Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2008, 2009 Intel Corporation |
| 3 | * Authors: Andi Kleen, Fengguang Wu |
| 4 | * |
| 5 | * This software may be redistributed and/or modified under the terms of |
| 6 | * the GNU General Public License ("GPL") version 2 only as published by the |
| 7 | * Free Software Foundation. |
| 8 | * |
| 9 | * High level machine check handler. Handles pages reported by the |
| 10 | * hardware as being corrupted usually due to a 2bit ECC memory or cache |
| 11 | * failure. |
| 12 | * |
| 13 | * Handles page cache pages in various states. The tricky part |
| 14 | * here is that we can access any page asynchronous to other VM |
| 15 | * users, because memory failures could happen anytime and anywhere, |
| 16 | * possibly violating some of their assumptions. This is why this code |
| 17 | * has to be extremely careful. Generally it tries to use normal locking |
| 18 | * rules, as in get the standard locks, even if that means the |
| 19 | * error handling takes potentially a long time. |
| 20 | * |
| 21 | * The operation to map back from RMAP chains to processes has to walk |
| 22 | * the complete process list and has non linear complexity with the number |
| 23 | * mappings. In short it can be quite slow. But since memory corruptions |
| 24 | * are rare we hope to get away with this. |
| 25 | */ |
| 26 | |
| 27 | /* |
| 28 | * Notebook: |
| 29 | * - hugetlb needs more code |
| 30 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages |
| 31 | * - pass bad pages to kdump next kernel |
| 32 | */ |
| 33 | #define DEBUG 1 /* remove me in 2.6.34 */ |
| 34 | #include <linux/kernel.h> |
| 35 | #include <linux/mm.h> |
| 36 | #include <linux/page-flags.h> |
Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 37 | #include <linux/kernel-page-flags.h> |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 38 | #include <linux/sched.h> |
Hugh Dickins | 01e00f8 | 2009-10-13 15:02:11 +0100 | [diff] [blame] | 39 | #include <linux/ksm.h> |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 40 | #include <linux/rmap.h> |
| 41 | #include <linux/pagemap.h> |
| 42 | #include <linux/swap.h> |
| 43 | #include <linux/backing-dev.h> |
| 44 | #include "internal.h" |
| 45 | |
| 46 | int sysctl_memory_failure_early_kill __read_mostly = 0; |
| 47 | |
| 48 | int sysctl_memory_failure_recovery __read_mostly = 1; |
| 49 | |
| 50 | atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); |
| 51 | |
Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 52 | u32 hwpoison_filter_dev_major = ~0U; |
| 53 | u32 hwpoison_filter_dev_minor = ~0U; |
Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 54 | u64 hwpoison_filter_flags_mask; |
| 55 | u64 hwpoison_filter_flags_value; |
Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 56 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); |
| 57 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); |
Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 58 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); |
| 59 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); |
Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 60 | |
| 61 | static int hwpoison_filter_dev(struct page *p) |
| 62 | { |
| 63 | struct address_space *mapping; |
| 64 | dev_t dev; |
| 65 | |
| 66 | if (hwpoison_filter_dev_major == ~0U && |
| 67 | hwpoison_filter_dev_minor == ~0U) |
| 68 | return 0; |
| 69 | |
| 70 | /* |
| 71 | * page_mapping() does not accept slab page |
| 72 | */ |
| 73 | if (PageSlab(p)) |
| 74 | return -EINVAL; |
| 75 | |
| 76 | mapping = page_mapping(p); |
| 77 | if (mapping == NULL || mapping->host == NULL) |
| 78 | return -EINVAL; |
| 79 | |
| 80 | dev = mapping->host->i_sb->s_dev; |
| 81 | if (hwpoison_filter_dev_major != ~0U && |
| 82 | hwpoison_filter_dev_major != MAJOR(dev)) |
| 83 | return -EINVAL; |
| 84 | if (hwpoison_filter_dev_minor != ~0U && |
| 85 | hwpoison_filter_dev_minor != MINOR(dev)) |
| 86 | return -EINVAL; |
| 87 | |
| 88 | return 0; |
| 89 | } |
| 90 | |
Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 91 | static int hwpoison_filter_flags(struct page *p) |
| 92 | { |
| 93 | if (!hwpoison_filter_flags_mask) |
| 94 | return 0; |
| 95 | |
| 96 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == |
| 97 | hwpoison_filter_flags_value) |
| 98 | return 0; |
| 99 | else |
| 100 | return -EINVAL; |
| 101 | } |
| 102 | |
Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame^] | 103 | /* |
| 104 | * This allows stress tests to limit test scope to a collection of tasks |
| 105 | * by putting them under some memcg. This prevents killing unrelated/important |
| 106 | * processes such as /sbin/init. Note that the target task may share clean |
| 107 | * pages with init (eg. libc text), which is harmless. If the target task |
| 108 | * share _dirty_ pages with another task B, the test scheme must make sure B |
| 109 | * is also included in the memcg. At last, due to race conditions this filter |
| 110 | * can only guarantee that the page either belongs to the memcg tasks, or is |
| 111 | * a freed page. |
| 112 | */ |
| 113 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
| 114 | u64 hwpoison_filter_memcg; |
| 115 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); |
| 116 | static int hwpoison_filter_task(struct page *p) |
| 117 | { |
| 118 | struct mem_cgroup *mem; |
| 119 | struct cgroup_subsys_state *css; |
| 120 | unsigned long ino; |
| 121 | |
| 122 | if (!hwpoison_filter_memcg) |
| 123 | return 0; |
| 124 | |
| 125 | mem = try_get_mem_cgroup_from_page(p); |
