Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * arch/sparc/math-emu/math.c |
| 3 | * |
| 4 | * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) |
| 5 | * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) |
| 6 | * Copyright (C) 1999 David S. Miller (davem@redhat.com) |
| 7 | * |
| 8 | * This is a good place to start if you're trying to understand the |
| 9 | * emulation code, because it's pretty simple. What we do is |
| 10 | * essentially analyse the instruction to work out what the operation |
| 11 | * is and which registers are involved. We then execute the appropriate |
| 12 | * FXXXX function. [The floating point queue introduces a minor wrinkle; |
| 13 | * see below...] |
| 14 | * The fxxxxx.c files each emulate a single insn. They look relatively |
| 15 | * simple because the complexity is hidden away in an unholy tangle |
| 16 | * of preprocessor macros. |
| 17 | * |
| 18 | * The first layer of macros is single.h, double.h, quad.h. Generally |
| 19 | * these files define macros for working with floating point numbers |
| 20 | * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, |
| 21 | * for instance. These macros are usually defined as calls to more |
| 22 | * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number |
| 23 | * of machine words required to store the given IEEE format is passed |
| 24 | * as a parameter. [double.h and co check the number of bits in a word |
| 25 | * and define FP_ADD_D & co appropriately]. |
| 26 | * The generic macros are defined in op-common.h. This is where all |
| 27 | * the grotty stuff like handling NaNs is coded. To handle the possible |
| 28 | * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() |
| 29 | * where wc is the 'number of machine words' parameter (here 2). |
| 30 | * These are defined in the third layer of macros: op-1.h, op-2.h |
| 31 | * and op-4.h. These handle operations on floating point numbers composed |
| 32 | * of 1,2 and 4 machine words respectively. [For example, on sparc64 |
| 33 | * doubles are one machine word so macros in double.h eventually use |
| 34 | * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] |
| 35 | * soft-fp.h is on the same level as op-common.h, and defines some |
| 36 | * macros which are independent of both word size and FP format. |
| 37 | * Finally, sfp-machine.h is the machine dependent part of the |
| 38 | * code: it defines the word size and what type a word is. It also |
| 39 | * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h |
| 40 | * provide several possible flavours of multiply algorithm, most |
| 41 | * of which require that you supply some form of asm or C primitive to |
| 42 | * do the actual multiply. (such asm primitives should be defined |
| 43 | * in sfp-machine.h too). udivmodti4.c is the same sort of thing. |
| 44 | * |
| 45 | * There may be some errors here because I'm working from a |
| 46 | * SPARC architecture manual V9, and what I really want is V8... |
| 47 | * Also, the insns which can generate exceptions seem to be a |
| 48 | * greater subset of the FPops than for V9 (for example, FCMPED |
| 49 | * has to be emulated on V8). So I think I'm going to have |
