Yuval Mintz | fe56b9e | 2015-10-26 11:02:25 +0200 | [diff] [blame] | 1 | /* QLogic qed NIC Driver |
| 2 | * Copyright (c) 2015 QLogic Corporation |
| 3 | * |
| 4 | * This software is available under the terms of the GNU General Public License |
| 5 | * (GPL) Version 2, available from the file COPYING in the main directory of |
| 6 | * this source tree. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/types.h> |
| 10 | #include <linux/io.h> |
| 11 | #include <linux/delay.h> |
| 12 | #include <linux/dma-mapping.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/list.h> |
| 16 | #include <linux/mutex.h> |
| 17 | #include <linux/pci.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | #include <linux/string.h> |
| 21 | #include <linux/qed/qed_chain.h> |
| 22 | #include "qed.h" |
| 23 | #include "qed_hsi.h" |
| 24 | #include "qed_hw.h" |
| 25 | #include "qed_reg_addr.h" |
| 26 | |
| 27 | #define QED_BAR_ACQUIRE_TIMEOUT 1000 |
| 28 | |
| 29 | /* Invalid values */ |
| 30 | #define QED_BAR_INVALID_OFFSET (cpu_to_le32(-1)) |
| 31 | |
| 32 | struct qed_ptt { |
| 33 | struct list_head list_entry; |
| 34 | unsigned int idx; |
| 35 | struct pxp_ptt_entry pxp; |
| 36 | }; |
| 37 | |
| 38 | struct qed_ptt_pool { |
| 39 | struct list_head free_list; |
| 40 | spinlock_t lock; /* ptt synchronized access */ |
| 41 | struct qed_ptt ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM]; |
| 42 | }; |
| 43 | |
| 44 | int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn) |
| 45 | { |
| 46 | struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), |
Yuval Mintz | 60fffb3 | 2016-02-21 11:40:07 +0200 | [diff] [blame^] | 47 | GFP_KERNEL); |
Yuval Mintz | fe56b9e | 2015-10-26 11:02:25 +0200 | [diff] [blame] | 48 | int i; |
| 49 | |
| 50 | if (!p_pool) |
| 51 | return -ENOMEM; |
| 52 | |
| 53 | INIT_LIST_HEAD(&p_pool->free_list); |
| 54 | for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) { |
| 55 | p_pool->ptts[i].idx = i; |
| 56 | p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET; |
| 57 | p_pool->ptts[i].pxp.pretend.control = 0; |
| 58 | if (i >= RESERVED_PTT_MAX) |
| 59 | list_add(&p_pool->ptts[i].list_entry, |
| 60 | &p_pool->free_list); |
| 61 | } |
| 62 | |
| 63 | p_hwfn->p_ptt_pool = p_pool; |
| 64 | spin_lock_init(&p_pool->lock); |
| 65 | |
| 66 | return 0; |
| 67 | } |
| 68 | |
| 69 | void qed_ptt_invalidate(struct qed_hwfn *p_hwfn) |
| 70 | { |
| 71 | struct qed_ptt *p_ptt; |
| 72 | int i; |
| 73 | |
| 74 | for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) { |
| 75 | p_ptt = &p_hwfn->p_ptt_pool->ptts[i]; |
| 76 | p_ptt->pxp.offset = QED_BAR_INVALID_OFFSET; |
| 77 | } |
| 78 | } |
| 79 | |
| 80 | void qed_ptt_pool_free(struct qed_hwfn *p_hwfn) |
| 81 | { |
| 82 | kfree(p_hwfn->p_ptt_pool); |
| 83 | p_hwfn->p_ptt_pool = NULL; |
| 84 | } |
| 85 | |
| 86 | struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn) |
| 87 | { |
| 88 | struct qed_ptt *p_ptt; |
| 89 | unsigned int i; |
| 90 | |
| 91 | /* Take the free PTT from the list */ |
| 92 | for (i = 0; i < QED_BAR_ACQUIRE_TIMEOUT; i++) { |
| 93 | spin_lock_bh(&p_hwfn->p_ptt_pool->lock); |
| 94 | |
| 95 | if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) { |
| 96 | p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list, |
| 97 | struct qed_ptt, list_entry); |
| 98 | list_del(&p_ptt->list_entry); |
| 99 | |
