blob: c624e04ff03e4e03ad8c851a51dde6de88444c9d [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
Linus Torvalds1da177e2005-04-16 15:20:36 -070011#include <linux/kernel.h>
12#include <linux/mm.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/bootmem.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
Christoph Hellwig1eeb66a2007-05-08 00:27:03 -070021#include <linux/kdebug.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070022
23#include <asm/bitext.h>
24#include <asm/page.h>
25#include <asm/pgalloc.h>
26#include <asm/pgtable.h>
27#include <asm/io.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070028#include <asm/vaddrs.h>
29#include <asm/traps.h>
30#include <asm/smp.h>
31#include <asm/mbus.h>
32#include <asm/cache.h>
33#include <asm/oplib.h>
34#include <asm/sbus.h>
35#include <asm/asi.h>
36#include <asm/msi.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <asm/mmu_context.h>
38#include <asm/io-unit.h>
39#include <asm/cacheflush.h>
40#include <asm/tlbflush.h>
41
42/* Now the cpu specific definitions. */
43#include <asm/viking.h>
44#include <asm/mxcc.h>
45#include <asm/ross.h>
46#include <asm/tsunami.h>
47#include <asm/swift.h>
48#include <asm/turbosparc.h>
49
50#include <asm/btfixup.h>
51
52enum mbus_module srmmu_modtype;
Adrian Bunk50215d62008-06-05 11:41:51 -070053static unsigned int hwbug_bitmask;
Linus Torvalds1da177e2005-04-16 15:20:36 -070054int vac_cache_size;
55int vac_line_size;
56
57extern struct resource sparc_iomap;
58
59extern unsigned long last_valid_pfn;
60
61extern unsigned long page_kernel;
62
Adrian Bunk50215d62008-06-05 11:41:51 -070063static pgd_t *srmmu_swapper_pg_dir;
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
65#ifdef CONFIG_SMP
66#define FLUSH_BEGIN(mm)
67#define FLUSH_END
68#else
69#define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70#define FLUSH_END }
71#endif
72
73BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74#define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75
76int flush_page_for_dma_global = 1;
77
78#ifdef CONFIG_SMP
79BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80#define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81#endif
82
83char *srmmu_name;
84
85ctxd_t *srmmu_ctx_table_phys;
Adrian Bunk50215d62008-06-05 11:41:51 -070086static ctxd_t *srmmu_context_table;
Linus Torvalds1da177e2005-04-16 15:20:36 -070087
88int viking_mxcc_present;
89static DEFINE_SPINLOCK(srmmu_context_spinlock);
90
Adrian Bunk50215d62008-06-05 11:41:51 -070091static int is_hypersparc;
Linus Torvalds1da177e2005-04-16 15:20:36 -070092
93/*
94 * In general all page table modifications should use the V8 atomic
95 * swap instruction. This insures the mmu and the cpu are in sync
96 * with respect to ref/mod bits in the page tables.
97 */
98static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99{
100 __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101 return value;
102}
103
104static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105{
106 srmmu_swap((unsigned long *)ptep, pte_val(pteval));
107}
108
109/* The very generic SRMMU page table operations. */
110static inline int srmmu_device_memory(unsigned long x)
111{
112 return ((x & 0xF0000000) != 0);
113}
114
Adrian Bunk50215d62008-06-05 11:41:51 -0700115static int srmmu_cache_pagetables;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700116
117/* these will be initialized in srmmu_nocache_calcsize() */
Adrian Bunk50215d62008-06-05 11:41:51 -0700118static unsigned long srmmu_nocache_size;
119static unsigned long srmmu_nocache_end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120
121/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
122#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
123
124/* The context table is a nocache user with the biggest alignment needs. */
125#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
126
127void *srmmu_nocache_pool;
128void *srmmu_nocache_bitmap;
129static struct bit_map srmmu_nocache_map;
130
131static unsigned long srmmu_pte_pfn(pte_t pte)
132{
133 if (srmmu_device_memory(pte_val(pte))) {
134 /* Just return something that will cause
135 * pfn_valid() to return false. This makes
136 * copy_one_pte() to just directly copy to
137 * PTE over.
138 */
139 return ~0UL;
140 }
141 return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
142}
143
144static struct page *srmmu_pmd_page(pmd_t pmd)
145{
146
147 if (srmmu_device_memory(pmd_val(pmd)))
148 BUG();
149 return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
150}
151
152static inline unsigned long srmmu_pgd_page(pgd_t pgd)
153{ return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
154
155
156static inline int srmmu_pte_none(pte_t pte)
157{ return !(pte_val(pte) & 0xFFFFFFF); }
158
159static inline int srmmu_pte_present(pte_t pte)
160{ return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
161
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162static inline void srmmu_pte_clear(pte_t *ptep)
163{ srmmu_set_pte(ptep, __pte(0)); }
164
165static inline int srmmu_pmd_none(pmd_t pmd)
166{ return !(pmd_val(pmd) & 0xFFFFFFF); }
167
168static inline int srmmu_pmd_bad(pmd_t pmd)
169{ return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
170
171static inline int srmmu_pmd_present(pmd_t pmd)
172{ return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
173
174static inline void srmmu_pmd_clear(pmd_t *pmdp) {
175 int i;
176 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++)
177 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
178}
179
180static inline int srmmu_pgd_none(pgd_t pgd)
181{ return !(pgd_val(pgd) & 0xFFFFFFF); }
182
183static inline int srmmu_pgd_bad(pgd_t pgd)
184{ return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
185
186static inline int srmmu_pgd_present(pgd_t pgd)
187{ return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
188
189static inline void srmmu_pgd_clear(pgd_t * pgdp)
190{ srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
191
192static inline pte_t srmmu_pte_wrprotect(pte_t pte)
193{ return __pte(pte_val(pte) & ~SRMMU_WRITE);}
194
195static inline pte_t srmmu_pte_mkclean(pte_t pte)
196{ return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
197
198static inline pte_t srmmu_pte_mkold(pte_t pte)
199{ return __pte(pte_val(pte) & ~SRMMU_REF);}
200
201static inline pte_t srmmu_pte_mkwrite(pte_t pte)
202{ return __pte(pte_val(pte) | SRMMU_WRITE);}
203
204static inline pte_t srmmu_pte_mkdirty(pte_t pte)
205{ return __pte(pte_val(pte) | SRMMU_DIRTY);}
206
207static inline pte_t srmmu_pte_mkyoung(pte_t pte)
208{ return __pte(pte_val(pte) | SRMMU_REF);}
209
210/*
211 * Conversion functions: convert a page and protection to a page entry,
212 * and a page entry and page directory to the page they refer to.
213 */
214static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
215{ return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
216
217static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
218{ return __pte(((page) >> 4) | pgprot_val(pgprot)); }
219
220static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
221{ return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
222
223/* XXX should we hyper_flush_whole_icache here - Anton */
224static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
225{ srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
226
227static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
228{ srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
229
230static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
231{
232 unsigned long ptp; /* Physical address, shifted right by 4 */
233 int i;
234
235 ptp = __nocache_pa((unsigned long) ptep) >> 4;
236 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
237 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
238 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
239 }
240}
241
242static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
243{
244 unsigned long ptp; /* Physical address, shifted right by 4 */
245 int i;
246
247 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
248 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
249 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
250 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
251 }
252}
253
254static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
255{ return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
256
257/* to find an entry in a top-level page table... */
Adrian Bunk31156242005-10-03 17:37:02 -0700258static inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259{ return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
260
261/* Find an entry in the second-level page table.. */
262static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
263{
264 return (pmd_t *) srmmu_pgd_page(*dir) +
265 ((address >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
266}
267
268/* Find an entry in the third-level page table.. */
269static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
270{
271 void *pte;
272
273 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
274 return (pte_t *) pte +
275 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
276}
277
278static unsigned long srmmu_swp_type(swp_entry_t entry)
279{
280 return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
281}
282
283static unsigned long srmmu_swp_offset(swp_entry_t entry)
284{
285 return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
286}
287
288static swp_entry_t srmmu_swp_entry(unsigned long type, unsigned long offset)
289{
290 return (swp_entry_t) {
291 (type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
292 | (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
293}
294
295/*
296 * size: bytes to allocate in the nocache area.
