Patrick Boettcher | a75763f | 2006-10-18 08:34:16 -0300 | [diff] [blame] | 1 | /* |
| 2 | * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). |
| 3 | * |
| 4 | * Copyright (C) 2005-6 DiBcom (http://www.dibcom.fr/) |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation, version 2. |
| 9 | */ |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/i2c.h> |
| 12 | |
| 13 | #include "dvb_frontend.h" |
| 14 | |
| 15 | #include "dib7000p.h" |
| 16 | |
| 17 | static int debug; |
| 18 | module_param(debug, int, 0644); |
| 19 | MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| 20 | |
| 21 | #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P:"); printk(args); } } while (0) |
| 22 | |
| 23 | struct dib7000p_state { |
| 24 | struct dvb_frontend demod; |
| 25 | struct dib7000p_config cfg; |
| 26 | |
| 27 | u8 i2c_addr; |
| 28 | struct i2c_adapter *i2c_adap; |
| 29 | |
| 30 | struct dibx000_i2c_master i2c_master; |
| 31 | |
| 32 | u16 wbd_ref; |
| 33 | |
| 34 | u8 current_band; |
| 35 | fe_bandwidth_t current_bandwidth; |
| 36 | struct dibx000_agc_config *current_agc; |
| 37 | u32 timf; |
| 38 | |
| 39 | u16 gpio_dir; |
| 40 | u16 gpio_val; |
| 41 | }; |
| 42 | |
| 43 | enum dib7000p_power_mode { |
| 44 | DIB7000P_POWER_ALL = 0, |
| 45 | DIB7000P_POWER_INTERFACE_ONLY, |
| 46 | }; |
| 47 | |
| 48 | static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) |
| 49 | { |
| 50 | u8 wb[2] = { reg >> 8, reg & 0xff }; |
| 51 | u8 rb[2]; |
| 52 | struct i2c_msg msg[2] = { |
| 53 | { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, |
| 54 | { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, |
| 55 | }; |
| 56 | |
| 57 | if (i2c_transfer(state->i2c_adap, msg, 2) != 2) |
| 58 | dprintk("i2c read error on %d\n",reg); |
| 59 | |
| 60 | return (rb[0] << 8) | rb[1]; |
| 61 | } |
| 62 | |
| 63 | static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) |
| 64 | { |
| 65 | u8 b[4] = { |
| 66 | (reg >> 8) & 0xff, reg & 0xff, |
| 67 | (val >> 8) & 0xff, val & 0xff, |
| 68 | }; |
| 69 | struct i2c_msg msg = { |
| 70 | .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 |
| 71 | }; |
| 72 | return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| 73 | } |
| 74 | static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) |
| 75 | { |
| 76 | int ret = 0; |
| 77 | u16 outreg, fifo_threshold, smo_mode; |
| 78 | |
| 79 | outreg = 0; |
| 80 | fifo_threshold = 1792; |
| 81 | smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1); |
| 82 | |
| 83 | dprintk("-I- Setting output mode for demod %p to %d\n", |
| 84 | &state->demod, mode); |
| 85 | |
| 86 | switch (mode) { |
| 87 | case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock |
| 88 | outreg = (1 << 10); /* 0x0400 */ |
| 89 | break; |
| 90 | case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock |
| 91 | outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| 92 | break; |
| 93 | case OUTMODE_MPEG2_SERIAL: // STBs with serial input |
| 94 | outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ |
| 95 | break; |
| 96 | case OUTMODE_DIVERSITY: |
| 97 | if (state->cfg.hostbus_diversity) |
| 98 | outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| 99 | else |
| 100 | outreg = (1 << 11); |
| 101 | break; |
| 102 | case OUTMODE_MPEG2_FIFO: // e.g. USB feeding |
| 103 | smo_mode |= (3 << 1); |
| 104 | fifo_threshold = 512; |
| 105 | outreg = (1 << 10) | (5 << 6); |
| 106 | break; |
| 107 | case OUTMODE_HIGH_Z: // disable |
| 108 | outreg = 0; |
| 109 | break; |
| 110 | default: |
| 111 | dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod); |
| 112 | break; |
| 113 | } |
| 114 | |
| 115 | if (state->cfg.output_mpeg2_in_188_bytes) |
| 116 | smo_mode |= (1 << 5) ; |
| 117 | |
| 118 | ret |= dib7000p_write_word(state, 235, smo_mode); |
| 119 | ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ |
| 120 | ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ |
| 121 | |
| 122 | return ret; |
| 123 | } |
| 124 | |
| 125 | static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) |
| 126 | { |
| 127 | /* by default everything is powered off */ |
| 128 | u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, |
| 129 | reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); |
| 130 | |
| 131 | /* now, depending on the requested mode, we power on */ |
| 132 | switch (mode) { |
| 133 | /* power up everything in the demod */ |
| 134 | case DIB7000P_POWER_ALL: |
| 135 | reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; |
