blob: db963397cc27f42fd15829ec6dc540e19af5f562 [file] [log] [blame]
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +00001/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
Carolyn Wyborny74cfb2e2014-02-25 17:58:57 -08004 Copyright(c) 2007-2014 Intel Corporation.
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +00005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
Carolyn Wyborny74cfb2e2014-02-25 17:58:57 -080016 this program; if not, see <http://www.gnu.org/licenses/>.
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +000017
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25******************************************************************************/
26
27/* e1000_i210
28 * e1000_i211
29 */
30
31#include <linux/types.h>
32#include <linux/if_ether.h>
33
34#include "e1000_hw.h"
35#include "e1000_i210.h"
36
Jeff Kirsher167f3f72014-02-25 17:58:56 -080037static s32 igb_update_flash_i210(struct e1000_hw *hw);
38
Carolyn Wyborny7916a532012-11-21 04:44:10 +000039/**
40 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
41 * @hw: pointer to the HW structure
42 *
43 * Acquire the HW semaphore to access the PHY or NVM
44 */
45static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
46{
47 u32 swsm;
Carolyn Wyborny7916a532012-11-21 04:44:10 +000048 s32 timeout = hw->nvm.word_size + 1;
49 s32 i = 0;
50
Matthew Vickd44e7a92013-03-22 07:34:20 +000051 /* Get the SW semaphore */
52 while (i < timeout) {
53 swsm = rd32(E1000_SWSM);
54 if (!(swsm & E1000_SWSM_SMBI))
55 break;
56
57 udelay(50);
58 i++;
59 }
60
61 if (i == timeout) {
62 /* In rare circumstances, the SW semaphore may already be held
63 * unintentionally. Clear the semaphore once before giving up.
64 */
65 if (hw->dev_spec._82575.clear_semaphore_once) {
66 hw->dev_spec._82575.clear_semaphore_once = false;
67 igb_put_hw_semaphore(hw);
68 for (i = 0; i < timeout; i++) {
69 swsm = rd32(E1000_SWSM);
70 if (!(swsm & E1000_SWSM_SMBI))
71 break;
72
73 udelay(50);
74 }
75 }
76
77 /* If we do not have the semaphore here, we have to give up. */
78 if (i == timeout) {
79 hw_dbg("Driver can't access device - SMBI bit is set.\n");
80 return -E1000_ERR_NVM;
81 }
82 }
83
Carolyn Wyborny7916a532012-11-21 04:44:10 +000084 /* Get the FW semaphore. */
85 for (i = 0; i < timeout; i++) {
86 swsm = rd32(E1000_SWSM);
87 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
88
89 /* Semaphore acquired if bit latched */
90 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
91 break;
92
93 udelay(50);
94 }
95
96 if (i == timeout) {
97 /* Release semaphores */
98 igb_put_hw_semaphore(hw);
99 hw_dbg("Driver can't access the NVM\n");
Matthew Vickd44e7a92013-03-22 07:34:20 +0000100 return -E1000_ERR_NVM;
Carolyn Wyborny7916a532012-11-21 04:44:10 +0000101 }
102
Matthew Vickd44e7a92013-03-22 07:34:20 +0000103 return E1000_SUCCESS;
Carolyn Wyborny7916a532012-11-21 04:44:10 +0000104}
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000105
106/**
107 * igb_acquire_nvm_i210 - Request for access to EEPROM
108 * @hw: pointer to the HW structure
109 *
110 * Acquire the necessary semaphores for exclusive access to the EEPROM.
111 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
112 * Return successful if access grant bit set, else clear the request for
113 * EEPROM access and return -E1000_ERR_NVM (-1).
114 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800115static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000116{
117 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
118}
119
120/**
121 * igb_release_nvm_i210 - Release exclusive access to EEPROM
122 * @hw: pointer to the HW structure
123 *
124 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
125 * then release the semaphores acquired.
126 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800127static void igb_release_nvm_i210(struct e1000_hw *hw)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000128{
129 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
130}
131
132/**
133 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
134 * @hw: pointer to the HW structure
135 * @mask: specifies which semaphore to acquire
136 *
137 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
138 * will also specify which port we're acquiring the lock for.
