Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2013 Broadcom Corporation |
| 3 | * Copyright 2013 Linaro Limited |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation version 2. |
| 8 | * |
| 9 | * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| 10 | * kind, whether express or implied; without even the implied warranty |
| 11 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | */ |
| 14 | |
| 15 | #include "clk-kona.h" |
| 16 | |
| 17 | #include <linux/delay.h> |
| 18 | |
Alex Elder | a597fac | 2014-04-21 16:11:42 -0500 | [diff] [blame] | 19 | /* |
| 20 | * "Policies" affect the frequencies of bus clocks provided by a |
| 21 | * CCU. (I believe these polices are named "Deep Sleep", "Economy", |
| 22 | * "Normal", and "Turbo".) A lower policy number has lower power |
| 23 | * consumption, and policy 2 is the default. |
| 24 | */ |
| 25 | #define CCU_POLICY_COUNT 4 |
| 26 | |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 27 | #define CCU_ACCESS_PASSWORD 0xA5A500 |
| 28 | #define CLK_GATE_DELAY_LOOP 2000 |
| 29 | |
| 30 | /* Bitfield operations */ |
| 31 | |
| 32 | /* Produces a mask of set bits covering a range of a 32-bit value */ |
| 33 | static inline u32 bitfield_mask(u32 shift, u32 width) |
| 34 | { |
| 35 | return ((1 << width) - 1) << shift; |
| 36 | } |
| 37 | |
| 38 | /* Extract the value of a bitfield found within a given register value */ |
| 39 | static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) |
| 40 | { |
| 41 | return (reg_val & bitfield_mask(shift, width)) >> shift; |
| 42 | } |
| 43 | |
| 44 | /* Replace the value of a bitfield found within a given register value */ |
| 45 | static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) |
| 46 | { |
| 47 | u32 mask = bitfield_mask(shift, width); |
| 48 | |
| 49 | return (reg_val & ~mask) | (val << shift); |
| 50 | } |
| 51 | |
| 52 | /* Divider and scaling helpers */ |
| 53 | |
| 54 | /* |
| 55 | * Implement DIV_ROUND_CLOSEST() for 64-bit dividend and both values |
| 56 | * unsigned. Note that unlike do_div(), the remainder is discarded |
| 57 | * and the return value is the quotient (not the remainder). |
| 58 | */ |
| 59 | u64 do_div_round_closest(u64 dividend, unsigned long divisor) |
| 60 | { |
| 61 | u64 result; |
| 62 | |
| 63 | result = dividend + ((u64)divisor >> 1); |
| 64 | (void)do_div(result, divisor); |
| 65 | |
| 66 | return result; |
| 67 | } |
| 68 | |
| 69 | /* Convert a divider into the scaled divisor value it represents. */ |
| 70 | static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) |
| 71 | { |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 72 | return (u64)reg_div + ((u64)1 << div->u.s.frac_width); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 73 | } |
| 74 | |
| 75 | /* |
| 76 | * Build a scaled divider value as close as possible to the |
| 77 | * given whole part (div_value) and fractional part (expressed |
| 78 | * in billionths). |
| 79 | */ |
| 80 | u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths) |
| 81 | { |
| 82 | u64 combined; |
| 83 | |
| 84 | BUG_ON(!div_value); |
| 85 | BUG_ON(billionths >= BILLION); |
| 86 | |
| 87 | combined = (u64)div_value * BILLION + billionths; |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 88 | combined <<= div->u.s.frac_width; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 89 | |
| 90 | return do_div_round_closest(combined, BILLION); |
| 91 | } |
| 92 | |
| 93 | /* The scaled minimum divisor representable by a divider */ |
| 94 | static inline u64 |
| 95 | scaled_div_min(struct bcm_clk_div *div) |
| 96 | { |
| 97 | if (divider_is_fixed(div)) |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 98 | return (u64)div->u.fixed; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 99 | |
| 100 | return scaled_div_value(div, 0); |
| 101 | } |
| 102 | |
| 103 | /* The scaled maximum divisor representable by a divider */ |
| 104 | u64 scaled_div_max(struct bcm_clk_div *div) |
| 105 | { |
| 106 | u32 reg_div; |
| 107 | |
| 108 | if (divider_is_fixed(div)) |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 109 | return (u64)div->u.fixed; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 110 | |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 111 | reg_div = ((u32)1 << div->u.s.width) - 1; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 112 | |
| 113 | return scaled_div_value(div, reg_div); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * Convert a scaled divisor into its divider representation as |
| 118 | * stored in a divider register field. |
| 119 | */ |
| 120 | static inline u32 |
| 121 | divider(struct bcm_clk_div *div, u64 scaled_div) |
| 122 | { |
| 123 | BUG_ON(scaled_div < scaled_div_min(div)); |
| 124 | BUG_ON(scaled_div > scaled_div_max(div)); |
| 125 | |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 126 | return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width)); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 127 | } |
| 128 | |
| 129 | /* Return a rate scaled for use when dividing by a scaled divisor. */ |
| 130 | static inline u64 |
| 131 | scale_rate(struct bcm_clk_div *div, u32 rate) |
| 132 | { |
| 133 | if (divider_is_fixed(div)) |
| 134 | return (u64)rate; |
| 135 | |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 136 | return (u64)rate << div->u.s.frac_width; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 137 | } |
| 138 | |
| 139 | /* CCU access */ |
| 140 | |
| 141 | /* Read a 32-bit register value from a CCU's address space. */ |
| 142 | static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) |
| 143 | { |
| 144 | return readl(ccu->base + reg_offset); |
| 145 | } |
| 146 | |
| 147 | /* Write a 32-bit register value into a CCU's address space. */ |
| 148 | static inline void |
| 149 | __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) |
| 150 | { |
| 151 | writel(reg_val, ccu->base + reg_offset); |
| 152 | } |
| 153 | |
| 154 | static inline unsigned long ccu_lock(struct ccu_data *ccu) |
| 155 | { |
| 156 | unsigned long flags; |
| 157 | |
| 158 | spin_lock_irqsave(&ccu->lock, flags); |
| 159 | |
| 160 | return flags; |
