blob: efbc832146e77f8e2f1a4a107364e40ca082569f [file] [log] [blame]
Mathieu Poirier872234d2014-11-03 11:07:42 -07001 Coresight - HW Assisted Tracing on ARM
2 ======================================
3
4 Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 Date: September 11th, 2014
6
7Introduction
8------------
9
10Coresight is an umbrella of technologies allowing for the debugging of ARM
11based SoC. It includes solutions for JTAG and HW assisted tracing. This
12document is concerned with the latter.
13
14HW assisted tracing is becoming increasingly useful when dealing with systems
15that have many SoCs and other components like GPU and DMA engines. ARM has
16developed a HW assisted tracing solution by means of different components, each
Mathieu Poirierb29d5c12015-03-30 14:13:37 -060017being added to a design at synthesis time to cater to specific tracing needs.
Masanari Iidaf8b66fe2015-07-31 09:37:29 -060018Components are generally categorised as source, link and sinks and are
Mathieu Poirier872234d2014-11-03 11:07:42 -070019(usually) discovered using the AMBA bus.
20
21"Sources" generate a compressed stream representing the processor instruction
22path based on tracing scenarios as configured by users. From there the stream
23flows through the coresight system (via ATB bus) using links that are connecting
24the emanating source to a sink(s). Sinks serve as endpoints to the coresight
25implementation, either storing the compressed stream in a memory buffer or
26creating an interface to the outside world where data can be transferred to a
27host without fear of filling up the onboard coresight memory buffer.
28
29At typical coresight system would look like this:
30
31 *****************************************************************
32 **************************** AMBA AXI ****************************===||
33 ***************************************************************** ||
34 ^ ^ | ||
35 | | * **
36 0000000 ::::: 0000000 ::::: ::::: @@@@@@@ ||||||||||||
37 0 CPU 0<-->: C : 0 CPU 0<-->: C : : C : @ STM @ || System ||
38 |->0000000 : T : |->0000000 : T : : T :<--->@@@@@ || Memory ||
39 | #######<-->: I : | #######<-->: I : : I : @@@<-| ||||||||||||
40 | # ETM # ::::: | # PTM # ::::: ::::: @ |
41 | ##### ^ ^ | ##### ^ ! ^ ! . | |||||||||
42 | |->### | ! | |->### | ! | ! . | || DAP ||
43 | | # | ! | | # | ! | ! . | |||||||||
44 | | . | ! | | . | ! | ! . | | |
45 | | . | ! | | . | ! | ! . | | *
46 | | . | ! | | . | ! | ! . | | SWD/
47 | | . | ! | | . | ! | ! . | | JTAG
48 *****************************************************************<-|
Kaixu Xia7af87922015-01-26 09:22:21 -070049 *************************** AMBA Debug APB ************************
Mathieu Poirier872234d2014-11-03 11:07:42 -070050 *****************************************************************
51 | . ! . ! ! . |
52 | . * . * * . |
53 *****************************************************************
54 ******************** Cross Trigger Matrix (CTM) *******************
55 *****************************************************************
56 | . ^ . . |
57 | * ! * * |
58 *****************************************************************
59 ****************** AMBA Advanced Trace Bus (ATB) ******************
60 *****************************************************************
61 | ! =============== |
62 | * ===== F =====<---------|
63 | ::::::::: ==== U ====
64 |-->:: CTI ::<!! === N ===
65 | ::::::::: ! == N ==
66 | ^ * == E ==
67 | ! &&&&&&&&& IIIIIII == L ==
68 |------>&& ETB &&<......II I =======
69 | ! &&&&&&&&& II I .
70 | ! I I .
71 | ! I REP I<..........
72 | ! I I
73 | !!>&&&&&&&&& II I *Source: ARM ltd.
74 |------>& TPIU &<......II I DAP = Debug Access Port
75 &&&&&&&&& IIIIIII ETM = Embedded Trace Macrocell
76 ; PTM = Program Trace Macrocell
77 ; CTI = Cross Trigger Interface
78 * ETB = Embedded Trace Buffer
79 To trace port TPIU= Trace Port Interface Unit
80 SWD = Serial Wire Debug
81
Kaixu Xia7af87922015-01-26 09:22:21 -070082While on target configuration of the components is done via the APB bus,
Mathieu Poirier872234d2014-11-03 11:07:42 -070083all trace data are carried out-of-band on the ATB bus. The CTM provides
84a way to aggregate and distribute signals between CoreSight components.