| 100 | spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); |
| 101 | |
| 102 | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| 103 | "allocated ptt %d\n", p_ptt->idx); |
| 104 | return p_ptt; |
| 105 | } |
| 106 | |
| 107 | spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); |
| 108 | usleep_range(1000, 2000); |
| 109 | } |
| 110 | |
| 111 | DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n"); |
| 112 | return NULL; |
| 113 | } |
| 114 | |
| 115 | void qed_ptt_release(struct qed_hwfn *p_hwfn, |
| 116 | struct qed_ptt *p_ptt) |
| 117 | { |
| 118 | spin_lock_bh(&p_hwfn->p_ptt_pool->lock); |
| 119 | list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list); |
| 120 | spin_unlock_bh(&p_hwfn->p_ptt_pool->lock); |
| 121 | } |
| 122 | |
| 123 | u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, |
| 124 | struct qed_ptt *p_ptt) |
| 125 | { |
| 126 | /* The HW is using DWORDS and we need to translate it to Bytes */ |
| 127 | return le32_to_cpu(p_ptt->pxp.offset) << 2; |
| 128 | } |
| 129 | |
| 130 | static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt) |
| 131 | { |
| 132 | return PXP_PF_WINDOW_ADMIN_PER_PF_START + |
| 133 | p_ptt->idx * sizeof(struct pxp_ptt_entry); |
| 134 | } |
| 135 | |
| 136 | u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt) |
| 137 | { |
| 138 | return PXP_EXTERNAL_BAR_PF_WINDOW_START + |
| 139 | p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE; |
| 140 | } |
| 141 | |
| 142 | void qed_ptt_set_win(struct qed_hwfn *p_hwfn, |
| 143 | struct qed_ptt *p_ptt, |
| 144 | u32 new_hw_addr) |
| 145 | { |
| 146 | u32 prev_hw_addr; |
| 147 | |
| 148 | prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt); |
| 149 | |
| 150 | if (new_hw_addr == prev_hw_addr) |
| 151 | return; |
| 152 | |
| 153 | /* Update PTT entery in admin window */ |
| 154 | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| 155 | "Updating PTT entry %d to offset 0x%x\n", |
| 156 | p_ptt->idx, new_hw_addr); |
| 157 | |
| 158 | /* The HW is using DWORDS and the address is in Bytes */ |
| 159 | p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2); |
| 160 | |
| 161 | REG_WR(p_hwfn, |
| 162 | qed_ptt_config_addr(p_ptt) + |
| 163 | offsetof(struct pxp_ptt_entry, offset), |
| 164 | le32_to_cpu(p_ptt->pxp.offset)); |
| 165 | } |
| 166 | |
| 167 | static u32 qed_set_ptt(struct qed_hwfn *p_hwfn, |
| 168 | struct qed_ptt *p_ptt, |
| 169 | u32 hw_addr) |
| 170 | { |
| 171 | u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt); |
| 172 | u32 offset; |
| 173 | |
| 174 | offset = hw_addr - win_hw_addr; |
| 175 | |
| 176 | /* Verify the address is within the window */ |
| 177 | if (hw_addr < win_hw_addr || |
| 178 | offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) { |
| 179 | qed_ptt_set_win(p_hwfn, p_ptt, hw_addr); |
| 180 | offset = 0; |
| 181 | } |
| 182 | |
| 183 | return qed_ptt_get_bar_addr(p_ptt) + offset; |
| 184 | } |
| 185 | |
| 186 | struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn, |
| 187 | enum reserved_ptts ptt_idx) |
| 188 | { |
| 189 | if (ptt_idx >= RESERVED_PTT_MAX) { |
| 190 | DP_NOTICE(p_hwfn, |
| 191 | "Requested PTT %d is out of range\n", ptt_idx); |
| 192 | return NULL; |
| 193 | } |
| 194 | |
| 195 | return &p_hwfn->p_ptt_pool->ptts[ptt_idx]; |
| 196 | } |
| 197 | |
| 198 | void qed_wr(struct qed_hwfn *p_hwfn, |
| 199 | struct qed_ptt *p_ptt, |