| 136 | break; |
| 137 | /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ |
| 138 | case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ |
| 139 | reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); |
| 140 | break; |
| 141 | /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ |
| 142 | } |
| 143 | |
| 144 | dib7000p_write_word(state, 774, reg_774); |
| 145 | dib7000p_write_word(state, 775, reg_775); |
| 146 | dib7000p_write_word(state, 776, reg_776); |
| 147 | dib7000p_write_word(state, 899, reg_899); |
| 148 | dib7000p_write_word(state, 1280, reg_1280); |
| 149 | |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) |
| 154 | { |
| 155 | u16 reg_908 = dib7000p_read_word(state, 908), |
| 156 | reg_909 = dib7000p_read_word(state, 909); |
| 157 | |
| 158 | switch (no) { |
| 159 | case DIBX000_SLOW_ADC_ON: |
| 160 | reg_909 |= (1 << 1) | (1 << 0); |
| 161 | dib7000p_write_word(state, 909, reg_909); |
| 162 | reg_909 &= ~(1 << 1); |
| 163 | break; |
| 164 | |
| 165 | case DIBX000_SLOW_ADC_OFF: |
| 166 | reg_909 |= (1 << 1) | (1 << 0); |
| 167 | break; |
| 168 | |
| 169 | case DIBX000_ADC_ON: |
| 170 | reg_908 &= 0x0fff; |
| 171 | reg_909 &= 0x0003; |
| 172 | break; |
| 173 | |
| 174 | case DIBX000_ADC_OFF: // leave the VBG voltage on |
| 175 | reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); |
| 176 | reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); |
| 177 | break; |
| 178 | |
| 179 | case DIBX000_VBG_ENABLE: |
| 180 | reg_908 &= ~(1 << 15); |
| 181 | break; |
| 182 | |
| 183 | case DIBX000_VBG_DISABLE: |
| 184 | reg_908 |= (1 << 15); |
| 185 | break; |
| 186 | |
| 187 | default: |
| 188 | break; |
| 189 | } |
| 190 | |
| 191 | // dprintk("908: %x, 909: %x\n", reg_908, reg_909); |
| 192 | |
| 193 | dib7000p_write_word(state, 908, reg_908); |
| 194 | dib7000p_write_word(state, 909, reg_909); |
| 195 | } |
| 196 | |
| 197 | static int dib7000p_set_bandwidth(struct dvb_frontend *demod, u8 BW_Idx) |
| 198 | { |
| 199 | struct dib7000p_state *state = demod->demodulator_priv; |
| 200 | u32 timf; |
| 201 | |
| 202 | // store the current bandwidth for later use |
| 203 | state->current_bandwidth = BW_Idx; |
| 204 | |
| 205 | if (state->timf == 0) { |
| 206 | dprintk("-D- Using default timf\n"); |
| 207 | timf = state->cfg.bw->timf; |
| 208 | } else { |
| 209 | dprintk("-D- Using updated timf\n"); |
| 210 | timf = state->timf; |
| 211 | } |
| 212 | |
| 213 | timf = timf * (BW_INDEX_TO_KHZ(BW_Idx) / 100) / 80; |
| 214 | |
| 215 | dprintk("timf: %d\n",timf); |
| 216 | |
| 217 | dib7000p_write_word(state, 23, (timf >> 16) & 0xffff); |
| 218 | dib7000p_write_word(state, 24, (timf ) & 0xffff); |
| 219 | |
| 220 | return 0; |
| 221 | } |
| 222 | |
| 223 | static int dib7000p_sad_calib(struct dib7000p_state *state) |
| 224 | { |
| 225 | /* internal */ |
Robert P. J. Day | beb7dd8 | 2007-05-09 07:14:03 +0200 | [diff] [blame] | 226 | // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is written in set_bandwidth |
Patrick Boettcher | a75763f | 2006-10-18 08:34:16 -0300 | [diff] [blame] | 227 | dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); |
| 228 | dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096 |
| 229 | |
| 230 | /* do the calibration */ |
| 231 | dib7000p_write_word(state, 73, (1 << 0)); |
| 232 | dib7000p_write_word(state, 73, (0 << 0)); |
| 233 | |
| 234 | msleep(1); |
| 235 | |
| 236 | return 0; |
| 237 | } |
| 238 | |
| 239 | static void dib7000p_reset_pll(struct dib7000p_state *state) |
| 240 | { |
| 241 | struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; |
| 242 | |
| 243 | dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); |
| 244 | dib7000p_write_word(state, 900, ((bw->pll_ratio & 0x3f) << 9) | (bw->pll_bypass << 15) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | |
| 245 | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0)); |
| 246 | |
| 247 | dib7000p_write_word(state, 18, ((bw->internal*1000) >> 16) & 0xffff); |
| 248 | dib7000p_write_word(state, 19, (bw->internal*1000 ) & 0xffff); |
| 249 | dib7000p_write_word(state, 21, (bw->ifreq >> 16) & 0xffff); |
| 250 | dib7000p_write_word(state, 22, (bw->ifreq ) & 0xffff); |
| 251 | |
| 252 | dib7000p_write_word(state, 72, bw->sad_cfg); |
| 253 | } |
| 254 | |
| 255 | static int dib7000p_reset_gpio(struct dib7000p_state *st) |
| 256 | { |
| 257 | /* reset the GPIOs */ |
| 258 | dprintk("-D- gpio dir: %x: gpio val: %x, gpio pwm pos: %x\n",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); |