| 161 | } |
| 162 | static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) |
| 163 | { |
| 164 | spin_unlock_irqrestore(&ccu->lock, flags); |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * Enable/disable write access to CCU protected registers. The |
| 169 | * WR_ACCESS register for all CCUs is at offset 0. |
| 170 | */ |
| 171 | static inline void __ccu_write_enable(struct ccu_data *ccu) |
| 172 | { |
| 173 | if (ccu->write_enabled) { |
| 174 | pr_err("%s: access already enabled for %s\n", __func__, |
| 175 | ccu->name); |
| 176 | return; |
| 177 | } |
| 178 | ccu->write_enabled = true; |
| 179 | __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); |
| 180 | } |
| 181 | |
| 182 | static inline void __ccu_write_disable(struct ccu_data *ccu) |
| 183 | { |
| 184 | if (!ccu->write_enabled) { |
| 185 | pr_err("%s: access wasn't enabled for %s\n", __func__, |
| 186 | ccu->name); |
| 187 | return; |
| 188 | } |
| 189 | |
| 190 | __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); |
| 191 | ccu->write_enabled = false; |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Poll a register in a CCU's address space, returning when the |
| 196 | * specified bit in that register's value is set (or clear). Delay |
| 197 | * a microsecond after each read of the register. Returns true if |
| 198 | * successful, or false if we gave up trying. |
| 199 | * |
| 200 | * Caller must ensure the CCU lock is held. |
| 201 | */ |
| 202 | static inline bool |
| 203 | __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) |
| 204 | { |
| 205 | unsigned int tries; |
| 206 | u32 bit_mask = 1 << bit; |
| 207 | |
| 208 | for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { |
| 209 | u32 val; |
| 210 | bool bit_val; |
| 211 | |
| 212 | val = __ccu_read(ccu, reg_offset); |
| 213 | bit_val = (val & bit_mask) != 0; |
| 214 | if (bit_val == want) |
| 215 | return true; |
| 216 | udelay(1); |
| 217 | } |
Alex Elder | 4bac65c | 2014-04-21 16:11:37 -0500 | [diff] [blame] | 218 | pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__, |
| 219 | ccu->name, reg_offset, bit, want ? "set" : "clear"); |
| 220 | |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 221 | return false; |
| 222 | } |
| 223 | |
Alex Elder | a597fac | 2014-04-21 16:11:42 -0500 | [diff] [blame] | 224 | /* Policy operations */ |
| 225 | |
| 226 | static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync) |
| 227 | { |
| 228 | struct bcm_policy_ctl *control = &ccu->policy.control; |
| 229 | u32 offset; |
| 230 | u32 go_bit; |
| 231 | u32 mask; |
| 232 | bool ret; |
| 233 | |
| 234 | /* If we don't need to control policy for this CCU, we're done. */ |
| 235 | if (!policy_ctl_exists(control)) |
| 236 | return true; |
| 237 | |
| 238 | offset = control->offset; |
| 239 | go_bit = control->go_bit; |
| 240 | |
| 241 | /* Ensure we're not busy before we start */ |
| 242 | ret = __ccu_wait_bit(ccu, offset, go_bit, false); |
| 243 | if (!ret) { |
| 244 | pr_err("%s: ccu %s policy engine wouldn't go idle\n", |
| 245 | __func__, ccu->name); |
| 246 | return false; |
| 247 | } |
| 248 | |
| 249 | /* |
| 250 | * If it's a synchronous request, we'll wait for the voltage |
| 251 | * and frequency of the active load to stabilize before |
| 252 | * returning. To do this we select the active load by |
| 253 | * setting the ATL bit. |
| 254 | * |
| 255 | * An asynchronous request instead ramps the voltage in the |
| 256 | * background, and when that process stabilizes, the target |
| 257 | * load is copied to the active load and the CCU frequency |
| 258 | * is switched. We do this by selecting the target load |
| 259 | * (ATL bit clear) and setting the request auto-copy (AC bit |
| 260 | * set). |
| 261 | * |
| 262 | * Note, we do NOT read-modify-write this register. |
| 263 | */ |
| 264 | mask = (u32)1 << go_bit; |
| 265 | if (sync) |
| 266 | mask |= 1 << control->atl_bit; |
| 267 | else |
| 268 | mask |= 1 << control->ac_bit; |
| 269 | __ccu_write(ccu, offset, mask); |
| 270 | |
| 271 | /* Wait for indication that operation is complete. */ |
| 272 | ret = __ccu_wait_bit(ccu, offset, go_bit, false); |
| 273 | if (!ret) |
| 274 | pr_err("%s: ccu %s policy engine never started\n", |
| 275 | __func__, ccu->name); |
| 276 | |
| 277 | return ret; |
| 278 | } |
| 279 | |
| 280 | static bool __ccu_policy_engine_stop(struct ccu_data *ccu) |
| 281 | { |
| 282 | struct bcm_lvm_en *enable = &ccu->policy.enable; |
| 283 | u32 offset; |
| 284 | u32 enable_bit; |
| 285 | bool ret; |
| 286 | |
| 287 | /* If we don't need to control policy for this CCU, we're done. */ |
| 288 | if (!policy_lvm_en_exists(enable)) |
| 289 | return true; |
| 290 | |
| 291 | /* Ensure we're not busy before we start */ |
| 292 | offset = enable->offset; |
| 293 | enable_bit = enable->bit; |
| 294 | ret = __ccu_wait_bit(ccu, offset, enable_bit, false); |
| 295 | if (!ret) { |
| 296 | pr_err("%s: ccu %s policy engine already stopped\n", |
| 297 | __func__, ccu->name); |
| 298 | return false; |
| 299 | } |
| 300 | |
| 301 | /* Now set the bit to stop the engine (NO read-modify-write) */ |
| 302 | __ccu_write(ccu, offset, (u32)1 << enable_bit); |
| 303 | |
| 304 | /* Wait for indication that it has stopped. */ |
| 305 | ret = __ccu_wait_bit(ccu, offset, enable_bit, false); |
| 306 | if (!ret) |
| 307 | pr_err("%s: ccu %s policy engine never stopped\n", |
| 308 | __func__, ccu->name); |
| 309 | |
| 310 | return ret; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * A CCU has four operating conditions ("policies"), and some clocks |
| 315 | * can be disabled or enabled based on which policy is currently in |
| 316 | * effect. Such clocks have a bit in a "policy mask" register for |
| 317 | * each policy indicating whether the clock is enabled for that |
| 318 | * policy or not. The bit position for a clock is the same for all |
| 319 | * four registers, and the 32-bit registers are at consecutive |
| 320 | * addresses. |
| 321 | */ |
| 322 | static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy) |
| 323 | { |
| 324 | u32 offset; |
| 325 | u32 mask; |
| 326 | int i; |
| 327 | bool ret; |