| 126 | if (!mem) |
| 127 | return -EINVAL; |
| 128 | |
| 129 | css = mem_cgroup_css(mem); |
| 130 | /* root_mem_cgroup has NULL dentries */ |
| 131 | if (!css->cgroup->dentry) |
| 132 | return -EINVAL; |
| 133 | |
| 134 | ino = css->cgroup->dentry->d_inode->i_ino; |
| 135 | css_put(css); |
| 136 | |
| 137 | if (ino != hwpoison_filter_memcg) |
| 138 | return -EINVAL; |
| 139 | |
| 140 | return 0; |
| 141 | } |
| 142 | #else |
| 143 | static int hwpoison_filter_task(struct page *p) { return 0; } |
| 144 | #endif |
| 145 | |
Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 146 | int hwpoison_filter(struct page *p) |
| 147 | { |
| 148 | if (hwpoison_filter_dev(p)) |
| 149 | return -EINVAL; |
| 150 | |
Wu Fengguang | 478c5ff | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 151 | if (hwpoison_filter_flags(p)) |
| 152 | return -EINVAL; |
| 153 | |
Andi Kleen | 4fd466e | 2009-12-16 12:19:59 +0100 | [diff] [blame^] | 154 | if (hwpoison_filter_task(p)) |
| 155 | return -EINVAL; |
| 156 | |
Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 157 | return 0; |
| 158 | } |
| 159 | EXPORT_SYMBOL_GPL(hwpoison_filter); |
| 160 | |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 161 | /* |
| 162 | * Send all the processes who have the page mapped an ``action optional'' |
| 163 | * signal. |
| 164 | */ |
| 165 | static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, |
| 166 | unsigned long pfn) |
| 167 | { |
| 168 | struct siginfo si; |
| 169 | int ret; |
| 170 | |
| 171 | printk(KERN_ERR |
| 172 | "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", |
| 173 | pfn, t->comm, t->pid); |
| 174 | si.si_signo = SIGBUS; |
| 175 | si.si_errno = 0; |
| 176 | si.si_code = BUS_MCEERR_AO; |
| 177 | si.si_addr = (void *)addr; |
| 178 | #ifdef __ARCH_SI_TRAPNO |
| 179 | si.si_trapno = trapno; |
| 180 | #endif |
| 181 | si.si_addr_lsb = PAGE_SHIFT; |
| 182 | /* |
| 183 | * Don't use force here, it's convenient if the signal |
| 184 | * can be temporarily blocked. |
| 185 | * This could cause a loop when the user sets SIGBUS |
| 186 | * to SIG_IGN, but hopefully noone will do that? |
| 187 | */ |
| 188 | ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ |
| 189 | if (ret < 0) |
| 190 | printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", |
| 191 | t->comm, t->pid, ret); |
| 192 | return ret; |
| 193 | } |
| 194 | |
| 195 | /* |
Andi Kleen | 588f9ce | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 196 | * When a unknown page type is encountered drain as many buffers as possible |
| 197 | * in the hope to turn the page into a LRU or free page, which we can handle. |
| 198 | */ |
| 199 | void shake_page(struct page *p) |
| 200 | { |
| 201 | if (!PageSlab(p)) { |
| 202 | lru_add_drain_all(); |
| 203 | if (PageLRU(p)) |
| 204 | return; |
| 205 | drain_all_pages(); |
| 206 | if (PageLRU(p) || is_free_buddy_page(p)) |
| 207 | return; |
| 208 | } |
| 209 | /* |
| 210 | * Could call shrink_slab here (which would also |
| 211 | * shrink other caches). Unfortunately that might |
| 212 | * also access the corrupted page, which could be fatal. |
| 213 | */ |
| 214 | } |
| 215 | EXPORT_SYMBOL_GPL(shake_page); |
| 216 | |
| 217 | /* |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 218 | * Kill all processes that have a poisoned page mapped and then isolate |
| 219 | * the page. |
| 220 | * |
| 221 | * General strategy: |
| 222 | * Find all processes having the page mapped and kill them. |
| 223 | * But we keep a page reference around so that the page is not |
| 224 | * actually freed yet. |
| 225 | * Then stash the page away |
| 226 | * |
| 227 | * There's no convenient way to get back to mapped processes |
| 228 | * from the VMAs. So do a brute-force search over all |
| 229 | * running processes. |
| 230 | * |
| 231 | * Remember that machine checks are not common (or rather |
| 232 | * if they are common you have other problems), so this shouldn't |
| 233 | * be a performance issue. |
| 234 | * |
| 235 | * Also there are some races possible while we get from the |
| 236 | * error detection to actually handle it. |
| 237 | */ |
| 238 | |
| 239 | struct to_kill { |
| 240 | struct list_head nd; |
| 241 | struct task_struct *tsk; |
| 242 | unsigned long addr; |
| 243 | unsigned addr_valid:1; |
| 244 | }; |
| 245 | |
| 246 | /* |
| 247 | * Failure handling: if we can't find or can't kill a process there's |
| 248 | * not much we can do. We just print a message and ignore otherwise. |
| 249 | */ |
| 250 | |
| 251 | /* |
| 252 | * Schedule a process for later kill. |
| 253 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. |
| 254 | * TBD would GFP_NOIO be enough? |
| 255 | */ |
| 256 | static void add_to_kill(struct task_struct *tsk, struct page *p, |
| 257 | struct vm_area_struct *vma, |
| 258 | struct list_head *to_kill, |
| 259 | struct to_kill **tkc) |
| 260 | { |
| 261 | struct to_kill *tk; |
| 262 | |
| 263 | if (*tkc) { |
| 264 | tk = *tkc; |
| 265 | *tkc = NULL; |
| 266 | } else { |
| 267 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); |
| 268 | if (!tk) { |
| 269 | printk(KERN_ERR |
| 270 | "MCE: Out of memory while machine check handling\n"); |
| 271 | return; |
| 272 | } |
| 273 | } |
| 274 | tk->addr = page_address_in_vma(p, vma); |
| 275 | tk->addr_valid = 1; |
| 276 | |
| 277 | /* |
| 278 | * In theory we don't have to kill when the page was |
| 279 | * munmaped. But it could be also a mremap. Since that's |
| 280 | * likely very rare kill anyways just out of paranoia, but use |