85
86The coresight framework provides a central point to represent, configure and
87manage coresight devices on a platform. This first implementation centers on
88the basic tracing functionality, enabling components such ETM/PTM, funnel,
89replicator, TMC, TPIU and ETB. Future work will enable more
90intricate IP blocks such as STM and CTI.
91
92
93Acronyms and Classification
94---------------------------
95
96Acronyms:
97
98PTM: Program Trace Macrocell
99ETM: Embedded Trace Macrocell
100STM: System trace Macrocell
101ETB: Embedded Trace Buffer
102ITM: Instrumentation Trace Macrocell
103TPIU: Trace Port Interface Unit
104TMC-ETR: Trace Memory Controller, configured as Embedded Trace Router
105TMC-ETF: Trace Memory Controller, configured as Embedded Trace FIFO
106CTI: Cross Trigger Interface
107
108Classification:
109
110Source:
111 ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
112Link:
113 Funnel, replicator (intelligent or not), TMC-ETR
114Sinks:
115 ETBv1.0, ETB1.1, TPIU, TMC-ETF
116Misc:
117 CTI
118
119
120Device Tree Bindings
121----------------------
122
123See Documentation/devicetree/bindings/arm/coresight.txt for details.
124
125As of this writing drivers for ITM, STMs and CTIs are not provided but are
126expected to be added as the solution matures.
127
128
129Framework and implementation
130----------------------------
131
132The coresight framework provides a central point to represent, configure and
133manage coresight devices on a platform. Any coresight compliant device can
134register with the framework for as long as they use the right APIs:
135
136struct coresight_device *coresight_register(struct coresight_desc *desc);
137void coresight_unregister(struct coresight_device *csdev);
138
139The registering function is taking a "struct coresight_device *csdev" and
140register the device with the core framework. The unregister function takes
Masanari Iidaf8b66fe2015-07-31 09:37:29 -0600141a reference to a "struct coresight_device", obtained at registration time.
Mathieu Poirier872234d2014-11-03 11:07:42 -0700142
143If everything goes well during the registration process the new devices will
144show up under /sys/bus/coresight/devices, as showns here for a TC2 platform:
145
146root:~# ls /sys/bus/coresight/devices/
147replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
14820010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
149root:~#
150
151The functions take a "struct coresight_device", which looks like this:
152
153struct coresight_desc {
154 enum coresight_dev_type type;
155 struct coresight_dev_subtype subtype;
156 const struct coresight_ops *ops;
157 struct coresight_platform_data *pdata;
158 struct device *dev;
159 const struct attribute_group **groups;
160};
161
162
163The "coresight_dev_type" identifies what the device is, i.e, source link or
164sink while the "coresight_dev_subtype" will characterise that type further.
165
166The "struct coresight_ops" is mandatory and will tell the framework how to
167perform base operations related to the components, each component having
168a different set of requirement. For that "struct coresight_ops_sink",
169"struct coresight_ops_link" and "struct coresight_ops_source" have been
170provided.
171
172The next field, "struct coresight_platform_data *pdata" is acquired by calling
173"of_get_coresight_platform_data()", as part of the driver's _probe routine and
174"struct device *dev" gets the device reference embedded in the "amba_device":
175
176static int etm_probe(struct amba_device *adev, const struct amba_id *id)
177{
178 ...
179 ...
180 drvdata->dev = &adev->dev;
181 ...
182}
183
184Specific class of device (source, link, or sink) have generic operations
185that can be performed on them (see "struct coresight_ops"). The
186"**groups" is a list of sysfs entries pertaining to operations
187specific to that component only. "Implementation defined" customisations are
188expected to be accessed and controlled using those entries.
189
Mathieu Poirierf29816b42018-04-17 10:08:06 -0600190
Pratik Patel237483a2016-05-03 11:33:40 -0600191How to use the tracer modules
192-----------------------------
Mathieu Poirier872234d2014-11-03 11:07:42 -0700193
Mathieu Poirierf29816b42018-04-17 10:08:06 -0600194There are two ways to use the Coresight framework: 1) using the perf cmd line
195tools and 2) interacting directly with the Coresight devices using the sysFS
196interface. Preference is given to the former as using the sysFS interface
197requires a deep understanding of the Coresight HW. The following sections
198provide details on using both methods.
199
2001) Using the sysFS interface:
201
202Before trace collection can start, a coresight sink needs to be identified.