| 259 | |
| 260 | dib7000p_write_word(st, 1029, st->gpio_dir); |
| 261 | dib7000p_write_word(st, 1030, st->gpio_val); |
| 262 | |
| 263 | /* TODO 1031 is P_gpio_od */ |
| 264 | |
| 265 | dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); |
| 266 | |
| 267 | dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); |
| 268 | return 0; |
| 269 | } |
| 270 | |
| 271 | static int dib7000p_demod_reset(struct dib7000p_state *state) |
| 272 | { |
| 273 | dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| 274 | |
| 275 | dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); |
| 276 | |
| 277 | /* restart all parts */ |
| 278 | dib7000p_write_word(state, 770, 0xffff); |
| 279 | dib7000p_write_word(state, 771, 0xffff); |
| 280 | dib7000p_write_word(state, 772, 0x001f); |
| 281 | dib7000p_write_word(state, 898, 0x0003); |
| 282 | /* except i2c, sdio, gpio - control interfaces */ |
| 283 | dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) ); |
| 284 | |
| 285 | dib7000p_write_word(state, 770, 0); |
| 286 | dib7000p_write_word(state, 771, 0); |
| 287 | dib7000p_write_word(state, 772, 0); |
| 288 | dib7000p_write_word(state, 898, 0); |
| 289 | dib7000p_write_word(state, 1280, 0); |
| 290 | |
| 291 | /* default */ |
| 292 | dib7000p_reset_pll(state); |
| 293 | |
| 294 | if (dib7000p_reset_gpio(state) != 0) |
| 295 | dprintk("-E- GPIO reset was not successful.\n"); |
| 296 | |
| 297 | if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) |
| 298 | dprintk("-E- OUTPUT_MODE could not be resetted.\n"); |
| 299 | |
| 300 | /* unforce divstr regardless whether i2c enumeration was done or not */ |
| 301 | dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); |
| 302 | |
| 303 | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| 304 | |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | static void dib7000p_restart_agc(struct dib7000p_state *state) |
| 309 | { |
| 310 | // P_restart_iqc & P_restart_agc |
| 311 | dib7000p_write_word(state, 770, 0x0c00); |
| 312 | dib7000p_write_word(state, 770, 0x0000); |
| 313 | } |
| 314 | |
| 315 | static void dib7000p_update_lna(struct dib7000p_state *state) |
| 316 | { |
| 317 | int i; |
| 318 | u16 dyn_gain; |
| 319 | |
| 320 | // when there is no LNA to program return immediatly |
| 321 | if (state->cfg.update_lna == NULL) |
| 322 | return; |
| 323 | |
| 324 | for (i = 0; i < 5; i++) { |
| 325 | // read dyn_gain here (because it is demod-dependent and not tuner) |
| 326 | dyn_gain = dib7000p_read_word(state, 394); |
| 327 | |
| 328 | if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed |
| 329 | dib7000p_restart_agc(state); |
| 330 | msleep(5); |
| 331 | } else |
| 332 | break; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) |
| 337 | { |
| 338 | u16 tmp = 0; |
| 339 | tmp = dib7000p_read_word(state, 903); |
| 340 | dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll |
| 341 | tmp = dib7000p_read_word(state, 900); |
| 342 | dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock |
| 343 | } |
| 344 | |
| 345 | static void dib7000p_update_timf_freq(struct dib7000p_state *state) |
| 346 | { |
| 347 | u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); |
| 348 | state->timf = timf * 80 / (BW_INDEX_TO_KHZ(state->current_bandwidth) / 100); |
| 349 | dib7000p_write_word(state, 23, (u16) (timf >> 16)); |
| 350 | dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); |
| 351 | dprintk("-D- Updated timf_frequency: %d (default: %d)\n",state->timf, state->cfg.bw->timf); |
| 352 | } |
| 353 | |
| 354 | static void dib7000p_set_channel(struct dib7000p_state *state, struct dibx000_ofdm_channel *ch, u8 seq) |
| 355 | { |
| 356 | u16 tmp, est[4]; // reg_26, reg_32, reg_33, reg_187, reg_188, reg_189, reg_190, reg_207, reg_208; |
| 357 | |
| 358 | /* nfft, guard, qam, alpha */ |
| 359 | dib7000p_write_word(state, 0, (ch->nfft << 7) | (ch->guard << 5) | (ch->nqam << 3) | (ch->vit_alpha)); |
| 360 | dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ |
| 361 | |
| 362 | /* P_dintl_native, P_dintlv_inv, P_vit_hrch, P_vit_code_rate, P_vit_select_hp */ |
| 363 | tmp = (ch->intlv_native << 6) | (ch->vit_hrch << 4) | (ch->vit_select_hp & 0x1); |
| 364 | if (ch->vit_hrch == 0 || ch->vit_select_hp == 1) |
| 365 | tmp |= (ch->vit_code_rate_hp << 1); |
| 366 | else |
| 367 | tmp |= (ch->vit_code_rate_lp << 1); |
| 368 | dib7000p_write_word(state, 208, tmp); |
| 369 | |
| 370 | /* P_dvsy_sync_wait */ |
| 371 | switch (ch->nfft) { |
