blob: 1ebd2d9d90d513dd4a6a2d1a22f8d896bab4e41a [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001/* SPDX-License-Identifier: GPL-2.0 */
Kent Overstreetcafe5632013-03-23 16:11:31 -07002#ifndef _BCACHE_H
3#define _BCACHE_H
4
5/*
6 * SOME HIGH LEVEL CODE DOCUMENTATION:
7 *
8 * Bcache mostly works with cache sets, cache devices, and backing devices.
9 *
10 * Support for multiple cache devices hasn't quite been finished off yet, but
11 * it's about 95% plumbed through. A cache set and its cache devices is sort of
12 * like a md raid array and its component devices. Most of the code doesn't care
13 * about individual cache devices, the main abstraction is the cache set.
14 *
15 * Multiple cache devices is intended to give us the ability to mirror dirty
16 * cached data and metadata, without mirroring clean cached data.
17 *
18 * Backing devices are different, in that they have a lifetime independent of a
19 * cache set. When you register a newly formatted backing device it'll come up
20 * in passthrough mode, and then you can attach and detach a backing device from
21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly
22 * invalidates any cached data for that backing device.
23 *
24 * A cache set can have multiple (many) backing devices attached to it.
25 *
26 * There's also flash only volumes - this is the reason for the distinction
27 * between struct cached_dev and struct bcache_device. A flash only volume
28 * works much like a bcache device that has a backing device, except the
29 * "cached" data is always dirty. The end result is that we get thin
30 * provisioning with very little additional code.
31 *
32 * Flash only volumes work but they're not production ready because the moving
33 * garbage collector needs more work. More on that later.
34 *
35 * BUCKETS/ALLOCATION:
36 *
37 * Bcache is primarily designed for caching, which means that in normal
38 * operation all of our available space will be allocated. Thus, we need an
39 * efficient way of deleting things from the cache so we can write new things to
40 * it.
41 *
42 * To do this, we first divide the cache device up into buckets. A bucket is the
43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
44 * works efficiently.
45 *
46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with
47 * it. The gens and priorities for all the buckets are stored contiguously and
48 * packed on disk (in a linked list of buckets - aside from the superblock, all
49 * of bcache's metadata is stored in buckets).
50 *
51 * The priority is used to implement an LRU. We reset a bucket's priority when
52 * we allocate it or on cache it, and every so often we decrement the priority
53 * of each bucket. It could be used to implement something more sophisticated,
54 * if anyone ever gets around to it.
55 *
56 * The generation is used for invalidating buckets. Each pointer also has an 8
57 * bit generation embedded in it; for a pointer to be considered valid, its gen
58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all
59 * we have to do is increment its gen (and write its new gen to disk; we batch
60 * this up).
61 *
62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that
63 * contain metadata (including btree nodes).
64 *
65 * THE BTREE:
66 *
67 * Bcache is in large part design around the btree.
68 *
69 * At a high level, the btree is just an index of key -> ptr tuples.
70 *
71 * Keys represent extents, and thus have a size field. Keys also have a variable
72 * number of pointers attached to them (potentially zero, which is handy for
73 * invalidating the cache).
74 *
75 * The key itself is an inode:offset pair. The inode number corresponds to a
76 * backing device or a flash only volume. The offset is the ending offset of the
77 * extent within the inode - not the starting offset; this makes lookups
78 * slightly more convenient.
79 *
80 * Pointers contain the cache device id, the offset on that device, and an 8 bit
81 * generation number. More on the gen later.
82 *
83 * Index lookups are not fully abstracted - cache lookups in particular are
84 * still somewhat mixed in with the btree code, but things are headed in that
85 * direction.
86 *
87 * Updates are fairly well abstracted, though. There are two different ways of
88 * updating the btree; insert and replace.
89 *
90 * BTREE_INSERT will just take a list of keys and insert them into the btree -
91 * overwriting (possibly only partially) any extents they overlap with. This is
92 * used to update the index after a write.
93 *
94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
95 * overwriting a key that matches another given key. This is used for inserting
96 * data into the cache after a cache miss, and for background writeback, and for
97 * the moving garbage collector.
98 *
99 * There is no "delete" operation; deleting things from the index is
100 * accomplished by either by invalidating pointers (by incrementing a bucket's
101 * gen) or by inserting a key with 0 pointers - which will overwrite anything
102 * previously present at that location in the index.
103 *
104 * This means that there are always stale/invalid keys in the btree. They're
105 * filtered out by the code that iterates through a btree node, and removed when
106 * a btree node is rewritten.
107 *
108 * BTREE NODES:
109 *
110 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
111 * free smaller than a bucket - so, that's how big our btree nodes are.
112 *
113 * (If buckets are really big we'll only use part of the bucket for a btree node
114 * - no less than 1/4th - but a bucket still contains no more than a single
115 * btree node. I'd actually like to change this, but for now we rely on the
116 * bucket's gen for deleting btree nodes when we rewrite/split a node.)
117 *
118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook
119 * btree implementation.
120 *
121 * The way this is solved is that btree nodes are internally log structured; we
122 * can append new keys to an existing btree node without rewriting it. This
123 * means each set of keys we write is sorted, but the node is not.
124 *
125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would
126 * be expensive, and we have to distinguish between the keys we have written and
127 * the keys we haven't. So to do a lookup in a btree node, we have to search
128 * each sorted set. But we do merge written sets together lazily, so the cost of
129 * these extra searches is quite low (normally most of the keys in a btree node
130 * will be in one big set, and then there'll be one or two sets that are much
131 * smaller).