297 * align: bytes, number to align at.
298 * Returns the virtual address of the allocated area.
299 */
300static unsigned long __srmmu_get_nocache(int size, int align)
301{
302 int offset;
303
304 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
305 printk("Size 0x%x too small for nocache request\n", size);
306 size = SRMMU_NOCACHE_BITMAP_SHIFT;
307 }
308 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
309 printk("Size 0x%x unaligned int nocache request\n", size);
310 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
311 }
312 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
313
314 offset = bit_map_string_get(&srmmu_nocache_map,
315 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
316 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
317 if (offset == -1) {
318 printk("srmmu: out of nocache %d: %d/%d\n",
319 size, (int) srmmu_nocache_size,
320 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
321 return 0;
322 }
323
324 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
325}
326
Adrian Bunk50215d62008-06-05 11:41:51 -0700327static unsigned long srmmu_get_nocache(int size, int align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328{
329 unsigned long tmp;
330
331 tmp = __srmmu_get_nocache(size, align);
332
333 if (tmp)
334 memset((void *)tmp, 0, size);
335
336 return tmp;
337}
338
Adrian Bunk50215d62008-06-05 11:41:51 -0700339static void srmmu_free_nocache(unsigned long vaddr, int size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700340{
341 int offset;
342
343 if (vaddr < SRMMU_NOCACHE_VADDR) {
344 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
345 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
346 BUG();
347 }
348 if (vaddr+size > srmmu_nocache_end) {
349 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
350 vaddr, srmmu_nocache_end);
351 BUG();
352 }
353 if (size & (size-1)) {
354 printk("Size 0x%x is not a power of 2\n", size);
355 BUG();
356 }
357 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
358 printk("Size 0x%x is too small\n", size);
359 BUG();
360 }
361 if (vaddr & (size-1)) {
362 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
363 BUG();
364 }
365
366 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
367 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
368
369 bit_map_clear(&srmmu_nocache_map, offset, size);
370}
371
Adrian Bunk50215d62008-06-05 11:41:51 -0700372static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
373 unsigned long end);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375extern unsigned long probe_memory(void); /* in fault.c */
376
377/*
378 * Reserve nocache dynamically proportionally to the amount of
379 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
380 */
Adrian Bunk50215d62008-06-05 11:41:51 -0700381static void srmmu_nocache_calcsize(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382{
383 unsigned long sysmemavail = probe_memory() / 1024;
384 int srmmu_nocache_npages;
385
386 srmmu_nocache_npages =
387 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
388
389 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
390 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
391 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
392 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
393
394 /* anything above 1280 blows up */
395 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
396 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
397
398 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
399 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
400}
401
Adrian Bunk50215d62008-06-05 11:41:51 -0700402static void __init srmmu_nocache_init(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700403{
404 unsigned int bitmap_bits;
405 pgd_t *pgd;
406 pmd_t *pmd;
407 pte_t *pte;
408 unsigned long paddr, vaddr;
409 unsigned long pteval;
410
411 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
412
413 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
414 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
415 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
416
417 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
418 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
419
420 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
421 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
422 init_mm.pgd = srmmu_swapper_pg_dir;
423
424 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
425
426 paddr = __pa((unsigned long)srmmu_nocache_pool);
427 vaddr = SRMMU_NOCACHE_VADDR;
428
429 while (vaddr < srmmu_nocache_end) {
430 pgd = pgd_offset_k(vaddr);
431 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
432 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
433
434 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
435
436 if (srmmu_cache_pagetables)
437 pteval |= SRMMU_CACHE;
438
439 srmmu_set_pte(__nocache_fix(pte), __pte(pteval));
440
441 vaddr += PAGE_SIZE;
442 paddr += PAGE_SIZE;
443 }
444
445 flush_cache_all();
446 flush_tlb_all();
447}
448
449static inline pgd_t *srmmu_get_pgd_fast(void)
450{
451 pgd_t *pgd = NULL;
452
453 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
454 if (pgd) {
455 pgd_t *init = pgd_offset_k(0);
456 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
457 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
458 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
459 }
460
461 return pgd;
462}
463
464static void srmmu_free_pgd_fast(pgd_t *pgd)
465{
466 srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
467}
468
469static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
470{
471 return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
472}
473
474static void srmmu_pmd_free(pmd_t * pmd)
475{
476 srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
477}
478
479/*
480 * Hardware needs alignment to 256 only, but we align to whole page size
481 * to reduce fragmentation problems due to the buddy principle.
482 * XXX Provide actual fragmentation statistics in /proc.
483 *
484 * Alignments up to the page size are the same for physical and virtual
485 * addresses of the nocache area.
486 */
487static pte_t *
488srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
489{
490 return (pte_t *)srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
491}
492
Martin Schwidefsky2f569af2008-02-08 04:22:04 -0800493static pgtable_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700494srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
495{
496 unsigned long pte;
Martin Schwidefsky2f569af2008-02-08 04:22:04 -0800497 struct page *page;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700498
499 if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
500 return NULL;
Martin Schwidefsky2f569af2008-02-08 04:22:04 -0800501 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
502 pgtable_page_ctor(page);
503 return page;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504}
505
506static void srmmu_free_pte_fast(pte_t *pte)
507{
508 srmmu_free_nocache((unsigned long)pte, PTE_SIZE);
509}
510
Martin Schwidefsky2f569af2008-02-08 04:22:04 -0800511static void srmmu_pte_free(pgtable_t pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512{
513 unsigned long p;
514
Martin Schwidefsky2f569af2008-02-08 04:22:04 -0800515 pgtable_page_dtor(pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 p = (unsigned long)page_address(pte); /* Cached address (for test) */
517 if (p == 0)
518 BUG();
519 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
520 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
521 srmmu_free_nocache(p, PTE_SIZE);
522}
523
524/*
525 */
526static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
527{
528 struct ctx_list *ctxp;
529
530 ctxp = ctx_free.next;
531 if(ctxp != &ctx_free) {
532 remove_from_ctx_list(ctxp);
533 add_to_used_ctxlist(ctxp);
534 mm->context = ctxp->ctx_number;
535 ctxp->ctx_mm = mm;
536 return;
537 }
538 ctxp = ctx_used.next;
539 if(ctxp->ctx_mm == old_mm)
540 ctxp = ctxp->next;
541 if(ctxp == &ctx_used)
542 panic("out of mmu contexts");
543 flush_cache_mm(ctxp->ctx_mm);
544 flush_tlb_mm(ctxp->ctx_mm);
545 remove_from_ctx_list(ctxp);
546 add_to_used_ctxlist(ctxp);
547 ctxp->ctx_mm->context = NO_CONTEXT;
548 ctxp->ctx_mm = mm;
549 mm->context = ctxp->ctx_number;
550}
551
552static inline void free_context(int context)
553{
554 struct ctx_list *ctx_old;
555
556 ctx_old = ctx_list_pool + context;
557 remove_from_ctx_list(ctx_old);
558 add_to_free_ctxlist(ctx_old);
559}
560
561
562static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
563 struct task_struct *tsk, int cpu)
564{
565 if(mm->context == NO_CONTEXT) {
566 spin_lock(&srmmu_context_spinlock);
567 alloc_context(old_mm, mm);
568 spin_unlock(&srmmu_context_spinlock);
569 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
570 }
571
572 if (is_hypersparc)
573 hyper_flush_whole_icache();
574
575 srmmu_set_context(mm->context);
576}
577
578/* Low level IO area allocation on the SRMMU. */
579static inline void srmmu_mapioaddr(unsigned long physaddr,
580 unsigned long virt_addr, int bus_type)
581{
582 pgd_t *pgdp;
583 pmd_t *pmdp;
584 pte_t *ptep;
585 unsigned long tmp;
586
587 physaddr &= PAGE_MASK;
588 pgdp = pgd_offset_k(virt_addr);
589 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
590 ptep = srmmu_pte_offset(pmdp, virt_addr);
591 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
592
593 /*
594 * I need to test whether this is consistent over all
595 * sun4m's. The bus_type represents the upper 4 bits of
596 * 36-bit physical address on the I/O space lines...