| 328 | |
| 329 | if (!policy_exists(policy)) |
| 330 | return true; |
| 331 | |
| 332 | /* |
| 333 | * We need to stop the CCU policy engine to allow update |
| 334 | * of our policy bits. |
| 335 | */ |
| 336 | if (!__ccu_policy_engine_stop(ccu)) { |
| 337 | pr_err("%s: unable to stop CCU %s policy engine\n", |
| 338 | __func__, ccu->name); |
| 339 | return false; |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * For now, if a clock defines its policy bit we just mark |
| 344 | * it "enabled" for all four policies. |
| 345 | */ |
| 346 | offset = policy->offset; |
| 347 | mask = (u32)1 << policy->bit; |
| 348 | for (i = 0; i < CCU_POLICY_COUNT; i++) { |
| 349 | u32 reg_val; |
| 350 | |
| 351 | reg_val = __ccu_read(ccu, offset); |
| 352 | reg_val |= mask; |
| 353 | __ccu_write(ccu, offset, reg_val); |
| 354 | offset += sizeof(u32); |
| 355 | } |
| 356 | |
| 357 | /* We're done updating; fire up the policy engine again. */ |
| 358 | ret = __ccu_policy_engine_start(ccu, true); |
| 359 | if (!ret) |
| 360 | pr_err("%s: unable to restart CCU %s policy engine\n", |
| 361 | __func__, ccu->name); |
| 362 | |
| 363 | return ret; |
| 364 | } |
| 365 | |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 366 | /* Gate operations */ |
| 367 | |
| 368 | /* Determine whether a clock is gated. CCU lock must be held. */ |
| 369 | static bool |
| 370 | __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) |
| 371 | { |
| 372 | u32 bit_mask; |
| 373 | u32 reg_val; |
| 374 | |
| 375 | /* If there is no gate we can assume it's enabled. */ |
| 376 | if (!gate_exists(gate)) |
| 377 | return true; |
| 378 | |
| 379 | bit_mask = 1 << gate->status_bit; |
| 380 | reg_val = __ccu_read(ccu, gate->offset); |
| 381 | |
| 382 | return (reg_val & bit_mask) != 0; |
| 383 | } |
| 384 | |
| 385 | /* Determine whether a clock is gated. */ |
| 386 | static bool |
| 387 | is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) |
| 388 | { |
| 389 | long flags; |
| 390 | bool ret; |
| 391 | |
| 392 | /* Avoid taking the lock if we can */ |
| 393 | if (!gate_exists(gate)) |
| 394 | return true; |
| 395 | |
| 396 | flags = ccu_lock(ccu); |
| 397 | ret = __is_clk_gate_enabled(ccu, gate); |
| 398 | ccu_unlock(ccu, flags); |
| 399 | |
| 400 | return ret; |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * Commit our desired gate state to the hardware. |
| 405 | * Returns true if successful, false otherwise. |
| 406 | */ |
| 407 | static bool |
| 408 | __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) |
| 409 | { |
| 410 | u32 reg_val; |
| 411 | u32 mask; |
| 412 | bool enabled = false; |
| 413 | |
| 414 | BUG_ON(!gate_exists(gate)); |
| 415 | if (!gate_is_sw_controllable(gate)) |
| 416 | return true; /* Nothing we can change */ |
| 417 | |
| 418 | reg_val = __ccu_read(ccu, gate->offset); |
| 419 | |
| 420 | /* For a hardware/software gate, set which is in control */ |
| 421 | if (gate_is_hw_controllable(gate)) { |
| 422 | mask = (u32)1 << gate->hw_sw_sel_bit; |
| 423 | if (gate_is_sw_managed(gate)) |
| 424 | reg_val |= mask; |
| 425 | else |
| 426 | reg_val &= ~mask; |
| 427 | } |
| 428 | |
| 429 | /* |
| 430 | * If software is in control, enable or disable the gate. |
| 431 | * If hardware is, clear the enabled bit for good measure. |
| 432 | * If a software controlled gate can't be disabled, we're |
| 433 | * required to write a 0 into the enable bit (but the gate |
| 434 | * will be enabled). |
| 435 | */ |
| 436 | mask = (u32)1 << gate->en_bit; |
| 437 | if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && |
| 438 | !gate_is_no_disable(gate)) |
| 439 | reg_val |= mask; |
| 440 | else |
| 441 | reg_val &= ~mask; |
| 442 | |
| 443 | __ccu_write(ccu, gate->offset, reg_val); |
| 444 | |
| 445 | /* For a hardware controlled gate, we're done */ |
| 446 | if (!gate_is_sw_managed(gate)) |
| 447 | return true; |
| 448 | |
| 449 | /* Otherwise wait for the gate to be in desired state */ |
| 450 | return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * Initialize a gate. Our desired state (hardware/software select, |
| 455 | * and if software, its enable state) is committed to hardware |
| 456 | * without the usual checks to see if it's already set up that way. |
| 457 | * Returns true if successful, false otherwise. |
| 458 | */ |
| 459 | static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) |
| 460 | { |
| 461 | if (!gate_exists(gate)) |
| 462 | return true; |
| 463 | return __gate_commit(ccu, gate); |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Set a gate to enabled or disabled state. Does nothing if the |
| 468 | * gate is not currently under software control, or if it is already |
| 469 | * in the requested state. Returns true if successful, false |
| 470 | * otherwise. CCU lock must be held. |
| 471 | */ |
| 472 | static bool |
| 473 | __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) |
| 474 | { |
| 475 | bool ret; |
| 476 | |
| 477 | if (!gate_exists(gate) || !gate_is_sw_managed(gate)) |
| 478 | return true; /* Nothing to do */ |
| 479 | |
| 480 | if (!enable && gate_is_no_disable(gate)) { |
| 481 | pr_warn("%s: invalid gate disable request (ignoring)\n", |
| 482 | __func__); |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | if (enable == gate_is_enabled(gate)) |
| 487 | return true; /* No change */ |
| 488 | |
| 489 | gate_flip_enabled(gate); |
| 490 | ret = __gate_commit(ccu, gate); |
| 491 | if (!ret) |
| 492 | gate_flip_enabled(gate); /* Revert the change */ |
| 493 | |
| 494 | return ret; |
| 495 | } |
| 496 | |
| 497 | /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */ |
| 498 | static int clk_gate(struct ccu_data *ccu, const char *name, |
| 499 | struct bcm_clk_gate *gate, bool enable) |
| 500 | { |
| 501 | unsigned long flags; |
| 502 | bool success; |
| 503 | |
| 504 | /* |
| 505 | * Avoid taking the lock if we can. We quietly ignore |
| 506 | * requests to change state that don't make sense. |
| 507 | */ |
| 508 | if (!gate_exists(gate) || !gate_is_sw_managed(gate)) |
| 509 | return 0; |
| 510 | if (!enable && gate_is_no_disable(gate)) |
| 511 | return 0; |
| 512 | |