| 200 | u32 hw_addr, u32 val) |
| 201 | { |
| 202 | u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr); |
| 203 | |
| 204 | REG_WR(p_hwfn, bar_addr, val); |
| 205 | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| 206 | "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n", |
| 207 | bar_addr, hw_addr, val); |
| 208 | } |
| 209 | |
| 210 | u32 qed_rd(struct qed_hwfn *p_hwfn, |
| 211 | struct qed_ptt *p_ptt, |
| 212 | u32 hw_addr) |
| 213 | { |
| 214 | u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr); |
| 215 | u32 val = REG_RD(p_hwfn, bar_addr); |
| 216 | |
| 217 | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| 218 | "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n", |
| 219 | bar_addr, hw_addr, val); |
| 220 | |
| 221 | return val; |
| 222 | } |
| 223 | |
| 224 | static void qed_memcpy_hw(struct qed_hwfn *p_hwfn, |
| 225 | struct qed_ptt *p_ptt, |
| 226 | void *addr, |
| 227 | u32 hw_addr, |
| 228 | size_t n, |
| 229 | bool to_device) |
| 230 | { |
| 231 | u32 dw_count, *host_addr, hw_offset; |
| 232 | size_t quota, done = 0; |
| 233 | u32 __iomem *reg_addr; |
| 234 | |
| 235 | while (done < n) { |
| 236 | quota = min_t(size_t, n - done, |
| 237 | PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE); |
| 238 | |
| 239 | qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done); |
| 240 | hw_offset = qed_ptt_get_bar_addr(p_ptt); |
| 241 | |
| 242 | dw_count = quota / 4; |
| 243 | host_addr = (u32 *)((u8 *)addr + done); |
| 244 | reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset); |
| 245 | if (to_device) |
| 246 | while (dw_count--) |
| 247 | DIRECT_REG_WR(reg_addr++, *host_addr++); |
| 248 | else |
| 249 | while (dw_count--) |
| 250 | *host_addr++ = DIRECT_REG_RD(reg_addr++); |
| 251 | |
| 252 | done += quota; |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | void qed_memcpy_from(struct qed_hwfn *p_hwfn, |
| 257 | struct qed_ptt *p_ptt, |
| 258 | void *dest, u32 hw_addr, size_t n) |
| 259 | { |
| 260 | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| 261 | "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n", |
| 262 | hw_addr, dest, hw_addr, (unsigned long)n); |
| 263 | |
| 264 | qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false); |
| 265 | } |
| 266 | |
| 267 | void qed_memcpy_to(struct qed_hwfn *p_hwfn, |
| 268 | struct qed_ptt *p_ptt, |
| 269 | u32 hw_addr, void *src, size_t n) |
| 270 | { |
| 271 | DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| 272 | "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n", |
| 273 | hw_addr, hw_addr, src, (unsigned long)n); |
| 274 | |
| 275 | qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true); |
| 276 | } |
| 277 | |
| 278 | void qed_fid_pretend(struct qed_hwfn *p_hwfn, |
| 279 | struct qed_ptt *p_ptt, |
| 280 | u16 fid) |
| 281 | { |
| 282 | u16 control = 0; |
| 283 | |
| 284 | SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1); |
| 285 | SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1); |
| 286 | |
| 287 | /* Every pretend undos previous pretends, including |
| 288 | * previous port pretend. |
| 289 | */ |
| 290 | SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0); |
| 291 | SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0); |
| 292 | SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); |
| 293 | |
| 294 | if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID)) |