597 */
598 tmp |= (bus_type << 28);
599 tmp |= SRMMU_PRIV;
600 __flush_page_to_ram(virt_addr);
601 srmmu_set_pte(ptep, __pte(tmp));
602}
603
604static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
605 unsigned long xva, unsigned int len)
606{
607 while (len != 0) {
608 len -= PAGE_SIZE;
609 srmmu_mapioaddr(xpa, xva, bus);
610 xva += PAGE_SIZE;
611 xpa += PAGE_SIZE;
612 }
613 flush_tlb_all();
614}
615
616static inline void srmmu_unmapioaddr(unsigned long virt_addr)
617{
618 pgd_t *pgdp;
619 pmd_t *pmdp;
620 pte_t *ptep;
621
622 pgdp = pgd_offset_k(virt_addr);
623 pmdp = srmmu_pmd_offset(pgdp, virt_addr);
624 ptep = srmmu_pte_offset(pmdp, virt_addr);
625
626 /* No need to flush uncacheable page. */
627 srmmu_pte_clear(ptep);
628}
629
630static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
631{
632 while (len != 0) {
633 len -= PAGE_SIZE;
634 srmmu_unmapioaddr(virt_addr);
635 virt_addr += PAGE_SIZE;
636 }
637 flush_tlb_all();
638}
639
640/*
641 * On the SRMMU we do not have the problems with limited tlb entries
642 * for mapping kernel pages, so we just take things from the free page
643 * pool. As a side effect we are putting a little too much pressure
644 * on the gfp() subsystem. This setup also makes the logic of the
645 * iommu mapping code a lot easier as we can transparently handle
646 * mappings on the kernel stack without any special code as we did
647 * need on the sun4c.
648 */
Adrian Bunk50215d62008-06-05 11:41:51 -0700649static struct thread_info *srmmu_alloc_thread_info(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700650{
651 struct thread_info *ret;
652
653 ret = (struct thread_info *)__get_free_pages(GFP_KERNEL,
654 THREAD_INFO_ORDER);
655#ifdef CONFIG_DEBUG_STACK_USAGE
656 if (ret)
657 memset(ret, 0, PAGE_SIZE << THREAD_INFO_ORDER);
658#endif /* DEBUG_STACK_USAGE */
659
660 return ret;
661}
662
663static void srmmu_free_thread_info(struct thread_info *ti)
664{
665 free_pages((unsigned long)ti, THREAD_INFO_ORDER);
666}
667
668/* tsunami.S */
669extern void tsunami_flush_cache_all(void);
670extern void tsunami_flush_cache_mm(struct mm_struct *mm);
671extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
672extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
673extern void tsunami_flush_page_to_ram(unsigned long page);
674extern void tsunami_flush_page_for_dma(unsigned long page);
675extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
676extern void tsunami_flush_tlb_all(void);
677extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
678extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
679extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
680extern void tsunami_setup_blockops(void);
681
682/*
683 * Workaround, until we find what's going on with Swift. When low on memory,
684 * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
685 * out it is already in page tables/ fault again on the same instruction.
686 * I really don't understand it, have checked it and contexts
687 * are right, flush_tlb_all is done as well, and it faults again...
688 * Strange. -jj
689 *
690 * The following code is a deadwood that may be necessary when
691 * we start to make precise page flushes again. --zaitcev
692 */
693static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
694{
695#if 0
696 static unsigned long last;
697 unsigned int val;
698 /* unsigned int n; */
699
700 if (address == last) {
701 val = srmmu_hwprobe(address);
702 if (val != 0 && pte_val(pte) != val) {
703 printk("swift_update_mmu_cache: "
704 "addr %lx put %08x probed %08x from %p\n",
705 address, pte_val(pte), val,
706 __builtin_return_address(0));
707 srmmu_flush_whole_tlb();
708 }
709 }
710 last = address;
711#endif
712}
713
714/* swift.S */
715extern void swift_flush_cache_all(void);
716extern void swift_flush_cache_mm(struct mm_struct *mm);
717extern void swift_flush_cache_range(struct vm_area_struct *vma,
718 unsigned long start, unsigned long end);
719extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
720extern void swift_flush_page_to_ram(unsigned long page);
721extern void swift_flush_page_for_dma(unsigned long page);
722extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
723extern void swift_flush_tlb_all(void);
724extern void swift_flush_tlb_mm(struct mm_struct *mm);
725extern void swift_flush_tlb_range(struct vm_area_struct *vma,
726 unsigned long start, unsigned long end);
727extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
728
729#if 0 /* P3: deadwood to debug precise flushes on Swift. */
730void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
731{
732 int cctx, ctx1;
733
734 page &= PAGE_MASK;
735 if ((ctx1 = vma->vm_mm->context) != -1) {
736 cctx = srmmu_get_context();
737/* Is context # ever different from current context? P3 */
738 if (cctx != ctx1) {
739 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
740 srmmu_set_context(ctx1);
741 swift_flush_page(page);
742 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
743 "r" (page), "i" (ASI_M_FLUSH_PROBE));
744 srmmu_set_context(cctx);
745 } else {
746 /* Rm. prot. bits from virt. c. */
747 /* swift_flush_cache_all(); */
748 /* swift_flush_cache_page(vma, page); */
749 swift_flush_page(page);
750
751 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
752 "r" (page), "i" (ASI_M_FLUSH_PROBE));
753 /* same as above: srmmu_flush_tlb_page() */
754 }
755 }
756}
757#endif
758
759/*
760 * The following are all MBUS based SRMMU modules, and therefore could
761 * be found in a multiprocessor configuration. On the whole, these
762 * chips seems to be much more touchy about DVMA and page tables
763 * with respect to cache coherency.
