */
1952 for_each_possible_cpu(i)
1953 vcpu->arch.vzguestid[i] = 0;
1954 /* This will clobber guest TLB contents too */
1955 ret = 1;
1956 }
1957 /*
1958 * For Root ASID Dealias (RAD) we don't do anything here, but we
1959 * still need the request to ensure we recheck asid_flush_mask.
1960 * We can still return 0 as only the root TLB will be affected
1961 * by a root ASID flush.
1962 */
1963 }
1964
1965 return ret;
1966}
1967
1968static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
1969{
1970 unsigned int wired = read_gc0_wired();
1971 struct kvm_mips_tlb *tlbs;
1972 int i;
1973
1974 /* Expand the wired TLB array if necessary */
1975 wired &= MIPSR6_WIRED_WIRED;
1976 if (wired > vcpu->arch.wired_tlb_limit) {
1977 tlbs = krealloc(vcpu->arch.wired_tlb, wired *
1978 sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
1979 if (WARN_ON(!tlbs)) {
1980 /* Save whatever we can */
1981 wired = vcpu->arch.wired_tlb_limit;
1982 } else {
1983 vcpu->arch.wired_tlb = tlbs;
1984 vcpu->arch.wired_tlb_limit = wired;
1985 }
1986 }
1987
1988 if (wired)
1989 /* Save wired entries from the guest TLB */
1990 kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
1991 /* Invalidate any dropped entries since last time */
1992 for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
1993 vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
1994 vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
1995 vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
1996 vcpu->arch.wired_tlb[i].tlb_mask = 0;
1997 }
1998 vcpu->arch.wired_tlb_used = wired;
1999}
2000
2001static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2002{
2003 /* Load wired entries into the guest TLB */
2004 if (vcpu->arch.wired_tlb)
2005 kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2006 vcpu->arch.wired_tlb_used);
2007}
2008
2009static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2010{
2011 struct kvm *kvm = vcpu->kvm;
2012 struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2013 bool migrated;
2014
2015 /*
2016 * Are we entering guest context on a different CPU to last time?
2017 * If so, the VCPU's guest TLB state on this CPU may be stale.
2018 */
2019 migrated = (vcpu->arch.last_exec_cpu != cpu);
2020 vcpu->arch.last_exec_cpu = cpu;
2021
2022 /*
2023 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2024 * remains set until another vcpu is loaded in. As a rule GuestRID
2025 * remains zeroed when in root context unless the kernel is busy
2026 * manipulating guest tlb entries.
2027 */
2028 if (cpu_has_guestid) {
2029 /*
2030 * Check if our GuestID is of an older version and thus invalid.
2031 *
2032 * We also discard the stored GuestID if we've executed on
2033 * another CPU, as the guest mappings may have changed without
2034 * hypervisor knowledge.
2035 */
2036 if (migrated ||
2037 (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2038 GUESTID_VERSION_MASK) {
2039 kvm_vz_get_new_guestid(cpu, vcpu);
2040 vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2041 trace_kvm_guestid_change(vcpu,
2042 vcpu->arch.vzguestid[cpu]);
2043 }
2044
2045 /* Restore GuestID */
2046 change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2047 } else {
2048 /*
2049 * The Guest TLB only stores a single guest's TLB state, so
2050 * flush it if another VCPU has executed on this CPU.
2051 *
2052 * We also flush if we've executed on another CPU, as the guest
2053 * mappings may have changed without hypervisor knowledge.
2054 */
2055 if (migrated || last_exec_vcpu[cpu] != vcpu)
2056 kvm_vz_local_flush_guesttlb_all();
2057 last_exec_vcpu[cpu] = vcpu;
2058
2059 /*
2060 * Root ASID dealiases guest GPA mappings in the root TLB.
2061 * Allocate new root ASID if needed.
2062 */
2063 if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask)
2064 || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) &
2065 asid_version_mask(cpu))
2066 get_new_mmu_context(gpa_mm, cpu);
2067 }
2068}
2069
2070static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2071{
2072 struct mips_coproc *cop0 = vcpu->arch.cop0;
2073 bool migrated, all;
2074
2075 /*
2076 * Have we migrated to a different CPU?
