Patrick Boettcher | 4de2730 | 2006-04-17 13:22:15 -0300 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner" |
| 3 | * |
| 4 | * Copyright (c) 2006 Olivier DANET <odanet@caramail.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; either version 2 of the License, or |
| 9 | * (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.= |
| 20 | */ |
| 21 | |
| 22 | /* See mt2060_priv.h for details */ |
| 23 | |
| 24 | /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */ |
| 25 | |
| 26 | #include <linux/module.h> |
| 27 | #include <linux/moduleparam.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/dvb/frontend.h> |
| 30 | #include "mt2060.h" |
| 31 | #include "mt2060_priv.h" |
| 32 | |
| 33 | static int debug=0; |
| 34 | module_param(debug, int, 0644); |
| 35 | MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
| 36 | |
| 37 | #define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0) |
| 38 | |
| 39 | // Reads a single register |
| 40 | static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val) |
| 41 | { |
| 42 | struct i2c_msg msg[2] = { |
| 43 | { .addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1 }, |
| 44 | { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 }, |
| 45 | }; |
| 46 | |
| 47 | if (i2c_transfer(state->i2c, msg, 2) != 2) { |
| 48 | printk(KERN_WARNING "mt2060 I2C read failed\n"); |
| 49 | return -EREMOTEIO; |
| 50 | } |
| 51 | return 0; |
| 52 | } |
| 53 | |
| 54 | // Writes a single register |
| 55 | static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val) |
| 56 | { |
| 57 | u8 buf[2]; |
| 58 | struct i2c_msg msg = { |
| 59 | .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2 |
| 60 | }; |
| 61 | buf[0]=reg; |
| 62 | buf[1]=val; |
| 63 | |
| 64 | if (i2c_transfer(state->i2c, &msg, 1) != 1) { |
| 65 | printk(KERN_WARNING "mt2060 I2C write failed\n"); |
| 66 | return -EREMOTEIO; |
| 67 | } |
| 68 | return 0; |
| 69 | } |
| 70 | |
| 71 | // Writes a set of consecutive registers |
| 72 | static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len) |
| 73 | { |
| 74 | struct i2c_msg msg = { |
| 75 | .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len |
| 76 | }; |
| 77 | if (i2c_transfer(state->i2c, &msg, 1) != 1) { |
| 78 | printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len); |
| 79 | return -EREMOTEIO; |
| 80 | } |
| 81 | return 0; |
| 82 | } |
| 83 | |
| 84 | // Initialisation sequences |
| 85 | // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49 |
| 86 | static u8 mt2060_config1[] = { |
| 87 | REG_LO1C1, |
| 88 | 0x3F, 0x74, 0x00, 0x08, 0x93 |
| 89 | }; |
| 90 | |
| 91 | // FMCG=2, GP2=0, GP1=0 |
| 92 | static u8 mt2060_config2[] = { |
| 93 | REG_MISC_CTRL, |
| 94 | 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42 |
| 95 | }; |
| 96 | |
| 97 | // VGAG=3, V1CSE=1 |
| 98 | static u8 mt2060_config3[] = { |
| 99 | REG_VGAG, |
| 100 | 0x33 |
| 101 | }; |
| 102 | |
| 103 | int mt2060_init(struct mt2060_state *state) |
| 104 | { |
| 105 | if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1))) |
| 106 | return -EREMOTEIO; |
| 107 | if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3))) |
| 108 | return -EREMOTEIO; |
| 109 | return 0; |
| 110 | } |
| 111 | EXPORT_SYMBOL(mt2060_init); |