| 281 | * a SIGKILL because the error is not contained anymore. |
| 282 | */ |
| 283 | if (tk->addr == -EFAULT) { |
| 284 | pr_debug("MCE: Unable to find user space address %lx in %s\n", |
| 285 | page_to_pfn(p), tsk->comm); |
| 286 | tk->addr_valid = 0; |
| 287 | } |
| 288 | get_task_struct(tsk); |
| 289 | tk->tsk = tsk; |
| 290 | list_add_tail(&tk->nd, to_kill); |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Kill the processes that have been collected earlier. |
| 295 | * |
| 296 | * Only do anything when DOIT is set, otherwise just free the list |
| 297 | * (this is used for clean pages which do not need killing) |
| 298 | * Also when FAIL is set do a force kill because something went |
| 299 | * wrong earlier. |
| 300 | */ |
| 301 | static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, |
| 302 | int fail, unsigned long pfn) |
| 303 | { |
| 304 | struct to_kill *tk, *next; |
| 305 | |
| 306 | list_for_each_entry_safe (tk, next, to_kill, nd) { |
| 307 | if (doit) { |
| 308 | /* |
André Goddard Rosa | af901ca | 2009-11-14 13:09:05 -0200 | [diff] [blame] | 309 | * In case something went wrong with munmapping |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 310 | * make sure the process doesn't catch the |
| 311 | * signal and then access the memory. Just kill it. |
| 312 | * the signal handlers |
| 313 | */ |
| 314 | if (fail || tk->addr_valid == 0) { |
| 315 | printk(KERN_ERR |
| 316 | "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", |
| 317 | pfn, tk->tsk->comm, tk->tsk->pid); |
| 318 | force_sig(SIGKILL, tk->tsk); |
| 319 | } |
| 320 | |
| 321 | /* |
| 322 | * In theory the process could have mapped |
| 323 | * something else on the address in-between. We could |
| 324 | * check for that, but we need to tell the |
| 325 | * process anyways. |
| 326 | */ |
| 327 | else if (kill_proc_ao(tk->tsk, tk->addr, trapno, |
| 328 | pfn) < 0) |
| 329 | printk(KERN_ERR |
| 330 | "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", |
| 331 | pfn, tk->tsk->comm, tk->tsk->pid); |
| 332 | } |
| 333 | put_task_struct(tk->tsk); |
| 334 | kfree(tk); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | static int task_early_kill(struct task_struct *tsk) |
| 339 | { |
| 340 | if (!tsk->mm) |
| 341 | return 0; |
| 342 | if (tsk->flags & PF_MCE_PROCESS) |
| 343 | return !!(tsk->flags & PF_MCE_EARLY); |
| 344 | return sysctl_memory_failure_early_kill; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * Collect processes when the error hit an anonymous page. |
| 349 | */ |
| 350 | static void collect_procs_anon(struct page *page, struct list_head *to_kill, |
| 351 | struct to_kill **tkc) |
| 352 | { |
| 353 | struct vm_area_struct *vma; |
| 354 | struct task_struct *tsk; |
| 355 | struct anon_vma *av; |
| 356 | |
| 357 | read_lock(&tasklist_lock); |
| 358 | av = page_lock_anon_vma(page); |
| 359 | if (av == NULL) /* Not actually mapped anymore */ |
| 360 | goto out; |
| 361 | for_each_process (tsk) { |
| 362 | if (!task_early_kill(tsk)) |
| 363 | continue; |
| 364 | list_for_each_entry (vma, &av->head, anon_vma_node) { |
| 365 | if (!page_mapped_in_vma(page, vma)) |
| 366 | continue; |
| 367 | if (vma->vm_mm == tsk->mm) |
| 368 | add_to_kill(tsk, page, vma, to_kill, tkc); |
| 369 | } |
| 370 | } |
| 371 | page_unlock_anon_vma(av); |
| 372 | out: |
| 373 | read_unlock(&tasklist_lock); |
| 374 | } |
| 375 | |
| 376 | /* |
| 377 | * Collect processes when the error hit a file mapped page. |
| 378 | */ |
| 379 | static void collect_procs_file(struct page *page, struct list_head *to_kill, |
| 380 | struct to_kill **tkc) |
| 381 | { |
| 382 | struct vm_area_struct *vma; |
| 383 | struct task_struct *tsk; |
| 384 | struct prio_tree_iter iter; |
| 385 | struct address_space *mapping = page->mapping; |
| 386 | |
| 387 | /* |
| 388 | * A note on the locking order between the two locks. |
| 389 | * We don't rely on this particular order. |
| 390 | * If you have some other code that needs a different order |
| 391 | * feel free to switch them around. Or add a reverse link |
| 392 | * from mm_struct to task_struct, then this could be all |
| 393 | * done without taking tasklist_lock and looping over all tasks. |
| 394 | */ |
| 395 | |
| 396 | read_lock(&tasklist_lock); |
| 397 | spin_lock(&mapping->i_mmap_lock); |
| 398 | for_each_process(tsk) { |
| 399 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| 400 | |
| 401 | if (!task_early_kill(tsk)) |
| 402 | continue; |
| 403 | |
| 404 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, |
| 405 | pgoff) { |
| 406 | /* |
| 407 | * Send early kill signal to tasks where a vma covers |
| 408 | * the page but the corrupted page is not necessarily |
| 409 | * mapped it in its pte. |
| 410 | * Assume applications who requested early kill want |
| 411 | * to be informed of all such data corruptions. |
| 412 | */ |
| 413 | if (vma->vm_mm == tsk->mm) |
| 414 | add_to_kill(tsk, page, vma, to_kill, tkc); |
| 415 | } |
| 416 | } |
| 417 | spin_unlock(&mapping->i_mmap_lock); |
| 418 | read_unlock(&tasklist_lock); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Collect the processes who have the corrupted page mapped to kill. |
| 423 | * This is done in two steps for locking reasons. |
| 424 | * First preallocate one tokill structure outside the spin locks, |
| 425 | * so that we can kill at least one process reasonably reliable. |
| 426 | */ |
| 427 | static void collect_procs(struct page *page, struct list_head *tokill) |
| 428 | { |
| 429 | struct to_kill *tk; |
| 430 | |