132 *
133 * This log structure makes bcache's btree more of a hybrid between a
134 * conventional btree and a compacting data structure, with some of the
135 * advantages of both.
136 *
137 * GARBAGE COLLECTION:
138 *
139 * We can't just invalidate any bucket - it might contain dirty data or
140 * metadata. If it once contained dirty data, other writes might overwrite it
141 * later, leaving no valid pointers into that bucket in the index.
142 *
143 * Thus, the primary purpose of garbage collection is to find buckets to reuse.
144 * It also counts how much valid data it each bucket currently contains, so that
145 * allocation can reuse buckets sooner when they've been mostly overwritten.
146 *
147 * It also does some things that are really internal to the btree
148 * implementation. If a btree node contains pointers that are stale by more than
149 * some threshold, it rewrites the btree node to avoid the bucket's generation
150 * wrapping around. It also merges adjacent btree nodes if they're empty enough.
151 *
152 * THE JOURNAL:
153 *
154 * Bcache's journal is not necessary for consistency; we always strictly
155 * order metadata writes so that the btree and everything else is consistent on
156 * disk in the event of an unclean shutdown, and in fact bcache had writeback
157 * caching (with recovery from unclean shutdown) before journalling was
158 * implemented.
159 *
160 * Rather, the journal is purely a performance optimization; we can't complete a
161 * write until we've updated the index on disk, otherwise the cache would be
162 * inconsistent in the event of an unclean shutdown. This means that without the
163 * journal, on random write workloads we constantly have to update all the leaf
164 * nodes in the btree, and those writes will be mostly empty (appending at most
165 * a few keys each) - highly inefficient in terms of amount of metadata writes,
166 * and it puts more strain on the various btree resorting/compacting code.
167 *
168 * The journal is just a log of keys we've inserted; on startup we just reinsert
169 * all the keys in the open journal entries. That means that when we're updating
170 * a node in the btree, we can wait until a 4k block of keys fills up before
171 * writing them out.
172 *
173 * For simplicity, we only journal updates to leaf nodes; updates to parent
174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
175 * the complexity to deal with journalling them (in particular, journal replay)
176 * - updates to non leaf nodes just happen synchronously (see btree_split()).
177 */
178
179#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
180
Kent Overstreet81ab4192013-10-31 15:46:42 -0700181#include <linux/bcache.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700182#include <linux/bio.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700183#include <linux/kobject.h>
184#include <linux/list.h>
185#include <linux/mutex.h>
186#include <linux/rbtree.h>
187#include <linux/rwsem.h>
Elena Reshetova3b304d22017-10-30 14:46:32 -0700188#include <linux/refcount.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700189#include <linux/types.h>
190#include <linux/workqueue.h>
Coly Li771f3932018-03-18 17:36:17 -0700191#include <linux/kthread.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -0700192
Kent Overstreet67539e82013-09-10 22:53:34 -0700193#include "bset.h"
Kent Overstreetcafe5632013-03-23 16:11:31 -0700194#include "util.h"
195#include "closure.h"
196
197struct bucket {
198 atomic_t pin;
199 uint16_t prio;
200 uint8_t gen;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700201 uint8_t last_gc; /* Most out of date gen in the btree */
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800202 uint16_t gc_mark; /* Bitfield used by GC. See below for field */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700203};
204
205/*
206 * I'd use bitfields for these, but I don't trust the compiler not to screw me
207 * as multiple threads touch struct bucket without locking
208 */
209
210BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2);
Kent Overstreet4fe6a812014-03-13 13:46:29 -0700211#define GC_MARK_RECLAIMABLE 1
212#define GC_MARK_DIRTY 2
213#define GC_MARK_METADATA 3
Darrick J. Wong94717442014-01-28 16:57:39 -0800214#define GC_SECTORS_USED_SIZE 13
215#define MAX_GC_SECTORS_USED (~(~0ULL << GC_SECTORS_USED_SIZE))
216BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
Nicholas Swenson981aa8c2013-11-07 17:53:19 -0800217BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700218
Kent Overstreetcafe5632013-03-23 16:11:31 -0700219#include "journal.h"
220#include "stats.h"
221struct search;
222struct btree;
223struct keybuf;
224
225struct keybuf_key {
226 struct rb_node node;
227 BKEY_PADDED(key);
228 void *private;
229};
230
Kent Overstreetcafe5632013-03-23 16:11:31 -0700231struct keybuf {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700232 struct bkey last_scanned;
233 spinlock_t lock;
234
235 /*
236 * Beginning and end of range in rb tree - so that we can skip taking
237 * lock and checking the rb tree when we need to check for overlapping
238 * keys.