| 372 | case 1: tmp = 256; break; |
| 373 | case 2: tmp = 128; break; |
| 374 | case 0: |
| 375 | default: tmp = 64; break; |
| 376 | } |
| 377 | tmp *= ((1 << (ch->guard)) * 3 / 2); // add 50% SFN margin |
| 378 | tmp <<= 4; |
| 379 | |
| 380 | /* deactive the possibility of diversity reception if extended interleave */ |
| 381 | /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ |
| 382 | if (ch->intlv_native || ch->nfft == 1) |
| 383 | tmp |= (1 << 2) | (2 << 0); |
| 384 | dib7000p_write_word(state, 207, tmp); |
| 385 | |
| 386 | dib7000p_write_word(state, 26, 0x6680); // timf(6xxx) |
| 387 | dib7000p_write_word(state, 29, 0x1273); // isi inh1273 on1073 |
| 388 | dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3) |
| 389 | dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5) |
| 390 | |
| 391 | /* channel estimation fine configuration */ |
| 392 | switch (ch->nqam) { |
| 393 | case 2: |
| 394 | est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ |
| 395 | est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ |
| 396 | est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| 397 | est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ |
| 398 | break; |
| 399 | case 1: |
| 400 | est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ |
| 401 | est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ |
| 402 | est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| 403 | est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ |
| 404 | break; |
| 405 | default: |
| 406 | est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ |
| 407 | est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ |
| 408 | est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ |
| 409 | est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ |
| 410 | break; |
| 411 | } |
| 412 | for (tmp = 0; tmp < 4; tmp++) |
| 413 | dib7000p_write_word(state, 187 + tmp, est[tmp]); |
| 414 | |
| 415 | // set power-up level: interf+analog+AGC |
| 416 | dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| 417 | dib7000p_set_adc_state(state, DIBX000_ADC_ON); |
| 418 | dib7000p_pll_clk_cfg(state); |
| 419 | msleep(7); |
| 420 | |
| 421 | // AGC initialization |
| 422 | if (state->cfg.agc_control) |
| 423 | state->cfg.agc_control(&state->demod, 1); |
| 424 | |
| 425 | dib7000p_restart_agc(state); |
| 426 | |
| 427 | // wait AGC rough lock time |
| 428 | msleep(5); |
| 429 | |
| 430 | dib7000p_update_lna(state); |
| 431 | |
| 432 | // wait AGC accurate lock time |
| 433 | msleep(7); |
| 434 | if (state->cfg.agc_control) |
| 435 | state->cfg.agc_control(&state->demod, 0); |
| 436 | } |
| 437 | |
| 438 | static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) |
| 439 | { |
| 440 | struct dib7000p_state *state = demod->demodulator_priv; |
| 441 | struct dibx000_ofdm_channel auto_ch; |
| 442 | u32 value; |
| 443 | |
| 444 | INIT_OFDM_CHANNEL(&auto_ch); |
| 445 | auto_ch.RF_kHz = ch->RF_kHz; |
| 446 | auto_ch.Bw = ch->Bw; |
| 447 | auto_ch.nqam = 2; |
| 448 | auto_ch.guard = 0; |
| 449 | auto_ch.nfft = 1; |
| 450 | auto_ch.vit_alpha = 1; |
| 451 | auto_ch.vit_select_hp = 1; |
| 452 | auto_ch.vit_code_rate_hp = 2; |
| 453 | auto_ch.vit_code_rate_lp = 3; |
| 454 | auto_ch.vit_hrch = 0; |
| 455 | auto_ch.intlv_native = 1; |
| 456 | |
| 457 | dib7000p_set_channel(state, &auto_ch, 7); |
| 458 | |
| 459 | // always use the setting for 8MHz here lock_time for 7,6 MHz are longer |
| 460 | value = 30 * state->cfg.bw->internal; |
| 461 | dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time |
| 462 | dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time |
| 463 | value = 100 * state->cfg.bw->internal; |
| 464 | dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time |
| 465 | dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time |
| 466 | value = 500 * state->cfg.bw->internal; |
| 467 | dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time |
| 468 | dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time |
| 469 | |
| 470 | value = dib7000p_read_word(state, 0); |
| 471 | dib7000p_write_word(state, 0, (1 << 9) | value); |
| 472 | dib7000p_read_word(state, 1284); |
| 473 | dib7000p_write_word(state, 0, (u16) value); |
| 474 | |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) |
| 479 | { |
| 480 | struct dib7000p_state *state = demod->demodulator_priv; |
| 481 | u16 irq_pending = dib7000p_read_word(state, 1284); |
| 482 | |
| 483 | if (irq_pending & 0x1) // failed |
| 484 | return 1; |
| 485 | |