2077 * If so, any old guest TLB state may be stale.
2078 */
2079 migrated = (vcpu->arch.last_sched_cpu != cpu);
2080
2081 /*
2082 * Was this the last VCPU to run on this CPU?
2083 * If not, any old guest state from this VCPU will have been clobbered.
2084 */
2085 all = migrated || (last_vcpu[cpu] != vcpu);
2086 last_vcpu[cpu] = vcpu;
2087
2088 /*
2089 * Restore CP0_Wired unconditionally as we clear it after use, and
2090 * restore wired guest TLB entries (while in guest context).
2091 */
2092 kvm_restore_gc0_wired(cop0);
2093 if (current->flags & PF_VCPU) {
2094 tlbw_use_hazard();
2095 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2096 kvm_vz_vcpu_load_wired(vcpu);
2097 }
2098
2099 /*
2100 * Restore timer state regardless, as e.g. Cause.TI can change over time
2101 * if left unmaintained.
2102 */
2103 kvm_vz_restore_timer(vcpu);
2104
2105 /* Don't bother restoring registers multiple times unless necessary */
2106 if (!all)
2107 return 0;
2108
2109 /*
2110 * Restore config registers first, as some implementations restrict
2111 * writes to other registers when the corresponding feature bits aren't
2112 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2113 */
2114 kvm_restore_gc0_config(cop0);
2115 if (cpu_guest_has_conf1)
2116 kvm_restore_gc0_config1(cop0);
2117 if (cpu_guest_has_conf2)
2118 kvm_restore_gc0_config2(cop0);
2119 if (cpu_guest_has_conf3)
2120 kvm_restore_gc0_config3(cop0);
2121 if (cpu_guest_has_conf4)
2122 kvm_restore_gc0_config4(cop0);
2123 if (cpu_guest_has_conf5)
2124 kvm_restore_gc0_config5(cop0);
2125 if (cpu_guest_has_conf6)
2126 kvm_restore_gc0_config6(cop0);
2127 if (cpu_guest_has_conf7)
2128 kvm_restore_gc0_config7(cop0);
2129
2130 kvm_restore_gc0_index(cop0);
2131 kvm_restore_gc0_entrylo0(cop0);
2132 kvm_restore_gc0_entrylo1(cop0);
2133 kvm_restore_gc0_context(cop0);
James Hogandffe0422017-03-14 10:15:34 +00002134 if (cpu_guest_has_contextconfig)
2135 kvm_restore_gc0_contextconfig(cop0);
James Hoganc992a4f2017-03-14 10:15:31 +00002136#ifdef CONFIG_64BIT
2137 kvm_restore_gc0_xcontext(cop0);
James Hogandffe0422017-03-14 10:15:34 +00002138 if (cpu_guest_has_contextconfig)
2139 kvm_restore_gc0_xcontextconfig(cop0);
James Hoganc992a4f2017-03-14 10:15:31 +00002140#endif
2141 kvm_restore_gc0_pagemask(cop0);
2142 kvm_restore_gc0_pagegrain(cop0);
2143 kvm_restore_gc0_hwrena(cop0);
2144 kvm_restore_gc0_badvaddr(cop0);
2145 kvm_restore_gc0_entryhi(cop0);
2146 kvm_restore_gc0_status(cop0);
2147 kvm_restore_gc0_intctl(cop0);
2148 kvm_restore_gc0_epc(cop0);
2149 kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2150 if (cpu_guest_has_userlocal)
2151 kvm_restore_gc0_userlocal(cop0);
2152
2153 kvm_restore_gc0_errorepc(cop0);
2154
2155 /* restore KScratch registers if enabled in guest */
2156 if (cpu_guest_has_conf4) {
2157 if (cpu_guest_has_kscr(2))
2158 kvm_restore_gc0_kscratch1(cop0);
2159 if (cpu_guest_has_kscr(3))
2160 kvm_restore_gc0_kscratch2(cop0);
2161 if (cpu_guest_has_kscr(4))
2162 kvm_restore_gc0_kscratch3(cop0);
2163 if (cpu_guest_has_kscr(5))
2164 kvm_restore_gc0_kscratch4(cop0);
2165 if (cpu_guest_has_kscr(6))
2166 kvm_restore_gc0_kscratch5(cop0);
2167 if (cpu_guest_has_kscr(7))
2168 kvm_restore_gc0_kscratch6(cop0);
2169 }
2170
James Hoganedc89262017-03-14 10:15:33 +00002171 if (cpu_guest_has_badinstr)
2172 kvm_restore_gc0_badinstr(cop0);
2173 if (cpu_guest_has_badinstrp)