| 431 | if (!page->mapping) |
| 432 | return; |
| 433 | |
| 434 | tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); |
| 435 | if (!tk) |
| 436 | return; |
| 437 | if (PageAnon(page)) |
| 438 | collect_procs_anon(page, tokill, &tk); |
| 439 | else |
| 440 | collect_procs_file(page, tokill, &tk); |
| 441 | kfree(tk); |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * Error handlers for various types of pages. |
| 446 | */ |
| 447 | |
| 448 | enum outcome { |
Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 449 | IGNORED, /* Error: cannot be handled */ |
| 450 | FAILED, /* Error: handling failed */ |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 451 | DELAYED, /* Will be handled later */ |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 452 | RECOVERED, /* Successfully recovered */ |
| 453 | }; |
| 454 | |
| 455 | static const char *action_name[] = { |
Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 456 | [IGNORED] = "Ignored", |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 457 | [FAILED] = "Failed", |
| 458 | [DELAYED] = "Delayed", |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 459 | [RECOVERED] = "Recovered", |
| 460 | }; |
| 461 | |
| 462 | /* |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 463 | * XXX: It is possible that a page is isolated from LRU cache, |
| 464 | * and then kept in swap cache or failed to remove from page cache. |
| 465 | * The page count will stop it from being freed by unpoison. |
| 466 | * Stress tests should be aware of this memory leak problem. |
| 467 | */ |
| 468 | static int delete_from_lru_cache(struct page *p) |
| 469 | { |
| 470 | if (!isolate_lru_page(p)) { |
| 471 | /* |
| 472 | * Clear sensible page flags, so that the buddy system won't |
| 473 | * complain when the page is unpoison-and-freed. |
| 474 | */ |
| 475 | ClearPageActive(p); |
| 476 | ClearPageUnevictable(p); |
| 477 | /* |
| 478 | * drop the page count elevated by isolate_lru_page() |
| 479 | */ |
| 480 | page_cache_release(p); |
| 481 | return 0; |
| 482 | } |
| 483 | return -EIO; |
| 484 | } |
| 485 | |
| 486 | /* |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 487 | * Error hit kernel page. |
| 488 | * Do nothing, try to be lucky and not touch this instead. For a few cases we |
| 489 | * could be more sophisticated. |
| 490 | */ |
| 491 | static int me_kernel(struct page *p, unsigned long pfn) |
| 492 | { |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 493 | return IGNORED; |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Page in unknown state. Do nothing. |
| 498 | */ |
| 499 | static int me_unknown(struct page *p, unsigned long pfn) |
| 500 | { |
| 501 | printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); |
| 502 | return FAILED; |
| 503 | } |
| 504 | |
| 505 | /* |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 506 | * Clean (or cleaned) page cache page. |
| 507 | */ |
| 508 | static int me_pagecache_clean(struct page *p, unsigned long pfn) |
| 509 | { |
| 510 | int err; |
| 511 | int ret = FAILED; |
| 512 | struct address_space *mapping; |
| 513 | |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 514 | delete_from_lru_cache(p); |
| 515 | |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 516 | /* |
| 517 | * For anonymous pages we're done the only reference left |
| 518 | * should be the one m_f() holds. |
| 519 | */ |
| 520 | if (PageAnon(p)) |
| 521 | return RECOVERED; |
| 522 | |
| 523 | /* |
| 524 | * Now truncate the page in the page cache. This is really |
| 525 | * more like a "temporary hole punch" |
| 526 | * Don't do this for block devices when someone else |
| 527 | * has a reference, because it could be file system metadata |
| 528 | * and that's not safe to truncate. |
| 529 | */ |
| 530 | mapping = page_mapping(p); |
| 531 | if (!mapping) { |
| 532 | /* |
| 533 | * Page has been teared down in the meanwhile |
| 534 | */ |
| 535 | return FAILED; |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * Truncation is a bit tricky. Enable it per file system for now. |
| 540 | * |
| 541 | * Open: to take i_mutex or not for this? Right now we don't. |
| 542 | */ |
| 543 | if (mapping->a_ops->error_remove_page) { |
| 544 | err = mapping->a_ops->error_remove_page(mapping, p); |
| 545 | if (err != 0) { |
| 546 | printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", |
| 547 | pfn, err); |
| 548 | } else if (page_has_private(p) && |
| 549 | !try_to_release_page(p, GFP_NOIO)) { |
| 550 | pr_debug("MCE %#lx: failed to release buffers\n", pfn); |
| 551 | } else { |
| 552 | ret = RECOVERED; |
| 553 | } |
| 554 | } else { |
| 555 | /* |
| 556 | * If the file system doesn't support it just invalidate |
| 557 | * This fails on dirty or anything with private pages |
| 558 | */ |
| 559 | if (invalidate_inode_page(p)) |
| 560 | ret = RECOVERED; |
| 561 | else |
| 562 | printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", |
| 563 | pfn); |
| 564 | } |
| 565 | return ret; |
| 566 | } |
| 567 | |
| 568 | /* |
| 569 | * Dirty cache page page |
| 570 | * Issues: when the error hit a hole page the error is not properly |
| 571 | * propagated. |
| 572 | */ |
| 573 | static int me_pagecache_dirty(struct page *p, unsigned long pfn) |
| 574 | { |
| 575 | struct address_space *mapping = page_mapping(p); |
| 576 | |
| 577 | SetPageError(p); |
| 578 | /* TBD: print more information about the file. */ |
| 579 | if (mapping) { |
| 580 | /* |
| 581 | * IO error will be reported by write(), fsync(), etc. |
| 582 | * who check the mapping. |