| 50 | * to emulate them all just to be on the safe side... |
| 51 | * |
| 52 | * Emulation routines originate from soft-fp package, which is |
| 53 | * part of glibc and has appropriate copyrights in it (allegedly). |
| 54 | * |
| 55 | * NB: on sparc int == long == 4 bytes, long long == 8 bytes. |
| 56 | * Most bits of the kernel seem to go for long rather than int, |
| 57 | * so we follow that practice... |
| 58 | */ |
| 59 | |
| 60 | /* TODO: |
| 61 | * fpsave() saves the FP queue but fpload() doesn't reload it. |
| 62 | * Therefore when we context switch or change FPU ownership |
| 63 | * we have to check to see if the queue had anything in it and |
| 64 | * emulate it if it did. This is going to be a pain. |
| 65 | */ |
| 66 | |
| 67 | #include <linux/types.h> |
| 68 | #include <linux/sched.h> |
| 69 | #include <linux/mm.h> |
David S. Miller | 121dd5f | 2009-12-11 01:07:53 -0800 | [diff] [blame] | 70 | #include <linux/perf_event.h> |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 71 | #include <asm/uaccess.h> |
| 72 | |
Sam Ravnborg | 774434b | 2008-11-16 20:06:33 -0800 | [diff] [blame] | 73 | #include "sfp-util_32.h" |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 74 | #include <math-emu/soft-fp.h> |
| 75 | #include <math-emu/single.h> |
| 76 | #include <math-emu/double.h> |
| 77 | #include <math-emu/quad.h> |
| 78 | |
| 79 | #define FLOATFUNC(x) extern int x(void *,void *,void *) |
| 80 | |
| 81 | /* The Vn labels indicate what version of the SPARC architecture gas thinks |
| 82 | * each insn is. This is from the binutils source :-> |
| 83 | */ |
| 84 | /* quadword instructions */ |
| 85 | #define FSQRTQ 0x02b /* v8 */ |
| 86 | #define FADDQ 0x043 /* v8 */ |
| 87 | #define FSUBQ 0x047 /* v8 */ |
| 88 | #define FMULQ 0x04b /* v8 */ |
| 89 | #define FDIVQ 0x04f /* v8 */ |
| 90 | #define FDMULQ 0x06e /* v8 */ |
| 91 | #define FQTOS 0x0c7 /* v8 */ |
| 92 | #define FQTOD 0x0cb /* v8 */ |
| 93 | #define FITOQ 0x0cc /* v8 */ |
| 94 | #define FSTOQ 0x0cd /* v8 */ |
| 95 | #define FDTOQ 0x0ce /* v8 */ |
| 96 | #define FQTOI 0x0d3 /* v8 */ |
| 97 | #define FCMPQ 0x053 /* v8 */ |
| 98 | #define FCMPEQ 0x057 /* v8 */ |
| 99 | /* single/double instructions (subnormal): should all work */ |
| 100 | #define FSQRTS 0x029 /* v7 */ |
| 101 | #define FSQRTD 0x02a /* v7 */ |
| 102 | #define FADDS 0x041 /* v6 */ |
| 103 | #define FADDD 0x042 /* v6 */ |
| 104 | #define FSUBS 0x045 /* v6 */ |
| 105 | #define FSUBD 0x046 /* v6 */ |
| 106 | #define FMULS 0x049 /* v6 */ |
| 107 | #define FMULD 0x04a /* v6 */ |
| 108 | #define FDIVS 0x04d /* v6 */ |
| 109 | #define FDIVD 0x04e /* v6 */ |
| 110 | #define FSMULD 0x069 /* v6 */ |
| 111 | #define FDTOS 0x0c6 /* v6 */ |
| 112 | #define FSTOD 0x0c9 /* v6 */ |
| 113 | #define FSTOI 0x0d1 /* v6 */ |
| 114 | #define FDTOI 0x0d2 /* v6 */ |
| 115 | #define FABSS 0x009 /* v6 */ |
| 116 | #define FCMPS 0x051 /* v6 */ |
| 117 | #define FCMPES 0x055 /* v6 */ |
| 118 | #define FCMPD 0x052 /* v6 */ |
| 119 | #define FCMPED 0x056 /* v6 */ |
| 120 | #define FMOVS 0x001 /* v6 */ |
| 121 | #define FNEGS 0x005 /* v6 */ |
| 122 | #define FITOS 0x0c4 /* v6 */ |
| 123 | #define FITOD 0x0c8 /* v6 */ |
