blob: f31e8bb2bc5bd0c7aec76e654fce52f5723e527b [file] [log] [blame]
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001/*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23#include <linux/mm.h>
24#include <linux/kvm_host.h>
25#include <linux/uaccess.h>
26#include <asm/kvm_arm.h>
27#include <asm/kvm_host.h>
28#include <asm/kvm_emulate.h>
29#include <asm/kvm_coproc.h>
Marc Zyngier9d218a12014-01-15 12:50:23 +000030#include <asm/kvm_mmu.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000031#include <asm/cacheflush.h>
32#include <asm/cputype.h>
Marc Zyngier0c557ed2014-04-24 10:24:46 +010033#include <asm/debug-monitors.h>
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000034#include <trace/events/kvm.h>
35
36#include "sys_regs.h"
37
38/*
39 * All of this file is extremly similar to the ARM coproc.c, but the
40 * types are different. My gut feeling is that it should be pretty
41 * easy to merge, but that would be an ABI breakage -- again. VFP
42 * would also need to be abstracted.
Marc Zyngier62a89c42013-02-07 10:32:33 +000043 *
44 * For AArch32, we only take care of what is being trapped. Anything
45 * that has to do with init and userspace access has to go via the
46 * 64bit interface.
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000047 */
48
49/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50static u32 cache_levels;
51
52/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53#define CSSELR_MAX 12
54
55/* Which cache CCSIDR represents depends on CSSELR value. */
56static u32 get_ccsidr(u32 csselr)
57{
58 u32 ccsidr;
59
60 /* Make sure noone else changes CSSELR during this! */
61 local_irq_disable();
62 /* Put value into CSSELR */
63 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64 isb();
65 /* Read result out of CCSIDR */
66 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67 local_irq_enable();
68
69 return ccsidr;
70}
71
Marc Zyngier3c1e7162014-12-19 16:05:31 +000072/*
73 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
74 */
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000075static bool access_dcsw(struct kvm_vcpu *vcpu,
76 const struct sys_reg_params *p,
77 const struct sys_reg_desc *r)
78{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000079 if (!p->is_write)
80 return read_from_write_only(vcpu, p);
81
Marc Zyngier3c1e7162014-12-19 16:05:31 +000082 kvm_set_way_flush(vcpu);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +000083 return true;
84}
85
86/*
Marc Zyngier4d449232014-01-14 18:00:55 +000087 * Generic accessor for VM registers. Only called as long as HCR_TVM
Marc Zyngier3c1e7162014-12-19 16:05:31 +000088 * is set. If the guest enables the MMU, we stop trapping the VM
89 * sys_regs and leave it in complete control of the caches.
Marc Zyngier4d449232014-01-14 18:00:55 +000090 */
91static bool access_vm_reg(struct kvm_vcpu *vcpu,
92 const struct sys_reg_params *p,
93 const struct sys_reg_desc *r)
94{
95 unsigned long val;
Marc Zyngier3c1e7162014-12-19 16:05:31 +000096 bool was_enabled = vcpu_has_cache_enabled(vcpu);
Marc Zyngier4d449232014-01-14 18:00:55 +000097
98 BUG_ON(!p->is_write);
99
100 val = *vcpu_reg(vcpu, p->Rt);
Marc Zyngierdedf97e2014-08-01 12:00:36 +0100101 if (!p->is_aarch32) {
Marc Zyngier4d449232014-01-14 18:00:55 +0000102 vcpu_sys_reg(vcpu, r->reg) = val;
Marc Zyngierdedf97e2014-08-01 12:00:36 +0100103 } else {
104 if (!p->is_32bit)
105 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100106 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
Marc Zyngierdedf97e2014-08-01 12:00:36 +0100107 }
Victor Kamenskyf0a3eaf2014-07-02 17:19:30 +0100108
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000109 kvm_toggle_cache(vcpu, was_enabled);
Marc Zyngier4d449232014-01-14 18:00:55 +0000110 return true;
111}
112
Marc Zyngier7609c122014-04-24 10:21:16 +0100113static bool trap_raz_wi(struct kvm_vcpu *vcpu,
114 const struct sys_reg_params *p,
115 const struct sys_reg_desc *r)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000116{
117 if (p->is_write)
118 return ignore_write(vcpu, p);
119 else
120 return read_zero(vcpu, p);
121}
122
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100123static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
124 const struct sys_reg_params *p,
125 const struct sys_reg_desc *r)
126{
127 if (p->is_write) {
128 return ignore_write(vcpu, p);
129 } else {
130 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
131 return true;
132 }
133}
134
135static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
136 const struct sys_reg_params *p,
137 const struct sys_reg_desc *r)
138{
139 if (p->is_write) {
140 return ignore_write(vcpu, p);
141 } else {
142 u32 val;
143 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
144 *vcpu_reg(vcpu, p->Rt) = val;
145 return true;
146 }
147}
148
149/*
150 * We want to avoid world-switching all the DBG registers all the
151 * time:
152 *
153 * - If we've touched any debug register, it is likely that we're
154 * going to touch more of them. It then makes sense to disable the
155 * traps and start doing the save/restore dance
156 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
157 * then mandatory to save/restore the registers, as the guest
158 * depends on them.
159 *
160 * For this, we use a DIRTY bit, indicating the guest has modified the
161 * debug registers, used as follow:
162 *
163 * On guest entry:
164 * - If the dirty bit is set (because we're coming back from trapping),
165 * disable the traps, save host registers, restore guest registers.
166 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
167 * set the dirty bit, disable the traps, save host registers,
168 * restore guest registers.
169 * - Otherwise, enable the traps
170 *
171 * On guest exit:
172 * - If the dirty bit is set, save guest registers, restore host
173 * registers and clear the dirty bit. This ensure that the host can
174 * now use the debug registers.
