Chen-Yu Tsai | 745373e | 2018-01-17 16:46:47 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2018 Chen-Yu Tsai |
| 4 | * |
| 5 | * Chen-Yu Tsai <wens@csie.org> |
| 6 | * |
| 7 | * arch/arm/mach-sunxi/mc_smp.c |
| 8 | * |
| 9 | * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and |
| 10 | * arch/arm/mach-hisi/platmcpm.c |
| 11 | * Cluster cache enable trampoline code adapted from MCPM framework |
| 12 | */ |
| 13 | |
| 14 | #include <linux/arm-cci.h> |
| 15 | #include <linux/cpu_pm.h> |
| 16 | #include <linux/delay.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/of.h> |
| 19 | #include <linux/of_address.h> |
| 20 | #include <linux/of_device.h> |
| 21 | #include <linux/smp.h> |
| 22 | |
| 23 | #include <asm/cacheflush.h> |
| 24 | #include <asm/cp15.h> |
| 25 | #include <asm/cputype.h> |
| 26 | #include <asm/idmap.h> |
| 27 | #include <asm/smp_plat.h> |
| 28 | #include <asm/suspend.h> |
| 29 | |
| 30 | #define SUNXI_CPUS_PER_CLUSTER 4 |
| 31 | #define SUNXI_NR_CLUSTERS 2 |
| 32 | |
| 33 | #define CPUCFG_CX_CTRL_REG0(c) (0x10 * (c)) |
| 34 | #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n) BIT(n) |
| 35 | #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL 0xf |
| 36 | #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7 BIT(4) |
| 37 | #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15 BIT(0) |
| 38 | #define CPUCFG_CX_CTRL_REG1(c) (0x10 * (c) + 0x4) |
| 39 | #define CPUCFG_CX_CTRL_REG1_ACINACTM BIT(0) |
| 40 | #define CPUCFG_CX_RST_CTRL(c) (0x80 + 0x4 * (c)) |
| 41 | #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST BIT(24) |
| 42 | #define CPUCFG_CX_RST_CTRL_ETM_RST(n) BIT(20 + (n)) |
| 43 | #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL (0xf << 20) |
| 44 | #define CPUCFG_CX_RST_CTRL_DBG_RST(n) BIT(16 + (n)) |
| 45 | #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL (0xf << 16) |
| 46 | #define CPUCFG_CX_RST_CTRL_H_RST BIT(12) |
| 47 | #define CPUCFG_CX_RST_CTRL_L2_RST BIT(8) |
| 48 | #define CPUCFG_CX_RST_CTRL_CX_RST(n) BIT(4 + (n)) |
| 49 | #define CPUCFG_CX_RST_CTRL_CORE_RST(n) BIT(n) |
| 50 | |
| 51 | #define PRCM_CPU_PO_RST_CTRL(c) (0x4 + 0x4 * (c)) |
| 52 | #define PRCM_CPU_PO_RST_CTRL_CORE(n) BIT(n) |
| 53 | #define PRCM_CPU_PO_RST_CTRL_CORE_ALL 0xf |
| 54 | #define PRCM_PWROFF_GATING_REG(c) (0x100 + 0x4 * (c)) |
| 55 | #define PRCM_PWROFF_GATING_REG_CLUSTER BIT(4) |
| 56 | #define PRCM_PWROFF_GATING_REG_CORE(n) BIT(n) |
| 57 | #define PRCM_PWR_SWITCH_REG(c, cpu) (0x140 + 0x10 * (c) + 0x4 * (cpu)) |
| 58 | #define PRCM_CPU_SOFT_ENTRY_REG 0x164 |
| 59 | |
| 60 | static void __iomem *cpucfg_base; |
| 61 | static void __iomem *prcm_base; |
| 62 | |
| 63 | static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster) |
| 64 | { |
| 65 | struct device_node *node; |
| 66 | int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core; |
| 67 | |
| 68 | node = of_cpu_device_node_get(cpu); |
| 69 | |
| 70 | /* In case of_cpu_device_node_get fails */ |
| 71 | if (!node) |
| 72 | node = of_get_cpu_node(cpu, NULL); |
| 73 | |
| 74 | if (!node) { |
| 75 | /* |
| 76 | * There's no point in returning an error, since we |
| 77 | * would be mid way in a core or cluster power sequence. |
| 78 | */ |
| 79 | pr_err("%s: Couldn't get CPU cluster %u core %u device node\n", |
| 80 | __func__, cluster, core); |
| 81 | |
| 82 | return false; |
| 83 | } |
| 84 | |