| 295 | fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID); |
| 296 | |
| 297 | p_ptt->pxp.pretend.control = cpu_to_le16(control); |
| 298 | p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid); |
| 299 | |
| 300 | REG_WR(p_hwfn, |
| 301 | qed_ptt_config_addr(p_ptt) + |
| 302 | offsetof(struct pxp_ptt_entry, pretend), |
| 303 | *(u32 *)&p_ptt->pxp.pretend); |
| 304 | } |
| 305 | |
| 306 | void qed_port_pretend(struct qed_hwfn *p_hwfn, |
| 307 | struct qed_ptt *p_ptt, |
| 308 | u8 port_id) |
| 309 | { |
| 310 | u16 control = 0; |
| 311 | |
| 312 | SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id); |
| 313 | SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1); |
| 314 | SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); |
| 315 | |
| 316 | p_ptt->pxp.pretend.control = cpu_to_le16(control); |
| 317 | |
| 318 | REG_WR(p_hwfn, |
| 319 | qed_ptt_config_addr(p_ptt) + |
| 320 | offsetof(struct pxp_ptt_entry, pretend), |
| 321 | *(u32 *)&p_ptt->pxp.pretend); |
| 322 | } |
| 323 | |
| 324 | void qed_port_unpretend(struct qed_hwfn *p_hwfn, |
| 325 | struct qed_ptt *p_ptt) |
| 326 | { |
| 327 | u16 control = 0; |
| 328 | |
| 329 | SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0); |
| 330 | SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0); |
| 331 | SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1); |
| 332 | |
| 333 | p_ptt->pxp.pretend.control = cpu_to_le16(control); |
| 334 | |
| 335 | REG_WR(p_hwfn, |
| 336 | qed_ptt_config_addr(p_ptt) + |
| 337 | offsetof(struct pxp_ptt_entry, pretend), |
| 338 | *(u32 *)&p_ptt->pxp.pretend); |
| 339 | } |
| 340 | |
| 341 | /* DMAE */ |
| 342 | static void qed_dmae_opcode(struct qed_hwfn *p_hwfn, |
| 343 | const u8 is_src_type_grc, |
| 344 | const u8 is_dst_type_grc, |
| 345 | struct qed_dmae_params *p_params) |
| 346 | { |
| 347 | u32 opcode = 0; |
| 348 | u16 opcodeB = 0; |
| 349 | |
| 350 | /* Whether the source is the PCIe or the GRC. |
| 351 | * 0- The source is the PCIe |
| 352 | * 1- The source is the GRC. |
| 353 | */ |
| 354 | opcode |= (is_src_type_grc ? DMAE_CMD_SRC_MASK_GRC |
| 355 | : DMAE_CMD_SRC_MASK_PCIE) << |
| 356 | DMAE_CMD_SRC_SHIFT; |
| 357 | opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_SRC_PF_ID_MASK) << |
| 358 | DMAE_CMD_SRC_PF_ID_SHIFT); |
| 359 | |
| 360 | /* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */ |
| 361 | opcode |= (is_dst_type_grc ? DMAE_CMD_DST_MASK_GRC |
| 362 | : DMAE_CMD_DST_MASK_PCIE) << |
| 363 | DMAE_CMD_DST_SHIFT; |
| 364 | opcode |= ((p_hwfn->rel_pf_id & DMAE_CMD_DST_PF_ID_MASK) << |
| 365 | DMAE_CMD_DST_PF_ID_SHIFT); |
| 366 | |
| 367 | /* Whether to write a completion word to the completion destination: |
| 368 | * 0-Do not write a completion word |
| 369 | * 1-Write the completion word |
| 370 | */ |
| 371 | opcode |= (DMAE_CMD_COMP_WORD_EN_MASK << DMAE_CMD_COMP_WORD_EN_SHIFT); |
| 372 | opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK << |
| 373 | DMAE_CMD_SRC_ADDR_RESET_SHIFT); |
| 374 | |
| 375 | if (p_params->flags & QED_DMAE_FLAG_COMPLETION_DST) |
| 376 | opcode |= (1 << DMAE_CMD_COMP_FUNC_SHIFT); |
| 377 | |
| 378 | opcode |= (DMAE_CMD_ENDIANITY << DMAE_CMD_ENDIANITY_MODE_SHIFT); |
| 379 | |
| 380 | opcode |= ((p_hwfn->port_id) << DMAE_CMD_PORT_ID_SHIFT); |
| 381 | |
| 382 | /* reset source address in next go */ |