| 486 | if (irq_pending & 0x2) // succeeded |
| 487 | return 2; |
| 488 | |
| 489 | return 0; // still pending |
| 490 | } |
| 491 | |
| 492 | static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) |
| 493 | { |
| 494 | struct dib7000p_state *state = demod->demodulator_priv; |
| 495 | u16 tmp = 0; |
| 496 | |
| 497 | if (ch != NULL) |
| 498 | dib7000p_set_channel(state, ch, 0); |
| 499 | else |
| 500 | return -EINVAL; |
| 501 | |
| 502 | // restart demod |
| 503 | dib7000p_write_word(state, 770, 0x4000); |
| 504 | dib7000p_write_word(state, 770, 0x0000); |
| 505 | msleep(45); |
| 506 | |
| 507 | /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ |
| 508 | dib7000p_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); |
| 509 | |
| 510 | // never achieved a lock with that bandwidth so far - wait for osc-freq to update |
| 511 | if (state->timf == 0) |
| 512 | msleep(200); |
| 513 | |
| 514 | /* offset loop parameters */ |
| 515 | |
| 516 | /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ |
| 517 | tmp = (6 << 8) | 0x80; |
| 518 | switch (ch->nfft) { |
| 519 | case 0: tmp |= (7 << 12); break; |
| 520 | case 1: tmp |= (9 << 12); break; |
| 521 | case 2: tmp |= (8 << 12); break; |
| 522 | } |
| 523 | dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ |
| 524 | |
| 525 | /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ |
| 526 | tmp = (0 << 4); |
| 527 | switch (ch->nfft) { |
| 528 | case 0: tmp |= 0x6; break; |
| 529 | case 1: tmp |= 0x8; break; |
| 530 | case 2: tmp |= 0x7; break; |
| 531 | } |
| 532 | dib7000p_write_word(state, 32, tmp); |
| 533 | |
| 534 | /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ |
| 535 | tmp = (0 << 4); |
| 536 | switch (ch->nfft) { |
| 537 | case 0: tmp |= 0x6; break; |
| 538 | case 1: tmp |= 0x8; break; |
| 539 | case 2: tmp |= 0x7; break; |
| 540 | } |
| 541 | dib7000p_write_word(state, 33, tmp); |
| 542 | |
| 543 | tmp = dib7000p_read_word(state,509); |
| 544 | if (!((tmp >> 6) & 0x1)) { |
| 545 | /* restart the fec */ |
| 546 | tmp = dib7000p_read_word(state,771); |
| 547 | dib7000p_write_word(state, 771, tmp | (1 << 1)); |
| 548 | dib7000p_write_word(state, 771, tmp); |
| 549 | msleep(10); |
| 550 | tmp = dib7000p_read_word(state,509); |
| 551 | } |
| 552 | |
| 553 | // we achieved a lock - it's time to update the osc freq |
| 554 | if ((tmp >> 6) & 0x1) |
| 555 | dib7000p_update_timf_freq(state); |
| 556 | |
| 557 | return 0; |
| 558 | } |
| 559 | |
| 560 | static int dib7000p_init(struct dvb_frontend *demod) |
| 561 | { |
| 562 | struct dibx000_agc_config *agc; |
| 563 | struct dib7000p_state *state = demod->demodulator_priv; |
| 564 | int ret = 0; |
| 565 | |
| 566 | // Demodulator default configuration |
| 567 | agc = state->cfg.agc; |
| 568 | |
| 569 | dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| 570 | dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| 571 | |
| 572 | /* AGC */ |
| 573 | ret |= dib7000p_write_word(state, 75 , agc->setup ); |
| 574 | ret |= dib7000p_write_word(state, 76 , agc->inv_gain ); |
| 575 | ret |= dib7000p_write_word(state, 77 , agc->time_stabiliz ); |
| 576 | ret |= dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); |
| 577 | |
| 578 | // Demod AGC loop configuration |
| 579 | ret |= dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); |
| 580 | ret |= dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); |
| 581 | |
| 582 | /* AGC continued */ |
| 583 | dprintk("-D- WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", |
| 584 | state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); |
| 585 | |
| 586 | if (state->wbd_ref != 0) |
| 587 | ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); |
| 588 | else |
| 589 | ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); |
| 590 | |
| 591 | ret |= dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) ); |
| 592 | |
| 593 | ret |= dib7000p_write_word(state, 107, agc->agc1_max); |
| 594 | ret |= dib7000p_write_word(state, 108, agc->agc1_min); |
| 595 | ret |= dib7000p_write_word(state, 109, agc->agc2_max); |
| 596 | ret |= dib7000p_write_word(state, 110, agc->agc2_min); |
| 597 | ret |= dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2 ); |
| 598 | ret |= dib7000p_write_word(state, 112, agc->agc1_pt3); |
| 599 | ret |= dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| 600 | ret |= dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| 601 | ret |= dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| 602 | |