139 **/
140s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
141{
142 u32 swfw_sync;
143 u32 swmask = mask;
144 u32 fwmask = mask << 16;
145 s32 ret_val = E1000_SUCCESS;
146 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
147
148 while (i < timeout) {
149 if (igb_get_hw_semaphore_i210(hw)) {
150 ret_val = -E1000_ERR_SWFW_SYNC;
151 goto out;
152 }
153
154 swfw_sync = rd32(E1000_SW_FW_SYNC);
Matthew Vickd44e7a92013-03-22 07:34:20 +0000155 if (!(swfw_sync & (fwmask | swmask)))
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000156 break;
157
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000158 /* Firmware currently using resource (fwmask) */
Matthew Vickd44e7a92013-03-22 07:34:20 +0000159 igb_put_hw_semaphore(hw);
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000160 mdelay(5);
161 i++;
162 }
163
164 if (i == timeout) {
165 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
166 ret_val = -E1000_ERR_SWFW_SYNC;
167 goto out;
168 }
169
170 swfw_sync |= swmask;
171 wr32(E1000_SW_FW_SYNC, swfw_sync);
172
Matthew Vickd44e7a92013-03-22 07:34:20 +0000173 igb_put_hw_semaphore(hw);
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000174out:
175 return ret_val;
176}
177
178/**
179 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
180 * @hw: pointer to the HW structure
181 * @mask: specifies which semaphore to acquire
182 *
183 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
184 * will also specify which port we're releasing the lock for.
185 **/
186void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
187{
188 u32 swfw_sync;
189
190 while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
191 ; /* Empty */
192
193 swfw_sync = rd32(E1000_SW_FW_SYNC);
194 swfw_sync &= ~mask;
195 wr32(E1000_SW_FW_SYNC, swfw_sync);
196
Matthew Vickd44e7a92013-03-22 07:34:20 +0000197 igb_put_hw_semaphore(hw);
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000198}
199
200/**
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000201 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
202 * @hw: pointer to the HW structure
203 * @offset: offset of word in the Shadow Ram to read
204 * @words: number of words to read
205 * @data: word read from the Shadow Ram
206 *
207 * Reads a 16 bit word from the Shadow Ram using the EERD register.
208 * Uses necessary synchronization semaphores.
209 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800210static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
211 u16 *data)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000212{
213 s32 status = E1000_SUCCESS;
214 u16 i, count;
215
216 /* We cannot hold synchronization semaphores for too long,
217 * because of forceful takeover procedure. However it is more efficient
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000218 * to read in bursts than synchronizing access for each word.
219 */
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000220 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
221 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
222 E1000_EERD_EEWR_MAX_COUNT : (words - i);
223 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
224 status = igb_read_nvm_eerd(hw, offset, count,
225 data + i);
226 hw->nvm.ops.release(hw);
227 } else {
228 status = E1000_ERR_SWFW_SYNC;
229 }
230
231 if (status != E1000_SUCCESS)
232 break;
233 }
234
235 return status;
236}
237
238/**
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000239 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
240 * @hw: pointer to the HW structure
241 * @offset: offset within the Shadow Ram to be written to
242 * @words: number of words to write
243 * @data: 16 bit word(s) to be written to the Shadow Ram
244 *
245 * Writes data to Shadow Ram at offset using EEWR register.
246 *
247 * If igb_update_nvm_checksum is not called after this function , the
248 * Shadow Ram will most likely contain an invalid checksum.
249 **/
250static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
251 u16 *data)
252{
253 struct e1000_nvm_info *nvm = &hw->nvm;
254 u32 i, k, eewr = 0;
255 u32 attempts = 100000;
256 s32 ret_val = E1000_SUCCESS;
257
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000258 /* A check for invalid values: offset too large, too many words,
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000259 * too many words for the offset, and not enough words.