| 112 | |
| 113 | #ifdef MT2060_SPURCHECK |
| 114 | /* The function below calculates the frequency offset between the output frequency if2 |
| 115 | and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */ |
| 116 | static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2) |
| 117 | { |
| 118 | int I,J; |
| 119 | int dia,diamin,diff; |
| 120 | diamin=1000000; |
| 121 | for (I = 1; I < 10; I++) { |
| 122 | J = ((2*I*lo1)/lo2+1)/2; |
| 123 | diff = I*(int)lo1-J*(int)lo2; |
| 124 | if (diff < 0) diff=-diff; |
| 125 | dia = (diff-(int)if2); |
| 126 | if (dia < 0) dia=-dia; |
| 127 | if (diamin > dia) diamin=dia; |
| 128 | } |
| 129 | return diamin; |
| 130 | } |
| 131 | |
| 132 | #define BANDWIDTH 4000 // kHz |
| 133 | |
| 134 | /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */ |
| 135 | static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2) |
| 136 | { |
| 137 | u32 Spur,Sp1,Sp2; |
| 138 | int I,J; |
| 139 | I=0; |
| 140 | J=1000; |
| 141 | |
| 142 | Spur=mt2060_spurcalc(lo1,lo2,if2); |
| 143 | if (Spur < BANDWIDTH) { |
| 144 | /* Potential spurs detected */ |
| 145 | dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)", |
| 146 | (int)lo1,(int)lo2); |
| 147 | I=1000; |
| 148 | Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2); |
| 149 | Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2); |
| 150 | |
| 151 | if (Sp1 < Sp2) { |
| 152 | J=-J; I=-I; Spur=Sp2; |
| 153 | } else |
| 154 | Spur=Sp1; |
| 155 | |
| 156 | while (Spur < BANDWIDTH) { |
| 157 | I += J; |
| 158 | Spur = mt2060_spurcalc(lo1+I,lo2+I,if2); |
| 159 | } |
| 160 | dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)", |
| 161 | (int)(lo1+I),(int)(lo2+I)); |
| 162 | } |
| 163 | return I; |
| 164 | } |
| 165 | #endif |
| 166 | |
| 167 | #define IF2 36150 // IF2 frequency = 36.150 MHz |
| 168 | #define FREF 16000 // Quartz oscillator 16 MHz |
| 169 | |
| 170 | int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep) |
| 171 | { |
| 172 | int ret=0; |
| 173 | int i=0; |
| 174 | u32 freq; |
| 175 | u8 lnaband; |
| 176 | u32 f_lo1,f_lo2; |
| 177 | u32 div1,num1,div2,num2; |
| 178 | u8 b[8]; |
| 179 | u32 if1; |
| 180 | |
| 181 | if1 = state->if1_freq; |
| 182 | b[0] = REG_LO1B1; |
| 183 | b[1] = 0xFF; |
| 184 | mt2060_writeregs(state,b,2); |
| 185 | |
| 186 | freq = fep->frequency / 1000; // Hz -> kHz |
| 187 | |
| 188 | f_lo1 = freq + if1 * 1000; |
| 189 | f_lo1 = (f_lo1/250)*250; |
| 190 | f_lo2 = f_lo1 - freq - IF2; |
| 191 | f_lo2 = (f_lo2/50)*50; |
| 192 | |
| 193 | #ifdef MT2060_SPURCHECK |
| 194 | // LO-related spurs detection and correction |
| 195 | num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2); |
| 196 | f_lo1 += num1; |
| 197 | f_lo2 += num1; |
| 198 | #endif |
| 199 | //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 ) |
| 200 | div1 = f_lo1 / FREF; |
| 201 | num1 = (64 * (f_lo1 % FREF) )/FREF; |
| 202 | |
| 203 | // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 ) |
| 204 | div2 = f_lo2 / FREF; |
| 205 | num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2; |
| 206 | |
| 207 | if (freq <= 95000) lnaband = 0xB0; else |
| 208 | if (freq <= 180000) lnaband = 0xA0; else |
| 209 | if (freq <= 260000) lnaband = 0x90; else |
| 210 | if (freq <= 335000) lnaband = 0x80; else |