| 603 | /* disable power smoothing */ |
| 604 | ret |= dib7000p_write_word(state, 145, 0); |
| 605 | ret |= dib7000p_write_word(state, 146, 0); |
| 606 | ret |= dib7000p_write_word(state, 147, 0); |
| 607 | ret |= dib7000p_write_word(state, 148, 0); |
| 608 | ret |= dib7000p_write_word(state, 149, 0); |
| 609 | ret |= dib7000p_write_word(state, 150, 0); |
| 610 | ret |= dib7000p_write_word(state, 151, 0); |
| 611 | ret |= dib7000p_write_word(state, 152, 0); |
| 612 | |
| 613 | // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26 |
| 614 | ret |= dib7000p_write_word(state, 26 ,0x6680); |
| 615 | |
| 616 | // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16 |
| 617 | ret |= dib7000p_write_word(state, 142,0x0410); |
| 618 | // P_fft_freq_dir=1, P_fft_nb_to_cut=0 |
| 619 | ret |= dib7000p_write_word(state, 154,1 << 13); |
| 620 | // P_pha3_thres, default 0x3000 |
| 621 | ret |= dib7000p_write_word(state, 168,0x0ccd); |
| 622 | // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010 |
| 623 | //ret |= dib7000p_write_word(state, 169,0x0010); |
| 624 | // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005 |
| 625 | ret |= dib7000p_write_word(state, 183,0x200f); |
| 626 | // P_adp_regul_cnt=573, default: 410 |
| 627 | ret |= dib7000p_write_word(state, 187,0x023d); |
| 628 | // P_adp_noise_cnt= |
| 629 | ret |= dib7000p_write_word(state, 188,0x00a4); |
| 630 | // P_adp_regul_ext |
| 631 | ret |= dib7000p_write_word(state, 189,0x00a4); |
| 632 | // P_adp_noise_ext |
| 633 | ret |= dib7000p_write_word(state, 190,0x7ff0); |
| 634 | // P_adp_fil |
| 635 | ret |= dib7000p_write_word(state, 191,0x3ccc); |
| 636 | |
| 637 | ret |= dib7000p_write_word(state, 222,0x0010); |
| 638 | // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard |
| 639 | ret |= dib7000p_write_word(state, 235,0x0062); |
| 640 | |
| 641 | // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ... |
| 642 | if(state->cfg.tuner_is_baseband) |
| 643 | ret |= dib7000p_write_word(state, 36,0x0755); |
| 644 | else |
| 645 | ret |= dib7000p_write_word(state, 36,0x1f55); |
| 646 | |
| 647 | // auto search configuration |
| 648 | ret |= dib7000p_write_word(state, 2 ,0x0004); |
| 649 | ret |= dib7000p_write_word(state, 3 ,0x1000); |
| 650 | |
| 651 | /* Equal Lock */ |
| 652 | ret |= dib7000p_write_word(state, 4 ,0x0814); |
| 653 | |
| 654 | ret |= dib7000p_write_word(state, 6 ,0x001b); |
| 655 | ret |= dib7000p_write_word(state, 7 ,0x7740); |
| 656 | ret |= dib7000p_write_word(state, 8 ,0x005b); |
| 657 | ret |= dib7000p_write_word(state, 9 ,0x8d80); |
| 658 | ret |= dib7000p_write_word(state, 10 ,0x01c9); |
| 659 | ret |= dib7000p_write_word(state, 11 ,0xc380); |
| 660 | ret |= dib7000p_write_word(state, 12 ,0x0000); |
| 661 | ret |= dib7000p_write_word(state, 13 ,0x0080); |
| 662 | ret |= dib7000p_write_word(state, 14 ,0x0000); |
| 663 | ret |= dib7000p_write_word(state, 15 ,0x0090); |
| 664 | ret |= dib7000p_write_word(state, 16 ,0x0001); |
| 665 | ret |= dib7000p_write_word(state, 17 ,0xd4c0); |
| 666 | |
| 667 | // P_clk_cfg1 |
| 668 | ret |= dib7000p_write_word(state, 901, 0x0006); |
| 669 | |
| 670 | // P_divclksel=3 P_divbitsel=1 |
| 671 | ret |= dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); |
| 672 | |
| 673 | // Tuner IO bank: max drive (14mA) + divout pads max drive |
| 674 | ret |= dib7000p_write_word(state, 905, 0x2c8e); |
| 675 | |
| 676 | ret |= dib7000p_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ); |
| 677 | dib7000p_sad_calib(state); |
| 678 | |
| 679 | return ret; |
| 680 | } |
| 681 | |
| 682 | static int dib7000p_sleep(struct dvb_frontend *demod) |
| 683 | { |
| 684 | struct dib7000p_state *state = demod->demodulator_priv; |
| 685 | return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| 686 | } |
| 687 | |
| 688 | static int dib7000p_identify(struct dib7000p_state *st) |
| 689 | { |
| 690 | u16 value; |
| 691 | dprintk("-I- DiB7000PC: checking demod on I2C address: %d (%x)\n", |
| 692 | st->i2c_addr, st->i2c_addr); |
| 693 | |
| 694 | if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { |
| 695 | dprintk("-E- DiB7000PC: wrong Vendor ID (read=0x%x)\n",value); |
| 696 | return -EREMOTEIO; |
| 697 | } |
| 698 | |
| 699 | if ((value = dib7000p_read_word(st, 769)) != 0x4000) { |
| 700 | dprintk("-E- DiB7000PC: wrong Device ID (%x)\n",value); |
| 701 | return -EREMOTEIO; |
| 702 | } |
| 703 | |
| 704 | return 0; |
| 705 | } |
| 706 | |
| 707 | |
| 708 | static int dib7000p_get_frontend(struct dvb_frontend* fe, |