2174 kvm_restore_gc0_badinstrp(cop0);
2175
James Hogan4b7de022017-03-14 10:15:35 +00002176 if (cpu_guest_has_segments) {
2177 kvm_restore_gc0_segctl0(cop0);
2178 kvm_restore_gc0_segctl1(cop0);
2179 kvm_restore_gc0_segctl2(cop0);
2180 }
2181
James Hoganc992a4f2017-03-14 10:15:31 +00002182 /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2183 if (cpu_has_guestctl2)
2184 write_c0_guestctl2(
2185 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2186
2187 return 0;
2188}
2189
2190static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2191{
2192 struct mips_coproc *cop0 = vcpu->arch.cop0;
2193
2194 if (current->flags & PF_VCPU)
2195 kvm_vz_vcpu_save_wired(vcpu);
2196
2197 kvm_lose_fpu(vcpu);
2198
2199 kvm_save_gc0_index(cop0);
2200 kvm_save_gc0_entrylo0(cop0);
2201 kvm_save_gc0_entrylo1(cop0);
2202 kvm_save_gc0_context(cop0);
James Hogandffe0422017-03-14 10:15:34 +00002203 if (cpu_guest_has_contextconfig)
2204 kvm_save_gc0_contextconfig(cop0);
James Hoganc992a4f2017-03-14 10:15:31 +00002205#ifdef CONFIG_64BIT
2206 kvm_save_gc0_xcontext(cop0);
James Hogandffe0422017-03-14 10:15:34 +00002207 if (cpu_guest_has_contextconfig)
2208 kvm_save_gc0_xcontextconfig(cop0);
James Hoganc992a4f2017-03-14 10:15:31 +00002209#endif
2210 kvm_save_gc0_pagemask(cop0);
2211 kvm_save_gc0_pagegrain(cop0);
2212 kvm_save_gc0_wired(cop0);
2213 /* allow wired TLB entries to be overwritten */
2214 clear_gc0_wired(MIPSR6_WIRED_WIRED);
2215 kvm_save_gc0_hwrena(cop0);
2216 kvm_save_gc0_badvaddr(cop0);
2217 kvm_save_gc0_entryhi(cop0);
2218 kvm_save_gc0_status(cop0);
2219 kvm_save_gc0_intctl(cop0);
2220 kvm_save_gc0_epc(cop0);
2221 kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2222 if (cpu_guest_has_userlocal)
2223 kvm_save_gc0_userlocal(cop0);
2224
2225 /* only save implemented config registers */
2226 kvm_save_gc0_config(cop0);
2227 if (cpu_guest_has_conf1)
2228 kvm_save_gc0_config1(cop0);
2229 if (cpu_guest_has_conf2)
2230 kvm_save_gc0_config2(cop0);
2231 if (cpu_guest_has_conf3)
2232 kvm_save_gc0_config3(cop0);
2233 if (cpu_guest_has_conf4)
2234 kvm_save_gc0_config4(cop0);
2235 if (cpu_guest_has_conf5)
2236 kvm_save_gc0_config5(cop0);
2237 if (cpu_guest_has_conf6)
2238 kvm_save_gc0_config6(cop0);
2239 if (cpu_guest_has_conf7)
2240 kvm_save_gc0_config7(cop0);
2241
2242 kvm_save_gc0_errorepc(cop0);
2243
2244 /* save KScratch registers if enabled in guest */
2245 if (cpu_guest_has_conf4) {
2246 if (cpu_guest_has_kscr(2))
2247 kvm_save_gc0_kscratch1(cop0);
2248 if (cpu_guest_has_kscr(3))
2249 kvm_save_gc0_kscratch2(cop0);
2250 if (cpu_guest_has_kscr(4))
2251 kvm_save_gc0_kscratch3(cop0);
2252 if (cpu_guest_has_kscr(5))
2253 kvm_save_gc0_kscratch4(cop0);
2254 if (cpu_guest_has_kscr(6))
2255 kvm_save_gc0_kscratch5(cop0);
2256 if (cpu_guest_has_kscr(7))
2257 kvm_save_gc0_kscratch6(cop0);
2258 }
2259
James Hoganedc89262017-03-14 10:15:33 +00002260 if (cpu_guest_has_badinstr)
2261 kvm_save_gc0_badinstr(cop0);
2262 if (cpu_guest_has_badinstrp)
2263 kvm_save_gc0_badinstrp(cop0);
2264
James Hogan4b7de022017-03-14 10:15:35 +00002265 if (cpu_guest_has_segments) {
2266 kvm_save_gc0_segctl0(cop0);
2267 kvm_save_gc0_segctl1(cop0);
2268 kvm_save_gc0_segctl2(cop0);
2269 }
2270
James Hoganc992a4f2017-03-14 10:15:31 +00002271 kvm_vz_save_timer(vcpu);
2272
2273 /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2274 if (cpu_has_guestctl2)