| 383 | opcode |= (DMAE_CMD_SRC_ADDR_RESET_MASK << |
| 384 | DMAE_CMD_SRC_ADDR_RESET_SHIFT); |
| 385 | |
| 386 | /* reset dest address in next go */ |
| 387 | opcode |= (DMAE_CMD_DST_ADDR_RESET_MASK << |
| 388 | DMAE_CMD_DST_ADDR_RESET_SHIFT); |
| 389 | |
| 390 | opcodeB |= (DMAE_CMD_SRC_VF_ID_MASK << |
| 391 | DMAE_CMD_SRC_VF_ID_SHIFT); |
| 392 | |
| 393 | opcodeB |= (DMAE_CMD_DST_VF_ID_MASK << |
| 394 | DMAE_CMD_DST_VF_ID_SHIFT); |
| 395 | |
| 396 | p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode); |
| 397 | p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcodeB); |
| 398 | } |
| 399 | |
| 400 | u32 qed_dmae_idx_to_go_cmd(u8 idx) |
| 401 | { |
| 402 | /* All the DMAE 'go' registers form an array in internal memory */ |
| 403 | return DMAE_REG_GO_C0 + (idx << 2); |
| 404 | } |
| 405 | |
| 406 | static int |
| 407 | qed_dmae_post_command(struct qed_hwfn *p_hwfn, |
| 408 | struct qed_ptt *p_ptt) |
| 409 | { |
| 410 | struct dmae_cmd *command = p_hwfn->dmae_info.p_dmae_cmd; |
| 411 | u8 idx_cmd = p_hwfn->dmae_info.channel, i; |
| 412 | int qed_status = 0; |
| 413 | |
| 414 | /* verify address is not NULL */ |
| 415 | if ((((command->dst_addr_lo == 0) && (command->dst_addr_hi == 0)) || |
| 416 | ((command->src_addr_lo == 0) && (command->src_addr_hi == 0)))) { |
| 417 | DP_NOTICE(p_hwfn, |
| 418 | "source or destination address 0 idx_cmd=%d\n" |
| 419 | "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n", |
| 420 | idx_cmd, |
| 421 | le32_to_cpu(command->opcode), |
| 422 | le16_to_cpu(command->opcode_b), |
| 423 | le16_to_cpu(command->length), |
| 424 | le32_to_cpu(command->src_addr_hi), |
| 425 | le32_to_cpu(command->src_addr_lo), |
| 426 | le32_to_cpu(command->dst_addr_hi), |
| 427 | le32_to_cpu(command->dst_addr_lo)); |
| 428 | |
| 429 | return -EINVAL; |
| 430 | } |
| 431 | |
| 432 | DP_VERBOSE(p_hwfn, |
| 433 | NETIF_MSG_HW, |
| 434 | "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n", |
| 435 | idx_cmd, |
| 436 | le32_to_cpu(command->opcode), |
| 437 | le16_to_cpu(command->opcode_b), |
| 438 | le16_to_cpu(command->length), |
| 439 | le32_to_cpu(command->src_addr_hi), |
| 440 | le32_to_cpu(command->src_addr_lo), |
| 441 | le32_to_cpu(command->dst_addr_hi), |
| 442 | le32_to_cpu(command->dst_addr_lo)); |
| 443 | |
| 444 | /* Copy the command to DMAE - need to do it before every call |
| 445 | * for source/dest address no reset. |
| 446 | * The first 9 DWs are the command registers, the 10 DW is the |
| 447 | * GO register, and the rest are result registers |
| 448 | * (which are read only by the client). |
| 449 | */ |
| 450 | for (i = 0; i < DMAE_CMD_SIZE; i++) { |
| 451 | u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ? |
| 452 | *(((u32 *)command) + i) : 0; |
| 453 | |
| 454 | qed_wr(p_hwfn, p_ptt, |
| 455 | DMAE_REG_CMD_MEM + |
| 456 | (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) + |
| 457 | (i * sizeof(u32)), data); |
| 458 | } |
| 459 | |
| 460 | qed_wr(p_hwfn, p_ptt, |
| 461 | qed_dmae_idx_to_go_cmd(idx_cmd), |
| 462 | DMAE_GO_VALUE); |
| 463 | |
| 464 | return qed_status; |
| 465 | } |
| 466 | |
| 467 | int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn) |
| 468 | { |
| 469 | dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr; |
| 470 | struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd; |
| 471 | u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer; |