Mathieu Poirier872234d2014-11-03 11:07:42 -0700203There is no limit on the amount of sinks (nor sources) that can be enabled at
204any given moment. As a generic operation, all device pertaining to the sink
205class will have an "active" entry in sysfs:
206
207root:/sys/bus/coresight/devices# ls
208replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
20920010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
210root:/sys/bus/coresight/devices# ls 20010000.etb
211enable_sink status trigger_cntr
212root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
213root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
2141
215root:/sys/bus/coresight/devices#
216
217At boot time the current etm3x driver will configure the first address
218comparator with "_stext" and "_etext", essentially tracing any instruction
219that falls within that range. As such "enabling" a source will immediately
220trigger a trace capture:
221
222root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
223root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
2241
225root:/sys/bus/coresight/devices# cat 20010000.etb/status
226Depth: 0x2000
227Status: 0x1
228RAM read ptr: 0x0
229RAM wrt ptr: 0x19d3 <----- The write pointer is moving
230Trigger cnt: 0x0
231Control: 0x1
232Flush status: 0x0
233Flush ctrl: 0x2001
234root:/sys/bus/coresight/devices#
235
236Trace collection is stopped the same way:
237
238root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
239root:/sys/bus/coresight/devices#
240
241The content of the ETB buffer can be harvested directly from /dev:
242
243root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
244of=~/cstrace.bin
245
24664+0 records in
24764+0 records out
24832768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
249root:/sys/bus/coresight/devices#
250
251The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
252
253Following is a DS-5 output of an experimental loop that increments a variable up
254to a certain value. The example is simple and yet provides a glimpse of the
255wealth of possibilities that coresight provides.
256
257Info Tracing enabled
258Instruction 106378866 0x8026B53C E52DE004 false PUSH {lr}
259Instruction 0 0x8026B540 E24DD00C false SUB sp,sp,#0xc
260Instruction 0 0x8026B544 E3A03000 false MOV r3,#0
261Instruction 0 0x8026B548 E58D3004 false STR r3,[sp,#4]
262Instruction 0 0x8026B54C E59D3004 false LDR r3,[sp,#4]
263Instruction 0 0x8026B550 E3530004 false CMP r3,#4
264Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
265Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
266Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
267Timestamp Timestamp: 17106715833
268Instruction 319 0x8026B54C E59D3004 false LDR r3,[sp,#4]
269Instruction 0 0x8026B550 E3530004 false CMP r3,#4
270Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
271Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
272Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
273Instruction 9 0x8026B54C E59D3004 false LDR r3,[sp,#4]
274Instruction 0 0x8026B550 E3530004 false CMP r3,#4
275Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
276Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
277Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
278Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
279Instruction 0 0x8026B550 E3530004 false CMP r3,#4
280Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
281Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
282Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
283Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
284Instruction 0 0x8026B550 E3530004 false CMP r3,#4
285Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
286Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
287Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
288Instruction 10 0x8026B54C E59D3004 false LDR r3,[sp,#4]
289Instruction 0 0x8026B550 E3530004 false CMP r3,#4
290Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
291Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
292Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
293Instruction 6 0x8026B560 EE1D3F30 false MRC p15,#0x0,r3,c13,c0,#1
294Instruction 0 0x8026B564 E1A0100D false MOV r1,sp
295Instruction 0 0x8026B568 E3C12D7F false BIC r2,r1,#0x1fc0
296Instruction 0 0x8026B56C E3C2203F false BIC r2,r2,#0x3f
297Instruction 0 0x8026B570 E59D1004 false LDR r1,[sp,#4]
298Instruction 0 0x8026B574 E59F0010 false LDR r0,[pc,#16] ; [0x8026B58C] = 0x80550368
299Instruction 0 0x8026B578 E592200C false LDR r2,[r2,#0xc]
300Instruction 0 0x8026B57C E59221D0 false LDR r2,[r2,#0x1d0]
301Instruction 0 0x8026B580 EB07A4CF true BL {pc}+0x1e9344 ; 0x804548c4
302Info Tracing enabled
303Instruction 13570831 0x8026B584 E28DD00C false ADD sp,sp,#0xc
304Instruction 0 0x8026B588 E8BD8000 true LDM sp!,{pc}
305Timestamp Timestamp: 17107041535
Pratik Patel237483a2016-05-03 11:33:40 -0600306
Mathieu Poirierf29816b42018-04-17 10:08:06 -06003072) Using perf framework:
308
309Coresight tracers are represented using the Perf framework's Performance
310Monitoring Unit (PMU) abstraction. As such the perf framework takes charge of
311controlling when tracing gets enabled based on when the process of interest is
312scheduled. When configured in a system, Coresight PMUs will be listed when
313queried by the perf command line tool:
314
315 linaro@linaro-nano:~$ ./perf list pmu
316
317 List of pre-defined events (to be used in -e):
318
319 cs_etm// [Kernel PMU event]
320
321 linaro@linaro-nano:~$
322
323Regardless of the number of tracers available in a system (usually equal to the
324amount of processor cores), the "cs_etm" PMU will be listed only once.