2275 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2276 read_c0_guestctl2();
2277
2278 return 0;
2279}
2280
2281/**
2282 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2283 * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries).
2284 *
2285 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2286 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2287 * entries in the root VTLB.
2288 *
2289 * Returns: The resulting guest VTLB size.
2290 */
2291static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2292{
2293 unsigned int config4 = 0, ret = 0, limit;
2294
2295 /* Write MMUSize - 1 into guest Config registers */
2296 if (cpu_guest_has_conf1)
2297 change_gc0_config1(MIPS_CONF1_TLBS,
2298 (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2299 if (cpu_guest_has_conf4) {
2300 config4 = read_gc0_config4();
2301 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2302 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2303 config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2304 config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2305 MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2306 } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2307 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2308 config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2309 config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2310 MIPS_CONF4_MMUSIZEEXT_SHIFT;
2311 }
2312 write_gc0_config4(config4);
2313 }
2314
2315 /*
2316 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2317 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2318 * not dropped)
2319 */
2320 if (cpu_has_mips_r6) {
2321 limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2322 MIPSR6_WIRED_LIMIT_SHIFT;
2323 if (size - 1 <= limit)
2324 limit = 0;
2325 write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2326 }
2327
2328 /* Read back MMUSize - 1 */
2329 back_to_back_c0_hazard();
2330 if (cpu_guest_has_conf1)
2331 ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2332 MIPS_CONF1_TLBS_SHIFT;
2333 if (config4) {
2334 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2335 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2336 ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2337 MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2338 MIPS_CONF1_TLBS_SIZE;
2339 else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2340 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2341 ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2342 MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2343 MIPS_CONF1_TLBS_SIZE;
2344 }
2345 return ret + 1;
2346}
2347
2348static int kvm_vz_hardware_enable(void)
2349{
2350 unsigned int mmu_size, guest_mmu_size, ftlb_size;
2351
2352 /*
2353 * ImgTec cores tend to use a shared root/guest TLB. To avoid overlap of
2354 * root wired and guest entries, the guest TLB may need resizing.
2355 */
2356 mmu_size = current_cpu_data.tlbsizevtlb;
2357 ftlb_size = current_cpu_data.tlbsize - mmu_size;
2358
2359 /* Try switching to maximum guest VTLB size for flush */
2360 guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2361 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2362 kvm_vz_local_flush_guesttlb_all();
2363
2364 /*
2365 * Reduce to make space for root wired entries and at least 2 root
2366 * non-wired entries. This does assume that long-term wired entries
2367 * won't be added later.