175 */
176static bool trap_debug_regs(struct kvm_vcpu *vcpu,
177 const struct sys_reg_params *p,
178 const struct sys_reg_desc *r)
179{
180 if (p->is_write) {
181 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
182 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
183 } else {
184 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
185 }
186
187 return true;
188}
189
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000190static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
191{
192 u64 amair;
193
194 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
195 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
196}
197
198static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
199{
200 /*
201 * Simply map the vcpu_id into the Aff0 field of the MPIDR.
202 */
203 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
204}
205
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100206/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
207#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
208 /* DBGBVRn_EL1 */ \
209 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
210 trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 }, \
211 /* DBGBCRn_EL1 */ \
212 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
213 trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 }, \
214 /* DBGWVRn_EL1 */ \
215 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
216 trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 }, \
217 /* DBGWCRn_EL1 */ \
218 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
219 trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
220
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000221/*
222 * Architected system registers.
223 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
Marc Zyngier7609c122014-04-24 10:21:16 +0100224 *
225 * We could trap ID_DFR0 and tell the guest we don't support performance
226 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
227 * NAKed, so it will read the PMCR anyway.
228 *
229 * Therefore we tell the guest we have 0 counters. Unfortunately, we
230 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
231 * all PM registers, which doesn't crash the guest kernel at least.
232 *
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100233 * Debug handling: We do trap most, if not all debug related system
234 * registers. The implementation is good enough to ensure that a guest
235 * can use these with minimal performance degradation. The drawback is
236 * that we don't implement any of the external debug, none of the
237 * OSlock protocol. This should be revisited if we ever encounter a
238 * more demanding guest...
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000239 */
240static const struct sys_reg_desc sys_reg_descs[] = {
241 /* DC ISW */
242 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
243 access_dcsw },
244 /* DC CSW */
245 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
246 access_dcsw },
247 /* DC CISW */
248 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
249 access_dcsw },
250
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100251 DBG_BCR_BVR_WCR_WVR_EL1(0),
252 DBG_BCR_BVR_WCR_WVR_EL1(1),
253 /* MDCCINT_EL1 */
254 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
255 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
256 /* MDSCR_EL1 */
257 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
258 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
259 DBG_BCR_BVR_WCR_WVR_EL1(2),
260 DBG_BCR_BVR_WCR_WVR_EL1(3),
261 DBG_BCR_BVR_WCR_WVR_EL1(4),
262 DBG_BCR_BVR_WCR_WVR_EL1(5),
263 DBG_BCR_BVR_WCR_WVR_EL1(6),
264 DBG_BCR_BVR_WCR_WVR_EL1(7),
265 DBG_BCR_BVR_WCR_WVR_EL1(8),
266 DBG_BCR_BVR_WCR_WVR_EL1(9),
267 DBG_BCR_BVR_WCR_WVR_EL1(10),
268 DBG_BCR_BVR_WCR_WVR_EL1(11),
269 DBG_BCR_BVR_WCR_WVR_EL1(12),
270 DBG_BCR_BVR_WCR_WVR_EL1(13),
271 DBG_BCR_BVR_WCR_WVR_EL1(14),
272 DBG_BCR_BVR_WCR_WVR_EL1(15),
273
274 /* MDRAR_EL1 */
275 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
276 trap_raz_wi },
277 /* OSLAR_EL1 */
278 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
279 trap_raz_wi },
280 /* OSLSR_EL1 */
281 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
282 trap_oslsr_el1 },
283 /* OSDLR_EL1 */
284 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
285 trap_raz_wi },
286 /* DBGPRCR_EL1 */
287 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
288 trap_raz_wi },
289 /* DBGCLAIMSET_EL1 */
290 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
291 trap_raz_wi },
292 /* DBGCLAIMCLR_EL1 */
293 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
294 trap_raz_wi },
295 /* DBGAUTHSTATUS_EL1 */
296 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
297 trap_dbgauthstatus_el1 },
298
Marc Zyngier62a89c42013-02-07 10:32:33 +0000299 /* TEECR32_EL1 */
300 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
301 NULL, reset_val, TEECR32_EL1, 0 },
302 /* TEEHBR32_EL1 */
303 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
304 NULL, reset_val, TEEHBR32_EL1, 0 },
Marc Zyngier0c557ed2014-04-24 10:24:46 +0100305
306 /* MDCCSR_EL1 */
307 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
308 trap_raz_wi },
309 /* DBGDTR_EL0 */
310 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
311 trap_raz_wi },
312 /* DBGDTR[TR]X_EL0 */
313 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
314 trap_raz_wi },
315
Marc Zyngier62a89c42013-02-07 10:32:33 +0000316 /* DBGVCR32_EL2 */
317 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
318 NULL, reset_val, DBGVCR32_EL2, 0 },
319
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000320 /* MPIDR_EL1 */
321 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
322 NULL, reset_mpidr, MPIDR_EL1 },
323 /* SCTLR_EL1 */
324 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000325 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000326 /* CPACR_EL1 */
327 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
328 NULL, reset_val, CPACR_EL1, 0 },
329 /* TTBR0_EL1 */
330 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000331 access_vm_reg, reset_unknown, TTBR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000332 /* TTBR1_EL1 */
333 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000334 access_vm_reg, reset_unknown, TTBR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000335 /* TCR_EL1 */
336 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
Marc Zyngier4d449232014-01-14 18:00:55 +0000337 access_vm_reg, reset_val, TCR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000338
339 /* AFSR0_EL1 */
340 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000341 access_vm_reg, reset_unknown, AFSR0_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000342 /* AFSR1_EL1 */