| 709 | struct dvb_frontend_parameters *fep) |
| 710 | { |
| 711 | struct dib7000p_state *state = fe->demodulator_priv; |
| 712 | u16 tps = dib7000p_read_word(state,463); |
| 713 | |
| 714 | fep->inversion = INVERSION_AUTO; |
| 715 | |
| 716 | fep->u.ofdm.bandwidth = state->current_bandwidth; |
| 717 | |
| 718 | switch ((tps >> 8) & 0x3) { |
| 719 | case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; |
| 720 | case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; |
| 721 | /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ |
| 722 | } |
| 723 | |
| 724 | switch (tps & 0x3) { |
| 725 | case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; |
| 726 | case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; |
| 727 | case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; |
| 728 | case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; |
| 729 | } |
| 730 | |
| 731 | switch ((tps >> 14) & 0x3) { |
| 732 | case 0: fep->u.ofdm.constellation = QPSK; break; |
| 733 | case 1: fep->u.ofdm.constellation = QAM_16; break; |
| 734 | case 2: |
| 735 | default: fep->u.ofdm.constellation = QAM_64; break; |
| 736 | } |
| 737 | |
| 738 | /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ |
| 739 | /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ |
| 740 | |
| 741 | fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; |
| 742 | switch ((tps >> 5) & 0x7) { |
| 743 | case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; |
| 744 | case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; |
| 745 | case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; |
| 746 | case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; |
| 747 | case 7: |
| 748 | default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; |
| 749 | |
| 750 | } |
| 751 | |
| 752 | switch ((tps >> 2) & 0x7) { |
| 753 | case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; |
| 754 | case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; |
| 755 | case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; |
| 756 | case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; |
| 757 | case 7: |
| 758 | default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; |
| 759 | } |
| 760 | |
| 761 | /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ |
| 762 | |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | static int dib7000p_set_frontend(struct dvb_frontend* fe, |
| 767 | struct dvb_frontend_parameters *fep) |
| 768 | { |
| 769 | struct dib7000p_state *state = fe->demodulator_priv; |
| 770 | struct dibx000_ofdm_channel ch; |
| 771 | |
| 772 | INIT_OFDM_CHANNEL(&ch); |
| 773 | FEP2DIB(fep,&ch); |
| 774 | |
| 775 | state->current_bandwidth = fep->u.ofdm.bandwidth; |
| 776 | dib7000p_set_bandwidth(fe, fep->u.ofdm.bandwidth); |
| 777 | |
| 778 | if (fe->ops.tuner_ops.set_params) |
| 779 | fe->ops.tuner_ops.set_params(fe, fep); |
| 780 | |
| 781 | if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || |
| 782 | fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || |
| 783 | fep->u.ofdm.constellation == QAM_AUTO || |
| 784 | fep->u.ofdm.code_rate_HP == FEC_AUTO) { |
| 785 | int i = 800, found; |
| 786 | |
| 787 | dib7000p_autosearch_start(fe, &ch); |
| 788 | do { |
| 789 | msleep(1); |
| 790 | found = dib7000p_autosearch_is_irq(fe); |
| 791 | } while (found == 0 && i--); |
| 792 | |
| 793 | dprintk("autosearch returns: %d\n",found); |
| 794 | if (found == 0 || found == 1) |
| 795 | return 0; // no channel found |
| 796 | |
| 797 | dib7000p_get_frontend(fe, fep); |
| 798 | FEP2DIB(fep, &ch); |
| 799 | } |
| 800 | |
| 801 | /* make this a config parameter */ |
| 802 | dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO); |
| 803 | |
| 804 | return dib7000p_tune(fe, &ch); |
| 805 | } |
| 806 | |
| 807 | static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) |
| 808 | { |
| 809 | struct dib7000p_state *state = fe->demodulator_priv; |
| 810 | u16 lock = dib7000p_read_word(state, 509); |
| 811 | |
| 812 | *stat = 0; |
| 813 | |
| 814 | if (lock & 0x8000) |
| 815 | *stat |= FE_HAS_SIGNAL; |
| 816 | if (lock & 0x3000) |
| 817 | *stat |= FE_HAS_CARRIER; |
| 818 | if (lock & 0x0100) |
| 819 | *stat |= FE_HAS_VITERBI; |
| 820 | if (lock & 0x0010) |
| 821 | *stat |= FE_HAS_SYNC; |
| 822 | if (lock & 0x0008) |
| 823 | *stat |= FE_HAS_LOCK; |
| 824 | |
| 825 | return 0; |
| 826 | } |
| 827 | |
| 828 | static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber) |