| 85 | return of_device_is_compatible(node, "arm,cortex-a15"); |
| 86 | } |
| 87 | |
| 88 | static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster, |
| 89 | bool enable) |
| 90 | { |
| 91 | u32 reg; |
| 92 | |
| 93 | /* control sequence from Allwinner A80 user manual v1.2 PRCM section */ |
| 94 | reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 95 | if (enable) { |
| 96 | if (reg == 0x00) { |
| 97 | pr_debug("power clamp for cluster %u cpu %u already open\n", |
| 98 | cluster, cpu); |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 103 | udelay(10); |
| 104 | writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 105 | udelay(10); |
| 106 | writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 107 | udelay(10); |
| 108 | writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 109 | udelay(10); |
| 110 | writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 111 | udelay(10); |
| 112 | } else { |
| 113 | writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); |
| 114 | udelay(10); |
| 115 | } |
| 116 | |
| 117 | return 0; |
| 118 | } |
| 119 | |
| 120 | static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster) |
| 121 | { |
| 122 | u32 reg; |
| 123 | |
| 124 | pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); |
| 125 | if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS) |
| 126 | return -EINVAL; |
| 127 | |
| 128 | /* assert processor power-on reset */ |
| 129 | reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); |
| 130 | reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu); |
| 131 | writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); |
| 132 | |
| 133 | /* Cortex-A7: hold L1 reset disable signal low */ |
| 134 | if (!sunxi_core_is_cortex_a15(cpu, cluster)) { |
| 135 | reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); |
| 136 | reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu); |
| 137 | writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); |
| 138 | } |
| 139 | |
| 140 | /* assert processor related resets */ |
| 141 | reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 142 | reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu); |
| 143 | |
| 144 | /* |
| 145 | * Allwinner code also asserts resets for NEON on A15. According |
| 146 | * to ARM manuals, asserting power-on reset is sufficient. |
| 147 | */ |
| 148 | if (!sunxi_core_is_cortex_a15(cpu, cluster)) |
| 149 | reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu); |
| 150 | |
| 151 | writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 152 | |
| 153 | /* open power switch */ |
| 154 | sunxi_cpu_power_switch_set(cpu, cluster, true); |
| 155 | |
| 156 | /* clear processor power gate */ |
| 157 | reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); |
| 158 | reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu); |
| 159 | writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); |
| 160 | udelay(20); |
| 161 | |
| 162 | /* de-assert processor power-on reset */ |
| 163 | reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); |
| 164 | reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu); |
| 165 | writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); |
| 166 | |
| 167 | /* de-assert all processor resets */ |
| 168 | reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 169 | reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu); |