| 513 | flags = ccu_lock(ccu); |
| 514 | __ccu_write_enable(ccu); |
| 515 | |
| 516 | success = __clk_gate(ccu, gate, enable); |
| 517 | |
| 518 | __ccu_write_disable(ccu); |
| 519 | ccu_unlock(ccu, flags); |
| 520 | |
| 521 | if (success) |
| 522 | return 0; |
| 523 | |
| 524 | pr_err("%s: failed to %s gate for %s\n", __func__, |
| 525 | enable ? "enable" : "disable", name); |
| 526 | |
| 527 | return -EIO; |
| 528 | } |
| 529 | |
Alex Elder | dc61384 | 2014-04-21 16:11:43 -0500 | [diff] [blame] | 530 | /* Hysteresis operations */ |
| 531 | |
| 532 | /* |
| 533 | * If a clock gate requires a turn-off delay it will have |
| 534 | * "hysteresis" register bits defined. The first, if set, enables |
| 535 | * the delay; and if enabled, the second bit determines whether the |
| 536 | * delay is "low" or "high" (1 means high). For now, if it's |
| 537 | * defined for a clock, we set it. |
| 538 | */ |
| 539 | static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst) |
| 540 | { |
| 541 | u32 offset; |
| 542 | u32 reg_val; |
| 543 | u32 mask; |
| 544 | |
| 545 | if (!hyst_exists(hyst)) |
| 546 | return true; |
| 547 | |
| 548 | offset = hyst->offset; |
| 549 | mask = (u32)1 << hyst->en_bit; |
| 550 | mask |= (u32)1 << hyst->val_bit; |
| 551 | |
| 552 | reg_val = __ccu_read(ccu, offset); |
| 553 | reg_val |= mask; |
| 554 | __ccu_write(ccu, offset, reg_val); |
| 555 | |
| 556 | return true; |
| 557 | } |
| 558 | |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 559 | /* Trigger operations */ |
| 560 | |
| 561 | /* |
| 562 | * Caller must ensure CCU lock is held and access is enabled. |
| 563 | * Returns true if successful, false otherwise. |
| 564 | */ |
| 565 | static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) |
| 566 | { |
| 567 | /* Trigger the clock and wait for it to finish */ |
| 568 | __ccu_write(ccu, trig->offset, 1 << trig->bit); |
| 569 | |
| 570 | return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); |
| 571 | } |
| 572 | |
| 573 | /* Divider operations */ |
| 574 | |
| 575 | /* Read a divider value and return the scaled divisor it represents. */ |
| 576 | static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) |
| 577 | { |
| 578 | unsigned long flags; |
| 579 | u32 reg_val; |
| 580 | u32 reg_div; |
| 581 | |
| 582 | if (divider_is_fixed(div)) |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 583 | return (u64)div->u.fixed; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 584 | |
| 585 | flags = ccu_lock(ccu); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 586 | reg_val = __ccu_read(ccu, div->u.s.offset); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 587 | ccu_unlock(ccu, flags); |
| 588 | |
| 589 | /* Extract the full divider field from the register value */ |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 590 | reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 591 | |
| 592 | /* Return the scaled divisor value it represents */ |
| 593 | return scaled_div_value(div, reg_div); |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | * Convert a divider's scaled divisor value into its recorded form |
| 598 | * and commit it into the hardware divider register. |
| 599 | * |
| 600 | * Returns 0 on success. Returns -EINVAL for invalid arguments. |
| 601 | * Returns -ENXIO if gating failed, and -EIO if a trigger failed. |
| 602 | */ |
| 603 | static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, |
| 604 | struct bcm_clk_div *div, struct bcm_clk_trig *trig) |
| 605 | { |
| 606 | bool enabled; |
| 607 | u32 reg_div; |
| 608 | u32 reg_val; |
| 609 | int ret = 0; |
| 610 | |
| 611 | BUG_ON(divider_is_fixed(div)); |
| 612 | |
| 613 | /* |
| 614 | * If we're just initializing the divider, and no initial |
| 615 | * state was defined in the device tree, we just find out |
| 616 | * what its current value is rather than updating it. |
| 617 | */ |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 618 | if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) { |
| 619 | reg_val = __ccu_read(ccu, div->u.s.offset); |
| 620 | reg_div = bitfield_extract(reg_val, div->u.s.shift, |
| 621 | div->u.s.width); |
| 622 | div->u.s.scaled_div = scaled_div_value(div, reg_div); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 623 | |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | /* Convert the scaled divisor to the value we need to record */ |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 628 | reg_div = divider(div, div->u.s.scaled_div); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 629 | |
| 630 | /* Clock needs to be enabled before changing the rate */ |
| 631 | enabled = __is_clk_gate_enabled(ccu, gate); |
| 632 | if (!enabled && !__clk_gate(ccu, gate, true)) { |
| 633 | ret = -ENXIO; |
| 634 | goto out; |
| 635 | } |
| 636 | |
| 637 | /* Replace the divider value and record the result */ |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 638 | reg_val = __ccu_read(ccu, div->u.s.offset); |
| 639 | reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width, |
| 640 | reg_div); |
| 641 | __ccu_write(ccu, div->u.s.offset, reg_val); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 642 | |
| 643 | /* If the trigger fails we still want to disable the gate */ |
| 644 | if (!__clk_trigger(ccu, trig)) |
| 645 | ret = -EIO; |
| 646 | |
| 647 | /* Disable the clock again if it was disabled to begin with */ |
| 648 | if (!enabled && !__clk_gate(ccu, gate, false)) |
| 649 | ret = ret ? ret : -ENXIO; /* return first error */ |
| 650 | out: |
| 651 | return ret; |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * Initialize a divider by committing our desired state to hardware |
| 656 | * without the usual checks to see if it's already set up that way. |
| 657 | * Returns true if successful, false otherwise. |
| 658 | */ |
| 659 | static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, |
| 660 | struct bcm_clk_div *div, struct bcm_clk_trig *trig) |
| 661 | { |
| 662 | if (!divider_exists(div) || divider_is_fixed(div)) |
| 663 | return true; |
| 664 | return !__div_commit(ccu, gate, div, trig); |
| 665 | } |
| 666 | |