| 472 | u32 **p_comp = &p_hwfn->dmae_info.p_completion_word; |
| 473 | |
| 474 | *p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| 475 | sizeof(u32), |
| 476 | p_addr, |
| 477 | GFP_KERNEL); |
| 478 | if (!*p_comp) { |
| 479 | DP_NOTICE(p_hwfn, "Failed to allocate `p_completion_word'\n"); |
| 480 | goto err; |
| 481 | } |
| 482 | |
| 483 | p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr; |
| 484 | *p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| 485 | sizeof(struct dmae_cmd), |
| 486 | p_addr, GFP_KERNEL); |
| 487 | if (!*p_cmd) { |
| 488 | DP_NOTICE(p_hwfn, "Failed to allocate `struct dmae_cmd'\n"); |
| 489 | goto err; |
| 490 | } |
| 491 | |
| 492 | p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr; |
| 493 | *p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| 494 | sizeof(u32) * DMAE_MAX_RW_SIZE, |
| 495 | p_addr, GFP_KERNEL); |
| 496 | if (!*p_buff) { |
| 497 | DP_NOTICE(p_hwfn, "Failed to allocate `intermediate_buffer'\n"); |
| 498 | goto err; |
| 499 | } |
| 500 | |
| 501 | p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id; |
| 502 | |
| 503 | return 0; |
| 504 | err: |
| 505 | qed_dmae_info_free(p_hwfn); |
| 506 | return -ENOMEM; |
| 507 | } |
| 508 | |
| 509 | void qed_dmae_info_free(struct qed_hwfn *p_hwfn) |
| 510 | { |
| 511 | dma_addr_t p_phys; |
| 512 | |
| 513 | /* Just make sure no one is in the middle */ |
| 514 | mutex_lock(&p_hwfn->dmae_info.mutex); |
| 515 | |
| 516 | if (p_hwfn->dmae_info.p_completion_word) { |
| 517 | p_phys = p_hwfn->dmae_info.completion_word_phys_addr; |
| 518 | dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| 519 | sizeof(u32), |
| 520 | p_hwfn->dmae_info.p_completion_word, |
| 521 | p_phys); |
| 522 | p_hwfn->dmae_info.p_completion_word = NULL; |
| 523 | } |
| 524 | |
| 525 | if (p_hwfn->dmae_info.p_dmae_cmd) { |
| 526 | p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr; |
| 527 | dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| 528 | sizeof(struct dmae_cmd), |
| 529 | p_hwfn->dmae_info.p_dmae_cmd, |
| 530 | p_phys); |
| 531 | p_hwfn->dmae_info.p_dmae_cmd = NULL; |
| 532 | } |
| 533 | |
| 534 | if (p_hwfn->dmae_info.p_intermediate_buffer) { |
| 535 | p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr; |
| 536 | dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| 537 | sizeof(u32) * DMAE_MAX_RW_SIZE, |
| 538 | p_hwfn->dmae_info.p_intermediate_buffer, |
| 539 | p_phys); |
| 540 | p_hwfn->dmae_info.p_intermediate_buffer = NULL; |
| 541 | } |
| 542 | |
| 543 | mutex_unlock(&p_hwfn->dmae_info.mutex); |
| 544 | } |
| 545 | |
| 546 | static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn) |
| 547 | { |
| 548 | u32 wait_cnt = 0; |
| 549 | u32 wait_cnt_limit = 10000; |
| 550 | |
| 551 | int qed_status = 0; |
| 552 | |
| 553 | barrier(); |
| 554 | while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) { |
| 555 | udelay(DMAE_MIN_WAIT_TIME); |
| 556 | if (++wait_cnt > wait_cnt_limit) { |
| 557 | DP_NOTICE(p_hwfn->cdev, |
| 558 | "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n", |
| 559 | *p_hwfn->dmae_info.p_completion_word, |
| 560 | DMAE_COMPLETION_VAL); |
| 561 | qed_status = -EBUSY; |
| 562 | break; |
| 563 | } |
| 564 | |
| 565 | /* to sync the completion_word since we are not |
| 566 | * using the volatile keyword for p_completion_word |
| 567 | */ |
| 568 | barrier(); |