| 211 | if (freq <= 425000) lnaband = 0x70; else |
| 212 | if (freq <= 480000) lnaband = 0x60; else |
| 213 | if (freq <= 570000) lnaband = 0x50; else |
| 214 | if (freq <= 645000) lnaband = 0x40; else |
| 215 | if (freq <= 730000) lnaband = 0x30; else |
| 216 | if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10; |
| 217 | |
| 218 | b[0] = REG_LO1C1; |
| 219 | b[1] = lnaband | ((num1 >>2) & 0x0F); |
| 220 | b[2] = div1; |
| 221 | b[3] = (num2 & 0x0F) | ((num1 & 3) << 4); |
| 222 | b[4] = num2 >> 4; |
| 223 | b[5] = ((num2 >>12) & 1) | (div2 << 1); |
| 224 | |
| 225 | dprintk("IF1: %dMHz",(int)if1); |
| 226 | dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2); |
| 227 | dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2); |
| 228 | dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]); |
| 229 | |
| 230 | mt2060_writeregs(state,b,6); |
| 231 | |
| 232 | //Waits for pll lock or timeout |
| 233 | i=0; |
| 234 | do { |
| 235 | mt2060_readreg(state,REG_LO_STATUS,b); |
| 236 | if ((b[0] & 0x88)==0x88) break; |
| 237 | msleep(4); |
| 238 | i++; |
| 239 | } while (i<10); |
| 240 | |
| 241 | return ret; |
| 242 | } |
| 243 | EXPORT_SYMBOL(mt2060_set); |
| 244 | |
| 245 | /* from usbsnoop.log */ |
| 246 | static void mt2060_calibrate(struct mt2060_state *state) |
| 247 | { |
| 248 | u8 b = 0; |
| 249 | int i = 0; |
| 250 | |
| 251 | if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1))) |
| 252 | return; |
| 253 | if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2))) |
| 254 | return; |
| 255 | |
| 256 | do { |
| 257 | b |= (1 << 6); // FM1SS; |
| 258 | mt2060_writereg(state, REG_LO2C1,b); |
| 259 | msleep(20); |
| 260 | |
| 261 | if (i == 0) { |
| 262 | b |= (1 << 7); // FM1CA; |
| 263 | mt2060_writereg(state, REG_LO2C1,b); |
| 264 | b &= ~(1 << 7); // FM1CA; |
| 265 | msleep(20); |
| 266 | } |
| 267 | |
| 268 | b &= ~(1 << 6); // FM1SS |
| 269 | mt2060_writereg(state, REG_LO2C1,b); |
| 270 | |
| 271 | msleep(20); |
| 272 | i++; |
| 273 | } while (i < 9); |
| 274 | |
| 275 | i = 0; |
| 276 | while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0) |
| 277 | msleep(20); |
| 278 | |
| 279 | if (i < 10) { |
| 280 | mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :) |
| 281 | dprintk("calibration was successful: %d",state->fmfreq); |
| 282 | } else |
| 283 | dprintk("FMCAL timed out"); |
| 284 | } |
| 285 | |
| 286 | /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */ |
| 287 | int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1) |
| 288 | { |
| 289 | u8 id = 0; |
| 290 | memset(state,0,sizeof(struct mt2060_state)); |
| 291 | |
| 292 | state->config = config; |
| 293 | state->i2c = i2c; |
| 294 | state->if1_freq = if1; |
| 295 | |
| 296 | if (mt2060_readreg(state,REG_PART_REV,&id) != 0) |
| 297 | return -ENODEV; |
| 298 | |
| 299 | if (id != PART_REV) |
| 300 | return -ENODEV; |
| 301 | |
| 302 | printk(KERN_INFO "MT2060: successfully identified\n"); |
| 303 | |
| 304 | mt2060_calibrate(state); |
| 305 | |
| 306 | return 0; |
| 307 | } |
| 308 | EXPORT_SYMBOL(mt2060_attach); |
| 309 | |
| 310 | MODULE_AUTHOR("Olivier DANET"); |
| 311 | MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver"); |
| 312 | MODULE_LICENSE("GPL"); |