| 124 | |
| 125 | #define FSR_TEM_SHIFT 23UL |
| 126 | #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT) |
| 127 | #define FSR_AEXC_SHIFT 5UL |
| 128 | #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT) |
| 129 | #define FSR_CEXC_SHIFT 0UL |
| 130 | #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT) |
| 131 | |
| 132 | static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); |
| 133 | |
| 134 | /* Unlike the Sparc64 version (which has a struct fpustate), we |
| 135 | * pass the taskstruct corresponding to the task which currently owns the |
| 136 | * FPU. This is partly because we don't have the fpustate struct and |
| 137 | * partly because the task owning the FPU isn't always current (as is |
| 138 | * the case for the Sparc64 port). This is probably SMP-related... |
| 139 | * This function returns 1 if all queued insns were emulated successfully. |
| 140 | * The test for unimplemented FPop in kernel mode has been moved into |
| 141 | * kernel/traps.c for simplicity. |
| 142 | */ |
| 143 | int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) |
| 144 | { |
| 145 | /* regs->pc isn't necessarily the PC at which the offending insn is sitting. |
| 146 | * The FPU maintains a queue of FPops which cause traps. |
| 147 | * When it hits an instruction that requires that the trapped op succeeded |
| 148 | * (usually because it reads a reg. that the trapped op wrote) then it |
| 149 | * causes this exception. We need to emulate all the insns on the queue |
| 150 | * and then allow the op to proceed. |
| 151 | * This code should also handle the case where the trap was precise, |
| 152 | * in which case the queue length is zero and regs->pc points at the |
| 153 | * single FPop to be emulated. (this case is untested, though :->) |
| 154 | * You'll need this case if you want to be able to emulate all FPops |
| 155 | * because the FPU either doesn't exist or has been software-disabled. |
| 156 | * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it |
| 157 | * might sound because the Ultra does funky things with a superscalar |
| 158 | * architecture.] |
| 159 | */ |
| 160 | |
| 161 | /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ |
| 162 | |
| 163 | int i; |
| 164 | int retcode = 0; /* assume all succeed */ |
| 165 | unsigned long insn; |
| 166 | |
David S. Miller | 121dd5f | 2009-12-11 01:07:53 -0800 | [diff] [blame] | 167 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0); |
| 168 | |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 169 | #ifdef DEBUG_MATHEMU |
| 170 | printk("In do_mathemu()... pc is %08lx\n", regs->pc); |
| 171 | printk("fpqdepth is %ld\n", fpt->thread.fpqdepth); |
| 172 | for (i = 0; i < fpt->thread.fpqdepth; i++) |
| 173 | printk("%d: %08lx at %08lx\n", i, fpt->thread.fpqueue[i].insn, |
| 174 | (unsigned long)fpt->thread.fpqueue[i].insn_addr); |
| 175 | #endif |
| 176 | |
| 177 | if (fpt->thread.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ |
| 178 | #ifdef DEBUG_MATHEMU |
| 179 | printk("precise trap at %08lx\n", regs->pc); |
| 180 | #endif |
| 181 | if (!get_user(insn, (u32 __user *) regs->pc)) { |
| 182 | retcode = do_one_mathemu(insn, &fpt->thread.fsr, fpt->thread.float_regs); |