| 170 | reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu); |
| 171 | if (!sunxi_core_is_cortex_a15(cpu, cluster)) |
| 172 | reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu); |
| 173 | else |
| 174 | reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */ |
| 175 | writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 176 | |
| 177 | return 0; |
| 178 | } |
| 179 | |
| 180 | static int sunxi_cluster_powerup(unsigned int cluster) |
| 181 | { |
| 182 | u32 reg; |
| 183 | |
| 184 | pr_debug("%s: cluster %u\n", __func__, cluster); |
| 185 | if (cluster >= SUNXI_NR_CLUSTERS) |
| 186 | return -EINVAL; |
| 187 | |
| 188 | /* assert ACINACTM */ |
| 189 | reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); |
| 190 | reg |= CPUCFG_CX_CTRL_REG1_ACINACTM; |
| 191 | writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); |
| 192 | |
| 193 | /* assert cluster processor power-on resets */ |
| 194 | reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); |
| 195 | reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL; |
| 196 | writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); |
| 197 | |
| 198 | /* assert cluster resets */ |
| 199 | reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 200 | reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST; |
| 201 | reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL; |
| 202 | reg &= ~CPUCFG_CX_RST_CTRL_H_RST; |
| 203 | reg &= ~CPUCFG_CX_RST_CTRL_L2_RST; |
| 204 | |
| 205 | /* |
| 206 | * Allwinner code also asserts resets for NEON on A15. According |
| 207 | * to ARM manuals, asserting power-on reset is sufficient. |
| 208 | */ |
| 209 | if (!sunxi_core_is_cortex_a15(0, cluster)) |
| 210 | reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL; |
| 211 | |
| 212 | writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 213 | |
| 214 | /* hold L1/L2 reset disable signals low */ |
| 215 | reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); |
| 216 | if (sunxi_core_is_cortex_a15(0, cluster)) { |
| 217 | /* Cortex-A15: hold L2RSTDISABLE low */ |
| 218 | reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15; |
| 219 | } else { |
| 220 | /* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */ |
| 221 | reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL; |
| 222 | reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7; |
| 223 | } |
| 224 | writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); |
| 225 | |
| 226 | /* clear cluster power gate */ |
| 227 | reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); |
| 228 | reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER; |
| 229 | writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); |
| 230 | udelay(20); |
| 231 | |
| 232 | /* de-assert cluster resets */ |
| 233 | reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 234 | reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST; |
| 235 | reg |= CPUCFG_CX_RST_CTRL_H_RST; |
| 236 | reg |= CPUCFG_CX_RST_CTRL_L2_RST; |
| 237 | writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); |
| 238 | |
| 239 | /* de-assert ACINACTM */ |
| 240 | reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); |
| 241 | reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM; |
| 242 | writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * This bit is shared between the initial nocache_trampoline call to |