| 667 | static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, |
| 668 | struct bcm_clk_div *div, struct bcm_clk_trig *trig, |
| 669 | u64 scaled_div) |
| 670 | { |
| 671 | unsigned long flags; |
| 672 | u64 previous; |
| 673 | int ret; |
| 674 | |
| 675 | BUG_ON(divider_is_fixed(div)); |
| 676 | |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 677 | previous = div->u.s.scaled_div; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 678 | if (previous == scaled_div) |
| 679 | return 0; /* No change */ |
| 680 | |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 681 | div->u.s.scaled_div = scaled_div; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 682 | |
| 683 | flags = ccu_lock(ccu); |
| 684 | __ccu_write_enable(ccu); |
| 685 | |
| 686 | ret = __div_commit(ccu, gate, div, trig); |
| 687 | |
| 688 | __ccu_write_disable(ccu); |
| 689 | ccu_unlock(ccu, flags); |
| 690 | |
| 691 | if (ret) |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 692 | div->u.s.scaled_div = previous; /* Revert the change */ |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 693 | |
| 694 | return ret; |
| 695 | |
| 696 | } |
| 697 | |
| 698 | /* Common clock rate helpers */ |
| 699 | |
| 700 | /* |
| 701 | * Implement the common clock framework recalc_rate method, taking |
| 702 | * into account a divider and an optional pre-divider. The |
| 703 | * pre-divider register pointer may be NULL. |
| 704 | */ |
| 705 | static unsigned long clk_recalc_rate(struct ccu_data *ccu, |
| 706 | struct bcm_clk_div *div, struct bcm_clk_div *pre_div, |
| 707 | unsigned long parent_rate) |
| 708 | { |
| 709 | u64 scaled_parent_rate; |
| 710 | u64 scaled_div; |
| 711 | u64 result; |
| 712 | |
| 713 | if (!divider_exists(div)) |
| 714 | return parent_rate; |
| 715 | |
| 716 | if (parent_rate > (unsigned long)LONG_MAX) |
| 717 | return 0; /* actually this would be a caller bug */ |
| 718 | |
| 719 | /* |
| 720 | * If there is a pre-divider, divide the scaled parent rate |
| 721 | * by the pre-divider value first. In this case--to improve |
| 722 | * accuracy--scale the parent rate by *both* the pre-divider |
| 723 | * value and the divider before actually computing the |
| 724 | * result of the pre-divider. |
| 725 | * |
| 726 | * If there's only one divider, just scale the parent rate. |
| 727 | */ |
| 728 | if (pre_div && divider_exists(pre_div)) { |
| 729 | u64 scaled_rate; |
| 730 | |
| 731 | scaled_rate = scale_rate(pre_div, parent_rate); |
| 732 | scaled_rate = scale_rate(div, scaled_rate); |
| 733 | scaled_div = divider_read_scaled(ccu, pre_div); |
| 734 | scaled_parent_rate = do_div_round_closest(scaled_rate, |
| 735 | scaled_div); |
| 736 | } else { |
| 737 | scaled_parent_rate = scale_rate(div, parent_rate); |
| 738 | } |
| 739 | |
| 740 | /* |
| 741 | * Get the scaled divisor value, and divide the scaled |
| 742 | * parent rate by that to determine this clock's resulting |
| 743 | * rate. |
| 744 | */ |
| 745 | scaled_div = divider_read_scaled(ccu, div); |
| 746 | result = do_div_round_closest(scaled_parent_rate, scaled_div); |
| 747 | |
| 748 | return (unsigned long)result; |
| 749 | } |
| 750 | |
| 751 | /* |
| 752 | * Compute the output rate produced when a given parent rate is fed |
| 753 | * into two dividers. The pre-divider can be NULL, and even if it's |
| 754 | * non-null it may be nonexistent. It's also OK for the divider to |
| 755 | * be nonexistent, and in that case the pre-divider is also ignored. |
| 756 | * |
| 757 | * If scaled_div is non-null, it is used to return the scaled divisor |
| 758 | * value used by the (downstream) divider to produce that rate. |
| 759 | */ |
| 760 | static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, |
| 761 | struct bcm_clk_div *pre_div, |
| 762 | unsigned long rate, unsigned long parent_rate, |
| 763 | u64 *scaled_div) |
| 764 | { |
| 765 | u64 scaled_parent_rate; |
| 766 | u64 min_scaled_div; |
| 767 | u64 max_scaled_div; |
| 768 | u64 best_scaled_div; |
| 769 | u64 result; |
| 770 | |
| 771 | BUG_ON(!divider_exists(div)); |
| 772 | BUG_ON(!rate); |
| 773 | BUG_ON(parent_rate > (u64)LONG_MAX); |
| 774 | |
| 775 | /* |
| 776 | * If there is a pre-divider, divide the scaled parent rate |
| 777 | * by the pre-divider value first. In this case--to improve |
| 778 | * accuracy--scale the parent rate by *both* the pre-divider |
| 779 | * value and the divider before actually computing the |
| 780 | * result of the pre-divider. |
| 781 | * |
| 782 | * If there's only one divider, just scale the parent rate. |
| 783 | * |
| 784 | * For simplicity we treat the pre-divider as fixed (for now). |
| 785 | */ |
| 786 | if (divider_exists(pre_div)) { |
| 787 | u64 scaled_rate; |
| 788 | u64 scaled_pre_div; |
| 789 | |
| 790 | scaled_rate = scale_rate(pre_div, parent_rate); |
| 791 | scaled_rate = scale_rate(div, scaled_rate); |
| 792 | scaled_pre_div = divider_read_scaled(ccu, pre_div); |
| 793 | scaled_parent_rate = do_div_round_closest(scaled_rate, |
| 794 | scaled_pre_div); |
| 795 | } else { |
| 796 | scaled_parent_rate = scale_rate(div, parent_rate); |
| 797 | } |
| 798 | |
| 799 | /* |
| 800 | * Compute the best possible divider and ensure it is in |
| 801 | * range. A fixed divider can't be changed, so just report |
| 802 | * the best we can do. |
| 803 | */ |
| 804 | if (!divider_is_fixed(div)) { |
| 805 | best_scaled_div = do_div_round_closest(scaled_parent_rate, |
| 806 | rate); |
| 807 | min_scaled_div = scaled_div_min(div); |
| 808 | max_scaled_div = scaled_div_max(div); |
| 809 | if (best_scaled_div > max_scaled_div) |
| 810 | best_scaled_div = max_scaled_div; |
| 811 | else if (best_scaled_div < min_scaled_div) |
| 812 | best_scaled_div = min_scaled_div; |
| 813 | } else { |
| 814 | best_scaled_div = divider_read_scaled(ccu, div); |
| 815 | } |
| 816 | |
| 817 | /* OK, figure out the resulting rate */ |
| 818 | result = do_div_round_closest(scaled_parent_rate, best_scaled_div); |
| 819 | |
| 820 | if (scaled_div) |
| 821 | *scaled_div = best_scaled_div; |
| 822 | |
| 823 | return (long)result; |
| 824 | } |
| 825 | |
| 826 | /* Common clock parent helpers */ |
| 827 | |