764 */
765
766/* Cypress flushes. */
767static void cypress_flush_cache_all(void)
768{
769 volatile unsigned long cypress_sucks;
770 unsigned long faddr, tagval;
771
772 flush_user_windows();
773 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
774 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
775 "=r" (tagval) :
776 "r" (faddr), "r" (0x40000),
777 "i" (ASI_M_DATAC_TAG));
778
779 /* If modified and valid, kick it. */
780 if((tagval & 0x60) == 0x60)
781 cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
782 }
783}
784
785static void cypress_flush_cache_mm(struct mm_struct *mm)
786{
787 register unsigned long a, b, c, d, e, f, g;
788 unsigned long flags, faddr;
789 int octx;
790
791 FLUSH_BEGIN(mm)
792 flush_user_windows();
793 local_irq_save(flags);
794 octx = srmmu_get_context();
795 srmmu_set_context(mm->context);
796 a = 0x20; b = 0x40; c = 0x60;
797 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
798
799 faddr = (0x10000 - 0x100);
800 goto inside;
801 do {
802 faddr -= 0x100;
803 inside:
804 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
805 "sta %%g0, [%0 + %2] %1\n\t"
806 "sta %%g0, [%0 + %3] %1\n\t"
807 "sta %%g0, [%0 + %4] %1\n\t"
808 "sta %%g0, [%0 + %5] %1\n\t"
809 "sta %%g0, [%0 + %6] %1\n\t"
810 "sta %%g0, [%0 + %7] %1\n\t"
811 "sta %%g0, [%0 + %8] %1\n\t" : :
812 "r" (faddr), "i" (ASI_M_FLUSH_CTX),
813 "r" (a), "r" (b), "r" (c), "r" (d),
814 "r" (e), "r" (f), "r" (g));
815 } while(faddr);
816 srmmu_set_context(octx);
817 local_irq_restore(flags);
818 FLUSH_END
819}
820
821static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
822{
823 struct mm_struct *mm = vma->vm_mm;
824 register unsigned long a, b, c, d, e, f, g;
825 unsigned long flags, faddr;
826 int octx;
827
828 FLUSH_BEGIN(mm)
829 flush_user_windows();
830 local_irq_save(flags);
831 octx = srmmu_get_context();
832 srmmu_set_context(mm->context);
833 a = 0x20; b = 0x40; c = 0x60;
834 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
835
836 start &= SRMMU_REAL_PMD_MASK;
837 while(start < end) {
838 faddr = (start + (0x10000 - 0x100));
839 goto inside;
840 do {
841 faddr -= 0x100;
842 inside:
843 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
844 "sta %%g0, [%0 + %2] %1\n\t"
845 "sta %%g0, [%0 + %3] %1\n\t"
846 "sta %%g0, [%0 + %4] %1\n\t"
847 "sta %%g0, [%0 + %5] %1\n\t"
848 "sta %%g0, [%0 + %6] %1\n\t"
849 "sta %%g0, [%0 + %7] %1\n\t"
850 "sta %%g0, [%0 + %8] %1\n\t" : :
851 "r" (faddr),
852 "i" (ASI_M_FLUSH_SEG),
853 "r" (a), "r" (b), "r" (c), "r" (d),
854 "r" (e), "r" (f), "r" (g));
855 } while (faddr != start);
856 start += SRMMU_REAL_PMD_SIZE;
857 }
858 srmmu_set_context(octx);
859 local_irq_restore(flags);
860 FLUSH_END
861}
862
863static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
864{
865 register unsigned long a, b, c, d, e, f, g;
866 struct mm_struct *mm = vma->vm_mm;
867 unsigned long flags, line;
868 int octx;
869
870 FLUSH_BEGIN(mm)
871 flush_user_windows();
872 local_irq_save(flags);
873 octx = srmmu_get_context();
874 srmmu_set_context(mm->context);
875 a = 0x20; b = 0x40; c = 0x60;
876 d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
877
878 page &= PAGE_MASK;
879 line = (page + PAGE_SIZE) - 0x100;
880 goto inside;
881 do {
882 line -= 0x100;
883 inside:
884 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
885 "sta %%g0, [%0 + %2] %1\n\t"
886 "sta %%g0, [%0 + %3] %1\n\t"
887 "sta %%g0, [%0 + %4] %1\n\t"
888 "sta %%g0, [%0 + %5] %1\n\t"
889 "sta %%g0, [%0 + %6] %1\n\t"
890 "sta %%g0, [%0 + %7] %1\n\t"
891 "sta %%g0, [%0 + %8] %1\n\t" : :
892 "r" (line),
893 "i" (ASI_M_FLUSH_PAGE),
894 "r" (a), "r" (b), "r" (c), "r" (d),
895 "r" (e), "r" (f), "r" (g));
896 } while(line != page);
897 srmmu_set_context(octx);
898 local_irq_restore(flags);
899 FLUSH_END
900}
901
902/* Cypress is copy-back, at least that is how we configure it. */
903static void cypress_flush_page_to_ram(unsigned long page)
904{
905 register unsigned long a, b, c, d, e, f, g;
906 unsigned long line;
907
908 a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
909 page &= PAGE_MASK;
910 line = (page + PAGE_SIZE) - 0x100;
911 goto inside;
912 do {
913 line -= 0x100;
914 inside:
915 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
916 "sta %%g0, [%0 + %2] %1\n\t"
917 "sta %%g0, [%0 + %3] %1\n\t"
918 "sta %%g0, [%0 + %4] %1\n\t"
919 "sta %%g0, [%0 + %5] %1\n\t"
920 "sta %%g0, [%0 + %6] %1\n\t"
921 "sta %%g0, [%0 + %7] %1\n\t"
922 "sta %%g0, [%0 + %8] %1\n\t" : :
923 "r" (line),
924 "i" (ASI_M_FLUSH_PAGE),
925 "r" (a), "r" (b), "r" (c), "r" (d),
926 "r" (e), "r" (f), "r" (g));
927 } while(line != page);
928}
929
930/* Cypress is also IO cache coherent. */
931static void cypress_flush_page_for_dma(unsigned long page)
932{
933}
934
935/* Cypress has unified L2 VIPT, from which both instructions and data
936 * are stored. It does not have an onboard icache of any sort, therefore
937 * no flush is necessary.
938 */
939static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
940{
941}
942
943static void cypress_flush_tlb_all(void)
944{
945 srmmu_flush_whole_tlb();
946}
947
948static void cypress_flush_tlb_mm(struct mm_struct *mm)
949{
950 FLUSH_BEGIN(mm)
951 __asm__ __volatile__(
952 "lda [%0] %3, %%g5\n\t"
953 "sta %2, [%0] %3\n\t"
954 "sta %%g0, [%1] %4\n\t"
955 "sta %%g5, [%0] %3\n"
956 : /* no outputs */
957 : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
958 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
959 : "g5");
960 FLUSH_END
961}
962
963static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
964{
965 struct mm_struct *mm = vma->vm_mm;
966 unsigned long size;
967
968 FLUSH_BEGIN(mm)
969 start &= SRMMU_PGDIR_MASK;
970 size = SRMMU_PGDIR_ALIGN(end) - start;
971 __asm__ __volatile__(
972 "lda [%0] %5, %%g5\n\t"
973 "sta %1, [%0] %5\n"
974 "1:\n\t"
975 "subcc %3, %4, %3\n\t"
976 "bne 1b\n\t"
977 " sta %%g0, [%2 + %3] %6\n\t"
978 "sta %%g5, [%0] %5\n"
979 : /* no outputs */
980 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
981 "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
982 "i" (ASI_M_FLUSH_PROBE)
983 : "g5", "cc");
984 FLUSH_END
985}
986
987static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
988{
989 struct mm_struct *mm = vma->vm_mm;
990
991 FLUSH_BEGIN(mm)
992 __asm__ __volatile__(
993 "lda [%0] %3, %%g5\n\t"
994 "sta %1, [%0] %3\n\t"
995 "sta %%g0, [%2] %4\n\t"
996 "sta %%g5, [%0] %3\n"
997 : /* no outputs */
998 : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
999 "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1000 : "g5");
1001 FLUSH_END
1002}
1003
1004/* viking.S */
1005extern void viking_flush_cache_all(void);
1006extern void viking_flush_cache_mm(struct mm_struct *mm);
1007extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1008 unsigned long end);
1009extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1010extern void viking_flush_page_to_ram(unsigned long page);
1011extern void viking_flush_page_for_dma(unsigned long page);
1012extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1013extern void viking_flush_page(unsigned long page);
1014extern void viking_mxcc_flush_page(unsigned long page);
1015extern void viking_flush_tlb_all(void);
1016extern void viking_flush_tlb_mm(struct mm_struct *mm);
1017extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1018 unsigned long end);
1019extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1020 unsigned long page);
1021extern void sun4dsmp_flush_tlb_all(void);
1022extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1023extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024 unsigned long end);
1025extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1026 unsigned long page);
1027
1028/* hypersparc.S */
1029extern void hypersparc_flush_cache_all(void);
1030extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1031extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1032extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1033extern void hypersparc_flush_page_to_ram(unsigned long page);
1034extern void hypersparc_flush_page_for_dma(unsigned long page);
1035extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1036extern void hypersparc_flush_tlb_all(void);
1037extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1038extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1039extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1040extern void hypersparc_setup_blockops(void);
1041
1042/*
1043 * NOTE: All of this startup code assumes the low 16mb (approx.) of
1044 * kernel mappings are done with one single contiguous chunk of
1045 * ram. On small ram machines (classics mainly) we only get
1046 * around 8mb mapped for us.