| 249 | * enable CCI-400 and proper cluster cache disable before power down. |
| 250 | */ |
| 251 | static void sunxi_cluster_cache_disable_without_axi(void) |
| 252 | { |
| 253 | if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { |
| 254 | /* |
| 255 | * On the Cortex-A15 we need to disable |
| 256 | * L2 prefetching before flushing the cache. |
| 257 | */ |
| 258 | asm volatile( |
| 259 | "mcr p15, 1, %0, c15, c0, 3\n" |
| 260 | "isb\n" |
| 261 | "dsb" |
| 262 | : : "r" (0x400)); |
| 263 | } |
| 264 | |
| 265 | /* Flush all cache levels for this cluster. */ |
| 266 | v7_exit_coherency_flush(all); |
| 267 | |
| 268 | /* |
| 269 | * Disable cluster-level coherency by masking |
| 270 | * incoming snoops and DVM messages: |
| 271 | */ |
| 272 | cci_disable_port_by_cpu(read_cpuid_mpidr()); |
| 273 | } |
| 274 | |
| 275 | static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER]; |
| 276 | static int sunxi_mc_smp_first_comer; |
| 277 | |
| 278 | /* |
| 279 | * Enable cluster-level coherency, in preparation for turning on the MMU. |
| 280 | * |
| 281 | * Also enable regional clock gating and L2 data latency settings for |
| 282 | * Cortex-A15. These settings are from the vendor kernel. |
| 283 | */ |
| 284 | static void __naked sunxi_mc_smp_cluster_cache_enable(void) |
| 285 | { |
| 286 | asm volatile ( |
| 287 | "mrc p15, 0, r1, c0, c0, 0\n" |
| 288 | "movw r2, #" __stringify(ARM_CPU_PART_MASK & 0xffff) "\n" |
| 289 | "movt r2, #" __stringify(ARM_CPU_PART_MASK >> 16) "\n" |
| 290 | "and r1, r1, r2\n" |
| 291 | "movw r2, #" __stringify(ARM_CPU_PART_CORTEX_A15 & 0xffff) "\n" |
| 292 | "movt r2, #" __stringify(ARM_CPU_PART_CORTEX_A15 >> 16) "\n" |
| 293 | "cmp r1, r2\n" |
| 294 | "bne not_a15\n" |
| 295 | |
| 296 | /* The following is Cortex-A15 specific */ |
| 297 | |
| 298 | /* ACTLR2: Enable CPU regional clock gates */ |
| 299 | "mrc p15, 1, r1, c15, c0, 4\n" |
| 300 | "orr r1, r1, #(0x1<<31)\n" |
| 301 | "mcr p15, 1, r1, c15, c0, 4\n" |
| 302 | |
| 303 | /* L2ACTLR */ |
| 304 | "mrc p15, 1, r1, c15, c0, 0\n" |
| 305 | /* Enable L2, GIC, and Timer regional clock gates */ |
| 306 | "orr r1, r1, #(0x1<<26)\n" |
| 307 | /* Disable clean/evict from being pushed to external */ |
| 308 | "orr r1, r1, #(0x1<<3)\n" |
| 309 | "mcr p15, 1, r1, c15, c0, 0\n" |
| 310 | |
| 311 | /* L2CTRL: L2 data RAM latency */ |
| 312 | "mrc p15, 1, r1, c9, c0, 2\n" |
| 313 | "bic r1, r1, #(0x7<<0)\n" |
| 314 | "orr r1, r1, #(0x3<<0)\n" |
| 315 | "mcr p15, 1, r1, c9, c0, 2\n" |
| 316 | |
| 317 | /* End of Cortex-A15 specific setup */ |
| 318 | "not_a15:\n" |
| 319 | |
| 320 | /* Get value of sunxi_mc_smp_first_comer */ |
| 321 | "adr r1, first\n" |
| 322 | "ldr r0, [r1]\n" |
| 323 | "ldr r0, [r1, r0]\n" |
| 324 | |
| 325 | /* Skip cci_enable_port_for_self if not first comer */ |
| 326 | "cmp r0, #0\n" |
| 327 | "bxeq lr\n" |
| 328 | "b cci_enable_port_for_self\n" |
| 329 | |
| 330 | ".align 2\n" |
| 331 | "first: .word sunxi_mc_smp_first_comer - .\n" |
| 332 | ); |
| 333 | } |
| 334 | |
| 335 | static void __naked sunxi_mc_smp_secondary_startup(void) |
| 336 | { |
| 337 | asm volatile( |
| 338 | "bl sunxi_mc_smp_cluster_cache_enable\n" |
| 339 | "b secondary_startup" |
| 340 | /* Let compiler know about sunxi_mc_smp_cluster_cache_enable */ |
| 341 | :: "i" (sunxi_mc_smp_cluster_cache_enable) |
| 342 | ); |
| 343 | } |
| 344 | |
| 345 | static DEFINE_SPINLOCK(boot_lock); |