343 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000344 access_vm_reg, reset_unknown, AFSR1_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000345 /* ESR_EL1 */
346 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000347 access_vm_reg, reset_unknown, ESR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000348 /* FAR_EL1 */
349 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000350 access_vm_reg, reset_unknown, FAR_EL1 },
Marc Zyngier1bbd8052013-06-07 11:02:34 +0100351 /* PAR_EL1 */
352 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
353 NULL, reset_unknown, PAR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000354
355 /* PMINTENSET_EL1 */
356 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100357 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000358 /* PMINTENCLR_EL1 */
359 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100360 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000361
362 /* MAIR_EL1 */
363 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000364 access_vm_reg, reset_unknown, MAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000365 /* AMAIR_EL1 */
366 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
Marc Zyngier4d449232014-01-14 18:00:55 +0000367 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000368
369 /* VBAR_EL1 */
370 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
371 NULL, reset_val, VBAR_EL1, 0 },
Christoffer Dalldb7dedd2014-11-19 11:23:54 +0000372
373 /* ICC_SRE_EL1 */
374 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
375 trap_raz_wi },
376
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000377 /* CONTEXTIDR_EL1 */
378 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
Marc Zyngier4d449232014-01-14 18:00:55 +0000379 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000380 /* TPIDR_EL1 */
381 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
382 NULL, reset_unknown, TPIDR_EL1 },
383
384 /* CNTKCTL_EL1 */
385 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
386 NULL, reset_val, CNTKCTL_EL1, 0},
387
388 /* CSSELR_EL1 */
389 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
390 NULL, reset_unknown, CSSELR_EL1 },
391
392 /* PMCR_EL0 */
393 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100394 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000395 /* PMCNTENSET_EL0 */
396 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100397 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000398 /* PMCNTENCLR_EL0 */
399 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100400 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000401 /* PMOVSCLR_EL0 */
402 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100403 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000404 /* PMSWINC_EL0 */
405 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
Marc Zyngier7609c122014-04-24 10:21:16 +0100406 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000407 /* PMSELR_EL0 */
408 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
Marc Zyngier7609c122014-04-24 10:21:16 +0100409 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000410 /* PMCEID0_EL0 */
411 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
Marc Zyngier7609c122014-04-24 10:21:16 +0100412 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000413 /* PMCEID1_EL0 */
414 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
Marc Zyngier7609c122014-04-24 10:21:16 +0100415 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000416 /* PMCCNTR_EL0 */
417 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100418 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000419 /* PMXEVTYPER_EL0 */
420 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
Marc Zyngier7609c122014-04-24 10:21:16 +0100421 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000422 /* PMXEVCNTR_EL0 */
423 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
Marc Zyngier7609c122014-04-24 10:21:16 +0100424 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000425 /* PMUSERENR_EL0 */
426 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
Marc Zyngier7609c122014-04-24 10:21:16 +0100427 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000428 /* PMOVSSET_EL0 */
429 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
Marc Zyngier7609c122014-04-24 10:21:16 +0100430 trap_raz_wi },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000431
432 /* TPIDR_EL0 */
433 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
434 NULL, reset_unknown, TPIDR_EL0 },
435 /* TPIDRRO_EL0 */
436 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
437 NULL, reset_unknown, TPIDRRO_EL0 },
Marc Zyngier62a89c42013-02-07 10:32:33 +0000438
439 /* DACR32_EL2 */
440 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
441 NULL, reset_unknown, DACR32_EL2 },
442 /* IFSR32_EL2 */
443 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
444 NULL, reset_unknown, IFSR32_EL2 },
445 /* FPEXC32_EL2 */
446 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
447 NULL, reset_val, FPEXC32_EL2, 0x70 },
448};
449
Marc Zyngierbdfb4b32014-04-24 10:31:37 +0100450static bool trap_dbgidr(struct kvm_vcpu *vcpu,
451 const struct sys_reg_params *p,
452 const struct sys_reg_desc *r)
453{
454 if (p->is_write) {
455 return ignore_write(vcpu, p);
456 } else {
457 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
458 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
459 u32 el3 = !!((pfr >> 12) & 0xf);
460
461 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
462 (((dfr >> 12) & 0xf) << 24) |
463 (((dfr >> 28) & 0xf) << 20) |
464 (6 << 16) | (el3 << 14) | (el3 << 12));
465 return true;
466 }
467}
468
469static bool trap_debug32(struct kvm_vcpu *vcpu,
470 const struct sys_reg_params *p,
471 const struct sys_reg_desc *r)
472{
473 if (p->is_write) {
474 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
475 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
476 } else {
477 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
478 }
479
480 return true;
481}
482
483#define DBG_BCR_BVR_WCR_WVR(n) \
484 /* DBGBVRn */ \
485 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32, \
486 NULL, (cp14_DBGBVR0 + (n) * 2) }, \
487 /* DBGBCRn */ \
488 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32, \
489 NULL, (cp14_DBGBCR0 + (n) * 2) }, \
490 /* DBGWVRn */ \
491 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32, \
492 NULL, (cp14_DBGWVR0 + (n) * 2) }, \
493 /* DBGWCRn */ \
494 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32, \
495 NULL, (cp14_DBGWCR0 + (n) * 2) }
496
497#define DBGBXVR(n) \
498 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32, \
499 NULL, cp14_DBGBXVR0 + n * 2 }
500
501/*
502 * Trapped cp14 registers. We generally ignore most of the external
503 * debug, on the principle that they don't really make sense to a
504 * guest. Revisit this one day, whould this principle change.