2368 */
2369 guest_mmu_size = mmu_size - num_wired_entries() - 2;
2370 guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2371 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2372
2373 /*
2374 * Write the VTLB size, but if another CPU has already written, check it
2375 * matches or we won't provide a consistent view to the guest. If this
2376 * ever happens it suggests an asymmetric number of wired entries.
2377 */
2378 if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2379 WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2380 "Available guest VTLB size mismatch"))
2381 return -EINVAL;
2382
2383 /*
2384 * Enable virtualization features granting guest direct control of
2385 * certain features:
2386 * CP0=1: Guest coprocessor 0 context.
2387 * AT=Guest: Guest MMU.
2388 * CG=1: Hit (virtual address) CACHE operations (optional).
2389 * CF=1: Guest Config registers.
2390 * CGI=1: Indexed flush CACHE operations (optional).
2391 */
2392 write_c0_guestctl0(MIPS_GCTL0_CP0 |
2393 (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2394 MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2395 if (cpu_has_guestctl0ext)
2396 set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2397
2398 if (cpu_has_guestid) {
2399 write_c0_guestctl1(0);
2400 kvm_vz_local_flush_roottlb_all_guests();
2401
2402 GUESTID_MASK = current_cpu_data.guestid_mask;
2403 GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2404 GUESTID_VERSION_MASK = ~GUESTID_MASK;
2405
2406 current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2407 }
2408
2409 /* clear any pending injected virtual guest interrupts */
2410 if (cpu_has_guestctl2)
2411 clear_c0_guestctl2(0x3f << 10);
2412
2413 return 0;
2414}
2415
2416static void kvm_vz_hardware_disable(void)
2417{
2418 kvm_vz_local_flush_guesttlb_all();
2419
2420 if (cpu_has_guestid) {
2421 write_c0_guestctl1(0);
2422 kvm_vz_local_flush_roottlb_all_guests();
2423 }
2424}
2425
2426static int kvm_vz_check_extension(struct kvm *kvm, long ext)
2427{
2428 int r;
2429
2430 switch (ext) {
2431 case KVM_CAP_MIPS_VZ:
2432 /* we wouldn't be here unless cpu_has_vz */
2433 r = 1;
2434 break;
2435#ifdef CONFIG_64BIT
2436 case KVM_CAP_MIPS_64BIT:
2437 /* We support 64-bit registers/operations and addresses */
2438 r = 2;
2439 break;
2440#endif
2441 default:
2442 r = 0;
2443 break;
2444 }
2445
2446 return r;
2447}
2448
2449static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
2450{
2451 int i;
2452
2453 for_each_possible_cpu(i)
2454 vcpu->arch.vzguestid[i] = 0;
2455
2456 return 0;
2457}
2458
2459static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
2460{
2461 int cpu;
2462
2463 /*
2464 * If the VCPU is freed and reused as another VCPU, we don't want the
2465 * matching pointer wrongly hanging around in last_vcpu[] or
2466 * last_exec_vcpu[].
2467 */
2468 for_each_possible_cpu(cpu) {
2469 if (last_vcpu[cpu] == vcpu)
2470 last_vcpu[cpu] = NULL;
2471 if (last_exec_vcpu[cpu] == vcpu)
2472 last_exec_vcpu[cpu] = NULL;
2473 }
2474}
2475
2476static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
2477{
2478 struct mips_coproc *cop0 = vcpu->arch.cop0;
2479 unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
2480
2481 /*
2482 * Start off the timer at the same frequency as the host timer, but the
2483 * soft timer doesn't handle frequencies greater than 1GHz yet.
2484 */
2485 if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
2486 count_hz = mips_hpt_frequency;
2487 kvm_mips_init_count(vcpu, count_hz);
2488
2489 /*
2490 * Initialize guest register state to valid architectural reset state.