| 583 | * This way the application knows that something went |
| 584 | * wrong with its dirty file data. |
| 585 | * |
| 586 | * There's one open issue: |
| 587 | * |
| 588 | * The EIO will be only reported on the next IO |
| 589 | * operation and then cleared through the IO map. |
| 590 | * Normally Linux has two mechanisms to pass IO error |
| 591 | * first through the AS_EIO flag in the address space |
| 592 | * and then through the PageError flag in the page. |
| 593 | * Since we drop pages on memory failure handling the |
| 594 | * only mechanism open to use is through AS_AIO. |
| 595 | * |
| 596 | * This has the disadvantage that it gets cleared on |
| 597 | * the first operation that returns an error, while |
| 598 | * the PageError bit is more sticky and only cleared |
| 599 | * when the page is reread or dropped. If an |
| 600 | * application assumes it will always get error on |
| 601 | * fsync, but does other operations on the fd before |
| 602 | * and the page is dropped inbetween then the error |
| 603 | * will not be properly reported. |
| 604 | * |
| 605 | * This can already happen even without hwpoisoned |
| 606 | * pages: first on metadata IO errors (which only |
| 607 | * report through AS_EIO) or when the page is dropped |
| 608 | * at the wrong time. |
| 609 | * |
| 610 | * So right now we assume that the application DTRT on |
| 611 | * the first EIO, but we're not worse than other parts |
| 612 | * of the kernel. |
| 613 | */ |
| 614 | mapping_set_error(mapping, EIO); |
| 615 | } |
| 616 | |
| 617 | return me_pagecache_clean(p, pfn); |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * Clean and dirty swap cache. |
| 622 | * |
| 623 | * Dirty swap cache page is tricky to handle. The page could live both in page |
| 624 | * cache and swap cache(ie. page is freshly swapped in). So it could be |
| 625 | * referenced concurrently by 2 types of PTEs: |
| 626 | * normal PTEs and swap PTEs. We try to handle them consistently by calling |
| 627 | * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, |
| 628 | * and then |
| 629 | * - clear dirty bit to prevent IO |
| 630 | * - remove from LRU |
| 631 | * - but keep in the swap cache, so that when we return to it on |
| 632 | * a later page fault, we know the application is accessing |
| 633 | * corrupted data and shall be killed (we installed simple |
| 634 | * interception code in do_swap_page to catch it). |
| 635 | * |
| 636 | * Clean swap cache pages can be directly isolated. A later page fault will |
| 637 | * bring in the known good data from disk. |
| 638 | */ |
| 639 | static int me_swapcache_dirty(struct page *p, unsigned long pfn) |
| 640 | { |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 641 | ClearPageDirty(p); |
| 642 | /* Trigger EIO in shmem: */ |
| 643 | ClearPageUptodate(p); |
| 644 | |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 645 | if (!delete_from_lru_cache(p)) |
| 646 | return DELAYED; |
| 647 | else |
| 648 | return FAILED; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 649 | } |
| 650 | |
| 651 | static int me_swapcache_clean(struct page *p, unsigned long pfn) |
| 652 | { |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 653 | delete_from_swap_cache(p); |
Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 654 | |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 655 | if (!delete_from_lru_cache(p)) |
| 656 | return RECOVERED; |
| 657 | else |
| 658 | return FAILED; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 659 | } |
| 660 | |
| 661 | /* |
| 662 | * Huge pages. Needs work. |
| 663 | * Issues: |
| 664 | * No rmap support so we cannot find the original mapper. In theory could walk |
| 665 | * all MMs and look for the mappings, but that would be non atomic and racy. |
| 666 | * Need rmap for hugepages for this. Alternatively we could employ a heuristic, |
| 667 | * like just walking the current process and hoping it has it mapped (that |
| 668 | * should be usually true for the common "shared database cache" case) |
| 669 | * Should handle free huge pages and dequeue them too, but this needs to |
| 670 | * handle huge page accounting correctly. |
| 671 | */ |
| 672 | static int me_huge_page(struct page *p, unsigned long pfn) |
| 673 | { |
| 674 | return FAILED; |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * Various page states we can handle. |
| 679 | * |
| 680 | * A page state is defined by its current page->flags bits. |
| 681 | * The table matches them in order and calls the right handler. |
| 682 | * |
| 683 | * This is quite tricky because we can access page at any time |
| 684 | * in its live cycle, so all accesses have to be extremly careful. |
| 685 | * |
| 686 | * This is not complete. More states could be added. |
| 687 | * For any missing state don't attempt recovery. |
| 688 | */ |
| 689 | |
| 690 | #define dirty (1UL << PG_dirty) |
| 691 | #define sc (1UL << PG_swapcache) |
| 692 | #define unevict (1UL << PG_unevictable) |
| 693 | #define mlock (1UL << PG_mlocked) |
| 694 | #define writeback (1UL << PG_writeback) |
| 695 | #define lru (1UL << PG_lru) |
| 696 | #define swapbacked (1UL << PG_swapbacked) |
| 697 | #define head (1UL << PG_head) |
| 698 | #define tail (1UL << PG_tail) |
| 699 | #define compound (1UL << PG_compound) |
| 700 | #define slab (1UL << PG_slab) |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 701 | #define reserved (1UL << PG_reserved) |
| 702 | |
| 703 | static struct page_state { |
| 704 | unsigned long mask; |
| 705 | unsigned long res; |
| 706 | char *msg; |