239 */
240 struct bkey start;
241 struct bkey end;
242
243 struct rb_root keys;
244
Kent Overstreet48a915a2013-10-31 15:43:22 -0700245#define KEYBUF_NR 500
Kent Overstreetcafe5632013-03-23 16:11:31 -0700246 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
247};
248
Kent Overstreetcafe5632013-03-23 16:11:31 -0700249struct bcache_device {
250 struct closure cl;
251
252 struct kobject kobj;
253
254 struct cache_set *c;
Coly Li6f10f7d2018-08-11 13:19:44 +0800255 unsigned int id;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700256#define BCACHEDEVNAME_SIZE 12
257 char name[BCACHEDEVNAME_SIZE];
258
259 struct gendisk *disk;
260
Kent Overstreetc4d951d2013-08-21 17:49:09 -0700261 unsigned long flags;
Coly Li3fd47bf2018-03-18 17:36:16 -0700262#define BCACHE_DEV_CLOSING 0
263#define BCACHE_DEV_DETACHING 1
264#define BCACHE_DEV_UNLINK_DONE 2
265#define BCACHE_DEV_WB_RUNNING 3
266#define BCACHE_DEV_RATE_DW_RUNNING 4
Coly Li6f10f7d2018-08-11 13:19:44 +0800267 unsigned int nr_stripes;
268 unsigned int stripe_size;
Kent Overstreet279afba2013-06-05 06:21:07 -0700269 atomic_t *stripe_sectors_dirty;
Kent Overstreet48a915a2013-10-31 15:43:22 -0700270 unsigned long *full_dirty_stripes;
Kent Overstreet279afba2013-06-05 06:21:07 -0700271
Kent Overstreetd19936a2018-05-20 18:25:51 -0400272 struct bio_set bio_split;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700273
Coly Li6f10f7d2018-08-11 13:19:44 +0800274 unsigned int data_csum:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700275
276 int (*cache_miss)(struct btree *, struct search *,
Coly Li6f10f7d2018-08-11 13:19:44 +0800277 struct bio *, unsigned int);
278 int (*ioctl) (struct bcache_device *, fmode_t, unsigned int, unsigned long);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700279};
280
281struct io {
282 /* Used to track sequential IO so it can be skipped */
283 struct hlist_node hash;
284 struct list_head lru;
285
286 unsigned long jiffies;
Coly Li6f10f7d2018-08-11 13:19:44 +0800287 unsigned int sequential;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700288 sector_t last;
289};
290
Coly Li7e027ca2018-03-18 17:36:18 -0700291enum stop_on_failure {
292 BCH_CACHED_DEV_STOP_AUTO = 0,
293 BCH_CACHED_DEV_STOP_ALWAYS,
294 BCH_CACHED_DEV_STOP_MODE_MAX,
295};
296
Kent Overstreetcafe5632013-03-23 16:11:31 -0700297struct cached_dev {
298 struct list_head list;
299 struct bcache_device disk;
300 struct block_device *bdev;
301
302 struct cache_sb sb;
303 struct bio sb_bio;
304 struct bio_vec sb_bv[1];
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800305 struct closure sb_write;
306 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700307
308 /* Refcount on the cache set. Always nonzero when we're caching. */
Elena Reshetova3b304d22017-10-30 14:46:32 -0700309 refcount_t count;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700310 struct work_struct detach;
311
312 /*
313 * Device might not be running if it's dirty and the cache set hasn't
314 * showed up yet.
315 */
316 atomic_t running;
317
318 /*
319 * Writes take a shared lock from start to finish; scanning for dirty
320 * data to refill the rb tree requires an exclusive lock.
321 */
322 struct rw_semaphore writeback_lock;
323
324 /*
325 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
326 * data in the cache. Protected by writeback_lock; must have an
327 * shared lock to set and exclusive lock to clear.
328 */
329 atomic_t has_dirty;
330
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700331 struct bch_ratelimit writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700332 struct delayed_work writeback_rate_update;
333
Kent Overstreetc2a4f312013-09-23 23:17:31 -0700334 /* Limit number of writeback bios in flight */
335 struct semaphore in_flight;
Kent Overstreet5e6926da2013-07-24 17:50:06 -0700336 struct task_struct *writeback_thread;
Tang Junhui9baf3092017-09-06 14:25:59 +0800337 struct workqueue_struct *writeback_write_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700338
339 struct keybuf writeback_keys;
340
Coly Li0f0709e2018-05-28 15:37:41 +0800341 struct task_struct *status_update_thread;
Michael Lyle6e6ccc62018-01-08 12:21:23 -0800342 /*
343 * Order the write-half of writeback operations strongly in dispatch
344 * order. (Maintain LBA order; don't allow reads completing out of
345 * order to re-order the writes...)