| 183 | if (retcode) { |
| 184 | /* in this case we need to fix up PC & nPC */ |
| 185 | regs->pc = regs->npc; |
| 186 | regs->npc += 4; |
| 187 | } |
| 188 | } |
| 189 | return retcode; |
| 190 | } |
| 191 | |
| 192 | /* Normal case: need to empty the queue... */ |
| 193 | for (i = 0; i < fpt->thread.fpqdepth; i++) { |
| 194 | retcode = do_one_mathemu(fpt->thread.fpqueue[i].insn, &(fpt->thread.fsr), fpt->thread.float_regs); |
| 195 | if (!retcode) /* insn failed, no point doing any more */ |
| 196 | break; |
| 197 | } |
| 198 | /* Now empty the queue and clear the queue_not_empty flag */ |
| 199 | if (retcode) |
| 200 | fpt->thread.fsr &= ~(0x3000 | FSR_CEXC_MASK); |
| 201 | else |
| 202 | fpt->thread.fsr &= ~0x3000; |
| 203 | fpt->thread.fpqdepth = 0; |
| 204 | |
| 205 | return retcode; |
| 206 | } |
| 207 | |
| 208 | /* All routines returning an exception to raise should detect |
| 209 | * such exceptions _before_ rounding to be consistent with |
| 210 | * the behavior of the hardware in the implemented cases |
| 211 | * (and thus with the recommendations in the V9 architecture |
| 212 | * manual). |
| 213 | * |
| 214 | * We return 0 if a SIGFPE should be sent, 1 otherwise. |
| 215 | */ |
| 216 | static inline int record_exception(unsigned long *pfsr, int eflag) |
| 217 | { |
| 218 | unsigned long fsr = *pfsr; |
| 219 | int would_trap; |
| 220 | |
| 221 | /* Determine if this exception would have generated a trap. */ |
| 222 | would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; |
| 223 | |
| 224 | /* If trapping, we only want to signal one bit. */ |
| 225 | if (would_trap != 0) { |
| 226 | eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); |
| 227 | if ((eflag & (eflag - 1)) != 0) { |
| 228 | if (eflag & FP_EX_INVALID) |
| 229 | eflag = FP_EX_INVALID; |
| 230 | else if (eflag & FP_EX_OVERFLOW) |
| 231 | eflag = FP_EX_OVERFLOW; |
| 232 | else if (eflag & FP_EX_UNDERFLOW) |
| 233 | eflag = FP_EX_UNDERFLOW; |
| 234 | else if (eflag & FP_EX_DIVZERO) |
| 235 | eflag = FP_EX_DIVZERO; |
| 236 | else if (eflag & FP_EX_INEXACT) |
| 237 | eflag = FP_EX_INEXACT; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | /* Set CEXC, here is the rule: |
| 242 | * |
| 243 | * In general all FPU ops will set one and only one |
| 244 | * bit in the CEXC field, this is always the case |
| 245 | * when the IEEE exception trap is enabled in TEM. |
| 246 | */ |
| 247 | fsr &= ~(FSR_CEXC_MASK); |
| 248 | fsr |= ((long)eflag << FSR_CEXC_SHIFT); |
| 249 | |
| 250 | /* Set the AEXC field, rule is: |
| 251 | * |
| 252 | * If a trap would not be generated, the |
| 253 | * CEXC just generated is OR'd into the |
| 254 | * existing value of AEXC. |
| 255 | */ |
| 256 | if (would_trap == 0) |
| 257 | fsr |= ((long)eflag << FSR_AEXC_SHIFT); |
| 258 | |
| 259 | /* If trapping, indicate fault trap type IEEE. */ |
| 260 | if (would_trap != 0) |
| 261 | fsr |= (1UL << 14); |
| 262 | |
| 263 | *pfsr = fsr; |
| 264 | |
| 265 | return (would_trap ? 0 : 1); |
| 266 | } |
| 267 | |
| 268 | typedef union { |
| 269 | u32 s; |
| 270 | u64 d; |
| 271 | u64 q[2]; |
| 272 | } *argp; |
| 273 | |