| 569 | } |
| 570 | |
| 571 | if (qed_status == 0) |
| 572 | *p_hwfn->dmae_info.p_completion_word = 0; |
| 573 | |
| 574 | return qed_status; |
| 575 | } |
| 576 | |
| 577 | static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn, |
| 578 | struct qed_ptt *p_ptt, |
| 579 | u64 src_addr, |
| 580 | u64 dst_addr, |
| 581 | u8 src_type, |
| 582 | u8 dst_type, |
| 583 | u32 length) |
| 584 | { |
| 585 | dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr; |
| 586 | struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd; |
| 587 | int qed_status = 0; |
| 588 | |
| 589 | switch (src_type) { |
| 590 | case QED_DMAE_ADDRESS_GRC: |
| 591 | case QED_DMAE_ADDRESS_HOST_PHYS: |
| 592 | cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr)); |
| 593 | cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr)); |
| 594 | break; |
| 595 | /* for virtual source addresses we use the intermediate buffer. */ |
| 596 | case QED_DMAE_ADDRESS_HOST_VIRT: |
| 597 | cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys)); |
| 598 | cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys)); |
| 599 | memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0], |
| 600 | (void *)(uintptr_t)src_addr, |
| 601 | length * sizeof(u32)); |
| 602 | break; |
| 603 | default: |
| 604 | return -EINVAL; |
| 605 | } |
| 606 | |
| 607 | switch (dst_type) { |
| 608 | case QED_DMAE_ADDRESS_GRC: |
| 609 | case QED_DMAE_ADDRESS_HOST_PHYS: |
| 610 | cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr)); |
| 611 | cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr)); |
| 612 | break; |
| 613 | /* for virtual source addresses we use the intermediate buffer. */ |
| 614 | case QED_DMAE_ADDRESS_HOST_VIRT: |
| 615 | cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys)); |
| 616 | cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys)); |
| 617 | break; |
| 618 | default: |
| 619 | return -EINVAL; |
| 620 | } |
| 621 | |
| 622 | cmd->length = cpu_to_le16((u16)length); |
| 623 | |
| 624 | qed_dmae_post_command(p_hwfn, p_ptt); |
| 625 | |
| 626 | qed_status = qed_dmae_operation_wait(p_hwfn); |
| 627 | |
| 628 | if (qed_status) { |
| 629 | DP_NOTICE(p_hwfn, |
| 630 | "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n", |
| 631 | src_addr, |
| 632 | dst_addr, |
| 633 | length); |
| 634 | return qed_status; |
| 635 | } |
| 636 | |
| 637 | if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT) |
| 638 | memcpy((void *)(uintptr_t)(dst_addr), |
| 639 | &p_hwfn->dmae_info.p_intermediate_buffer[0], |
| 640 | length * sizeof(u32)); |
| 641 | |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn, |
| 646 | struct qed_ptt *p_ptt, |
| 647 | u64 src_addr, u64 dst_addr, |
| 648 | u8 src_type, u8 dst_type, |
| 649 | u32 size_in_dwords, |
| 650 | struct qed_dmae_params *p_params) |
| 651 | { |
| 652 | dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr; |
| 653 | u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0; |
| 654 | struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd; |
| 655 | u64 src_addr_split = 0, dst_addr_split = 0; |
| 656 | u16 length_limit = DMAE_MAX_RW_SIZE; |
| 657 | int qed_status = 0; |
| 658 | u32 offset = 0; |
| 659 | |
| 660 | qed_dmae_opcode(p_hwfn, |
| 661 | (src_type == QED_DMAE_ADDRESS_GRC), |
| 662 | (dst_type == QED_DMAE_ADDRESS_GRC), |
| 663 | p_params); |
| 664 | |