505 */
Marc Zyngier72564012014-04-24 10:27:13 +0100506static const struct sys_reg_desc cp14_regs[] = {
Marc Zyngierbdfb4b32014-04-24 10:31:37 +0100507 /* DBGIDR */
508 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
509 /* DBGDTRRXext */
510 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
511
512 DBG_BCR_BVR_WCR_WVR(0),
513 /* DBGDSCRint */
514 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
515 DBG_BCR_BVR_WCR_WVR(1),
516 /* DBGDCCINT */
517 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
518 /* DBGDSCRext */
519 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
520 DBG_BCR_BVR_WCR_WVR(2),
521 /* DBGDTR[RT]Xint */
522 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
523 /* DBGDTR[RT]Xext */
524 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
525 DBG_BCR_BVR_WCR_WVR(3),
526 DBG_BCR_BVR_WCR_WVR(4),
527 DBG_BCR_BVR_WCR_WVR(5),
528 /* DBGWFAR */
529 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
530 /* DBGOSECCR */
531 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
532 DBG_BCR_BVR_WCR_WVR(6),
533 /* DBGVCR */
534 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
535 DBG_BCR_BVR_WCR_WVR(7),
536 DBG_BCR_BVR_WCR_WVR(8),
537 DBG_BCR_BVR_WCR_WVR(9),
538 DBG_BCR_BVR_WCR_WVR(10),
539 DBG_BCR_BVR_WCR_WVR(11),
540 DBG_BCR_BVR_WCR_WVR(12),
541 DBG_BCR_BVR_WCR_WVR(13),
542 DBG_BCR_BVR_WCR_WVR(14),
543 DBG_BCR_BVR_WCR_WVR(15),
544
545 /* DBGDRAR (32bit) */
546 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
547
548 DBGBXVR(0),
549 /* DBGOSLAR */
550 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
551 DBGBXVR(1),
552 /* DBGOSLSR */
553 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
554 DBGBXVR(2),
555 DBGBXVR(3),
556 /* DBGOSDLR */
557 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
558 DBGBXVR(4),
559 /* DBGPRCR */
560 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
561 DBGBXVR(5),
562 DBGBXVR(6),
563 DBGBXVR(7),
564 DBGBXVR(8),
565 DBGBXVR(9),
566 DBGBXVR(10),
567 DBGBXVR(11),
568 DBGBXVR(12),
569 DBGBXVR(13),
570 DBGBXVR(14),
571 DBGBXVR(15),
572
573 /* DBGDSAR (32bit) */
574 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
575
576 /* DBGDEVID2 */
577 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
578 /* DBGDEVID1 */
579 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
580 /* DBGDEVID */
581 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
582 /* DBGCLAIMSET */
583 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
584 /* DBGCLAIMCLR */
585 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
586 /* DBGAUTHSTATUS */
587 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
Marc Zyngier72564012014-04-24 10:27:13 +0100588};
589
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100590/* Trapped cp14 64bit registers */
591static const struct sys_reg_desc cp14_64_regs[] = {
Marc Zyngierbdfb4b32014-04-24 10:31:37 +0100592 /* DBGDRAR (64bit) */
593 { Op1( 0), CRm( 1), .access = trap_raz_wi },
594
595 /* DBGDSAR (64bit) */
596 { Op1( 0), CRm( 2), .access = trap_raz_wi },
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100597};
598
Marc Zyngier4d449232014-01-14 18:00:55 +0000599/*
600 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
601 * depending on the way they are accessed (as a 32bit or a 64bit
602 * register).
603 */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000604static const struct sys_reg_desc cp15_regs[] = {
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000605 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
Marc Zyngier4d449232014-01-14 18:00:55 +0000606 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
607 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
608 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
609 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
610 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
611 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
612 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
613 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
614 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
615 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
616
Marc Zyngier62a89c42013-02-07 10:32:33 +0000617 /*
618 * DC{C,I,CI}SW operations:
619 */
620 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
621 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
622 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
Marc Zyngier4d449232014-01-14 18:00:55 +0000623
Marc Zyngier7609c122014-04-24 10:21:16 +0100624 /* PMU */
625 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
626 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
627 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
628 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
629 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
630 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
631 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
632 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
633 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
634 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
635 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
636 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
637 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
Marc Zyngier4d449232014-01-14 18:00:55 +0000638
639 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
640 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
641 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
642 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
Christoffer Dalldb7dedd2014-11-19 11:23:54 +0000643
644 /* ICC_SRE */
645 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
646
Marc Zyngier4d449232014-01-14 18:00:55 +0000647 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100648};
649
650static const struct sys_reg_desc cp15_64_regs[] = {
651 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
Marc Zyngier4d449232014-01-14 18:00:55 +0000652 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000653};
654
655/* Target specific emulation tables */
656static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
657
658void kvm_register_target_sys_reg_table(unsigned int target,
659 struct kvm_sys_reg_target_table *table)
660{
661 target_tables[target] = table;
662}
663
664/* Get specific register table for this target. */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000665static const struct sys_reg_desc *get_target_table(unsigned target,
666 bool mode_is_64,
667 size_t *num)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000668{
669 struct kvm_sys_reg_target_table *table;
670
671 table = target_tables[target];
Marc Zyngier62a89c42013-02-07 10:32:33 +0000672 if (mode_is_64) {
673 *num = table->table64.num;
674 return table->table64.table;
675 } else {
676 *num = table->table32.num;
677 return table->table32.table;
678 }
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000679}
680
681static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
682 const struct sys_reg_desc table[],
683 unsigned int num)
684{
685 unsigned int i;
686
687 for (i = 0; i < num; i++) {
688 const struct sys_reg_desc *r = &table[i];
689
690 if (params->Op0 != r->Op0)
691 continue;
692 if (params->Op1 != r->Op1)
693 continue;
694 if (params->CRn != r->CRn)
695 continue;
696 if (params->CRm != r->CRm)
697 continue;
698 if (params->Op2 != r->Op2)
699 continue;
700
701 return r;
702 }
703 return NULL;
704}
705
Marc Zyngier62a89c42013-02-07 10:32:33 +0000706int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
707{
708 kvm_inject_undefined(vcpu);
709 return 1;
710}
711
Marc Zyngier72564012014-04-24 10:27:13 +0100712/*
713 * emulate_cp -- tries to match a sys_reg access in a handling table, and
714 * call the corresponding trap handler.
715 *
716 * @params: pointer to the descriptor of the access
717 * @table: array of trap descriptors
718 * @num: size of the trap descriptor array
719 *
720 * Return 0 if the access has been handled, and -1 if not.