1047 */
1048
Adrian Bunk50215d62008-06-05 11:41:51 -07001049static void __init early_pgtable_allocfail(char *type)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001050{
1051 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1052 prom_halt();
1053}
1054
Adrian Bunk50215d62008-06-05 11:41:51 -07001055static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
1056 unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057{
1058 pgd_t *pgdp;
1059 pmd_t *pmdp;
1060 pte_t *ptep;
1061
1062 while(start < end) {
1063 pgdp = pgd_offset_k(start);
1064 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1065 pmdp = (pmd_t *) __srmmu_get_nocache(
1066 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1067 if (pmdp == NULL)
1068 early_pgtable_allocfail("pmd");
1069 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1070 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1071 }
1072 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1073 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1074 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1075 if (ptep == NULL)
1076 early_pgtable_allocfail("pte");
1077 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1078 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1079 }
1080 if (start > (0xffffffffUL - PMD_SIZE))
1081 break;
1082 start = (start + PMD_SIZE) & PMD_MASK;
1083 }
1084}
1085
Adrian Bunk50215d62008-06-05 11:41:51 -07001086static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
1087 unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088{
1089 pgd_t *pgdp;
1090 pmd_t *pmdp;
1091 pte_t *ptep;
1092
1093 while(start < end) {
1094 pgdp = pgd_offset_k(start);
1095 if(srmmu_pgd_none(*pgdp)) {
1096 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1097 if (pmdp == NULL)
1098 early_pgtable_allocfail("pmd");
1099 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1100 srmmu_pgd_set(pgdp, pmdp);
1101 }
1102 pmdp = srmmu_pmd_offset(pgdp, start);
1103 if(srmmu_pmd_none(*pmdp)) {
1104 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1105 PTE_SIZE);
1106 if (ptep == NULL)
1107 early_pgtable_allocfail("pte");
1108 memset(ptep, 0, PTE_SIZE);
1109 srmmu_pmd_set(pmdp, ptep);
1110 }
1111 if (start > (0xffffffffUL - PMD_SIZE))
1112 break;
1113 start = (start + PMD_SIZE) & PMD_MASK;
1114 }
1115}
1116
1117/*
1118 * This is much cleaner than poking around physical address space
1119 * looking at the prom's page table directly which is what most
1120 * other OS's do. Yuck... this is much better.
1121 */
Adrian Bunk50215d62008-06-05 11:41:51 -07001122static void __init srmmu_inherit_prom_mappings(unsigned long start,
1123 unsigned long end)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124{
1125 pgd_t *pgdp;
1126 pmd_t *pmdp;
1127 pte_t *ptep;
1128 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1129 unsigned long prompte;
1130
1131 while(start <= end) {
1132 if (start == 0)
1133 break; /* probably wrap around */
1134 if(start == 0xfef00000)
1135 start = KADB_DEBUGGER_BEGVM;
1136 if(!(prompte = srmmu_hwprobe(start))) {
1137 start += PAGE_SIZE;
1138 continue;
1139 }
1140
1141 /* A red snapper, see what it really is. */
1142 what = 0;
1143
1144 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
1145 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
1146 what = 1;
1147 }
1148
1149 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1150 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1151 prompte)
1152 what = 2;
1153 }
1154
1155 pgdp = pgd_offset_k(start);
1156 if(what == 2) {
1157 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1158 start += SRMMU_PGDIR_SIZE;
1159 continue;
1160 }
1161 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1162 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1163 if (pmdp == NULL)
1164 early_pgtable_allocfail("pmd");
1165 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1166 srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1167 }
1168 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1169 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1170 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
1171 PTE_SIZE);
1172 if (ptep == NULL)
1173 early_pgtable_allocfail("pte");
1174 memset(__nocache_fix(ptep), 0, PTE_SIZE);
1175 srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1176 }
1177 if(what == 1) {
1178 /*
1179 * We bend the rule where all 16 PTPs in a pmd_t point
1180 * inside the same PTE page, and we leak a perfectly
1181 * good hardware PTE piece. Alternatives seem worse.
1182 */
1183 unsigned int x; /* Index of HW PMD in soft cluster */
1184 x = (start >> PMD_SHIFT) & 15;
1185 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1186 start += SRMMU_REAL_PMD_SIZE;
1187 continue;
1188 }
1189 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1190 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1191 start += PAGE_SIZE;
1192 }
1193}
1194
1195#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1196
1197/* Create a third-level SRMMU 16MB page mapping. */
1198static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1199{
1200 pgd_t *pgdp = pgd_offset_k(vaddr);
1201 unsigned long big_pte;
1202
1203 big_pte = KERNEL_PTE(phys_base >> 4);
1204 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1205}
1206
1207/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1208static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1209{
1210 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1211 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1212 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1213 /* Map "low" memory only */
1214 const unsigned long min_vaddr = PAGE_OFFSET;
1215 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1216
1217 if (vstart < min_vaddr || vstart >= max_vaddr)
1218 return vstart;
1219
1220 if (vend > max_vaddr || vend < min_vaddr)
1221 vend = max_vaddr;
1222
1223 while(vstart < vend) {
1224 do_large_mapping(vstart, pstart);
1225 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1226 }
1227 return vstart;
1228}
1229
1230static inline void memprobe_error(char *msg)
1231{
1232 prom_printf(msg);
1233 prom_printf("Halting now...\n");
1234 prom_halt();
1235}
1236
1237static inline void map_kernel(void)
1238{
1239 int i;
1240
1241 if (phys_base > 0) {
1242 do_large_mapping(PAGE_OFFSET, phys_base);
1243 }
1244
1245 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1246 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1247 }
1248
1249 BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1250}
1251
1252/* Paging initialization on the Sparc Reference MMU. */
1253extern void sparc_context_init(int);
1254
1255void (*poke_srmmu)(void) __initdata = NULL;
1256
1257extern unsigned long bootmem_init(unsigned long *pages_avail);
1258
1259void __init srmmu_paging_init(void)
1260{
1261 int i, cpunode;
1262 char node_str[128];
1263 pgd_t *pgd;
1264 pmd_t *pmd;
1265 pte_t *pte;
1266 unsigned long pages_avail;
1267
1268 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1269
1270 if (sparc_cpu_model == sun4d)
1271 num_contexts = 65536; /* We know it is Viking */
1272 else {
1273 /* Find the number of contexts on the srmmu. */
1274 cpunode = prom_getchild(prom_root_node);
1275 num_contexts = 0;
1276 while(cpunode != 0) {
1277 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1278 if(!strcmp(node_str, "cpu")) {
1279 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1280 break;
1281 }
1282 cpunode = prom_getsibling(cpunode);
1283 }
1284 }
1285
1286 if(!num_contexts) {
1287 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1288 prom_halt();
1289 }
1290
1291 pages_avail = 0;
1292 last_valid_pfn = bootmem_init(&pages_avail);
1293
1294 srmmu_nocache_calcsize();
1295 srmmu_nocache_init();
1296 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1297 map_kernel();
1298
1299 /* ctx table has to be physically aligned to its size */
1300 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1301 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1302
1303 for(i = 0; i < num_contexts; i++)
1304 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1305
1306 flush_cache_all();
1307 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
Bob Breuera54123e2006-03-23 22:36:19 -08001308#ifdef CONFIG_SMP
1309 /* Stop from hanging here... */
1310 local_flush_tlb_all();
1311#else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001312 flush_tlb_all();
Bob Breuera54123e2006-03-23 22:36:19 -08001313#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314 poke_srmmu();
1315
1316#ifdef CONFIG_SUN_IO
1317 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1318 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1319#endif
1320
1321 srmmu_allocate_ptable_skeleton(
1322 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
1323 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
1324
1325 pgd = pgd_offset_k(PKMAP_BASE);
1326 pmd = srmmu_pmd_offset(pgd, PKMAP_BASE);
1327 pte = srmmu_pte_offset(pmd, PKMAP_BASE);
1328 pkmap_page_table = pte;
1329
1330 flush_cache_all();
1331 flush_tlb_all();
1332
1333 sparc_context_init(num_contexts);
1334
1335 kmap_init();
1336
1337 {
1338 unsigned long zones_size[MAX_NR_ZONES];
1339 unsigned long zholes_size[MAX_NR_ZONES];
1340 unsigned long npages;
1341 int znum;
1342
1343 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1344 zones_size[znum] = zholes_size[znum] = 0;
1345
1346 npages = max_low_pfn - pfn_base;
1347
1348 zones_size[ZONE_DMA] = npages;
1349 zholes_size[ZONE_DMA] = npages - pages_avail;
1350
1351 npages = highend_pfn - max_low_pfn;
1352 zones_size[ZONE_HIGHMEM] = npages;
1353 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1354
1355 free_area_init_node(0, &contig_page_data, zones_size,
1356 pfn_base, zholes_size);
1357 }
1358}
1359
1360static void srmmu_mmu_info(struct seq_file *m)
1361{
1362 seq_printf(m,
1363 "MMU type\t: %s\n"
1364 "contexts\t: %d\n"
1365 "nocache total\t: %ld\n"
1366 "nocache used\t: %d\n",
1367 srmmu_name,
1368 num_contexts,
1369 srmmu_nocache_size,
1370 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1371}
1372
1373static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1374{
1375}
1376
1377static void srmmu_destroy_context(struct mm_struct *mm)
1378{
1379
1380 if(mm->context != NO_CONTEXT) {
1381 flush_cache_mm(mm);
1382 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1383 flush_tlb_mm(mm);
1384 spin_lock(&srmmu_context_spinlock);
1385 free_context(mm->context);
1386 spin_unlock(&srmmu_context_spinlock);
1387 mm->context = NO_CONTEXT;
1388 }
1389}
1390
1391/* Init various srmmu chip types. */
1392static void __init srmmu_is_bad(void)
1393{
1394 prom_printf("Could not determine SRMMU chip type.\n");
1395 prom_halt();
1396}
1397
1398static void __init init_vac_layout(void)
1399{
1400 int nd, cache_lines;
1401 char node_str[128];
1402#ifdef CONFIG_SMP
1403 int cpu = 0;
1404 unsigned long max_size = 0;
1405 unsigned long min_line_size = 0x10000000;
1406#endif
1407
1408 nd = prom_getchild(prom_root_node);
1409 while((nd = prom_getsibling(nd)) != 0) {
1410 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1411 if(!strcmp(node_str, "cpu")) {
1412 vac_line_size = prom_getint(nd, "cache-line-size");
1413 if (vac_line_size == -1) {
1414 prom_printf("can't determine cache-line-size, "
1415 "halting.\n");
1416 prom_halt();
1417 }
1418 cache_lines = prom_getint(nd, "cache-nlines");
1419 if (cache_lines == -1) {
1420 prom_printf("can't determine cache-nlines, halting.\n");
1421 prom_halt();
1422 }
1423
1424 vac_cache_size = cache_lines * vac_line_size;
1425#ifdef CONFIG_SMP
1426 if(vac_cache_size > max_size)
1427 max_size = vac_cache_size;
1428 if(vac_line_size < min_line_size)
1429 min_line_size = vac_line_size;
Bob Breuera54123e2006-03-23 22:36:19 -08001430 //FIXME: cpus not contiguous!!