| 274 | static int do_one_mathemu(u32 insn, unsigned long *pfsr, unsigned long *fregs) |
| 275 | { |
| 276 | /* Emulate the given insn, updating fsr and fregs appropriately. */ |
| 277 | int type = 0; |
| 278 | /* r is rd, b is rs2 and a is rs1. The *u arg tells |
| 279 | whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack) |
| 280 | non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */ |
| 281 | #define TYPE(dummy, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) |
| 282 | int freg; |
| 283 | argp rs1 = NULL, rs2 = NULL, rd = NULL; |
| 284 | FP_DECL_EX; |
| 285 | FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); |
| 286 | FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); |
| 287 | FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR); |
| 288 | int IR; |
| 289 | long fsr; |
| 290 | |
| 291 | #ifdef DEBUG_MATHEMU |
| 292 | printk("In do_mathemu(), emulating %08lx\n", insn); |
| 293 | #endif |
| 294 | |
| 295 | if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { |
| 296 | switch ((insn >> 5) & 0x1ff) { |
| 297 | case FSQRTQ: TYPE(3,3,1,3,1,0,0); break; |
| 298 | case FADDQ: |
| 299 | case FSUBQ: |
| 300 | case FMULQ: |
| 301 | case FDIVQ: TYPE(3,3,1,3,1,3,1); break; |
| 302 | case FDMULQ: TYPE(3,3,1,2,1,2,1); break; |
| 303 | case FQTOS: TYPE(3,1,1,3,1,0,0); break; |
| 304 | case FQTOD: TYPE(3,2,1,3,1,0,0); break; |
| 305 | case FITOQ: TYPE(3,3,1,1,0,0,0); break; |
| 306 | case FSTOQ: TYPE(3,3,1,1,1,0,0); break; |
| 307 | case FDTOQ: TYPE(3,3,1,2,1,0,0); break; |
| 308 | case FQTOI: TYPE(3,1,0,3,1,0,0); break; |
| 309 | case FSQRTS: TYPE(2,1,1,1,1,0,0); break; |
| 310 | case FSQRTD: TYPE(2,2,1,2,1,0,0); break; |
| 311 | case FADDD: |
| 312 | case FSUBD: |
| 313 | case FMULD: |
| 314 | case FDIVD: TYPE(2,2,1,2,1,2,1); break; |
| 315 | case FADDS: |
| 316 | case FSUBS: |
| 317 | case FMULS: |
| 318 | case FDIVS: TYPE(2,1,1,1,1,1,1); break; |
| 319 | case FSMULD: TYPE(2,2,1,1,1,1,1); break; |
| 320 | case FDTOS: TYPE(2,1,1,2,1,0,0); break; |
| 321 | case FSTOD: TYPE(2,2,1,1,1,0,0); break; |
| 322 | case FSTOI: TYPE(2,1,0,1,1,0,0); break; |
| 323 | case FDTOI: TYPE(2,1,0,2,1,0,0); break; |
| 324 | case FITOS: TYPE(2,1,1,1,0,0,0); break; |
| 325 | case FITOD: TYPE(2,2,1,1,0,0,0); break; |
| 326 | case FMOVS: |
| 327 | case FABSS: |
| 328 | case FNEGS: TYPE(2,1,0,1,0,0,0); break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 329 | } |
| 330 | } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { |
| 331 | switch ((insn >> 5) & 0x1ff) { |
| 332 | case FCMPS: TYPE(3,0,0,1,1,1,1); break; |
| 333 | case FCMPES: TYPE(3,0,0,1,1,1,1); break; |
| 334 | case FCMPD: TYPE(3,0,0,2,1,2,1); break; |
| 335 | case FCMPED: TYPE(3,0,0,2,1,2,1); break; |
| 336 | case FCMPQ: TYPE(3,0,0,3,1,3,1); break; |
| 337 | case FCMPEQ: TYPE(3,0,0,3,1,3,1); break; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 338 | } |
| 339 | } |
| 340 | |
| 341 | if (!type) { /* oops, didn't recognise that FPop */ |
| 342 | #ifdef DEBUG_MATHEMU |
| 343 | printk("attempt to emulate unrecognised FPop!\n"); |
| 344 | #endif |
| 345 | return 0; |
| 346 | } |
| 347 | |
| 348 | /* Decode the registers to be used */ |
| 349 | freg = (*pfsr >> 14) & 0xf; |