721 */
722static int emulate_cp(struct kvm_vcpu *vcpu,
723 const struct sys_reg_params *params,
724 const struct sys_reg_desc *table,
725 size_t num)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000726{
Marc Zyngier72564012014-04-24 10:27:13 +0100727 const struct sys_reg_desc *r;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000728
Marc Zyngier72564012014-04-24 10:27:13 +0100729 if (!table)
730 return -1; /* Not handled */
Marc Zyngier62a89c42013-02-07 10:32:33 +0000731
Marc Zyngier62a89c42013-02-07 10:32:33 +0000732 r = find_reg(params, table, num);
Marc Zyngier62a89c42013-02-07 10:32:33 +0000733
Marc Zyngier72564012014-04-24 10:27:13 +0100734 if (r) {
Marc Zyngier62a89c42013-02-07 10:32:33 +0000735 /*
736 * Not having an accessor means that we have
737 * configured a trap that we don't know how to
738 * handle. This certainly qualifies as a gross bug
739 * that should be fixed right away.
740 */
741 BUG_ON(!r->access);
742
743 if (likely(r->access(vcpu, params, r))) {
744 /* Skip instruction, since it was emulated */
745 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
Marc Zyngier62a89c42013-02-07 10:32:33 +0000746 }
Marc Zyngier72564012014-04-24 10:27:13 +0100747
748 /* Handled */
749 return 0;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000750 }
751
Marc Zyngier72564012014-04-24 10:27:13 +0100752 /* Not handled */
753 return -1;
754}
755
756static void unhandled_cp_access(struct kvm_vcpu *vcpu,
757 struct sys_reg_params *params)
758{
759 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
760 int cp;
761
762 switch(hsr_ec) {
763 case ESR_EL2_EC_CP15_32:
764 case ESR_EL2_EC_CP15_64:
765 cp = 15;
766 break;
767 case ESR_EL2_EC_CP14_MR:
768 case ESR_EL2_EC_CP14_64:
769 cp = 14;
770 break;
771 default:
772 WARN_ON((cp = -1));
773 }
774
775 kvm_err("Unsupported guest CP%d access at: %08lx\n",
776 cp, *vcpu_pc(vcpu));
Marc Zyngier62a89c42013-02-07 10:32:33 +0000777 print_sys_reg_instr(params);
778 kvm_inject_undefined(vcpu);
779}
780
781/**
Marc Zyngier72564012014-04-24 10:27:13 +0100782 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
Marc Zyngier62a89c42013-02-07 10:32:33 +0000783 * @vcpu: The VCPU pointer
784 * @run: The kvm_run struct
785 */
Marc Zyngier72564012014-04-24 10:27:13 +0100786static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
787 const struct sys_reg_desc *global,
788 size_t nr_global,
789 const struct sys_reg_desc *target_specific,
790 size_t nr_specific)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000791{
792 struct sys_reg_params params;
793 u32 hsr = kvm_vcpu_get_hsr(vcpu);
794 int Rt2 = (hsr >> 10) & 0xf;
795
Marc Zyngier2072d292014-01-21 10:55:17 +0000796 params.is_aarch32 = true;
797 params.is_32bit = false;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000798 params.CRm = (hsr >> 1) & 0xf;
799 params.Rt = (hsr >> 5) & 0xf;
800 params.is_write = ((hsr & 1) == 0);
801
802 params.Op0 = 0;
803 params.Op1 = (hsr >> 16) & 0xf;
804 params.Op2 = 0;
805 params.CRn = 0;
806
807 /*
808 * Massive hack here. Store Rt2 in the top 32bits so we only
809 * have one register to deal with. As we use the same trap
810 * backends between AArch32 and AArch64, we get away with it.
811 */
812 if (params.is_write) {
813 u64 val = *vcpu_reg(vcpu, params.Rt);
814 val &= 0xffffffff;
815 val |= *vcpu_reg(vcpu, Rt2) << 32;
816 *vcpu_reg(vcpu, params.Rt) = val;
817 }
818
Marc Zyngier72564012014-04-24 10:27:13 +0100819 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
820 goto out;
821 if (!emulate_cp(vcpu, &params, global, nr_global))
822 goto out;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000823
Marc Zyngier72564012014-04-24 10:27:13 +0100824 unhandled_cp_access(vcpu, &params);
825
826out:
Marc Zyngier62a89c42013-02-07 10:32:33 +0000827 /* Do the opposite hack for the read side */
828 if (!params.is_write) {
829 u64 val = *vcpu_reg(vcpu, params.Rt);
830 val >>= 32;
831 *vcpu_reg(vcpu, Rt2) = val;
832 }
833
834 return 1;
835}
836
837/**
838 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
839 * @vcpu: The VCPU pointer
840 * @run: The kvm_run struct
841 */
Marc Zyngier72564012014-04-24 10:27:13 +0100842static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
843 const struct sys_reg_desc *global,
844 size_t nr_global,
845 const struct sys_reg_desc *target_specific,
846 size_t nr_specific)
Marc Zyngier62a89c42013-02-07 10:32:33 +0000847{
848 struct sys_reg_params params;
849 u32 hsr = kvm_vcpu_get_hsr(vcpu);
850
Marc Zyngier2072d292014-01-21 10:55:17 +0000851 params.is_aarch32 = true;
852 params.is_32bit = true;
Marc Zyngier62a89c42013-02-07 10:32:33 +0000853 params.CRm = (hsr >> 1) & 0xf;
854 params.Rt = (hsr >> 5) & 0xf;
855 params.is_write = ((hsr & 1) == 0);
856 params.CRn = (hsr >> 10) & 0xf;
857 params.Op0 = 0;
858 params.Op1 = (hsr >> 14) & 0x7;
859 params.Op2 = (hsr >> 17) & 0x7;
860
Marc Zyngier72564012014-04-24 10:27:13 +0100861 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
862 return 1;
863 if (!emulate_cp(vcpu, &params, global, nr_global))
864 return 1;
865
866 unhandled_cp_access(vcpu, &params);
Marc Zyngier62a89c42013-02-07 10:32:33 +0000867 return 1;
868}
869
Marc Zyngier72564012014-04-24 10:27:13 +0100870int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
871{
872 const struct sys_reg_desc *target_specific;
873 size_t num;
874
875 target_specific = get_target_table(vcpu->arch.target, false, &num);
876 return kvm_handle_cp_64(vcpu,
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100877 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
Marc Zyngier72564012014-04-24 10:27:13 +0100878 target_specific, num);
879}
880
881int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
882{
883 const struct sys_reg_desc *target_specific;
884 size_t num;
885
886 target_specific = get_target_table(vcpu->arch.target, false, &num);
887 return kvm_handle_cp_32(vcpu,
888 cp15_regs, ARRAY_SIZE(cp15_regs),
889 target_specific, num);
890}
891
892int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
893{
894 return kvm_handle_cp_64(vcpu,
Marc Zyngiera9866ba02014-04-24 14:11:48 +0100895 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
Marc Zyngier72564012014-04-24 10:27:13 +0100896 NULL, 0);
897}
898
899int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
900{
901 return kvm_handle_cp_32(vcpu,
902 cp14_regs, ARRAY_SIZE(cp14_regs),
903 NULL, 0);
904}
905
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000906static int emulate_sys_reg(struct kvm_vcpu *vcpu,
907 const struct sys_reg_params *params)
908{
909 size_t num;
910 const struct sys_reg_desc *table, *r;
911
Marc Zyngier62a89c42013-02-07 10:32:33 +0000912 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000913
914 /* Search target-specific then generic table. */
915 r = find_reg(params, table, num);
916 if (!r)
917 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
918
919 if (likely(r)) {
920 /*
921 * Not having an accessor means that we have
922 * configured a trap that we don't know how to
923 * handle. This certainly qualifies as a gross bug
924 * that should be fixed right away.