| 665 | cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys)); |
| 666 | cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys)); |
| 667 | cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL); |
| 668 | |
| 669 | /* Check if the grc_addr is valid like < MAX_GRC_OFFSET */ |
| 670 | cnt_split = size_in_dwords / length_limit; |
| 671 | length_mod = size_in_dwords % length_limit; |
| 672 | |
| 673 | src_addr_split = src_addr; |
| 674 | dst_addr_split = dst_addr; |
| 675 | |
| 676 | for (i = 0; i <= cnt_split; i++) { |
| 677 | offset = length_limit * i; |
| 678 | |
| 679 | if (!(p_params->flags & QED_DMAE_FLAG_RW_REPL_SRC)) { |
| 680 | if (src_type == QED_DMAE_ADDRESS_GRC) |
| 681 | src_addr_split = src_addr + offset; |
| 682 | else |
| 683 | src_addr_split = src_addr + (offset * 4); |
| 684 | } |
| 685 | |
| 686 | if (dst_type == QED_DMAE_ADDRESS_GRC) |
| 687 | dst_addr_split = dst_addr + offset; |
| 688 | else |
| 689 | dst_addr_split = dst_addr + (offset * 4); |
| 690 | |
| 691 | length_cur = (cnt_split == i) ? length_mod : length_limit; |
| 692 | |
| 693 | /* might be zero on last iteration */ |
| 694 | if (!length_cur) |
| 695 | continue; |
| 696 | |
| 697 | qed_status = qed_dmae_execute_sub_operation(p_hwfn, |
| 698 | p_ptt, |
| 699 | src_addr_split, |
| 700 | dst_addr_split, |
| 701 | src_type, |
| 702 | dst_type, |
| 703 | length_cur); |
| 704 | if (qed_status) { |
| 705 | DP_NOTICE(p_hwfn, |
| 706 | "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n", |
| 707 | qed_status, |
| 708 | src_addr, |
| 709 | dst_addr, |
| 710 | length_cur); |
| 711 | break; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | return qed_status; |
| 716 | } |
| 717 | |
| 718 | int qed_dmae_host2grc(struct qed_hwfn *p_hwfn, |
| 719 | struct qed_ptt *p_ptt, |
| 720 | u64 source_addr, |
| 721 | u32 grc_addr, |
| 722 | u32 size_in_dwords, |
| 723 | u32 flags) |
| 724 | { |
| 725 | u32 grc_addr_in_dw = grc_addr / sizeof(u32); |
| 726 | struct qed_dmae_params params; |
| 727 | int rc; |
| 728 | |
| 729 | memset(¶ms, 0, sizeof(struct qed_dmae_params)); |
| 730 | params.flags = flags; |
| 731 | |
| 732 | mutex_lock(&p_hwfn->dmae_info.mutex); |
| 733 | |
| 734 | rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr, |
| 735 | grc_addr_in_dw, |
| 736 | QED_DMAE_ADDRESS_HOST_VIRT, |
| 737 | QED_DMAE_ADDRESS_GRC, |
| 738 | size_in_dwords, ¶ms); |
| 739 | |
| 740 | mutex_unlock(&p_hwfn->dmae_info.mutex); |
| 741 | |
| 742 | return rc; |
| 743 | } |
| 744 | |
| 745 | u16 qed_get_qm_pq(struct qed_hwfn *p_hwfn, |
| 746 | enum protocol_type proto, |
| 747 | union qed_qm_pq_params *p_params) |
| 748 | { |
| 749 | u16 pq_id = 0; |
| 750 | |
| 751 | if ((proto == PROTOCOLID_CORE || proto == PROTOCOLID_ETH) && |
| 752 | !p_params) { |
| 753 | DP_NOTICE(p_hwfn, |
| 754 | "Protocol %d received NULL PQ params\n", |
| 755 | proto); |
| 756 | return 0; |
| 757 | } |
| 758 | |
| 759 | switch (proto) { |
| 760 | case PROTOCOLID_CORE: |
| 761 | if (p_params->core.tc == LB_TC) |
| 762 | pq_id = p_hwfn->qm_info.pure_lb_pq; |
| 763 | else |
| 764 | pq_id = p_hwfn->qm_info.offload_pq; |
| 765 | break; |
| 766 | case PROTOCOLID_ETH: |
| 767 | pq_id = p_params->eth.tc; |
| 768 | break; |
| 769 | default: |
| 770 | pq_id = 0; |
| 771 | } |
| 772 | |
| 773 | pq_id = CM_TX_PQ_BASE + pq_id + RESC_START(p_hwfn, QED_PQ); |
| 774 | |
| 775 | return pq_id; |
| 776 | } |