2491 */
2492
2493 /* PageGrain */
2494 if (cpu_has_mips_r6)
2495 kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
2496 /* Wired */
2497 if (cpu_has_mips_r6)
2498 kvm_write_sw_gc0_wired(cop0,
2499 read_gc0_wired() & MIPSR6_WIRED_LIMIT);
2500 /* Status */
2501 kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
2502 if (cpu_has_mips_r6)
2503 kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
2504 /* IntCtl */
2505 kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
2506 (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
2507 /* PRId */
2508 kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
2509 /* EBase */
2510 kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
2511 /* Config */
2512 kvm_save_gc0_config(cop0);
2513 /* architecturally writable (e.g. from guest) */
2514 kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
2515 _page_cachable_default >> _CACHE_SHIFT);
2516 /* architecturally read only, but maybe writable from root */
2517 kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
2518 if (cpu_guest_has_conf1) {
2519 kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
2520 /* Config1 */
2521 kvm_save_gc0_config1(cop0);
2522 /* architecturally read only, but maybe writable from root */
2523 kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 |
2524 MIPS_CONF1_MD |
2525 MIPS_CONF1_PC |
2526 MIPS_CONF1_WR |
2527 MIPS_CONF1_CA |
2528 MIPS_CONF1_FP);
2529 }
2530 if (cpu_guest_has_conf2) {
2531 kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
2532 /* Config2 */
2533 kvm_save_gc0_config2(cop0);
2534 }
2535 if (cpu_guest_has_conf3) {
2536 kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
2537 /* Config3 */
2538 kvm_save_gc0_config3(cop0);
2539 /* architecturally writable (e.g. from guest) */
2540 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
2541 /* architecturally read only, but maybe writable from root */
2542 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA |
2543 MIPS_CONF3_BPG |
2544 MIPS_CONF3_ULRI |
2545 MIPS_CONF3_DSP |
2546 MIPS_CONF3_CTXTC |
2547 MIPS_CONF3_ITL |
2548 MIPS_CONF3_LPA |
2549 MIPS_CONF3_VEIC |
2550 MIPS_CONF3_VINT |
2551 MIPS_CONF3_SP |
2552 MIPS_CONF3_CDMM |
2553 MIPS_CONF3_MT |
2554 MIPS_CONF3_SM |
2555 MIPS_CONF3_TL);
2556 }
2557 if (cpu_guest_has_conf4) {
2558 kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
2559 /* Config4 */
2560 kvm_save_gc0_config4(cop0);
2561 }
2562 if (cpu_guest_has_conf5) {
2563 kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
2564 /* Config5 */
2565 kvm_save_gc0_config5(cop0);
2566 /* architecturally writable (e.g. from guest) */
2567 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K |
2568 MIPS_CONF5_CV |
2569 MIPS_CONF5_MSAEN |
2570 MIPS_CONF5_UFE |
2571 MIPS_CONF5_FRE |
2572 MIPS_CONF5_SBRI |
2573 MIPS_CONF5_UFR);
2574 /* architecturally read only, but maybe writable from root */
2575 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
2576 }
2577
James Hogandffe0422017-03-14 10:15:34 +00002578 if (cpu_guest_has_contextconfig) {
2579 /* ContextConfig */
2580 kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
2581#ifdef CONFIG_64BIT
2582 /* XContextConfig */
2583 /* bits SEGBITS-13+3:4 set */
2584 kvm_write_sw_gc0_xcontextconfig(cop0,
2585 ((1ull << (cpu_vmbits - 13)) - 1) << 4);
2586#endif
2587 }
2588
James Hogan4b7de022017-03-14 10:15:35 +00002589 /* Implementation dependent, use the legacy layout */
2590 if (cpu_guest_has_segments) {
2591 /* SegCtl0, SegCtl1, SegCtl2 */
2592 kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
2593 kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
2594 (_page_cachable_default >> _CACHE_SHIFT) <<
2595 (16 + MIPS_SEGCFG_C_SHIFT));
2596 kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
2597 }
2598
James Hoganc992a4f2017-03-14 10:15:31 +00002599 /* start with no pending virtual guest interrupts */
2600 if (cpu_has_guestctl2)
2601 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
2602
2603 /* Put PC at reset vector */
2604 vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
2605
2606 return 0;
2607}
2608
2609static void kvm_vz_flush_shadow_all(struct kvm *kvm)
2610{
2611 if (cpu_has_guestid) {
2612 /* Flush GuestID for each VCPU individually */
2613 kvm_flush_remote_tlbs(kvm);
2614 } else {
2615 /*
2616 * For each CPU there is a single GPA ASID used by all VCPUs in
2617 * the VM, so it doesn't make sense for the VCPUs to handle
2618 * invalidation of these ASIDs individually.