925 */
926 BUG_ON(!r->access);
927
928 if (likely(r->access(vcpu, params, r))) {
929 /* Skip instruction, since it was emulated */
930 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
931 return 1;
932 }
933 /* If access function fails, it should complain. */
934 } else {
935 kvm_err("Unsupported guest sys_reg access at: %lx\n",
936 *vcpu_pc(vcpu));
937 print_sys_reg_instr(params);
938 }
939 kvm_inject_undefined(vcpu);
940 return 1;
941}
942
943static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
944 const struct sys_reg_desc *table, size_t num)
945{
946 unsigned long i;
947
948 for (i = 0; i < num; i++)
949 if (table[i].reset)
950 table[i].reset(vcpu, &table[i]);
951}
952
953/**
954 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
955 * @vcpu: The VCPU pointer
956 * @run: The kvm_run struct
957 */
958int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
959{
960 struct sys_reg_params params;
961 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
962
Marc Zyngier2072d292014-01-21 10:55:17 +0000963 params.is_aarch32 = false;
964 params.is_32bit = false;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +0000965 params.Op0 = (esr >> 20) & 3;
966 params.Op1 = (esr >> 14) & 0x7;
967 params.CRn = (esr >> 10) & 0xf;
968 params.CRm = (esr >> 1) & 0xf;
969 params.Op2 = (esr >> 17) & 0x7;
970 params.Rt = (esr >> 5) & 0x1f;
971 params.is_write = !(esr & 1);
972
973 return emulate_sys_reg(vcpu, &params);
974}
975
976/******************************************************************************
977 * Userspace API
978 *****************************************************************************/
979
980static bool index_to_params(u64 id, struct sys_reg_params *params)
981{
982 switch (id & KVM_REG_SIZE_MASK) {
983 case KVM_REG_SIZE_U64:
984 /* Any unused index bits means it's not valid. */
985 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
986 | KVM_REG_ARM_COPROC_MASK
987 | KVM_REG_ARM64_SYSREG_OP0_MASK
988 | KVM_REG_ARM64_SYSREG_OP1_MASK
989 | KVM_REG_ARM64_SYSREG_CRN_MASK
990 | KVM_REG_ARM64_SYSREG_CRM_MASK
991 | KVM_REG_ARM64_SYSREG_OP2_MASK))
992 return false;
993 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
994 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
995 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
996 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
997 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
998 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
999 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1000 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1001 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1002 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1003 return true;
1004 default:
1005 return false;
1006 }
1007}
1008
1009/* Decode an index value, and find the sys_reg_desc entry. */
1010static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1011 u64 id)
1012{
1013 size_t num;
1014 const struct sys_reg_desc *table, *r;
1015 struct sys_reg_params params;
1016
1017 /* We only do sys_reg for now. */
1018 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1019 return NULL;
1020
1021 if (!index_to_params(id, &params))
1022 return NULL;
1023
Marc Zyngier62a89c42013-02-07 10:32:33 +00001024 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001025 r = find_reg(&params, table, num);
1026 if (!r)
1027 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1028
1029 /* Not saved in the sys_reg array? */
1030 if (r && !r->reg)
1031 r = NULL;
1032
1033 return r;
1034}
1035
1036/*
1037 * These are the invariant sys_reg registers: we let the guest see the
1038 * host versions of these, so they're part of the guest state.
1039 *
1040 * A future CPU may provide a mechanism to present different values to
1041 * the guest, or a future kvm may trap them.