346 */
347 struct closure_waitlist writeback_ordering_wait;
348 atomic_t writeback_sequence_next;
349
Kent Overstreetcafe5632013-03-23 16:11:31 -0700350 /* For tracking sequential IO */
351#define RECENT_IO_BITS 7
352#define RECENT_IO (1 << RECENT_IO_BITS)
353 struct io io[RECENT_IO];
354 struct hlist_head io_hash[RECENT_IO + 1];
355 struct list_head io_lru;
356 spinlock_t io_lock;
357
358 struct cache_accounting accounting;
359
360 /* The rest of this all shows up in sysfs */
Coly Li6f10f7d2018-08-11 13:19:44 +0800361 unsigned int sequential_cutoff;
362 unsigned int readahead;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700363
Coly Li6f10f7d2018-08-11 13:19:44 +0800364 unsigned int io_disable:1;
365 unsigned int verify:1;
366 unsigned int bypass_torture_test:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700367
Coly Li6f10f7d2018-08-11 13:19:44 +0800368 unsigned int partial_stripes_expensive:1;
369 unsigned int writeback_metadata:1;
370 unsigned int writeback_running:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700371 unsigned char writeback_percent;
Coly Li6f10f7d2018-08-11 13:19:44 +0800372 unsigned int writeback_delay;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700373
Kent Overstreetcafe5632013-03-23 16:11:31 -0700374 uint64_t writeback_rate_target;
Kent Overstreet16749c22013-11-11 13:58:34 -0800375 int64_t writeback_rate_proportional;
Michael Lyle1d316e62017-10-13 16:35:36 -0700376 int64_t writeback_rate_integral;
377 int64_t writeback_rate_integral_scaled;
Michael Lylee41166c2017-10-13 16:35:38 -0700378 int32_t writeback_rate_change;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700379
Coly Li6f10f7d2018-08-11 13:19:44 +0800380 unsigned int writeback_rate_update_seconds;
381 unsigned int writeback_rate_i_term_inverse;
382 unsigned int writeback_rate_p_term_inverse;
383 unsigned int writeback_rate_minimum;
Coly Li7e027ca2018-03-18 17:36:18 -0700384
385 enum stop_on_failure stop_when_cache_set_failed;
Coly Lic7b7bd02018-03-18 17:36:25 -0700386#define DEFAULT_CACHED_DEV_ERROR_LIMIT 64
387 atomic_t io_errors;
Coly Li6f10f7d2018-08-11 13:19:44 +0800388 unsigned int error_limit;
389 unsigned int offline_seconds;
Coly Li6e916a72018-05-03 18:51:32 +0800390
391 char backing_dev_name[BDEVNAME_SIZE];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700392};
393
Kent Overstreet78365412013-12-17 01:29:34 -0800394enum alloc_reserve {
395 RESERVE_BTREE,
396 RESERVE_PRIO,
397 RESERVE_MOVINGGC,
398 RESERVE_NONE,
399 RESERVE_NR,
Kent Overstreetcafe5632013-03-23 16:11:31 -0700400};
401
402struct cache {
403 struct cache_set *set;
404 struct cache_sb sb;
405 struct bio sb_bio;
406 struct bio_vec sb_bv[1];
407
408 struct kobject kobj;
409 struct block_device *bdev;
410
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700411 struct task_struct *alloc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700412
413 struct closure prio;
414 struct prio_set *disk_buckets;
415
416 /*
417 * When allocating new buckets, prio_write() gets first dibs - since we
418 * may not be allocate at all without writing priorities and gens.
Coly Licb329de2018-08-09 15:48:46 +0800419 * prio_last_buckets[] contains the last buckets we wrote priorities to
420 * (so gc can mark them as metadata), prio_buckets[] contains the
421 * buckets allocated for the next prio write.
Kent Overstreetcafe5632013-03-23 16:11:31 -0700422 */
423 uint64_t *prio_buckets;
424 uint64_t *prio_last_buckets;
425
426 /*
427 * free: Buckets that are ready to be used
428 *
429 * free_inc: Incoming buckets - these are buckets that currently have
430 * cached data in them, and we can't reuse them until after we write
431 * their new gen to disk. After prio_write() finishes writing the new
432 * gens/prios, they'll be moved to the free list (and possibly discarded
433 * in the process)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700434 */
Kent Overstreet78365412013-12-17 01:29:34 -0800435 DECLARE_FIFO(long, free)[RESERVE_NR];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700436 DECLARE_FIFO(long, free_inc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700437
438 size_t fifo_last_bucket;
439
440 /* Allocation stuff: */
441 struct bucket *buckets;
442
443 DECLARE_HEAP(struct bucket *, heap);
444
445 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700446 * If nonzero, we know we aren't going to find any buckets to invalidate
447 * until a gc finishes - otherwise we could pointlessly burn a ton of
448 * cpu
449 */
Coly Li6f10f7d2018-08-11 13:19:44 +0800450 unsigned int invalidate_needs_gc;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700451
452 bool discard; /* Get rid of? */
453
Kent Overstreetcafe5632013-03-23 16:11:31 -0700454 struct journal_device journal;
455
456 /* The rest of this all shows up in sysfs */
457#define IO_ERROR_SHIFT 20
458 atomic_t io_errors;
459 atomic_t io_count;
460
461 atomic_long_t meta_sectors_written;
462 atomic_long_t btree_sectors_written;
463 atomic_long_t sectors_written;
Coly Li6e916a72018-05-03 18:51:32 +0800464
465 char cache_dev_name[BDEVNAME_SIZE];
Kent Overstreetcafe5632013-03-23 16:11:31 -0700466};
467
468struct gc_stat {
469 size_t nodes;
Tang Junhui5c25c4f2018-07-26 12:17:34 +0800470 size_t nodes_pre;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700471 size_t key_bytes;
472
473 size_t nkeys;
474 uint64_t data; /* sectors */
Coly Li6f10f7d2018-08-11 13:19:44 +0800475 unsigned int in_use; /* percent */
Kent Overstreetcafe5632013-03-23 16:11:31 -0700476};
477
478/*
479 * Flag bits, for how the cache set is shutting down, and what phase it's at:
480 *
481 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
482 * all the backing devices first (their cached data gets invalidated, and they
483 * won't automatically reattach).
484 *
485 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
486 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
487 * flushing dirty data).
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700488 *
489 * CACHE_SET_RUNNING means all cache devices have been registered and journal
490 * replay is complete.
Coly Li771f3932018-03-18 17:36:17 -0700491 *
492 * CACHE_SET_IO_DISABLE is set when bcache is stopping the whold cache set, all
493 * external and internal I/O should be denied when this flag is set.