| 350 | |
| 351 | *pfsr &= ~0x1c000; /* clear the traptype bits */ |
| 352 | |
| 353 | freg = ((insn >> 14) & 0x1f); |
| 354 | switch (type & 0x3) { /* is rs1 single, double or quad? */ |
| 355 | case 3: |
| 356 | if (freg & 3) { /* quadwords must have bits 4&5 of the */ |
| 357 | /* encoded reg. number set to zero. */ |
| 358 | *pfsr |= (6 << 14); |
| 359 | return 0; /* simulate invalid_fp_register exception */ |
| 360 | } |
| 361 | /* fall through */ |
| 362 | case 2: |
| 363 | if (freg & 1) { /* doublewords must have bit 5 zeroed */ |
| 364 | *pfsr |= (6 << 14); |
| 365 | return 0; |
| 366 | } |
| 367 | } |
| 368 | rs1 = (argp)&fregs[freg]; |
| 369 | switch (type & 0x7) { |
| 370 | case 7: FP_UNPACK_QP (QA, rs1); break; |
| 371 | case 6: FP_UNPACK_DP (DA, rs1); break; |
| 372 | case 5: FP_UNPACK_SP (SA, rs1); break; |
| 373 | } |
| 374 | freg = (insn & 0x1f); |
| 375 | switch ((type >> 3) & 0x3) { /* same again for rs2 */ |
| 376 | case 3: |
| 377 | if (freg & 3) { /* quadwords must have bits 4&5 of the */ |
| 378 | /* encoded reg. number set to zero. */ |
| 379 | *pfsr |= (6 << 14); |
| 380 | return 0; /* simulate invalid_fp_register exception */ |
| 381 | } |
| 382 | /* fall through */ |
| 383 | case 2: |
| 384 | if (freg & 1) { /* doublewords must have bit 5 zeroed */ |
| 385 | *pfsr |= (6 << 14); |
| 386 | return 0; |
| 387 | } |
| 388 | } |
| 389 | rs2 = (argp)&fregs[freg]; |
| 390 | switch ((type >> 3) & 0x7) { |
| 391 | case 7: FP_UNPACK_QP (QB, rs2); break; |
| 392 | case 6: FP_UNPACK_DP (DB, rs2); break; |
| 393 | case 5: FP_UNPACK_SP (SB, rs2); break; |
| 394 | } |
| 395 | freg = ((insn >> 25) & 0x1f); |
| 396 | switch ((type >> 6) & 0x3) { /* and finally rd. This one's a bit different */ |
| 397 | case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ |
| 398 | if (freg) { /* V8 has only one set of condition codes, so */ |
| 399 | /* anything but 0 in the rd field is an error */ |
| 400 | *pfsr |= (6 << 14); /* (should probably flag as invalid opcode */ |
| 401 | return 0; /* but SIGFPE will do :-> ) */ |
| 402 | } |
| 403 | break; |
| 404 | case 3: |
| 405 | if (freg & 3) { /* quadwords must have bits 4&5 of the */ |
| 406 | /* encoded reg. number set to zero. */ |
| 407 | *pfsr |= (6 << 14); |
| 408 | return 0; /* simulate invalid_fp_register exception */ |
| 409 | } |
| 410 | /* fall through */ |
| 411 | case 2: |
| 412 | if (freg & 1) { /* doublewords must have bit 5 zeroed */ |
| 413 | *pfsr |= (6 << 14); |
| 414 | return 0; |
| 415 | } |
| 416 | /* fall through */ |
| 417 | case 1: |
| 418 | rd = (void *)&fregs[freg]; |
| 419 | break; |
| 420 | } |
| 421 | #ifdef DEBUG_MATHEMU |
| 422 | printk("executing insn...\n"); |
| 423 | #endif |
| 424 | /* do the Right Thing */ |
| 425 | switch ((insn >> 5) & 0x1ff) { |
| 426 | /* + */ |
| 427 | case FADDS: FP_ADD_S (SR, SA, SB); break; |
| 428 | case FADDD: FP_ADD_D (DR, DA, DB); break; |
| 429 | case FADDQ: FP_ADD_Q (QR, QA, QB); break; |
| 430 | /* - */ |
| 431 | case FSUBS: FP_SUB_S (SR, SA, SB); break; |
| 432 | case FSUBD: FP_SUB_D (DR, DA, DB); break; |
| 433 | case FSUBQ: FP_SUB_Q (QR, QA, QB); break; |
| 434 | /* * */ |