| 707 | int (*action)(struct page *p, unsigned long pfn); |
| 708 | } error_states[] = { |
Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 709 | { reserved, reserved, "reserved kernel", me_kernel }, |
Wu Fengguang | 95d01fc | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 710 | /* |
| 711 | * free pages are specially detected outside this table: |
| 712 | * PG_buddy pages only make a small fraction of all free pages. |
| 713 | */ |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 714 | |
| 715 | /* |
| 716 | * Could in theory check if slab page is free or if we can drop |
| 717 | * currently unused objects without touching them. But just |
| 718 | * treat it as standard kernel for now. |
| 719 | */ |
| 720 | { slab, slab, "kernel slab", me_kernel }, |
| 721 | |
| 722 | #ifdef CONFIG_PAGEFLAGS_EXTENDED |
| 723 | { head, head, "huge", me_huge_page }, |
| 724 | { tail, tail, "huge", me_huge_page }, |
| 725 | #else |
| 726 | { compound, compound, "huge", me_huge_page }, |
| 727 | #endif |
| 728 | |
| 729 | { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, |
| 730 | { sc|dirty, sc, "swapcache", me_swapcache_clean }, |
| 731 | |
| 732 | { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, |
| 733 | { unevict, unevict, "unevictable LRU", me_pagecache_clean}, |
| 734 | |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 735 | { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, |
| 736 | { mlock, mlock, "mlocked LRU", me_pagecache_clean }, |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 737 | |
| 738 | { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, |
| 739 | { lru|dirty, lru, "clean LRU", me_pagecache_clean }, |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 740 | |
| 741 | /* |
| 742 | * Catchall entry: must be at end. |
| 743 | */ |
| 744 | { 0, 0, "unknown page state", me_unknown }, |
| 745 | }; |
| 746 | |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 747 | static void action_result(unsigned long pfn, char *msg, int result) |
| 748 | { |
Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 749 | struct page *page = pfn_to_page(pfn); |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 750 | |
| 751 | printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", |
| 752 | pfn, |
Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 753 | PageDirty(page) ? "dirty " : "", |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 754 | msg, action_name[result]); |
| 755 | } |
| 756 | |
| 757 | static int page_action(struct page_state *ps, struct page *p, |
Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 758 | unsigned long pfn) |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 759 | { |
| 760 | int result; |
Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 761 | int count; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 762 | |
| 763 | result = ps->action(p, pfn); |
| 764 | action_result(pfn, ps->msg, result); |
Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 765 | |
Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 766 | count = page_count(p) - 1; |
Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 767 | if (ps->action == me_swapcache_dirty && result == DELAYED) |
| 768 | count--; |
| 769 | if (count != 0) { |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 770 | printk(KERN_ERR |
| 771 | "MCE %#lx: %s page still referenced by %d users\n", |
Wu Fengguang | 7456b04 | 2009-10-19 08:15:01 +0200 | [diff] [blame] | 772 | pfn, ps->msg, count); |
Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 773 | result = FAILED; |
| 774 | } |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 775 | |
| 776 | /* Could do more checks here if page looks ok */ |
| 777 | /* |
| 778 | * Could adjust zone counters here to correct for the missing page. |
| 779 | */ |
| 780 | |
Wu Fengguang | 138ce28 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 781 | return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 782 | } |
| 783 | |
| 784 | #define N_UNMAP_TRIES 5 |
| 785 | |
| 786 | /* |
| 787 | * Do all that is necessary to remove user space mappings. Unmap |
| 788 | * the pages and send SIGBUS to the processes if the data was dirty. |
| 789 | */ |
Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 790 | static int hwpoison_user_mappings(struct page *p, unsigned long pfn, |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 791 | int trapno) |
| 792 | { |
| 793 | enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; |
| 794 | struct address_space *mapping; |
| 795 | LIST_HEAD(tokill); |
| 796 | int ret; |
| 797 | int i; |
| 798 | int kill = 1; |
| 799 | |
Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 800 | if (PageReserved(p) || PageSlab(p)) |
| 801 | return SWAP_SUCCESS; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 802 | |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 803 | /* |
| 804 | * This check implies we don't kill processes if their pages |
| 805 | * are in the swap cache early. Those are always late kills. |
| 806 | */ |
| 807 | if (!page_mapped(p)) |
Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 808 | return SWAP_SUCCESS; |
| 809 | |
| 810 | if (PageCompound(p) || PageKsm(p)) |
| 811 | return SWAP_FAIL; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 812 | |
| 813 | if (PageSwapCache(p)) { |
| 814 | printk(KERN_ERR |
| 815 | "MCE %#lx: keeping poisoned page in swap cache\n", pfn); |
| 816 | ttu |= TTU_IGNORE_HWPOISON; |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * Propagate the dirty bit from PTEs to struct page first, because we |