494 *
Kent Overstreetcafe5632013-03-23 16:11:31 -0700495 */
496#define CACHE_SET_UNREGISTERING 0
497#define CACHE_SET_STOPPING 1
Slava Pestovbf0c55c2014-07-11 12:17:41 -0700498#define CACHE_SET_RUNNING 2
Coly Li771f3932018-03-18 17:36:17 -0700499#define CACHE_SET_IO_DISABLE 3
Kent Overstreetcafe5632013-03-23 16:11:31 -0700500
501struct cache_set {
502 struct closure cl;
503
504 struct list_head list;
505 struct kobject kobj;
506 struct kobject internal;
507 struct dentry *debug;
508 struct cache_accounting accounting;
509
510 unsigned long flags;
Coly Liea8c53562018-08-09 15:48:49 +0800511 atomic_t idle_counter;
512 atomic_t at_max_writeback_rate;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700513
514 struct cache_sb sb;
515
516 struct cache *cache[MAX_CACHES_PER_SET];
517 struct cache *cache_by_alloc[MAX_CACHES_PER_SET];
518 int caches_loaded;
519
520 struct bcache_device **devices;
Coly Li6f10f7d2018-08-11 13:19:44 +0800521 unsigned int devices_max_used;
Coly Liea8c53562018-08-09 15:48:49 +0800522 atomic_t attached_dev_nr;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700523 struct list_head cached_devs;
524 uint64_t cached_dev_sectors;
Tang Junhui99a27d52018-07-26 12:17:33 +0800525 atomic_long_t flash_dev_dirty_sectors;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700526 struct closure caching;
527
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800528 struct closure sb_write;
529 struct semaphore sb_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700530
Kent Overstreetd19936a2018-05-20 18:25:51 -0400531 mempool_t search;
532 mempool_t bio_meta;
533 struct bio_set bio_split;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700534
535 /* For the btree cache */
536 struct shrinker shrink;
537
Kent Overstreetcafe5632013-03-23 16:11:31 -0700538 /* For the btree cache and anything allocation related */
539 struct mutex bucket_lock;
540
541 /* log2(bucket_size), in sectors */
542 unsigned short bucket_bits;
543
544 /* log2(block_size), in sectors */
545 unsigned short block_bits;
546
547 /*
548 * Default number of pages for a new btree node - may be less than a
549 * full bucket
550 */
Coly Li6f10f7d2018-08-11 13:19:44 +0800551 unsigned int btree_pages;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700552
553 /*
554 * Lists of struct btrees; lru is the list for structs that have memory
555 * allocated for actual btree node, freed is for structs that do not.
556 *
557 * We never free a struct btree, except on shutdown - we just put it on
558 * the btree_cache_freed list and reuse it later. This simplifies the
559 * code, and it doesn't cost us much memory as the memory usage is
560 * dominated by buffers that hold the actual btree node data and those
561 * can be freed - and the number of struct btrees allocated is
562 * effectively bounded.
563 *
564 * btree_cache_freeable effectively is a small cache - we use it because
565 * high order page allocations can be rather expensive, and it's quite
566 * common to delete and allocate btree nodes in quick succession. It
567 * should never grow past ~2-3 nodes in practice.
568 */
569 struct list_head btree_cache;
570 struct list_head btree_cache_freeable;
571 struct list_head btree_cache_freed;
572
573 /* Number of elements in btree_cache + btree_cache_freeable lists */
Coly Li6f10f7d2018-08-11 13:19:44 +0800574 unsigned int btree_cache_used;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700575
576 /*
577 * If we need to allocate memory for a new btree node and that
578 * allocation fails, we can cannibalize another node in the btree cache
Kent Overstreet0a63b662014-03-17 17:15:53 -0700579 * to satisfy the allocation - lock to guarantee only one thread does
580 * this at a time:
Kent Overstreetcafe5632013-03-23 16:11:31 -0700581 */
Kent Overstreet0a63b662014-03-17 17:15:53 -0700582 wait_queue_head_t btree_cache_wait;
583 struct task_struct *btree_cache_alloc_lock;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700584
585 /*
586 * When we free a btree node, we increment the gen of the bucket the
587 * node is in - but we can't rewrite the prios and gens until we
588 * finished whatever it is we were doing, otherwise after a crash the
589 * btree node would be freed but for say a split, we might not have the
590 * pointers to the new nodes inserted into the btree yet.
591 *
592 * This is a refcount that blocks prio_write() until the new keys are
593 * written.
594 */
595 atomic_t prio_blocked;
Kent Overstreet35fcd842013-07-24 17:29:09 -0700596 wait_queue_head_t bucket_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700597
598 /*
599 * For any bio we don't skip we subtract the number of sectors from
600 * rescale; when it hits 0 we rescale all the bucket priorities.
601 */
602 atomic_t rescale;
603 /*
Tang Junhui5c25c4f2018-07-26 12:17:34 +0800604 * used for GC, identify if any front side I/Os is inflight
605 */
606 atomic_t search_inflight;
607 /*
Kent Overstreetcafe5632013-03-23 16:11:31 -0700608 * When we invalidate buckets, we use both the priority and the amount
609 * of good data to determine which buckets to reuse first - to weight
610 * those together consistently we keep track of the smallest nonzero
611 * priority of any bucket.
612 */
613 uint16_t min_prio;
614
615 /*
Kent Overstreet3a2fd9d2014-02-27 17:51:12 -0800616 * max(gen - last_gc) for all buckets. When it gets too big we have to gc
Kent Overstreetcafe5632013-03-23 16:11:31 -0700617 * to keep gens from wrapping around.