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 cpu++;
1432 if (cpu >= NR_CPUS || !cpu_online(cpu))
1433 break;
1434#else
1435 break;
1436#endif
1437 }
1438 }
1439 if(nd == 0) {
1440 prom_printf("No CPU nodes found, halting.\n");
1441 prom_halt();
1442 }
1443#ifdef CONFIG_SMP
1444 vac_cache_size = max_size;
1445 vac_line_size = min_line_size;
1446#endif
1447 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1448 (int)vac_cache_size, (int)vac_line_size);
1449}
1450
1451static void __init poke_hypersparc(void)
1452{
1453 volatile unsigned long clear;
1454 unsigned long mreg = srmmu_get_mmureg();
1455
1456 hyper_flush_unconditional_combined();
1457
1458 mreg &= ~(HYPERSPARC_CWENABLE);
1459 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1460 mreg |= (HYPERSPARC_CMODE);
1461
1462 srmmu_set_mmureg(mreg);
1463
1464#if 0 /* XXX I think this is bad news... -DaveM */
1465 hyper_clear_all_tags();
1466#endif
1467
1468 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1469 hyper_flush_whole_icache();
1470 clear = srmmu_get_faddr();
1471 clear = srmmu_get_fstatus();
1472}
1473
1474static void __init init_hypersparc(void)
1475{
1476 srmmu_name = "ROSS HyperSparc";
1477 srmmu_modtype = HyperSparc;
1478
1479 init_vac_layout();
1480
1481 is_hypersparc = 1;
1482
1483 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1484 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1485 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1486 BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1487 BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1488 BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1489 BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1490
1491 BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1492 BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1493 BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1494 BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1495
1496 BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1497 BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1498 BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1499
1500
1501 poke_srmmu = poke_hypersparc;
1502
1503 hypersparc_setup_blockops();
1504}
1505
1506static void __init poke_cypress(void)
1507{
1508 unsigned long mreg = srmmu_get_mmureg();
1509 unsigned long faddr, tagval;
1510 volatile unsigned long cypress_sucks;
1511 volatile unsigned long clear;
1512
1513 clear = srmmu_get_faddr();
1514 clear = srmmu_get_fstatus();
1515
1516 if (!(mreg & CYPRESS_CENABLE)) {
1517 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1518 __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1519 "sta %%g0, [%0] %2\n\t" : :
1520 "r" (faddr), "r" (0x40000),
1521 "i" (ASI_M_DATAC_TAG));
1522 }
1523 } else {
1524 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1525 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1526 "=r" (tagval) :
1527 "r" (faddr), "r" (0x40000),
1528 "i" (ASI_M_DATAC_TAG));
1529
1530 /* If modified and valid, kick it. */
1531 if((tagval & 0x60) == 0x60)
1532 cypress_sucks = *(unsigned long *)
1533 (0xf0020000 + faddr);
1534 }
1535 }
1536
1537 /* And one more, for our good neighbor, Mr. Broken Cypress. */
1538 clear = srmmu_get_faddr();
1539 clear = srmmu_get_fstatus();
1540
1541 mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1542 srmmu_set_mmureg(mreg);
1543}
1544
1545static void __init init_cypress_common(void)
1546{
1547 init_vac_layout();
1548
1549 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1550 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1551 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1552 BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1553 BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1554 BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1555 BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1556
1557 BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1558 BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1559 BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1560 BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1561
1562
1563 BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1564 BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1565 BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1566
1567 poke_srmmu = poke_cypress;
1568}
1569
1570static void __init init_cypress_604(void)
1571{
1572 srmmu_name = "ROSS Cypress-604(UP)";
1573 srmmu_modtype = Cypress;
1574 init_cypress_common();
1575}
1576
1577static void __init init_cypress_605(unsigned long mrev)
1578{
1579 srmmu_name = "ROSS Cypress-605(MP)";
1580 if(mrev == 0xe) {
1581 srmmu_modtype = Cypress_vE;
1582 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1583 } else {
1584 if(mrev == 0xd) {
1585 srmmu_modtype = Cypress_vD;
1586 hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1587 } else {
1588 srmmu_modtype = Cypress;
1589 }
1590 }
1591 init_cypress_common();
1592}
1593
1594static void __init poke_swift(void)
1595{
1596 unsigned long mreg;
1597
1598 /* Clear any crap from the cache or else... */
1599 swift_flush_cache_all();
1600
1601 /* Enable I & D caches */
1602 mreg = srmmu_get_mmureg();
1603 mreg |= (SWIFT_IE | SWIFT_DE);
1604 /*
1605 * The Swift branch folding logic is completely broken. At
1606 * trap time, if things are just right, if can mistakenly
1607 * think that a trap is coming from kernel mode when in fact
1608 * it is coming from user mode (it mis-executes the branch in
1609 * the trap code). So you see things like crashme completely
1610 * hosing your machine which is completely unacceptable. Turn
1611 * this shit off... nice job Fujitsu.
1612 */
1613 mreg &= ~(SWIFT_BF);
1614 srmmu_set_mmureg(mreg);
1615}
1616
1617#define SWIFT_MASKID_ADDR 0x10003018
1618static void __init init_swift(void)
1619{
1620 unsigned long swift_rev;
1621
1622 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1623 "srl %0, 0x18, %0\n\t" :
1624 "=r" (swift_rev) :
1625 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1626 srmmu_name = "Fujitsu Swift";
1627 switch(swift_rev) {
1628 case 0x11:
1629 case 0x20:
1630 case 0x23:
1631 case 0x30:
1632 srmmu_modtype = Swift_lots_o_bugs;
1633 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1634 /*
1635 * Gee george, I wonder why Sun is so hush hush about
1636 * this hardware bug... really braindamage stuff going
1637 * on here. However I think we can find a way to avoid
1638 * all of the workaround overhead under Linux. Basically,
1639 * any page fault can cause kernel pages to become user
1640 * accessible (the mmu gets confused and clears some of
1641 * the ACC bits in kernel ptes). Aha, sounds pretty
1642 * horrible eh? But wait, after extensive testing it appears
1643 * that if you use pgd_t level large kernel pte's (like the
1644 * 4MB pages on the Pentium) the bug does not get tripped
1645 * at all. This avoids almost all of the major overhead.