| 828 | /* |
| 829 | * For a given parent selector (register field) value, find the |
| 830 | * index into a selector's parent_sel array that contains it. |
| 831 | * Returns the index, or BAD_CLK_INDEX if it's not found. |
| 832 | */ |
| 833 | static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) |
| 834 | { |
| 835 | u8 i; |
| 836 | |
| 837 | BUG_ON(sel->parent_count > (u32)U8_MAX); |
| 838 | for (i = 0; i < sel->parent_count; i++) |
| 839 | if (sel->parent_sel[i] == parent_sel) |
| 840 | return i; |
| 841 | return BAD_CLK_INDEX; |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Fetch the current value of the selector, and translate that into |
| 846 | * its corresponding index in the parent array we registered with |
| 847 | * the clock framework. |
| 848 | * |
| 849 | * Returns parent array index that corresponds with the value found, |
| 850 | * or BAD_CLK_INDEX if the found value is out of range. |
| 851 | */ |
| 852 | static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) |
| 853 | { |
| 854 | unsigned long flags; |
| 855 | u32 reg_val; |
| 856 | u32 parent_sel; |
| 857 | u8 index; |
| 858 | |
| 859 | /* If there's no selector, there's only one parent */ |
| 860 | if (!selector_exists(sel)) |
| 861 | return 0; |
| 862 | |
| 863 | /* Get the value in the selector register */ |
| 864 | flags = ccu_lock(ccu); |
| 865 | reg_val = __ccu_read(ccu, sel->offset); |
| 866 | ccu_unlock(ccu, flags); |
| 867 | |
| 868 | parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); |
| 869 | |
| 870 | /* Look up that selector's parent array index and return it */ |
| 871 | index = parent_index(sel, parent_sel); |
| 872 | if (index == BAD_CLK_INDEX) |
| 873 | pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", |
| 874 | __func__, parent_sel, ccu->name, sel->offset); |
| 875 | |
| 876 | return index; |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Commit our desired selector value to the hardware. |
| 881 | * |
| 882 | * Returns 0 on success. Returns -EINVAL for invalid arguments. |
| 883 | * Returns -ENXIO if gating failed, and -EIO if a trigger failed. |
| 884 | */ |
| 885 | static int |
| 886 | __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, |
| 887 | struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) |
| 888 | { |
| 889 | u32 parent_sel; |
| 890 | u32 reg_val; |
| 891 | bool enabled; |
| 892 | int ret = 0; |
| 893 | |
| 894 | BUG_ON(!selector_exists(sel)); |
| 895 | |
| 896 | /* |
| 897 | * If we're just initializing the selector, and no initial |
| 898 | * state was defined in the device tree, we just find out |
| 899 | * what its current value is rather than updating it. |
| 900 | */ |
| 901 | if (sel->clk_index == BAD_CLK_INDEX) { |
| 902 | u8 index; |
| 903 | |
| 904 | reg_val = __ccu_read(ccu, sel->offset); |
| 905 | parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); |
| 906 | index = parent_index(sel, parent_sel); |
| 907 | if (index == BAD_CLK_INDEX) |
| 908 | return -EINVAL; |
| 909 | sel->clk_index = index; |
| 910 | |
| 911 | return 0; |
| 912 | } |
| 913 | |
| 914 | BUG_ON((u32)sel->clk_index >= sel->parent_count); |
| 915 | parent_sel = sel->parent_sel[sel->clk_index]; |
| 916 | |
| 917 | /* Clock needs to be enabled before changing the parent */ |
| 918 | enabled = __is_clk_gate_enabled(ccu, gate); |
| 919 | if (!enabled && !__clk_gate(ccu, gate, true)) |
| 920 | return -ENXIO; |
| 921 | |
| 922 | /* Replace the selector value and record the result */ |
| 923 | reg_val = __ccu_read(ccu, sel->offset); |
| 924 | reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); |
| 925 | __ccu_write(ccu, sel->offset, reg_val); |
| 926 | |
| 927 | /* If the trigger fails we still want to disable the gate */ |
| 928 | if (!__clk_trigger(ccu, trig)) |
| 929 | ret = -EIO; |
| 930 | |
| 931 | /* Disable the clock again if it was disabled to begin with */ |
| 932 | if (!enabled && !__clk_gate(ccu, gate, false)) |
| 933 | ret = ret ? ret : -ENXIO; /* return first error */ |
| 934 | |
| 935 | return ret; |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * Initialize a selector by committing our desired state to hardware |
| 940 | * without the usual checks to see if it's already set up that way. |
| 941 | * Returns true if successful, false otherwise. |
| 942 | */ |
| 943 | static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, |
| 944 | struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) |
| 945 | { |
| 946 | if (!selector_exists(sel)) |
| 947 | return true; |
| 948 | return !__sel_commit(ccu, gate, sel, trig); |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * Write a new value into a selector register to switch to a |
| 953 | * different parent clock. Returns 0 on success, or an error code |
| 954 | * (from __sel_commit()) otherwise. |
| 955 | */ |
| 956 | static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, |
| 957 | struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, |
| 958 | u8 index) |
| 959 | { |
| 960 | unsigned long flags; |
| 961 | u8 previous; |
| 962 | int ret; |
| 963 | |
| 964 | previous = sel->clk_index; |
| 965 | if (previous == index) |
| 966 | return 0; /* No change */ |
| 967 | |
| 968 | sel->clk_index = index; |
| 969 | |
| 970 | flags = ccu_lock(ccu); |
| 971 | __ccu_write_enable(ccu); |
| 972 | |
| 973 | ret = __sel_commit(ccu, gate, sel, trig); |
| 974 | |
| 975 | __ccu_write_disable(ccu); |
| 976 | ccu_unlock(ccu, flags); |
| 977 | |
| 978 | if (ret) |
| 979 | sel->clk_index = previous; /* Revert the change */ |
| 980 | |
| 981 | return ret; |
| 982 | } |
| 983 | |
| 984 | /* Clock operations */ |
| 985 | |
| 986 | static int kona_peri_clk_enable(struct clk_hw *hw) |
| 987 | { |
| 988 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 989 | struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 990 | |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 991 | return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 992 | } |
| 993 | |
| 994 | static void kona_peri_clk_disable(struct clk_hw *hw) |
| 995 | { |