| 821 | * need this to decide if we should kill or just drop the page. |
Wu Fengguang | db0480b | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 822 | * XXX: the dirty test could be racy: set_page_dirty() may not always |
| 823 | * be called inside page lock (it's recommended but not enforced). |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 824 | */ |
| 825 | mapping = page_mapping(p); |
| 826 | if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { |
| 827 | if (page_mkclean(p)) { |
| 828 | SetPageDirty(p); |
| 829 | } else { |
| 830 | kill = 0; |
| 831 | ttu |= TTU_IGNORE_HWPOISON; |
| 832 | printk(KERN_INFO |
| 833 | "MCE %#lx: corrupted page was clean: dropped without side effects\n", |
| 834 | pfn); |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | /* |
| 839 | * First collect all the processes that have the page |
| 840 | * mapped in dirty form. This has to be done before try_to_unmap, |
| 841 | * because ttu takes the rmap data structures down. |
| 842 | * |
| 843 | * Error handling: We ignore errors here because |
| 844 | * there's nothing that can be done. |
| 845 | */ |
| 846 | if (kill) |
| 847 | collect_procs(p, &tokill); |
| 848 | |
| 849 | /* |
| 850 | * try_to_unmap can fail temporarily due to races. |
| 851 | * Try a few times (RED-PEN better strategy?) |
| 852 | */ |
| 853 | for (i = 0; i < N_UNMAP_TRIES; i++) { |
| 854 | ret = try_to_unmap(p, ttu); |
| 855 | if (ret == SWAP_SUCCESS) |
| 856 | break; |
| 857 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); |
| 858 | } |
| 859 | |
| 860 | if (ret != SWAP_SUCCESS) |
| 861 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", |
| 862 | pfn, page_mapcount(p)); |
| 863 | |
| 864 | /* |
| 865 | * Now that the dirty bit has been propagated to the |
| 866 | * struct page and all unmaps done we can decide if |
| 867 | * killing is needed or not. Only kill when the page |
| 868 | * was dirty, otherwise the tokill list is merely |
| 869 | * freed. When there was a problem unmapping earlier |
| 870 | * use a more force-full uncatchable kill to prevent |
| 871 | * any accesses to the poisoned memory. |
| 872 | */ |
| 873 | kill_procs_ao(&tokill, !!PageDirty(p), trapno, |
| 874 | ret != SWAP_SUCCESS, pfn); |
Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 875 | |
| 876 | return ret; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 877 | } |
| 878 | |
Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 879 | int __memory_failure(unsigned long pfn, int trapno, int flags) |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 880 | { |
| 881 | struct page_state *ps; |
| 882 | struct page *p; |
| 883 | int res; |
| 884 | |
| 885 | if (!sysctl_memory_failure_recovery) |
| 886 | panic("Memory failure from trap %d on page %lx", trapno, pfn); |
| 887 | |
| 888 | if (!pfn_valid(pfn)) { |
Wu Fengguang | a7560fc | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 889 | printk(KERN_ERR |
| 890 | "MCE %#lx: memory outside kernel control\n", |
| 891 | pfn); |
| 892 | return -ENXIO; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 893 | } |
| 894 | |
| 895 | p = pfn_to_page(pfn); |
| 896 | if (TestSetPageHWPoison(p)) { |
Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 897 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 898 | return 0; |
| 899 | } |
| 900 | |
| 901 | atomic_long_add(1, &mce_bad_pages); |
| 902 | |
| 903 | /* |
| 904 | * We need/can do nothing about count=0 pages. |
| 905 | * 1) it's a free page, and therefore in safe hand: |
| 906 | * prep_new_page() will be the gate keeper. |
| 907 | * 2) it's part of a non-compound high order page. |
| 908 | * Implies some kernel user: cannot stop them from |
| 909 | * R/W the page; let's pray that the page has been |
| 910 | * used and will be freed some time later. |
| 911 | * In fact it's dangerous to directly bump up page count from 0, |
| 912 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. |
| 913 | */ |
Andi Kleen | 82ba011 | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 914 | if (!(flags & MF_COUNT_INCREASED) && |
| 915 | !get_page_unless_zero(compound_head(p))) { |
Wu Fengguang | 8d22ba1 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 916 | if (is_free_buddy_page(p)) { |
| 917 | action_result(pfn, "free buddy", DELAYED); |
| 918 | return 0; |
| 919 | } else { |
| 920 | action_result(pfn, "high order kernel", IGNORED); |
| 921 | return -EBUSY; |
| 922 | } |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 923 | } |
| 924 | |
| 925 | /* |
Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 926 | * We ignore non-LRU pages for good reasons. |
| 927 | * - PG_locked is only well defined for LRU pages and a few others |
| 928 | * - to avoid races with __set_page_locked() |
| 929 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) |
| 930 | * The check (unnecessarily) ignores LRU pages being isolated and |
| 931 | * walked by the page reclaim code, however that's not a big loss. |
| 932 | */ |
| 933 | if (!PageLRU(p)) |
| 934 | lru_add_drain_all(); |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 935 | if (!PageLRU(p)) { |
Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 936 | action_result(pfn, "non LRU", IGNORED); |
| 937 | put_page(p); |
| 938 | return -EBUSY; |
| 939 | } |
Wu Fengguang | e43c3af | 2009-09-29 13:16:20 +0800 | [diff] [blame] | 940 | |
| 941 | /* |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 942 | * Lock the page and wait for writeback to finish. |