260 */
261 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
262 (words == 0)) {
263 hw_dbg("nvm parameter(s) out of bounds\n");
264 ret_val = -E1000_ERR_NVM;
265 goto out;
266 }
267
268 for (i = 0; i < words; i++) {
269 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
270 (data[i] << E1000_NVM_RW_REG_DATA) |
271 E1000_NVM_RW_REG_START;
272
273 wr32(E1000_SRWR, eewr);
274
275 for (k = 0; k < attempts; k++) {
276 if (E1000_NVM_RW_REG_DONE &
277 rd32(E1000_SRWR)) {
278 ret_val = E1000_SUCCESS;
279 break;
280 }
281 udelay(5);
282 }
283
284 if (ret_val != E1000_SUCCESS) {
285 hw_dbg("Shadow RAM write EEWR timed out\n");
286 break;
287 }
288 }
289
290out:
291 return ret_val;
292}
293
294/**
Carolyn Wyborny7916a532012-11-21 04:44:10 +0000295 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
296 * @hw: pointer to the HW structure
297 * @offset: offset within the Shadow RAM to be written to
298 * @words: number of words to write
299 * @data: 16 bit word(s) to be written to the Shadow RAM
300 *
301 * Writes data to Shadow RAM at offset using EEWR register.
302 *
303 * If e1000_update_nvm_checksum is not called after this function , the
304 * data will not be committed to FLASH and also Shadow RAM will most likely
305 * contain an invalid checksum.
306 *
307 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
308 * partially written.
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000309 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800310static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
311 u16 *data)
Carolyn Wyborny7916a532012-11-21 04:44:10 +0000312{
313 s32 status = E1000_SUCCESS;
314 u16 i, count;
315
316 /* We cannot hold synchronization semaphores for too long,
317 * because of forceful takeover procedure. However it is more efficient
318 * to write in bursts than synchronizing access for each word.
319 */
320 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
321 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
322 E1000_EERD_EEWR_MAX_COUNT : (words - i);
323 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
324 status = igb_write_nvm_srwr(hw, offset, count,
325 data + i);
326 hw->nvm.ops.release(hw);
327 } else {
328 status = E1000_ERR_SWFW_SYNC;
329 }
330
331 if (status != E1000_SUCCESS)
332 break;
333 }
334
335 return status;
336}
337
338/**
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000339 * igb_read_invm_word_i210 - Reads OTP
340 * @hw: pointer to the HW structure
341 * @address: the word address (aka eeprom offset) to read
342 * @data: pointer to the data read
343 *
344 * Reads 16-bit words from the OTP. Return error when the word is not
345 * stored in OTP.
346 **/
347static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
348{
349 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
350 u32 invm_dword;
351 u16 i;
352 u8 record_type, word_address;
353
354 for (i = 0; i < E1000_INVM_SIZE; i++) {
355 invm_dword = rd32(E1000_INVM_DATA_REG(i));
356 /* Get record type */
357 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
358 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
359 break;
360 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
361 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
362 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
363 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
364 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
365 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
366 if (word_address == address) {
367 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
368 hw_dbg("Read INVM Word 0x%02x = %x",
369 address, *data);
370 status = E1000_SUCCESS;
371 break;
372 }
373 }
374 }
375 if (status != E1000_SUCCESS)
376 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
377 return status;
378}
379
380/**
381 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000382 * @hw: pointer to the HW structure
Akeem G. Abodunrin5c17a202013-01-29 10:15:31 +0000383 * @words: number of words to read
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000384 * @data: pointer to the data read
385 *
386 * Wrapper function to return data formerly found in the NVM.