618 */
619 uint8_t need_gc;
620 struct gc_stat gc_stats;
621 size_t nbuckets;
Tang Junhuid44c2f92017-10-30 14:46:33 -0700622 size_t avail_nbuckets;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700623
Kent Overstreet72a44512013-10-24 17:19:26 -0700624 struct task_struct *gc_thread;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700625 /* Where in the btree gc currently is */
626 struct bkey gc_done;
627
628 /*
629 * The allocation code needs gc_mark in struct bucket to be correct, but
630 * it's not while a gc is in progress. Protected by bucket_lock.
631 */
632 int gc_mark_valid;
633
634 /* Counts how many sectors bio_insert has added to the cache */
635 atomic_t sectors_to_gc;
Kent Overstreetbe628be2016-10-26 20:31:17 -0700636 wait_queue_head_t gc_wait;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700637
Kent Overstreetcafe5632013-03-23 16:11:31 -0700638 struct keybuf moving_gc_keys;
639 /* Number of moving GC bios in flight */
Kent Overstreet72a44512013-10-24 17:19:26 -0700640 struct semaphore moving_in_flight;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700641
Nicholas Swensonda415a02014-01-09 16:03:04 -0800642 struct workqueue_struct *moving_gc_wq;
643
Kent Overstreetcafe5632013-03-23 16:11:31 -0700644 struct btree *root;
645
646#ifdef CONFIG_BCACHE_DEBUG
647 struct btree *verify_data;
Kent Overstreet78b77bf2013-12-17 22:49:08 -0800648 struct bset *verify_ondisk;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700649 struct mutex verify_lock;
650#endif
651
Coly Li6f10f7d2018-08-11 13:19:44 +0800652 unsigned int nr_uuids;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700653 struct uuid_entry *uuids;
654 BKEY_PADDED(uuid_bucket);
Kent Overstreetcb7a5832013-12-16 15:27:25 -0800655 struct closure uuid_write;
656 struct semaphore uuid_write_mutex;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700657
658 /*
659 * A btree node on disk could have too many bsets for an iterator to fit
Kent Overstreet57943512013-04-25 13:58:35 -0700660 * on the stack - have to dynamically allocate them
Kent Overstreetcafe5632013-03-23 16:11:31 -0700661 */
Kent Overstreetd19936a2018-05-20 18:25:51 -0400662 mempool_t fill_iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700663
Kent Overstreet67539e82013-09-10 22:53:34 -0700664 struct bset_sort_state sort;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700665
666 /* List of buckets we're currently writing data to */
667 struct list_head data_buckets;
668 spinlock_t data_bucket_lock;
669
670 struct journal journal;
671
672#define CONGESTED_MAX 1024
Coly Li6f10f7d2018-08-11 13:19:44 +0800673 unsigned int congested_last_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700674 atomic_t congested;
675
676 /* The rest of this all shows up in sysfs */
Coly Li6f10f7d2018-08-11 13:19:44 +0800677 unsigned int congested_read_threshold_us;
678 unsigned int congested_write_threshold_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700679
Kent Overstreetcafe5632013-03-23 16:11:31 -0700680 struct time_stats btree_gc_time;
681 struct time_stats btree_split_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700682 struct time_stats btree_read_time;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700683
684 atomic_long_t cache_read_races;
685 atomic_long_t writeback_keys_done;
686 atomic_long_t writeback_keys_failed;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700687
Tang Junhuia728eac2018-02-07 11:41:39 -0800688 atomic_long_t reclaim;
689 atomic_long_t flush_write;
690 atomic_long_t retry_flush_write;
691
Kent Overstreet77c320e2013-07-11 19:42:51 -0700692 enum {
693 ON_ERROR_UNREGISTER,
694 ON_ERROR_PANIC,
695 } on_error;
Coly Li7ba0d832018-02-07 11:41:42 -0800696#define DEFAULT_IO_ERROR_LIMIT 8
Coly Li6f10f7d2018-08-11 13:19:44 +0800697 unsigned int error_limit;
698 unsigned int error_decay;
Kent Overstreet77c320e2013-07-11 19:42:51 -0700699
Kent Overstreetcafe5632013-03-23 16:11:31 -0700700 unsigned short journal_delay_ms;
Kent Overstreeta85e9682013-12-20 17:28:16 -0800701 bool expensive_debug_checks;
Coly Li6f10f7d2018-08-11 13:19:44 +0800702 unsigned int verify:1;
703 unsigned int key_merging_disabled:1;
704 unsigned int gc_always_rewrite:1;
705 unsigned int shrinker_disabled:1;
706 unsigned int copy_gc_enabled:1;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700707
708#define BUCKET_HASH_BITS 12
709 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS];
Tang Junhuic4dc2492018-02-07 11:41:40 -0800710
711 DECLARE_HEAP(struct btree *, flush_btree);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700712};
713
Kent Overstreetcafe5632013-03-23 16:11:31 -0700714struct bbio {
Coly Li6f10f7d2018-08-11 13:19:44 +0800715 unsigned int submit_time_us;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700716 union {
717 struct bkey key;
718 uint64_t _pad[3];
719 /*
720 * We only need pad = 3 here because we only ever carry around a
721 * single pointer - i.e. the pointer we're doing io to/from.