1646 * Welcome to a world where your vendor tells you to,
1647 * "apply this kernel patch" instead of "sorry for the
1648 * broken hardware, send it back and we'll give you
1649 * properly functioning parts"
1650 */
1651 break;
1652 case 0x25:
1653 case 0x31:
1654 srmmu_modtype = Swift_bad_c;
1655 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1656 /*
1657 * You see Sun allude to this hardware bug but never
1658 * admit things directly, they'll say things like,
1659 * "the Swift chip cache problems" or similar.
1660 */
1661 break;
1662 default:
1663 srmmu_modtype = Swift_ok;
1664 break;
1665 };
1666
1667 BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1668 BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1669 BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1670 BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1671
1672
1673 BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1674 BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1675 BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1676 BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1677
1678 BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1679 BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1680 BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1681
1682 BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1683
1684 flush_page_for_dma_global = 0;
1685
1686 /*
1687 * Are you now convinced that the Swift is one of the
1688 * biggest VLSI abortions of all time? Bravo Fujitsu!
1689 * Fujitsu, the !#?!%$'d up processor people. I bet if
1690 * you examined the microcode of the Swift you'd find
1691 * XXX's all over the place.
1692 */
1693 poke_srmmu = poke_swift;
1694}
1695
1696static void turbosparc_flush_cache_all(void)
1697{
1698 flush_user_windows();
1699 turbosparc_idflash_clear();
1700}
1701
1702static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1703{
1704 FLUSH_BEGIN(mm)
1705 flush_user_windows();
1706 turbosparc_idflash_clear();
1707 FLUSH_END
1708}
1709
1710static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1711{
1712 FLUSH_BEGIN(vma->vm_mm)
1713 flush_user_windows();
1714 turbosparc_idflash_clear();
1715 FLUSH_END
1716}
1717
1718static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1719{
1720 FLUSH_BEGIN(vma->vm_mm)
1721 flush_user_windows();
1722 if (vma->vm_flags & VM_EXEC)
1723 turbosparc_flush_icache();
1724 turbosparc_flush_dcache();
1725 FLUSH_END
1726}
1727
1728/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1729static void turbosparc_flush_page_to_ram(unsigned long page)
1730{
1731#ifdef TURBOSPARC_WRITEBACK
1732 volatile unsigned long clear;
1733
1734 if (srmmu_hwprobe(page))
1735 turbosparc_flush_page_cache(page);
1736 clear = srmmu_get_fstatus();
1737#endif
1738}
1739
1740static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1741{
1742}
1743
1744static void turbosparc_flush_page_for_dma(unsigned long page)
1745{
1746 turbosparc_flush_dcache();
1747}
1748
1749static void turbosparc_flush_tlb_all(void)
1750{
1751 srmmu_flush_whole_tlb();
1752}
1753
1754static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1755{
1756 FLUSH_BEGIN(mm)
1757 srmmu_flush_whole_tlb();
1758 FLUSH_END
1759}
1760
1761static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1762{
1763 FLUSH_BEGIN(vma->vm_mm)
1764 srmmu_flush_whole_tlb();
1765 FLUSH_END
1766}
1767
1768static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1769{
1770 FLUSH_BEGIN(vma->vm_mm)
1771 srmmu_flush_whole_tlb();
1772 FLUSH_END
1773}
1774
1775
1776static void __init poke_turbosparc(void)
1777{
1778 unsigned long mreg = srmmu_get_mmureg();
1779 unsigned long ccreg;
1780
1781 /* Clear any crap from the cache or else... */
1782 turbosparc_flush_cache_all();
1783 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1784 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1785 srmmu_set_mmureg(mreg);
1786
1787 ccreg = turbosparc_get_ccreg();
1788
1789#ifdef TURBOSPARC_WRITEBACK
1790 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1791 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1792 /* Write-back D-cache, emulate VLSI
1793 * abortion number three, not number one */
1794#else
1795 /* For now let's play safe, optimize later */
1796 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1797 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1798 ccreg &= ~(TURBOSPARC_uS2);
1799 /* Emulate VLSI abortion number three, not number one */
1800#endif
1801
1802 switch (ccreg & 7) {
1803 case 0: /* No SE cache */
1804 case 7: /* Test mode */
1805 break;
1806 default:
1807 ccreg |= (TURBOSPARC_SCENABLE);
1808 }
1809 turbosparc_set_ccreg (ccreg);
1810
1811 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1812 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1813 srmmu_set_mmureg(mreg);
1814}
1815
1816static void __init init_turbosparc(void)
1817{
1818 srmmu_name = "Fujitsu TurboSparc";
1819 srmmu_modtype = TurboSparc;
1820
1821 BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1822 BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1823 BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1824 BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1825
1826 BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1827 BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1828 BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1829 BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1830
1831 BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1832
1833 BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1834 BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1835
1836 poke_srmmu = poke_turbosparc;
1837}
1838
1839static void __init poke_tsunami(void)
1840{
1841 unsigned long mreg = srmmu_get_mmureg();
1842
1843 tsunami_flush_icache();
1844 tsunami_flush_dcache();
1845 mreg &= ~TSUNAMI_ITD;
1846 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1847 srmmu_set_mmureg(mreg);
1848}
1849
1850static void __init init_tsunami(void)
1851{
1852 /*
1853 * Tsunami's pretty sane, Sun and TI actually got it
1854 * somewhat right this time. Fujitsu should have
1855 * taken some lessons from them.
1856 */
1857
1858 srmmu_name = "TI Tsunami";
1859 srmmu_modtype = Tsunami;
1860
1861 BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1862 BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1863 BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1864 BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1865
1866
1867 BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1868 BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1869 BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1870 BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1871
1872 BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1873 BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1874 BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1875
1876 poke_srmmu = poke_tsunami;
1877
1878 tsunami_setup_blockops();
1879}
1880
1881static void __init poke_viking(void)
1882{
1883 unsigned long mreg = srmmu_get_mmureg();
1884 static int smp_catch;
1885
1886 if(viking_mxcc_present) {
1887 unsigned long mxcc_control = mxcc_get_creg();
1888
1889 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1890 mxcc_control &= ~(MXCC_CTL_RRC);
1891 mxcc_set_creg(mxcc_control);
1892
1893 /*
1894 * We don't need memory parity checks.
1895 * XXX This is a mess, have to dig out later. ecd.
1896 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1897 */
1898
1899 /* We do cache ptables on MXCC. */
1900 mreg |= VIKING_TCENABLE;
1901 } else {
1902 unsigned long bpreg;
1903
1904 mreg &= ~(VIKING_TCENABLE);
1905 if(smp_catch++) {
1906 /* Must disable mixed-cmd mode here for other cpu's. */
1907 bpreg = viking_get_bpreg();
1908 bpreg &= ~(VIKING_ACTION_MIX);
1909 viking_set_bpreg(bpreg);
1910
1911 /* Just in case PROM does something funny. */
1912 msi_set_sync();
1913 }
1914 }
1915
1916 mreg |= VIKING_SPENABLE;
1917 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1918 mreg |= VIKING_SBENABLE;
1919 mreg &= ~(VIKING_ACENABLE);
1920 srmmu_set_mmureg(mreg);
1921
1922#ifdef CONFIG_SMP
1923 /* Avoid unnecessary cross calls. */
1924 BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1925 BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1926 BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1927 BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1928 BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1929 BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1930 BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1931 btfixup();
1932#endif
1933}
1934
1935static void __init init_viking(void)
1936{
1937 unsigned long mreg = srmmu_get_mmureg();
1938
1939 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1940 if(mreg & VIKING_MMODE) {
1941 srmmu_name = "TI Viking";
1942 viking_mxcc_present = 0;
1943 msi_set_sync();
1944
1945 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1946 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1947 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1948
1949 /*
1950 * We need this to make sure old viking takes no hits
1951 * on it's cache for dma snoops to workaround the
1952 * "load from non-cacheable memory" interrupt bug.