2619 *
2620 * Instead mark all CPUs as needing ASID invalidation in
2621 * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
2622 * kick any running VCPUs so they check asid_flush_mask.
2623 */
2624 cpumask_setall(&kvm->arch.asid_flush_mask);
2625 kvm_flush_remote_tlbs(kvm);
2626 }
2627}
2628
2629static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
2630 const struct kvm_memory_slot *slot)
2631{
2632 kvm_vz_flush_shadow_all(kvm);
2633}
2634
2635static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu)
2636{
2637 int cpu = smp_processor_id();
2638 int preserve_guest_tlb;
2639
2640 preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
2641
2642 if (preserve_guest_tlb)
2643 kvm_vz_vcpu_save_wired(vcpu);
2644
2645 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2646
2647 if (preserve_guest_tlb)
2648 kvm_vz_vcpu_load_wired(vcpu);
2649}
2650
2651static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
2652{
2653 int cpu = smp_processor_id();
2654 int r;
2655
2656 /* Check if we have any exceptions/interrupts pending */
2657 kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
2658
2659 kvm_vz_check_requests(vcpu, cpu);
2660 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2661 kvm_vz_vcpu_load_wired(vcpu);
2662
2663 r = vcpu->arch.vcpu_run(run, vcpu);
2664
2665 kvm_vz_vcpu_save_wired(vcpu);
2666
2667 return r;
2668}
2669
2670static struct kvm_mips_callbacks kvm_vz_callbacks = {
2671 .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
2672 .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
2673 .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
2674 .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
2675 .handle_addr_err_st = kvm_trap_vz_no_handler,
2676 .handle_addr_err_ld = kvm_trap_vz_no_handler,
2677 .handle_syscall = kvm_trap_vz_no_handler,
2678 .handle_res_inst = kvm_trap_vz_no_handler,
2679 .handle_break = kvm_trap_vz_no_handler,
2680 .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
2681 .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
2682
2683 .hardware_enable = kvm_vz_hardware_enable,
2684 .hardware_disable = kvm_vz_hardware_disable,
2685 .check_extension = kvm_vz_check_extension,
2686 .vcpu_init = kvm_vz_vcpu_init,
2687 .vcpu_uninit = kvm_vz_vcpu_uninit,
2688 .vcpu_setup = kvm_vz_vcpu_setup,
2689 .flush_shadow_all = kvm_vz_flush_shadow_all,
2690 .flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
2691 .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
2692 .queue_timer_int = kvm_vz_queue_timer_int_cb,
2693 .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
2694 .queue_io_int = kvm_vz_queue_io_int_cb,
2695 .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
2696 .irq_deliver = kvm_vz_irq_deliver_cb,
2697 .irq_clear = kvm_vz_irq_clear_cb,
2698 .num_regs = kvm_vz_num_regs,
2699 .copy_reg_indices = kvm_vz_copy_reg_indices,
2700 .get_one_reg = kvm_vz_get_one_reg,
2701 .set_one_reg = kvm_vz_set_one_reg,
2702 .vcpu_load = kvm_vz_vcpu_load,
2703 .vcpu_put = kvm_vz_vcpu_put,
2704 .vcpu_run = kvm_vz_vcpu_run,
2705 .vcpu_reenter = kvm_vz_vcpu_reenter,
2706};
2707
2708int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
2709{
2710 if (!cpu_has_vz)
2711 return -ENODEV;
2712
2713 /*
2714 * VZ requires at least 2 KScratch registers, so it should have been
2715 * possible to allocate pgd_reg.
2716 */
2717 if (WARN(pgd_reg == -1,
2718 "pgd_reg not allocated even though cpu_has_vz\n"))
2719 return -ENODEV;
2720
2721 pr_info("Starting KVM with MIPS VZ extensions\n");
2722
2723 *install_callbacks = &kvm_vz_callbacks;
2724 return 0;
2725}