| 943 | * It's very difficult to mess with pages currently under IO |
| 944 | * and in many cases impossible, so we just avoid it here. |
| 945 | */ |
| 946 | lock_page_nosync(p); |
Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 947 | |
| 948 | /* |
| 949 | * unpoison always clear PG_hwpoison inside page lock |
| 950 | */ |
| 951 | if (!PageHWPoison(p)) { |
Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 952 | printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); |
Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 953 | res = 0; |
| 954 | goto out; |
| 955 | } |
Wu Fengguang | 7c116f2 | 2009-12-16 12:19:59 +0100 | [diff] [blame] | 956 | if (hwpoison_filter(p)) { |
| 957 | if (TestClearPageHWPoison(p)) |
| 958 | atomic_long_dec(&mce_bad_pages); |
| 959 | unlock_page(p); |
| 960 | put_page(p); |
| 961 | return 0; |
| 962 | } |
Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 963 | |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 964 | wait_on_page_writeback(p); |
| 965 | |
| 966 | /* |
| 967 | * Now take care of user space mappings. |
Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 968 | * Abort on fail: __remove_from_page_cache() assumes unmapped page. |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 969 | */ |
Wu Fengguang | 1668bfd | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 970 | if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { |
| 971 | printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); |
| 972 | res = -EBUSY; |
| 973 | goto out; |
| 974 | } |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 975 | |
| 976 | /* |
| 977 | * Torn down by someone else? |
| 978 | */ |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 979 | if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 980 | action_result(pfn, "already truncated LRU", IGNORED); |
Wu Fengguang | d95ea51 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 981 | res = -EBUSY; |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 982 | goto out; |
| 983 | } |
| 984 | |
| 985 | res = -EBUSY; |
| 986 | for (ps = error_states;; ps++) { |
Wu Fengguang | dc2a1cb | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 987 | if ((p->flags & ps->mask) == ps->res) { |
Wu Fengguang | bd1ce5f | 2009-12-16 12:19:57 +0100 | [diff] [blame] | 988 | res = page_action(ps, p, pfn); |
Andi Kleen | 6a46079 | 2009-09-16 11:50:15 +0200 | [diff] [blame] | 989 | break; |
| 990 | } |
| 991 | } |
| 992 | out: |
| 993 | unlock_page(p); |
| 994 | return res; |
| 995 | } |
| 996 | EXPORT_SYMBOL_GPL(__memory_failure); |
| 997 | |
| 998 | /** |
| 999 | * memory_failure - Handle memory failure of a page. |
| 1000 | * @pfn: Page Number of the corrupted page |
| 1001 | * @trapno: Trap number reported in the signal to user space. |
| 1002 | * |
| 1003 | * This function is called by the low level machine check code |
| 1004 | * of an architecture when it detects hardware memory corruption |
| 1005 | * of a page. It tries its best to recover, which includes |
| 1006 | * dropping pages, killing processes etc. |
| 1007 | * |
| 1008 | * The function is primarily of use for corruptions that |
| 1009 | * happen outside the current execution context (e.g. when |
| 1010 | * detected by a background scrubber) |
| 1011 | * |
| 1012 | * Must run in process context (e.g. a work queue) with interrupts |
| 1013 | * enabled and no spinlocks hold. |
| 1014 | */ |
| 1015 | void memory_failure(unsigned long pfn, int trapno) |
| 1016 | { |
| 1017 | __memory_failure(pfn, trapno, 0); |
| 1018 | } |
Wu Fengguang | 847ce40 | 2009-12-16 12:19:58 +0100 | [diff] [blame] | 1019 | |
| 1020 | /** |
| 1021 | * unpoison_memory - Unpoison a previously poisoned page |
| 1022 | * @pfn: Page number of the to be unpoisoned page |
| 1023 | * |
| 1024 | * Software-unpoison a page that has been poisoned by |
| 1025 | * memory_failure() earlier. |
| 1026 | * |
| 1027 | * This is only done on the software-level, so it only works |
| 1028 | * for linux injected failures, not real hardware failures |
| 1029 | * |
| 1030 | * Returns 0 for success, otherwise -errno. |
| 1031 | */ |
| 1032 | int unpoison_memory(unsigned long pfn) |
| 1033 | { |
| 1034 | struct page *page; |
| 1035 | struct page *p; |
| 1036 | int freeit = 0; |
| 1037 | |
| 1038 | if (!pfn_valid(pfn)) |
| 1039 | return -ENXIO; |
| 1040 | |
| 1041 | p = pfn_to_page(pfn); |
| 1042 | page = compound_head(p); |
| 1043 | |
| 1044 | if (!PageHWPoison(p)) { |
| 1045 | pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); |
| 1046 | return 0; |
| 1047 | } |
| 1048 | |
| 1049 | if (!get_page_unless_zero(page)) { |
| 1050 | if (TestClearPageHWPoison(p)) |
| 1051 | atomic_long_dec(&mce_bad_pages); |
| 1052 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); |
| 1053 | return 0; |
| 1054 | } |
| 1055 | |
| 1056 | lock_page_nosync(page); |
| 1057 | /* |
| 1058 | * This test is racy because PG_hwpoison is set outside of page lock. |
| 1059 | * That's acceptable because that won't trigger kernel panic. Instead, |
| 1060 | * the PG_hwpoison page will be caught and isolated on the entrance to |
| 1061 | * the free buddy page pool. |
| 1062 | */ |
| 1063 | if (TestClearPageHWPoison(p)) { |
| 1064 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); |
| 1065 | atomic_long_dec(&mce_bad_pages); |
| 1066 | freeit = 1; |
| 1067 | } |
| 1068 | unlock_page(page); |
| 1069 | |
| 1070 | put_page(page); |
| 1071 | if (freeit) |
| 1072 | put_page(page); |
| 1073 | |
| 1074 | return 0; |
| 1075 | } |
| 1076 | EXPORT_SYMBOL(unpoison_memory); |