| 996 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 997 | struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 998 | |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 999 | (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1000 | } |
| 1001 | |
| 1002 | static int kona_peri_clk_is_enabled(struct clk_hw *hw) |
| 1003 | { |
| 1004 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1005 | struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1006 | |
| 1007 | return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; |
| 1008 | } |
| 1009 | |
| 1010 | static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, |
| 1011 | unsigned long parent_rate) |
| 1012 | { |
| 1013 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1014 | struct peri_clk_data *data = bcm_clk->u.peri; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1015 | |
| 1016 | return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, |
| 1017 | parent_rate); |
| 1018 | } |
| 1019 | |
| 1020 | static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, |
| 1021 | unsigned long *parent_rate) |
| 1022 | { |
| 1023 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1024 | struct bcm_clk_div *div = &bcm_clk->u.peri->div; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1025 | |
| 1026 | if (!divider_exists(div)) |
| 1027 | return __clk_get_rate(hw->clk); |
| 1028 | |
| 1029 | /* Quietly avoid a zero rate */ |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1030 | return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div, |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1031 | rate ? rate : 1, *parent_rate, NULL); |
| 1032 | } |
| 1033 | |
Alex Elder | c2152d0 | 2014-05-27 11:56:56 -0500 | [diff] [blame] | 1034 | static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate, |
| 1035 | unsigned long *best_parent_rate, struct clk **best_parent) |
| 1036 | { |
| 1037 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
| 1038 | struct clk *clk = hw->clk; |
| 1039 | struct clk *current_parent; |
| 1040 | unsigned long parent_rate; |
| 1041 | unsigned long best_delta; |
| 1042 | unsigned long best_rate; |
| 1043 | u32 parent_count; |
| 1044 | u32 which; |
| 1045 | |
| 1046 | /* |
| 1047 | * If there is no other parent to choose, use the current one. |
| 1048 | * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT. |
| 1049 | */ |
| 1050 | WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT); |
| 1051 | parent_count = (u32)bcm_clk->init_data.num_parents; |
| 1052 | if (parent_count < 2) |
| 1053 | return kona_peri_clk_round_rate(hw, rate, best_parent_rate); |
| 1054 | |
| 1055 | /* Unless we can do better, stick with current parent */ |
| 1056 | current_parent = clk_get_parent(clk); |
| 1057 | parent_rate = __clk_get_rate(current_parent); |
| 1058 | best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate); |
| 1059 | best_delta = abs(best_rate - rate); |
| 1060 | |
| 1061 | /* Check whether any other parent clock can produce a better result */ |
| 1062 | for (which = 0; which < parent_count; which++) { |
| 1063 | struct clk *parent = clk_get_parent_by_index(clk, which); |
| 1064 | unsigned long delta; |
| 1065 | unsigned long other_rate; |
| 1066 | |
| 1067 | BUG_ON(!parent); |
| 1068 | if (parent == current_parent) |
| 1069 | continue; |
| 1070 | |
| 1071 | /* We don't support CLK_SET_RATE_PARENT */ |
| 1072 | parent_rate = __clk_get_rate(parent); |
| 1073 | other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate); |
| 1074 | delta = abs(other_rate - rate); |
| 1075 | if (delta < best_delta) { |
| 1076 | best_delta = delta; |
| 1077 | best_rate = other_rate; |
| 1078 | *best_parent = parent; |
| 1079 | *best_parent_rate = parent_rate; |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | return best_rate; |
| 1084 | } |
| 1085 | |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1086 | static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) |
| 1087 | { |
| 1088 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1089 | struct peri_clk_data *data = bcm_clk->u.peri; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1090 | struct bcm_clk_sel *sel = &data->sel; |
| 1091 | struct bcm_clk_trig *trig; |
| 1092 | int ret; |
| 1093 | |
| 1094 | BUG_ON(index >= sel->parent_count); |
| 1095 | |
| 1096 | /* If there's only one parent we don't require a selector */ |
| 1097 | if (!selector_exists(sel)) |
| 1098 | return 0; |
| 1099 | |
| 1100 | /* |
| 1101 | * The regular trigger is used by default, but if there's a |
| 1102 | * pre-trigger we want to use that instead. |
| 1103 | */ |
| 1104 | trig = trigger_exists(&data->pre_trig) ? &data->pre_trig |
| 1105 | : &data->trig; |
| 1106 | |
| 1107 | ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); |
| 1108 | if (ret == -ENXIO) { |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 1109 | pr_err("%s: gating failure for %s\n", __func__, |
| 1110 | bcm_clk->init_data.name); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1111 | ret = -EIO; /* Don't proliferate weird errors */ |
| 1112 | } else if (ret == -EIO) { |
| 1113 | pr_err("%s: %strigger failed for %s\n", __func__, |
| 1114 | trig == &data->pre_trig ? "pre-" : "", |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 1115 | bcm_clk->init_data.name); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1116 | } |
| 1117 | |
| 1118 | return ret; |
| 1119 | } |
| 1120 | |
| 1121 | static u8 kona_peri_clk_get_parent(struct clk_hw *hw) |
| 1122 | { |
| 1123 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1124 | struct peri_clk_data *data = bcm_clk->u.peri; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1125 | u8 index; |
| 1126 | |
| 1127 | index = selector_read_index(bcm_clk->ccu, &data->sel); |
| 1128 | |
| 1129 | /* Not all callers would handle an out-of-range value gracefully */ |
| 1130 | return index == BAD_CLK_INDEX ? 0 : index; |
| 1131 | } |
| 1132 | |
| 1133 | static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| 1134 | unsigned long parent_rate) |
| 1135 | { |
| 1136 | struct kona_clk *bcm_clk = to_kona_clk(hw); |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1137 | struct peri_clk_data *data = bcm_clk->u.peri; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1138 | struct bcm_clk_div *div = &data->div; |