387 **/
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000388static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
389 u16 words __always_unused, u16 *data)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000390{
391 s32 ret_val = E1000_SUCCESS;
392
393 /* Only the MAC addr is required to be present in the iNVM */
394 switch (offset) {
395 case NVM_MAC_ADDR:
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000396 ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
397 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
398 &data[1]);
399 ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
400 &data[2]);
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000401 if (ret_val != E1000_SUCCESS)
402 hw_dbg("MAC Addr not found in iNVM\n");
403 break;
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000404 case NVM_INIT_CTRL_2:
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000405 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
Carolyn Wyborny1720ee32012-10-11 02:15:45 +0000406 if (ret_val != E1000_SUCCESS) {
407 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
408 ret_val = E1000_SUCCESS;
409 }
410 break;
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000411 case NVM_INIT_CTRL_4:
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000412 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
Carolyn Wyborny1720ee32012-10-11 02:15:45 +0000413 if (ret_val != E1000_SUCCESS) {
414 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
415 ret_val = E1000_SUCCESS;
416 }
417 break;
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000418 case NVM_LED_1_CFG:
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000419 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
Carolyn Wyborny1720ee32012-10-11 02:15:45 +0000420 if (ret_val != E1000_SUCCESS) {
421 *data = NVM_LED_1_CFG_DEFAULT_I211;
422 ret_val = E1000_SUCCESS;
423 }
424 break;
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000425 case NVM_LED_0_2_CFG:
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000426 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
Carolyn Wyborny1720ee32012-10-11 02:15:45 +0000427 if (ret_val != E1000_SUCCESS) {
428 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
429 ret_val = E1000_SUCCESS;
430 }
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000431 break;
Carolyn Wyborny1720ee32012-10-11 02:15:45 +0000432 case NVM_ID_LED_SETTINGS:
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000433 ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
Carolyn Wyborny1720ee32012-10-11 02:15:45 +0000434 if (ret_val != E1000_SUCCESS) {
435 *data = ID_LED_RESERVED_FFFF;
436 ret_val = E1000_SUCCESS;
437 }
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000438 case NVM_SUB_DEV_ID:
439 *data = hw->subsystem_device_id;
440 break;
441 case NVM_SUB_VEN_ID:
442 *data = hw->subsystem_vendor_id;
443 break;
444 case NVM_DEV_ID:
445 *data = hw->device_id;
446 break;
447 case NVM_VEN_ID:
448 *data = hw->vendor_id;
449 break;
450 default:
451 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
452 *data = NVM_RESERVED_WORD;
453 break;
454 }
455 return ret_val;
456}
457
458/**
Carolyn Wyborny09e77282012-10-23 13:04:37 +0000459 * igb_read_invm_version - Reads iNVM version and image type
460 * @hw: pointer to the HW structure
461 * @invm_ver: version structure for the version read
462 *
463 * Reads iNVM version and image type.
464 **/
465s32 igb_read_invm_version(struct e1000_hw *hw,
466 struct e1000_fw_version *invm_ver) {
467 u32 *record = NULL;
468 u32 *next_record = NULL;
469 u32 i = 0;
470 u32 invm_dword = 0;
471 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
472 E1000_INVM_RECORD_SIZE_IN_BYTES);
473 u32 buffer[E1000_INVM_SIZE];
474 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
475 u16 version = 0;
476
477 /* Read iNVM memory */
478 for (i = 0; i < E1000_INVM_SIZE; i++) {
479 invm_dword = rd32(E1000_INVM_DATA_REG(i));
480 buffer[i] = invm_dword;
481 }
482
483 /* Read version number */
484 for (i = 1; i < invm_blocks; i++) {
485 record = &buffer[invm_blocks - i];
486 next_record = &buffer[invm_blocks - i + 1];
487
488 /* Check if we have first version location used */
489 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
490 version = 0;
491 status = E1000_SUCCESS;
492 break;
493 }
494 /* Check if we have second version location used */
495 else if ((i == 1) &&
496 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
497 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
498 status = E1000_SUCCESS;
499 break;
500 }
501 /* Check if we have odd version location
502 * used and it is the last one used
503 */
504 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
505 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
506 (i != 1))) {
507 version = (*next_record & E1000_INVM_VER_FIELD_TWO)
508 >> 13;
509 status = E1000_SUCCESS;
510 break;
511 }
512 /* Check if we have even version location
513 * used and it is the last one used
514 */
515 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
516 ((*record & 0x3) == 0)) {
517 version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
518 status = E1000_SUCCESS;
519 break;
520 }
521 }
522
523 if (status == E1000_SUCCESS) {
524 invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
525 >> E1000_INVM_MAJOR_SHIFT;
526 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
527 }
528 /* Read Image Type */
529 for (i = 1; i < invm_blocks; i++) {
530 record = &buffer[invm_blocks - i];
531 next_record = &buffer[invm_blocks - i + 1];
532
533 /* Check if we have image type in first location used */
534 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
535 invm_ver->invm_img_type = 0;
536 status = E1000_SUCCESS;
537 break;
538 }
539 /* Check if we have image type in first location used */
540 else if ((((*record & 0x3) == 0) &&
541 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
542 ((((*record & 0x3) != 0) && (i != 1)))) {
543 invm_ver->invm_img_type =
544 (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
545 status = E1000_SUCCESS;
546 break;
547 }
548 }
549 return status;
550}
551
552/**
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000553 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
554 * @hw: pointer to the HW structure
555 *
556 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
557 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
558 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800559static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000560{
561 s32 status = E1000_SUCCESS;
562 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
563
564 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
565
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000566 /* Replace the read function with semaphore grabbing with
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000567 * the one that skips this for a while.