1042 */
1043
1044#define FUNCTION_INVARIANT(reg) \
1045 static void get_##reg(struct kvm_vcpu *v, \
1046 const struct sys_reg_desc *r) \
1047 { \
1048 u64 val; \
1049 \
1050 asm volatile("mrs %0, " __stringify(reg) "\n" \
1051 : "=r" (val)); \
1052 ((struct sys_reg_desc *)r)->val = val; \
1053 }
1054
1055FUNCTION_INVARIANT(midr_el1)
1056FUNCTION_INVARIANT(ctr_el0)
1057FUNCTION_INVARIANT(revidr_el1)
1058FUNCTION_INVARIANT(id_pfr0_el1)
1059FUNCTION_INVARIANT(id_pfr1_el1)
1060FUNCTION_INVARIANT(id_dfr0_el1)
1061FUNCTION_INVARIANT(id_afr0_el1)
1062FUNCTION_INVARIANT(id_mmfr0_el1)
1063FUNCTION_INVARIANT(id_mmfr1_el1)
1064FUNCTION_INVARIANT(id_mmfr2_el1)
1065FUNCTION_INVARIANT(id_mmfr3_el1)
1066FUNCTION_INVARIANT(id_isar0_el1)
1067FUNCTION_INVARIANT(id_isar1_el1)
1068FUNCTION_INVARIANT(id_isar2_el1)
1069FUNCTION_INVARIANT(id_isar3_el1)
1070FUNCTION_INVARIANT(id_isar4_el1)
1071FUNCTION_INVARIANT(id_isar5_el1)
1072FUNCTION_INVARIANT(clidr_el1)
1073FUNCTION_INVARIANT(aidr_el1)
1074
1075/* ->val is filled in by kvm_sys_reg_table_init() */
1076static struct sys_reg_desc invariant_sys_regs[] = {
1077 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1078 NULL, get_midr_el1 },
1079 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1080 NULL, get_revidr_el1 },
1081 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1082 NULL, get_id_pfr0_el1 },
1083 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1084 NULL, get_id_pfr1_el1 },
1085 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1086 NULL, get_id_dfr0_el1 },
1087 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1088 NULL, get_id_afr0_el1 },
1089 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1090 NULL, get_id_mmfr0_el1 },
1091 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1092 NULL, get_id_mmfr1_el1 },
1093 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1094 NULL, get_id_mmfr2_el1 },
1095 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1096 NULL, get_id_mmfr3_el1 },
1097 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1098 NULL, get_id_isar0_el1 },
1099 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1100 NULL, get_id_isar1_el1 },
1101 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1102 NULL, get_id_isar2_el1 },
1103 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1104 NULL, get_id_isar3_el1 },
1105 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1106 NULL, get_id_isar4_el1 },
1107 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1108 NULL, get_id_isar5_el1 },
1109 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1110 NULL, get_clidr_el1 },
1111 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1112 NULL, get_aidr_el1 },
1113 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1114 NULL, get_ctr_el0 },
1115};
1116
Victor Kamensky26c99af2014-06-12 09:30:12 -07001117static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001118{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001119 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1120 return -EFAULT;
1121 return 0;
1122}
1123
Victor Kamensky26c99af2014-06-12 09:30:12 -07001124static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001125{
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001126 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1127 return -EFAULT;
1128 return 0;
1129}
1130
1131static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1132{
1133 struct sys_reg_params params;
1134 const struct sys_reg_desc *r;
1135
1136 if (!index_to_params(id, &params))
1137 return -ENOENT;
1138
1139 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1140 if (!r)
1141 return -ENOENT;
1142
1143 return reg_to_user(uaddr, &r->val, id);
1144}
1145
1146static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1147{
1148 struct sys_reg_params params;
1149 const struct sys_reg_desc *r;
1150 int err;
1151 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1152
1153 if (!index_to_params(id, &params))
1154 return -ENOENT;
1155 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1156 if (!r)
1157 return -ENOENT;
1158
1159 err = reg_from_user(&val, uaddr, id);
1160 if (err)
1161 return err;
1162
1163 /* This is what we mean by invariant: you can't change it. */
1164 if (r->val != val)
1165 return -EINVAL;
1166
1167 return 0;
1168}
1169
1170static bool is_valid_cache(u32 val)
1171{
1172 u32 level, ctype;
1173
1174 if (val >= CSSELR_MAX)
Will Deacon18d45762014-08-26 15:13:22 +01001175 return false;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001176
1177 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1178 level = (val >> 1);
1179 ctype = (cache_levels >> (level * 3)) & 7;
1180
1181 switch (ctype) {
1182 case 0: /* No cache */
1183 return false;
1184 case 1: /* Instruction cache only */
1185 return (val & 1);
1186 case 2: /* Data cache only */
1187 case 4: /* Unified cache */
1188 return !(val & 1);
1189 case 3: /* Separate instruction and data caches */
1190 return true;
1191 default: /* Reserved: we can't know instruction or data. */
1192 return false;
1193 }
1194}
1195
1196static int demux_c15_get(u64 id, void __user *uaddr)
1197{
1198 u32 val;
1199 u32 __user *uval = uaddr;
1200
1201 /* Fail if we have unknown bits set. */
1202 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1203 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1204 return -ENOENT;
1205
1206 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1207 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1208 if (KVM_REG_SIZE(id) != 4)
1209 return -ENOENT;
1210 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1211 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1212 if (!is_valid_cache(val))
1213 return -ENOENT;
1214
1215 return put_user(get_ccsidr(val), uval);
1216 default:
1217 return -ENOENT;
1218 }
1219}
1220
1221static int demux_c15_set(u64 id, void __user *uaddr)
1222{
1223 u32 val, newval;
1224 u32 __user *uval = uaddr;
1225
1226 /* Fail if we have unknown bits set. */
1227 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1228 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1229 return -ENOENT;
1230
1231 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1232 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1233 if (KVM_REG_SIZE(id) != 4)
1234 return -ENOENT;
1235 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1236 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1237 if (!is_valid_cache(val))
1238 return -ENOENT;
1239
1240 if (get_user(newval, uval))
1241 return -EFAULT;
1242
1243 /* This is also invariant: you can't change it. */
1244 if (newval != get_ccsidr(val))
1245 return -EINVAL;
1246 return 0;
1247 default:
1248 return -ENOENT;
1249 }
1250}
1251
1252int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1253{
1254 const struct sys_reg_desc *r;
1255 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1256
1257 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1258 return demux_c15_get(reg->id, uaddr);