| 435 | case FMULS: FP_MUL_S (SR, SA, SB); break; |
| 436 | case FSMULD: FP_CONV (D, S, 2, 1, DA, SA); |
| 437 | FP_CONV (D, S, 2, 1, DB, SB); |
| 438 | case FMULD: FP_MUL_D (DR, DA, DB); break; |
| 439 | case FDMULQ: FP_CONV (Q, D, 4, 2, QA, DA); |
| 440 | FP_CONV (Q, D, 4, 2, QB, DB); |
| 441 | case FMULQ: FP_MUL_Q (QR, QA, QB); break; |
| 442 | /* / */ |
| 443 | case FDIVS: FP_DIV_S (SR, SA, SB); break; |
| 444 | case FDIVD: FP_DIV_D (DR, DA, DB); break; |
| 445 | case FDIVQ: FP_DIV_Q (QR, QA, QB); break; |
| 446 | /* sqrt */ |
| 447 | case FSQRTS: FP_SQRT_S (SR, SB); break; |
| 448 | case FSQRTD: FP_SQRT_D (DR, DB); break; |
| 449 | case FSQRTQ: FP_SQRT_Q (QR, QB); break; |
| 450 | /* mov */ |
| 451 | case FMOVS: rd->s = rs2->s; break; |
| 452 | case FABSS: rd->s = rs2->s & 0x7fffffff; break; |
| 453 | case FNEGS: rd->s = rs2->s ^ 0x80000000; break; |
| 454 | /* float to int */ |
| 455 | case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break; |
| 456 | case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break; |
| 457 | case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break; |
| 458 | /* int to float */ |
| 459 | case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break; |
| 460 | case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break; |
| 461 | case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break; |
| 462 | /* float to float */ |
| 463 | case FSTOD: FP_CONV (D, S, 2, 1, DR, SB); break; |
| 464 | case FSTOQ: FP_CONV (Q, S, 4, 1, QR, SB); break; |
| 465 | case FDTOQ: FP_CONV (Q, D, 4, 2, QR, DB); break; |
| 466 | case FDTOS: FP_CONV (S, D, 1, 2, SR, DB); break; |
| 467 | case FQTOS: FP_CONV (S, Q, 1, 4, SR, QB); break; |
| 468 | case FQTOD: FP_CONV (D, Q, 2, 4, DR, QB); break; |
| 469 | /* comparison */ |
| 470 | case FCMPS: |
| 471 | case FCMPES: |
| 472 | FP_CMP_S(IR, SB, SA, 3); |
| 473 | if (IR == 3 && |
| 474 | (((insn >> 5) & 0x1ff) == FCMPES || |
| 475 | FP_ISSIGNAN_S(SA) || |
| 476 | FP_ISSIGNAN_S(SB))) |
| 477 | FP_SET_EXCEPTION (FP_EX_INVALID); |
| 478 | break; |
| 479 | case FCMPD: |
| 480 | case FCMPED: |
| 481 | FP_CMP_D(IR, DB, DA, 3); |
| 482 | if (IR == 3 && |
| 483 | (((insn >> 5) & 0x1ff) == FCMPED || |
| 484 | FP_ISSIGNAN_D(DA) || |
| 485 | FP_ISSIGNAN_D(DB))) |
| 486 | FP_SET_EXCEPTION (FP_EX_INVALID); |
| 487 | break; |
| 488 | case FCMPQ: |
| 489 | case FCMPEQ: |
| 490 | FP_CMP_Q(IR, QB, QA, 3); |
| 491 | if (IR == 3 && |
| 492 | (((insn >> 5) & 0x1ff) == FCMPEQ || |
| 493 | FP_ISSIGNAN_Q(QA) || |
| 494 | FP_ISSIGNAN_Q(QB))) |
| 495 | FP_SET_EXCEPTION (FP_EX_INVALID); |
| 496 | } |
| 497 | if (!FP_INHIBIT_RESULTS) { |
| 498 | switch ((type >> 6) & 0x7) { |
| 499 | case 0: fsr = *pfsr; |
| 500 | if (IR == -1) IR = 2; |
| 501 | /* fcc is always fcc0 */ |
| 502 | fsr &= ~0xc00; fsr |= (IR << 10); break; |
| 503 | *pfsr = fsr; |
| 504 | break; |
| 505 | case 1: rd->s = IR; break; |
| 506 | case 5: FP_PACK_SP (rd, SR); break; |
| 507 | case 6: FP_PACK_DP (rd, DR); break; |
| 508 | case 7: FP_PACK_QP (rd, QR); break; |
| 509 | } |
| 510 | } |
| 511 | if (_fex == 0) |
| 512 | return 1; /* success! */ |
| 513 | return record_exception(pfsr, _fex); |
| 514 | } |