325
326A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
327listed along with configuration options within forward slashes '/'. Since a
328Coresight system will typically have more than one sink, the name of the sink to
329work with needs to be specified as an event option. Names for sink to choose
330from are listed in sysFS under ($SYSFS)/bus/coresight/devices:
331
332 root@linaro-nano:~# ls /sys/bus/coresight/devices/
333 20010000.etf 20040000.funnel 20100000.stm 22040000.etm
334 22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
335 20070000.etr 20120000.replicator 220c0000.funnel
336 23040000.etm 23140000.etm 23340000.etm
337
338 root@linaro-nano:~# perf record -e cs_etm/@20070000.etr/u --per-thread program
339
340The syntax within the forward slashes '/' is important. The '@' character
341tells the parser that a sink is about to be specified and that this is the sink
342to use for the trace session.
343
344More information on the above and other example on how to use Coresight with
345the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
346repository [3].
347
Mathieu Poirier87bf4d62018-04-17 10:08:07 -06003482.1) AutoFDO analysis using the perf tools:
Robert Walker66730162018-02-14 11:24:41 +0000349
350perf can be used to record and analyze trace of programs.
351
352Execution can be recorded using 'perf record' with the cs_etm event,
353specifying the name of the sink to record to, e.g:
354
355 perf record -e cs_etm/@20070000.etr/u --per-thread
356
357The 'perf report' and 'perf script' commands can be used to analyze execution,
358synthesizing instruction and branch events from the instruction trace.
359'perf inject' can be used to replace the trace data with the synthesized events.
360The --itrace option controls the type and frequency of synthesized events
361(see perf documentation).
362
363Note that only 64-bit programs are currently supported - further work is
364required to support instruction decode of 32-bit Arm programs.
365
366
367Generating coverage files for Feedback Directed Optimization: AutoFDO
368---------------------------------------------------------------------
369
370'perf inject' accepts the --itrace option in which case tracing data is
371removed and replaced with the synthesized events. e.g.
372
373 perf inject --itrace --strip -i perf.data -o perf.data.new
374
375Below is an example of using ARM ETM for autoFDO. It requires autofdo
376(https://github.com/google/autofdo) and gcc version 5. The bubble
377sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
378
379 $ gcc-5 -O3 sort.c -o sort
380 $ taskset -c 2 ./sort
381 Bubble sorting array of 30000 elements
382 5910 ms
383
384 $ perf record -e cs_etm/@20070000.etr/u --per-thread taskset -c 2 ./sort
385 Bubble sorting array of 30000 elements
386 12543 ms
387 [ perf record: Woken up 35 times to write data ]
388 [ perf record: Captured and wrote 69.640 MB perf.data ]
389
390 $ perf inject -i perf.data -o inj.data --itrace=il64 --strip
391 $ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
392 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
393 $ taskset -c 2 ./sort_autofdo
394 Bubble sorting array of 30000 elements
395 5806 ms
Mathieu Poirier87bf4d62018-04-17 10:08:07 -0600396
397
398How to use the STM module
399-------------------------
400
401Using the System Trace Macrocell module is the same as the tracers - the only
402difference is that clients are driving the trace capture rather
403than the program flow through the code.
404
405As with any other CoreSight component, specifics about the STM tracer can be
406found in sysfs with more information on each entry being found in [1]:
407
408root@genericarmv8:~# ls /sys/bus/coresight/devices/20100000.stm
409enable_source hwevent_select port_enable subsystem uevent
410hwevent_enable mgmt port_select traceid
411root@genericarmv8:~#
412
413Like any other source a sink needs to be identified and the STM enabled before
414being used:
415
416root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20010000.etf/enable_sink
417root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/20100000.stm/enable_source
418
419From there user space applications can request and use channels using the devfs
420interface provided for that purpose by the generic STM API:
421
422root@genericarmv8:~# ls -l /dev/20100000.stm
423crw------- 1 root root 10, 61 Jan 3 18:11 /dev/20100000.stm
424root@genericarmv8:~#
425
426Details on how to use the generic STM API can be found here [2].
427
428[1]. Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
Mauro Carvalho Chehab5fb94e92018-05-08 15:14:57 -0300429[2]. Documentation/trace/stm.rst
Mathieu Poirier87bf4d62018-04-17 10:08:07 -0600430[3]. https://github.com/Linaro/perf-opencsd