| 346 | |
| 347 | static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster) |
| 348 | { |
| 349 | int i; |
| 350 | |
| 351 | for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++) |
| 352 | if (sunxi_mc_smp_cpu_table[cluster][i]) |
| 353 | return false; |
| 354 | return true; |
| 355 | } |
| 356 | |
| 357 | static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle) |
| 358 | { |
| 359 | unsigned int mpidr, cpu, cluster; |
| 360 | |
| 361 | mpidr = cpu_logical_map(l_cpu); |
| 362 | cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 363 | cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| 364 | |
| 365 | if (!cpucfg_base) |
| 366 | return -ENODEV; |
| 367 | if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) |
| 368 | return -EINVAL; |
| 369 | |
| 370 | spin_lock_irq(&boot_lock); |
| 371 | |
| 372 | if (sunxi_mc_smp_cpu_table[cluster][cpu]) |
| 373 | goto out; |
| 374 | |
| 375 | if (sunxi_mc_smp_cluster_is_down(cluster)) { |
| 376 | sunxi_mc_smp_first_comer = true; |
| 377 | sunxi_cluster_powerup(cluster); |
| 378 | } else { |
| 379 | sunxi_mc_smp_first_comer = false; |
| 380 | } |
| 381 | |
| 382 | /* This is read by incoming CPUs with their cache and MMU disabled */ |
| 383 | sync_cache_w(&sunxi_mc_smp_first_comer); |
| 384 | sunxi_cpu_powerup(cpu, cluster); |
| 385 | |
| 386 | out: |
| 387 | sunxi_mc_smp_cpu_table[cluster][cpu]++; |
| 388 | spin_unlock_irq(&boot_lock); |
| 389 | |
| 390 | return 0; |
| 391 | } |
| 392 | |
| 393 | static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = { |
| 394 | .smp_boot_secondary = sunxi_mc_smp_boot_secondary, |
| 395 | }; |
| 396 | |
| 397 | static bool __init sunxi_mc_smp_cpu_table_init(void) |
| 398 | { |
| 399 | unsigned int mpidr, cpu, cluster; |
| 400 | |
| 401 | mpidr = read_cpuid_mpidr(); |
| 402 | cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
| 403 | cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
| 404 | |
| 405 | if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) { |
| 406 | pr_err("%s: boot CPU is out of bounds!\n", __func__); |
| 407 | return false; |
| 408 | } |
| 409 | sunxi_mc_smp_cpu_table[cluster][cpu] = 1; |
| 410 | return true; |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * Adapted from arch/arm/common/mc_smp_entry.c |
| 415 | * |
| 416 | * We need the trampoline code to enable CCI-400 on the first cluster |
| 417 | */ |
| 418 | typedef typeof(cpu_reset) phys_reset_t; |
| 419 | |
| 420 | static void __init __naked sunxi_mc_smp_resume(void) |
| 421 | { |
| 422 | asm volatile( |
| 423 | "bl sunxi_mc_smp_cluster_cache_enable\n" |
| 424 | "b cpu_resume" |
| 425 | /* Let compiler know about sunxi_mc_smp_cluster_cache_enable */ |
| 426 | :: "i" (sunxi_mc_smp_cluster_cache_enable) |
| 427 | ); |
| 428 | } |
| 429 | |
| 430 | static int __init nocache_trampoline(unsigned long __unused) |
| 431 | { |
| 432 | phys_reset_t phys_reset; |
| 433 | |
| 434 | setup_mm_for_reboot(); |
| 435 | sunxi_cluster_cache_disable_without_axi(); |
| 436 | |
| 437 | phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); |
| 438 | phys_reset(__pa_symbol(sunxi_mc_smp_resume), false); |
| 439 | BUG(); |
| 440 | } |
| 441 | |
| 442 | static int __init sunxi_mc_smp_lookback(void) |
| 443 | { |
| 444 | int ret; |
| 445 | |
| 446 | /* |
| 447 | * We're going to soft-restart the current CPU through the |