568 * We have semaphore taken already here.
569 */
570 read_op_ptr = hw->nvm.ops.read;
571 hw->nvm.ops.read = igb_read_nvm_eerd;
572
573 status = igb_validate_nvm_checksum(hw);
574
575 /* Revert original read operation. */
576 hw->nvm.ops.read = read_op_ptr;
577
578 hw->nvm.ops.release(hw);
579 } else {
580 status = E1000_ERR_SWFW_SYNC;
581 }
582
583 return status;
584}
585
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000586/**
587 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
588 * @hw: pointer to the HW structure
589 *
590 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
591 * up to the checksum. Then calculates the EEPROM checksum and writes the
592 * value to the EEPROM. Next commit EEPROM data onto the Flash.
593 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800594static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000595{
596 s32 ret_val = E1000_SUCCESS;
597 u16 checksum = 0;
598 u16 i, nvm_data;
599
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000600 /* Read the first word from the EEPROM. If this times out or fails, do
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000601 * not continue or we could be in for a very long wait while every
602 * EEPROM read fails
603 */
604 ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
605 if (ret_val != E1000_SUCCESS) {
606 hw_dbg("EEPROM read failed\n");
607 goto out;
608 }
609
610 if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000611 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000612 * because we do not want to take the synchronization
613 * semaphores twice here.
614 */
615
616 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
617 ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
618 if (ret_val) {
619 hw->nvm.ops.release(hw);
620 hw_dbg("NVM Read Error while updating checksum.\n");
621 goto out;
622 }
623 checksum += nvm_data;
624 }
625 checksum = (u16) NVM_SUM - checksum;
626 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
627 &checksum);
628 if (ret_val != E1000_SUCCESS) {
629 hw->nvm.ops.release(hw);
630 hw_dbg("NVM Write Error while updating checksum.\n");
631 goto out;
632 }
633
634 hw->nvm.ops.release(hw);
635
636 ret_val = igb_update_flash_i210(hw);
637 } else {
638 ret_val = -E1000_ERR_SWFW_SYNC;
639 }
640out:
641 return ret_val;
642}
643
644/**
Carolyn Wyborny7916a532012-11-21 04:44:10 +0000645 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
646 * @hw: pointer to the HW structure
647 *
Jeff Kirsherb980ac12013-02-23 07:29:56 +0000648 **/
Carolyn Wyborny7916a532012-11-21 04:44:10 +0000649static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
650{
651 s32 ret_val = -E1000_ERR_NVM;
652 u32 i, reg;
653
654 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
655 reg = rd32(E1000_EECD);
656 if (reg & E1000_EECD_FLUDONE_I210) {
657 ret_val = E1000_SUCCESS;
658 break;
659 }
660 udelay(5);
661 }
662
663 return ret_val;
664}
665
666/**
Carolyn Wyborny5a823d82013-07-16 19:17:32 +0000667 * igb_get_flash_presence_i210 - Check if flash device is detected.
668 * @hw: pointer to the HW structure
669 *
670 **/
671bool igb_get_flash_presence_i210(struct e1000_hw *hw)
672{
673 u32 eec = 0;
674 bool ret_val = false;
675
676 eec = rd32(E1000_EECD);
677 if (eec & E1000_EECD_FLASH_DETECTED_I210)
678 ret_val = true;
679
680 return ret_val;
681}
682
683/**
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000684 * igb_update_flash_i210 - Commit EEPROM to the flash
685 * @hw: pointer to the HW structure
686 *
687 **/
Jeff Kirsher167f3f72014-02-25 17:58:56 -0800688static s32 igb_update_flash_i210(struct e1000_hw *hw)
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000689{
690 s32 ret_val = E1000_SUCCESS;
691 u32 flup;
692
693 ret_val = igb_pool_flash_update_done_i210(hw);
694 if (ret_val == -E1000_ERR_NVM) {
695 hw_dbg("Flash update time out\n");
696 goto out;
697 }
698
699 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
700 wr32(E1000_EECD, flup);
701
702 ret_val = igb_pool_flash_update_done_i210(hw);
703 if (ret_val == E1000_SUCCESS)
704 hw_dbg("Flash update complete\n");
705 else
706 hw_dbg("Flash update time out\n");
707
708out:
709 return ret_val;
710}
711
712/**
Carolyn Wybornyf96a8a02012-04-06 23:25:19 +0000713 * igb_valid_led_default_i210 - Verify a valid default LED config
714 * @hw: pointer to the HW structure
715 * @data: pointer to the NVM (EEPROM)
716 *
717 * Read the EEPROM for the current default LED configuration. If the
718 * LED configuration is not valid, set to a valid LED configuration.