1259
1260 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1261 return -ENOENT;
1262
1263 r = index_to_sys_reg_desc(vcpu, reg->id);
1264 if (!r)
1265 return get_invariant_sys_reg(reg->id, uaddr);
1266
1267 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1268}
1269
1270int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1271{
1272 const struct sys_reg_desc *r;
1273 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1274
1275 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1276 return demux_c15_set(reg->id, uaddr);
1277
1278 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1279 return -ENOENT;
1280
1281 r = index_to_sys_reg_desc(vcpu, reg->id);
1282 if (!r)
1283 return set_invariant_sys_reg(reg->id, uaddr);
1284
1285 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1286}
1287
1288static unsigned int num_demux_regs(void)
1289{
1290 unsigned int i, count = 0;
1291
1292 for (i = 0; i < CSSELR_MAX; i++)
1293 if (is_valid_cache(i))
1294 count++;
1295
1296 return count;
1297}
1298
1299static int write_demux_regids(u64 __user *uindices)
1300{
Alex Bennéeefd48ce2014-07-01 16:53:13 +01001301 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001302 unsigned int i;
1303
1304 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1305 for (i = 0; i < CSSELR_MAX; i++) {
1306 if (!is_valid_cache(i))
1307 continue;
1308 if (put_user(val | i, uindices))
1309 return -EFAULT;
1310 uindices++;
1311 }
1312 return 0;
1313}
1314
1315static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1316{
1317 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1318 KVM_REG_ARM64_SYSREG |
1319 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1320 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1321 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1322 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1323 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1324}
1325
1326static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1327{
1328 if (!*uind)
1329 return true;
1330
1331 if (put_user(sys_reg_to_index(reg), *uind))
1332 return false;
1333
1334 (*uind)++;
1335 return true;
1336}
1337
1338/* Assumed ordered tables, see kvm_sys_reg_table_init. */
1339static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1340{
1341 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1342 unsigned int total = 0;
1343 size_t num;
1344
1345 /* We check for duplicates here, to allow arch-specific overrides. */
Marc Zyngier62a89c42013-02-07 10:32:33 +00001346 i1 = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001347 end1 = i1 + num;
1348 i2 = sys_reg_descs;
1349 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1350
1351 BUG_ON(i1 == end1 || i2 == end2);
1352
1353 /* Walk carefully, as both tables may refer to the same register. */
1354 while (i1 || i2) {
1355 int cmp = cmp_sys_reg(i1, i2);
1356 /* target-specific overrides generic entry. */
1357 if (cmp <= 0) {
1358 /* Ignore registers we trap but don't save. */
1359 if (i1->reg) {
1360 if (!copy_reg_to_user(i1, &uind))
1361 return -EFAULT;
1362 total++;
1363 }
1364 } else {
1365 /* Ignore registers we trap but don't save. */
1366 if (i2->reg) {
1367 if (!copy_reg_to_user(i2, &uind))
1368 return -EFAULT;
1369 total++;
1370 }
1371 }
1372
1373 if (cmp <= 0 && ++i1 == end1)
1374 i1 = NULL;
1375 if (cmp >= 0 && ++i2 == end2)
1376 i2 = NULL;
1377 }
1378 return total;
1379}
1380
1381unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1382{
1383 return ARRAY_SIZE(invariant_sys_regs)
1384 + num_demux_regs()
1385 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1386}
1387
1388int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1389{
1390 unsigned int i;
1391 int err;
1392
1393 /* Then give them all the invariant registers' indices. */
1394 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1395 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1396 return -EFAULT;
1397 uindices++;
1398 }
1399
1400 err = walk_sys_regs(vcpu, uindices);
1401 if (err < 0)
1402 return err;
1403 uindices += err;
1404
1405 return write_demux_regids(uindices);
1406}
1407
Marc Zyngiere6a95512014-05-07 13:43:39 +01001408static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1409{
1410 unsigned int i;
1411
1412 for (i = 1; i < n; i++) {
1413 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1414 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1415 return 1;
1416 }
1417 }
1418
1419 return 0;
1420}
1421
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001422void kvm_sys_reg_table_init(void)
1423{
1424 unsigned int i;
1425 struct sys_reg_desc clidr;
1426
1427 /* Make sure tables are unique and in order. */
Marc Zyngiere6a95512014-05-07 13:43:39 +01001428 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1429 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1430 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1431 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1432 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1433 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001434
1435 /* We abuse the reset function to overwrite the table itself. */
1436 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1437 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1438
1439 /*
1440 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1441 *
1442 * If software reads the Cache Type fields from Ctype1
1443 * upwards, once it has seen a value of 0b000, no caches
1444 * exist at further-out levels of the hierarchy. So, for
1445 * example, if Ctype3 is the first Cache Type field with a
1446 * value of 0b000, the values of Ctype4 to Ctype7 must be
1447 * ignored.
1448 */
1449 get_clidr_el1(NULL, &clidr); /* Ugly... */
1450 cache_levels = clidr.val;
1451 for (i = 0; i < 7; i++)
1452 if (((cache_levels >> (i*3)) & 7) == 0)
1453 break;
1454 /* Clear all higher bits. */
1455 cache_levels &= (1 << (i*3))-1;
1456}
1457
1458/**
1459 * kvm_reset_sys_regs - sets system registers to reset value
1460 * @vcpu: The VCPU pointer
1461 *
1462 * This function finds the right table above and sets the registers on the
1463 * virtual CPU struct to their architecturally defined reset values.
1464 */
1465void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1466{
1467 size_t num;
1468 const struct sys_reg_desc *table;
1469
1470 /* Catch someone adding a register without putting in reset entry. */
1471 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1472
1473 /* Generic chip reset first (so target could override). */
1474 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1475
Marc Zyngier62a89c42013-02-07 10:32:33 +00001476 table = get_target_table(vcpu->arch.target, true, &num);
Marc Zyngier7c8c5e6a2012-12-10 16:15:34 +00001477 reset_sys_reg_descs(vcpu, table, num);
1478
1479 for (num = 1; num < NR_SYS_REGS; num++)
1480 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1481 panic("Didn't reset vcpu_sys_reg(%zi)", num);
1482}