| 448 | * low-level MCPM code by leveraging the suspend/resume |
| 449 | * infrastructure. Let's play it safe by using cpu_pm_enter() |
| 450 | * in case the CPU init code path resets the VFP or similar. |
| 451 | */ |
| 452 | sunxi_mc_smp_first_comer = true; |
| 453 | local_irq_disable(); |
| 454 | local_fiq_disable(); |
| 455 | ret = cpu_pm_enter(); |
| 456 | if (!ret) { |
| 457 | ret = cpu_suspend(0, nocache_trampoline); |
| 458 | cpu_pm_exit(); |
| 459 | } |
| 460 | local_fiq_enable(); |
| 461 | local_irq_enable(); |
| 462 | sunxi_mc_smp_first_comer = false; |
| 463 | |
| 464 | return ret; |
| 465 | } |
| 466 | |
| 467 | static int __init sunxi_mc_smp_init(void) |
| 468 | { |
| 469 | struct device_node *cpucfg_node, *node; |
| 470 | struct resource res; |
| 471 | int ret; |
| 472 | |
| 473 | if (!of_machine_is_compatible("allwinner,sun9i-a80")) |
| 474 | return -ENODEV; |
| 475 | |
| 476 | if (!sunxi_mc_smp_cpu_table_init()) |
| 477 | return -EINVAL; |
| 478 | |
| 479 | if (!cci_probed()) { |
| 480 | pr_err("%s: CCI-400 not available\n", __func__); |
| 481 | return -ENODEV; |
| 482 | } |
| 483 | |
| 484 | node = of_find_compatible_node(NULL, NULL, "allwinner,sun9i-a80-prcm"); |
| 485 | if (!node) { |
| 486 | pr_err("%s: PRCM not available\n", __func__); |
| 487 | return -ENODEV; |
| 488 | } |
| 489 | |
| 490 | /* |
| 491 | * Unfortunately we can not request the I/O region for the PRCM. |
| 492 | * It is shared with the PRCM clock. |
| 493 | */ |
| 494 | prcm_base = of_iomap(node, 0); |
| 495 | of_node_put(node); |
| 496 | if (!prcm_base) { |
| 497 | pr_err("%s: failed to map PRCM registers\n", __func__); |
| 498 | return -ENOMEM; |
| 499 | } |
| 500 | |
| 501 | cpucfg_node = of_find_compatible_node(NULL, NULL, |
| 502 | "allwinner,sun9i-a80-cpucfg"); |
| 503 | if (!cpucfg_node) { |
| 504 | ret = -ENODEV; |
| 505 | pr_err("%s: CPUCFG not available\n", __func__); |
| 506 | goto err_unmap_prcm; |
| 507 | } |
| 508 | |
| 509 | cpucfg_base = of_io_request_and_map(cpucfg_node, 0, "sunxi-mc-smp"); |
| 510 | if (IS_ERR(cpucfg_base)) { |
| 511 | ret = PTR_ERR(cpucfg_base); |
| 512 | pr_err("%s: failed to map CPUCFG registers: %d\n", |
| 513 | __func__, ret); |
| 514 | goto err_put_cpucfg_node; |
| 515 | } |
| 516 | |
| 517 | /* Configure CCI-400 for boot cluster */ |
| 518 | ret = sunxi_mc_smp_lookback(); |
| 519 | if (ret) { |
| 520 | pr_err("%s: failed to configure boot cluster: %d\n", |
| 521 | __func__, ret); |
| 522 | goto err_unmap_release_cpucfg; |
| 523 | } |
| 524 | |
| 525 | /* We don't need the CPUCFG device node anymore */ |
| 526 | of_node_put(cpucfg_node); |
| 527 | |
| 528 | /* Set the hardware entry point address */ |
| 529 | writel(__pa_symbol(sunxi_mc_smp_secondary_startup), |
| 530 | prcm_base + PRCM_CPU_SOFT_ENTRY_REG); |
| 531 | |
| 532 | /* Actually enable multi cluster SMP */ |
| 533 | smp_set_ops(&sunxi_mc_smp_smp_ops); |
| 534 | |
| 535 | pr_info("sunxi multi cluster SMP support installed\n"); |
| 536 | |
| 537 | return 0; |
| 538 | |
| 539 | err_unmap_release_cpucfg: |
| 540 | iounmap(cpucfg_base); |
| 541 | of_address_to_resource(cpucfg_node, 0, &res); |
| 542 | release_mem_region(res.start, resource_size(&res)); |
| 543 | err_put_cpucfg_node: |
| 544 | of_node_put(cpucfg_node); |
| 545 | err_unmap_prcm: |
| 546 | iounmap(prcm_base); |
| 547 | return ret; |
| 548 | } |
| 549 | |
| 550 | early_initcall(sunxi_mc_smp_init); |