| 1139 | u64 scaled_div = 0; |
| 1140 | int ret; |
| 1141 | |
| 1142 | if (parent_rate > (unsigned long)LONG_MAX) |
| 1143 | return -EINVAL; |
| 1144 | |
| 1145 | if (rate == __clk_get_rate(hw->clk)) |
| 1146 | return 0; |
| 1147 | |
| 1148 | if (!divider_exists(div)) |
| 1149 | return rate == parent_rate ? 0 : -EINVAL; |
| 1150 | |
| 1151 | /* |
| 1152 | * A fixed divider can't be changed. (Nor can a fixed |
| 1153 | * pre-divider be, but for now we never actually try to |
| 1154 | * change that.) Tolerate a request for a no-op change. |
| 1155 | */ |
| 1156 | if (divider_is_fixed(&data->div)) |
| 1157 | return rate == parent_rate ? 0 : -EINVAL; |
| 1158 | |
| 1159 | /* |
| 1160 | * Get the scaled divisor value needed to achieve a clock |
| 1161 | * rate as close as possible to what was requested, given |
| 1162 | * the parent clock rate supplied. |
| 1163 | */ |
| 1164 | (void)round_rate(bcm_clk->ccu, div, &data->pre_div, |
| 1165 | rate ? rate : 1, parent_rate, &scaled_div); |
| 1166 | |
| 1167 | /* |
| 1168 | * We aren't updating any pre-divider at this point, so |
| 1169 | * we'll use the regular trigger. |
| 1170 | */ |
| 1171 | ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, |
| 1172 | &data->trig, scaled_div); |
| 1173 | if (ret == -ENXIO) { |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 1174 | pr_err("%s: gating failure for %s\n", __func__, |
| 1175 | bcm_clk->init_data.name); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1176 | ret = -EIO; /* Don't proliferate weird errors */ |
| 1177 | } else if (ret == -EIO) { |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 1178 | pr_err("%s: trigger failed for %s\n", __func__, |
| 1179 | bcm_clk->init_data.name); |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1180 | } |
| 1181 | |
| 1182 | return ret; |
| 1183 | } |
| 1184 | |
| 1185 | struct clk_ops kona_peri_clk_ops = { |
| 1186 | .enable = kona_peri_clk_enable, |
| 1187 | .disable = kona_peri_clk_disable, |
| 1188 | .is_enabled = kona_peri_clk_is_enabled, |
| 1189 | .recalc_rate = kona_peri_clk_recalc_rate, |
Alex Elder | c2152d0 | 2014-05-27 11:56:56 -0500 | [diff] [blame] | 1190 | .determine_rate = kona_peri_clk_determine_rate, |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1191 | .set_parent = kona_peri_clk_set_parent, |
| 1192 | .get_parent = kona_peri_clk_get_parent, |
| 1193 | .set_rate = kona_peri_clk_set_rate, |
| 1194 | }; |
| 1195 | |
| 1196 | /* Put a peripheral clock into its initial state */ |
| 1197 | static bool __peri_clk_init(struct kona_clk *bcm_clk) |
| 1198 | { |
| 1199 | struct ccu_data *ccu = bcm_clk->ccu; |
Alex Elder | e813d49 | 2014-04-07 08:22:12 -0500 | [diff] [blame] | 1200 | struct peri_clk_data *peri = bcm_clk->u.peri; |
Alex Elder | e756325 | 2014-04-21 16:11:38 -0500 | [diff] [blame] | 1201 | const char *name = bcm_clk->init_data.name; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1202 | struct bcm_clk_trig *trig; |
| 1203 | |
| 1204 | BUG_ON(bcm_clk->type != bcm_clk_peri); |
| 1205 | |
Alex Elder | a597fac | 2014-04-21 16:11:42 -0500 | [diff] [blame] | 1206 | if (!policy_init(ccu, &peri->policy)) { |
| 1207 | pr_err("%s: error initializing policy for %s\n", |
| 1208 | __func__, name); |
| 1209 | return false; |
| 1210 | } |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1211 | if (!gate_init(ccu, &peri->gate)) { |
| 1212 | pr_err("%s: error initializing gate for %s\n", __func__, name); |
| 1213 | return false; |
| 1214 | } |
Alex Elder | dc61384 | 2014-04-21 16:11:43 -0500 | [diff] [blame] | 1215 | if (!hyst_init(ccu, &peri->hyst)) { |
| 1216 | pr_err("%s: error initializing hyst for %s\n", __func__, name); |
| 1217 | return false; |
| 1218 | } |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1219 | if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { |
| 1220 | pr_err("%s: error initializing divider for %s\n", __func__, |
| 1221 | name); |
| 1222 | return false; |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * For the pre-divider and selector, the pre-trigger is used |
| 1227 | * if it's present, otherwise we just use the regular trigger. |
| 1228 | */ |
| 1229 | trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig |
| 1230 | : &peri->trig; |
| 1231 | |
| 1232 | if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { |
| 1233 | pr_err("%s: error initializing pre-divider for %s\n", __func__, |
| 1234 | name); |
| 1235 | return false; |
| 1236 | } |
| 1237 | |
| 1238 | if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { |
| 1239 | pr_err("%s: error initializing selector for %s\n", __func__, |
| 1240 | name); |
| 1241 | return false; |
| 1242 | } |
| 1243 | |
| 1244 | return true; |
| 1245 | } |
| 1246 | |
| 1247 | static bool __kona_clk_init(struct kona_clk *bcm_clk) |
| 1248 | { |
| 1249 | switch (bcm_clk->type) { |
| 1250 | case bcm_clk_peri: |
| 1251 | return __peri_clk_init(bcm_clk); |
| 1252 | default: |
| 1253 | BUG(); |
| 1254 | } |
| 1255 | return -EINVAL; |
| 1256 | } |
| 1257 | |
| 1258 | /* Set a CCU and all its clocks into their desired initial state */ |
| 1259 | bool __init kona_ccu_init(struct ccu_data *ccu) |
| 1260 | { |
| 1261 | unsigned long flags; |
| 1262 | unsigned int which; |
Alex Elder | b12151c | 2014-04-21 16:11:40 -0500 | [diff] [blame] | 1263 | struct clk **clks = ccu->clk_data.clks; |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1264 | bool success = true; |
| 1265 | |
| 1266 | flags = ccu_lock(ccu); |
| 1267 | __ccu_write_enable(ccu); |
| 1268 | |
Alex Elder | b12151c | 2014-04-21 16:11:40 -0500 | [diff] [blame] | 1269 | for (which = 0; which < ccu->clk_data.clk_num; which++) { |
Alex Elder | 1f27f15 | 2014-02-14 12:29:18 -0600 | [diff] [blame] | 1270 | struct kona_clk *bcm_clk; |
| 1271 | |
| 1272 | if (!clks[which]) |
| 1273 | continue; |
| 1274 | bcm_clk = to_kona_clk(__clk_get_hw(clks[which])); |
| 1275 | success &= __kona_clk_init(bcm_clk); |
| 1276 | } |
| 1277 | |
| 1278 | __ccu_write_disable(ccu); |
| 1279 | ccu_unlock(ccu, flags); |
| 1280 | return success; |
| 1281 | } |