722 */
723 };
724 struct bio bio;
725};
726
Kent Overstreetcafe5632013-03-23 16:11:31 -0700727#define BTREE_PRIO USHRT_MAX
Kent Overstreete0a985a2013-11-12 13:49:10 -0800728#define INITIAL_PRIO 32768U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700729
730#define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE)
731#define btree_blocks(b) \
Coly Li6f10f7d2018-08-11 13:19:44 +0800732 ((unsigned int) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700733
734#define btree_default_blocks(c) \
Coly Li6f10f7d2018-08-11 13:19:44 +0800735 ((unsigned int) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700736
737#define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS)
738#define bucket_bytes(c) ((c)->sb.bucket_size << 9)
739#define block_bytes(c) ((c)->sb.block_size << 9)
740
Kent Overstreetcafe5632013-03-23 16:11:31 -0700741#define prios_per_bucket(c) \
742 ((bucket_bytes(c) - sizeof(struct prio_set)) / \
743 sizeof(struct bucket_disk))
744#define prio_buckets(c) \
745 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
746
Kent Overstreetcafe5632013-03-23 16:11:31 -0700747static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
748{
749 return s >> c->bucket_bits;
750}
751
752static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
753{
754 return ((sector_t) b) << c->bucket_bits;
755}
756
757static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
758{
759 return s & (c->sb.bucket_size - 1);
760}
761
762static inline struct cache *PTR_CACHE(struct cache_set *c,
763 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800764 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700765{
766 return c->cache[PTR_DEV(k, ptr)];
767}
768
769static inline size_t PTR_BUCKET_NR(struct cache_set *c,
770 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800771 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700772{
773 return sector_to_bucket(c, PTR_OFFSET(k, ptr));
774}
775
776static inline struct bucket *PTR_BUCKET(struct cache_set *c,
777 const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800778 unsigned int ptr)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700779{
780 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
781}
782
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800783static inline uint8_t gen_after(uint8_t a, uint8_t b)
784{
785 uint8_t r = a - b;
786 return r > 128U ? 0 : r;
787}
788
789static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800790 unsigned int i)
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800791{
792 return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
793}
794
795static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
Coly Li6f10f7d2018-08-11 13:19:44 +0800796 unsigned int i)
Kent Overstreet9a02b7e2013-12-20 17:24:46 -0800797{
798 return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
799}
800
Kent Overstreetcafe5632013-03-23 16:11:31 -0700801/* Btree key macros */
802
Kent Overstreetcafe5632013-03-23 16:11:31 -0700803/*
804 * This is used for various on disk data structures - cache_sb, prio_set, bset,
805 * jset: The checksum is _always_ the first 8 bytes of these structs
806 */
807#define csum_set(i) \
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600808 bch_crc64(((void *) (i)) + sizeof(uint64_t), \
Kent Overstreetfafff812013-12-17 21:56:21 -0800809 ((void *) bset_bkey_last(i)) - \
810 (((void *) (i)) + sizeof(uint64_t)))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700811
812/* Error handling macros */
813
814#define btree_bug(b, ...) \
815do { \
816 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \
817 dump_stack(); \
818} while (0)
819
820#define cache_bug(c, ...) \
821do { \
822 if (bch_cache_set_error(c, __VA_ARGS__)) \
823 dump_stack(); \
824} while (0)
825
826#define btree_bug_on(cond, b, ...) \
827do { \
828 if (cond) \
829 btree_bug(b, __VA_ARGS__); \
830} while (0)
831
832#define cache_bug_on(cond, c, ...) \
833do { \
834 if (cond) \
835 cache_bug(c, __VA_ARGS__); \
836} while (0)
837
838#define cache_set_err_on(cond, c, ...) \
839do { \
840 if (cond) \
841 bch_cache_set_error(c, __VA_ARGS__); \
842} while (0)
843
844/* Looping macros */
845
846#define for_each_cache(ca, cs, iter) \
847 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
848
849#define for_each_bucket(b, ca) \
850 for (b = (ca)->buckets + (ca)->sb.first_bucket; \
851 b < (ca)->buckets + (ca)->sb.nbuckets; b++)
852
Kent Overstreetcafe5632013-03-23 16:11:31 -0700853static inline void cached_dev_put(struct cached_dev *dc)
854{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700855 if (refcount_dec_and_test(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700856 schedule_work(&dc->detach);
857}
858
859static inline bool cached_dev_get(struct cached_dev *dc)
860{
Elena Reshetova3b304d22017-10-30 14:46:32 -0700861 if (!refcount_inc_not_zero(&dc->count))
Kent Overstreetcafe5632013-03-23 16:11:31 -0700862 return false;
863
864 /* Paired with the mb in cached_dev_attach */
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100865 smp_mb__after_atomic();
Kent Overstreetcafe5632013-03-23 16:11:31 -0700866 return true;
867}
868
869/*
870 * bucket_gc_gen() returns the difference between the bucket's current gen and
871 * the oldest gen of any pointer into that bucket in the btree (last_gc).
Kent Overstreetcafe5632013-03-23 16:11:31 -0700872 */
873
874static inline uint8_t bucket_gc_gen(struct bucket *b)
875{
876 return b->gen - b->last_gc;
877}
878
Kent Overstreetcafe5632013-03-23 16:11:31 -0700879#define BUCKET_GC_GEN_MAX 96U
Kent Overstreetcafe5632013-03-23 16:11:31 -0700880
881#define kobj_attribute_write(n, fn) \
882 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
883
884#define kobj_attribute_rw(n, show, store) \
885 static struct kobj_attribute ksysfs_##n = \
886 __ATTR(n, S_IWUSR|S_IRUSR, show, store)
887
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700888static inline void wake_up_allocators(struct cache_set *c)
889{
890 struct cache *ca;
Coly Li6f10f7d2018-08-11 13:19:44 +0800891 unsigned int i;
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700892
893 for_each_cache(ca, c, i)
894 wake_up_process(ca->alloc_thread);
895}
896
Coly Li771f3932018-03-18 17:36:17 -0700897static inline void closure_bio_submit(struct cache_set *c,
898 struct bio *bio,
899 struct closure *cl)
900{
901 closure_get(cl);
902 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) {
903 bio->bi_status = BLK_STS_IOERR;
904 bio_endio(bio);
905 return;
906 }
907 generic_make_request(bio);
908}
909
910/*
911 * Prevent the kthread exits directly, and make sure when kthread_stop()
912 * is called to stop a kthread, it is still alive. If a kthread might be
913 * stopped by CACHE_SET_IO_DISABLE bit set, wait_for_kthread_stop() is
914 * necessary before the kthread returns.