719 **/
720s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
721{
722 s32 ret_val;
723
724 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
725 if (ret_val) {
726 hw_dbg("NVM Read Error\n");
727 goto out;
728 }
729
730 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
731 switch (hw->phy.media_type) {
732 case e1000_media_type_internal_serdes:
733 *data = ID_LED_DEFAULT_I210_SERDES;
734 break;
735 case e1000_media_type_copper:
736 default:
737 *data = ID_LED_DEFAULT_I210;
738 break;
739 }
740 }
741out:
742 return ret_val;
743}
Matthew Vick87371b92013-02-21 03:32:52 +0000744
745/**
746 * __igb_access_xmdio_reg - Read/write XMDIO register
747 * @hw: pointer to the HW structure
748 * @address: XMDIO address to program
749 * @dev_addr: device address to program
750 * @data: pointer to value to read/write from/to the XMDIO address
751 * @read: boolean flag to indicate read or write
752 **/
753static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
754 u8 dev_addr, u16 *data, bool read)
755{
756 s32 ret_val = E1000_SUCCESS;
757
758 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
759 if (ret_val)
760 return ret_val;
761
762 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
763 if (ret_val)
764 return ret_val;
765
766 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
767 dev_addr);
768 if (ret_val)
769 return ret_val;
770
771 if (read)
772 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
773 else
774 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
775 if (ret_val)
776 return ret_val;
777
778 /* Recalibrate the device back to 0 */
779 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
780 if (ret_val)
781 return ret_val;
782
783 return ret_val;
784}
785
786/**
787 * igb_read_xmdio_reg - Read XMDIO register
788 * @hw: pointer to the HW structure
789 * @addr: XMDIO address to program
790 * @dev_addr: device address to program
791 * @data: value to be read from the EMI address
792 **/
793s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
794{
795 return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
796}
797
798/**
799 * igb_write_xmdio_reg - Write XMDIO register
800 * @hw: pointer to the HW structure
801 * @addr: XMDIO address to program
802 * @dev_addr: device address to program
803 * @data: value to be written to the XMDIO address
804 **/
805s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
806{
807 return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
808}
Carolyn Wyborny5a823d82013-07-16 19:17:32 +0000809
810/**
811 * igb_init_nvm_params_i210 - Init NVM func ptrs.
812 * @hw: pointer to the HW structure
813 **/
814s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
815{
816 s32 ret_val = 0;
817 struct e1000_nvm_info *nvm = &hw->nvm;
818
819 nvm->ops.acquire = igb_acquire_nvm_i210;
820 nvm->ops.release = igb_release_nvm_i210;
821 nvm->ops.valid_led_default = igb_valid_led_default_i210;
822
823 /* NVM Function Pointers */
824 if (igb_get_flash_presence_i210(hw)) {
825 hw->nvm.type = e1000_nvm_flash_hw;
826 nvm->ops.read = igb_read_nvm_srrd_i210;
827 nvm->ops.write = igb_write_nvm_srwr_i210;
828 nvm->ops.validate = igb_validate_nvm_checksum_i210;
829 nvm->ops.update = igb_update_nvm_checksum_i210;
830 } else {
831 hw->nvm.type = e1000_nvm_invm;
Carolyn Wybornyef3a0092013-07-17 19:02:53 +0000832 nvm->ops.read = igb_read_invm_i210;
Carolyn Wyborny5a823d82013-07-16 19:17:32 +0000833 nvm->ops.write = NULL;
834 nvm->ops.validate = NULL;
835 nvm->ops.update = NULL;
836 }
837 return ret_val;
838}