1953 * This is only necessary because of the new way in
1954 * which we use the IOMMU.
1955 */
1956 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1957
1958 flush_page_for_dma_global = 0;
1959 } else {
1960 srmmu_name = "TI Viking/MXCC";
1961 viking_mxcc_present = 1;
1962
1963 srmmu_cache_pagetables = 1;
1964
1965 /* MXCC vikings lack the DMA snooping bug. */
1966 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1967 }
1968
1969 BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1970 BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1971 BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1972 BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1973
1974#ifdef CONFIG_SMP
1975 if (sparc_cpu_model == sun4d) {
1976 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1977 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1978 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1979 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1980 } else
1981#endif
1982 {
1983 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1984 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1985 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1986 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1987 }
1988
1989 BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1990 BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1991
1992 poke_srmmu = poke_viking;
1993}
1994
1995/* Probe for the srmmu chip version. */
1996static void __init get_srmmu_type(void)
1997{
1998 unsigned long mreg, psr;
1999 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2000
2001 srmmu_modtype = SRMMU_INVAL_MOD;
2002 hwbug_bitmask = 0;
2003
2004 mreg = srmmu_get_mmureg(); psr = get_psr();
2005 mod_typ = (mreg & 0xf0000000) >> 28;
2006 mod_rev = (mreg & 0x0f000000) >> 24;
2007 psr_typ = (psr >> 28) & 0xf;
2008 psr_vers = (psr >> 24) & 0xf;
2009
2010 /* First, check for HyperSparc or Cypress. */
2011 if(mod_typ == 1) {
2012 switch(mod_rev) {
2013 case 7:
2014 /* UP or MP Hypersparc */
2015 init_hypersparc();
2016 break;
2017 case 0:
2018 case 2:
2019 /* Uniprocessor Cypress */
2020 init_cypress_604();
2021 break;
2022 case 10:
2023 case 11:
2024 case 12:
2025 /* _REALLY OLD_ Cypress MP chips... */
2026 case 13:
2027 case 14:
2028 case 15:
2029 /* MP Cypress mmu/cache-controller */
2030 init_cypress_605(mod_rev);
2031 break;
2032 default:
2033 /* Some other Cypress revision, assume a 605. */
2034 init_cypress_605(mod_rev);
2035 break;
2036 };
2037 return;
2038 }
2039
2040 /*
2041 * Now Fujitsu TurboSparc. It might happen that it is
2042 * in Swift emulation mode, so we will check later...
2043 */
2044 if (psr_typ == 0 && psr_vers == 5) {
2045 init_turbosparc();
2046 return;
2047 }
2048
2049 /* Next check for Fujitsu Swift. */
2050 if(psr_typ == 0 && psr_vers == 4) {
2051 int cpunode;
2052 char node_str[128];
2053
2054 /* Look if it is not a TurboSparc emulating Swift... */
2055 cpunode = prom_getchild(prom_root_node);
2056 while((cpunode = prom_getsibling(cpunode)) != 0) {
2057 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2058 if(!strcmp(node_str, "cpu")) {
2059 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2060 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2061 init_turbosparc();
2062 return;
2063 }
2064 break;
2065 }
2066 }
2067
2068 init_swift();
2069 return;
2070 }
2071
2072 /* Now the Viking family of srmmu. */
2073 if(psr_typ == 4 &&
2074 ((psr_vers == 0) ||
2075 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2076 init_viking();
2077 return;
2078 }
2079
2080 /* Finally the Tsunami. */
2081 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2082 init_tsunami();
2083 return;
2084 }
2085
2086 /* Oh well */
2087 srmmu_is_bad();
2088}
2089
2090/* don't laugh, static pagetables */
2091static void srmmu_check_pgt_cache(int low, int high)
2092{
2093}
2094
2095extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2096 tsetup_mmu_patchme, rtrap_mmu_patchme;
2097
2098extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2099 tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2100
2101extern unsigned long srmmu_fault;
2102
2103#define PATCH_BRANCH(insn, dest) do { \
2104 iaddr = &(insn); \
2105 daddr = &(dest); \
2106 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2107 } while(0)
2108
2109static void __init patch_window_trap_handlers(void)
2110{
2111 unsigned long *iaddr, *daddr;
2112
2113 PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2114 PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2115 PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2116 PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2117 PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2118 PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2119 PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2120}
2121
2122#ifdef CONFIG_SMP
2123/* Local cross-calls. */
2124static void smp_flush_page_for_dma(unsigned long page)
2125{
2126 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2127 local_flush_page_for_dma(page);
2128}
2129
2130#endif
2131
2132static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2133{
2134 return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2135}
2136
2137static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2138{
2139 return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2140}
2141
David S. Miller14778d92006-03-21 02:29:39 -08002142static pgprot_t srmmu_pgprot_noncached(pgprot_t prot)
2143{
2144 prot &= ~__pgprot(SRMMU_CACHE);
2145
2146 return prot;
2147}
2148
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149/* Load up routines and constants for sun4m and sun4d mmu */
2150void __init ld_mmu_srmmu(void)
2151{
2152 extern void ld_mmu_iommu(void);
2153 extern void ld_mmu_iounit(void);
2154 extern void ___xchg32_sun4md(void);
2155
2156 BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2157 BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2158 BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2159
2160 BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2161 BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2162
2163 BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
Al Viro378e5152007-07-21 19:20:34 -07002164 PAGE_SHARED = pgprot_val(SRMMU_PAGE_SHARED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2166 BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2167 BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2168 page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169
2170 /* Functions */
David S. Miller14778d92006-03-21 02:29:39 -08002171 BTFIXUPSET_CALL(pgprot_noncached, srmmu_pgprot_noncached, BTFIXUPCALL_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172#ifndef CONFIG_SMP
2173 BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2174#endif
2175 BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2176
2177 BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2178 BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2179
2180 BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2181 BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
Dave McCracken46a82b22006-09-25 23:31:48 -07002182 BTFIXUPSET_CALL(pgd_page_vaddr, srmmu_pgd_page, BTFIXUPCALL_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183
2184 BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2185
2186 BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2187 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188
2189 BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2190 BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2191 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2192
2193 BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2194 BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2195 BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2196 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2197
2198 BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2199 BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2200 BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2201 BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2202 BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2203 BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2204
2205 BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2206 BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2207 BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2208
2209 BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2210 BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2211 BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2212 BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2213 BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2214 BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2215 BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2216 BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2217
2218 BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2219 BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2220 BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2221 BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2222 BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2223 BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2224 BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2225 BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2226 BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2227 BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2228 BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2229 BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2230
2231 BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2232 BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2233
2234 BTFIXUPSET_CALL(__swp_type, srmmu_swp_type, BTFIXUPCALL_NORM);
2235 BTFIXUPSET_CALL(__swp_offset, srmmu_swp_offset, BTFIXUPCALL_NORM);
2236 BTFIXUPSET_CALL(__swp_entry, srmmu_swp_entry, BTFIXUPCALL_NORM);
2237
2238 BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2239
2240 BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2241 BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2242
2243 BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2244 BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2245
2246 get_srmmu_type();
2247 patch_window_trap_handlers();
2248
2249#ifdef CONFIG_SMP
2250 /* El switcheroo... */
2251
2252 BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2253 BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2254 BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2255 BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2256 BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2257 BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2258 BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2259 BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2260 BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2261 BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2262 BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2263
2264 BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2265 BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2266 BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2267 BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2268 if (sparc_cpu_model != sun4d) {
2269 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2270 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2271 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2272 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2273 }
2274 BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2275 BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2276 BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2277#endif
2278
2279 if (sparc_cpu_model == sun4d)
2280 ld_mmu_iounit();
2281 else
2282 ld_mmu_iommu();
2283#ifdef CONFIG_SMP
2284 if (sparc_cpu_model == sun4d)
2285 sun4d_init_smp();
2286 else
2287 sun4m_init_smp();
2288#endif
2289}