915 */
916static inline void wait_for_kthread_stop(void)
917{
918 while (!kthread_should_stop()) {
919 set_current_state(TASK_INTERRUPTIBLE);
920 schedule();
921 }
922}
923
Kent Overstreetcafe5632013-03-23 16:11:31 -0700924/* Forward declarations */
925
Coly Lic7b7bd02018-03-18 17:36:25 -0700926void bch_count_backing_io_errors(struct cached_dev *dc, struct bio *bio);
Coly Li5138ac62018-01-08 12:21:29 -0800927void bch_count_io_errors(struct cache *, blk_status_t, int, const char *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700928void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200929 blk_status_t, const char *);
930void bch_bbio_endio(struct cache_set *, struct bio *, blk_status_t,
931 const char *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700932void bch_bbio_free(struct bio *, struct cache_set *);
933struct bio *bch_bbio_alloc(struct cache_set *);
934
Kent Overstreetcafe5632013-03-23 16:11:31 -0700935void __bch_submit_bbio(struct bio *, struct cache_set *);
Coly Li6f10f7d2018-08-11 13:19:44 +0800936void bch_submit_bbio(struct bio *, struct cache_set *,
937 struct bkey *, unsigned int);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700938
939uint8_t bch_inc_gen(struct cache *, struct bucket *);
940void bch_rescale_priorities(struct cache_set *, int);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700941
Kent Overstreet2531d9ee2014-03-17 16:55:55 -0700942bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
943void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
944
945void __bch_bucket_free(struct cache *, struct bucket *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700946void bch_bucket_free(struct cache_set *, struct bkey *);
947
Coly Li6f10f7d2018-08-11 13:19:44 +0800948long bch_bucket_alloc(struct cache *, unsigned int, bool);
949int __bch_bucket_alloc_set(struct cache_set *, unsigned int,
Kent Overstreet35fcd842013-07-24 17:29:09 -0700950 struct bkey *, int, bool);
Coly Li6f10f7d2018-08-11 13:19:44 +0800951int bch_bucket_alloc_set(struct cache_set *, unsigned int,
Kent Overstreet35fcd842013-07-24 17:29:09 -0700952 struct bkey *, int, bool);
Coly Li6f10f7d2018-08-11 13:19:44 +0800953bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned int,
954 unsigned int, unsigned int, bool);
Coly Lic7b7bd02018-03-18 17:36:25 -0700955bool bch_cached_dev_error(struct cached_dev *dc);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700956
957__printf(2, 3)
958bool bch_cache_set_error(struct cache_set *, const char *, ...);
959
960void bch_prio_write(struct cache *);
961void bch_write_bdev_super(struct cached_dev *, struct closure *);
962
Kent Overstreet72a44512013-10-24 17:19:26 -0700963extern struct workqueue_struct *bcache_wq;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700964extern struct mutex bch_register_lock;
965extern struct list_head bch_cache_sets;
966
967extern struct kobj_type bch_cached_dev_ktype;
968extern struct kobj_type bch_flash_dev_ktype;
969extern struct kobj_type bch_cache_set_ktype;
970extern struct kobj_type bch_cache_set_internal_ktype;
971extern struct kobj_type bch_cache_ktype;
972
973void bch_cached_dev_release(struct kobject *);
974void bch_flash_dev_release(struct kobject *);
975void bch_cache_set_release(struct kobject *);
976void bch_cache_release(struct kobject *);
977
978int bch_uuid_write(struct cache_set *);
979void bcache_write_super(struct cache_set *);
980
981int bch_flash_dev_create(struct cache_set *c, uint64_t size);
982
Tang Junhui73ac1052018-02-07 11:41:46 -0800983int bch_cached_dev_attach(struct cached_dev *, struct cache_set *, uint8_t *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700984void bch_cached_dev_detach(struct cached_dev *);
985void bch_cached_dev_run(struct cached_dev *);
986void bcache_device_stop(struct bcache_device *);
987
988void bch_cache_set_unregister(struct cache_set *);
989void bch_cache_set_stop(struct cache_set *);
990
991struct cache_set *bch_cache_set_alloc(struct cache_sb *);
992void bch_btree_cache_free(struct cache_set *);
993int bch_btree_cache_alloc(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700994void bch_moving_init_cache_set(struct cache_set *);
Kent Overstreet2599b532013-07-24 18:11:11 -0700995int bch_open_buckets_alloc(struct cache_set *);
996void bch_open_buckets_free(struct cache_set *);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700997
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700998int bch_cache_allocator_start(struct cache *ca);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700999
1000void bch_debug_exit(void);
Coly Li78ac2102018-08-09 15:48:42 +08001001void bch_debug_init(struct kobject *kobj);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001002void bch_request_exit(void);
1003int bch_request_init(void);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001004
1005#endif /* _BCACHE_H */