| 829 | { |
| 830 | struct dib7000p_state *state = fe->demodulator_priv; |
| 831 | *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); |
| 832 | return 0; |
| 833 | } |
| 834 | |
| 835 | static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) |
| 836 | { |
| 837 | struct dib7000p_state *state = fe->demodulator_priv; |
| 838 | *unc = dib7000p_read_word(state, 506); |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) |
| 843 | { |
| 844 | struct dib7000p_state *state = fe->demodulator_priv; |
| 845 | u16 val = dib7000p_read_word(state, 394); |
| 846 | *strength = 65535 - val; |
| 847 | return 0; |
| 848 | } |
| 849 | |
| 850 | static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) |
| 851 | { |
| 852 | *snr = 0x0000; |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) |
| 857 | { |
| 858 | tune->min_delay_ms = 1000; |
| 859 | return 0; |
| 860 | } |
| 861 | |
| 862 | static void dib7000p_release(struct dvb_frontend *demod) |
| 863 | { |
| 864 | struct dib7000p_state *st = demod->demodulator_priv; |
| 865 | dibx000_exit_i2c_master(&st->i2c_master); |
| 866 | kfree(st); |
| 867 | } |
| 868 | |
| 869 | int dib7000pc_detection(struct i2c_adapter *i2c_adap) |
| 870 | { |
| 871 | u8 tx[2], rx[2]; |
| 872 | struct i2c_msg msg[2] = { |
| 873 | { .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 }, |
| 874 | { .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 }, |
| 875 | }; |
| 876 | |
| 877 | tx[0] = 0x03; |
| 878 | tx[1] = 0x00; |
| 879 | |
| 880 | if (i2c_transfer(i2c_adap, msg, 2) == 2) |
| 881 | if (rx[0] == 0x01 && rx[1] == 0xb3) { |
| 882 | dprintk("-D- DiB7000PC detected\n"); |
| 883 | return 1; |
| 884 | } |
| 885 | |
| 886 | msg[0].addr = msg[1].addr = 0x40; |
| 887 | |
| 888 | if (i2c_transfer(i2c_adap, msg, 2) == 2) |
| 889 | if (rx[0] == 0x01 && rx[1] == 0xb3) { |
| 890 | dprintk("-D- DiB7000PC detected\n"); |
| 891 | return 1; |
| 892 | } |
| 893 | |
| 894 | dprintk("-D- DiB7000PC not detected\n"); |
| 895 | return 0; |
| 896 | } |
| 897 | EXPORT_SYMBOL(dib7000pc_detection); |
| 898 | |
| 899 | struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) |
| 900 | { |
| 901 | struct dib7000p_state *st = demod->demodulator_priv; |
| 902 | return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| 903 | } |
| 904 | EXPORT_SYMBOL(dib7000p_get_i2c_master); |
| 905 | |
| 906 | int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) |
| 907 | { |
| 908 | struct dib7000p_state st = { .i2c_adap = i2c }; |
| 909 | int k = 0; |
| 910 | u8 new_addr = 0; |
| 911 | |
| 912 | for (k = no_of_demods-1; k >= 0; k--) { |
| 913 | st.cfg = cfg[k]; |
| 914 | |
| 915 | /* designated i2c address */ |
| 916 | new_addr = (0x40 + k) << 1; |
| 917 | st.i2c_addr = new_addr; |
| 918 | if (dib7000p_identify(&st) != 0) { |
| 919 | st.i2c_addr = default_addr; |
| 920 | if (dib7000p_identify(&st) != 0) { |
| 921 | dprintk("DiB7000P #%d: not identified\n", k); |
| 922 | return -EIO; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | /* start diversity to pull_down div_str - just for i2c-enumeration */ |
| 927 | dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY); |
| 928 | |
| 929 | /* set new i2c address and force divstart */ |
| 930 | dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2); |
| 931 | |
| 932 | dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); |
| 933 | } |
| 934 | |
| 935 | for (k = 0; k < no_of_demods; k++) { |
| 936 | st.cfg = cfg[k]; |
| 937 | st.i2c_addr = (0x40 + k) << 1; |
| 938 | |
| 939 | // unforce divstr |
| 940 | dib7000p_write_word(&st, 1285, st.i2c_addr << 2); |
| 941 | |
| 942 | /* deactivate div - it was just for i2c-enumeration */ |
| 943 | dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z); |
| 944 | } |
| 945 | |
| 946 | return 0; |
| 947 | } |
| 948 | EXPORT_SYMBOL(dib7000p_i2c_enumeration); |
| 949 | |
| 950 | static struct dvb_frontend_ops dib7000p_ops; |
| 951 | struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) |
| 952 | { |
| 953 | struct dvb_frontend *demod; |
| 954 | struct dib7000p_state *st; |
| 955 | st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); |
| 956 | if (st == NULL) |
| 957 | return NULL; |
| 958 | |
| 959 | memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); |
| 960 | st->i2c_adap = i2c_adap; |
| 961 | st->i2c_addr = i2c_addr; |
| 962 | st->gpio_val = cfg->gpio_val; |
| 963 | st->gpio_dir = cfg->gpio_dir; |
| 964 | |
| 965 | demod = &st->demod; |
| 966 | demod->demodulator_priv = st; |
| 967 | memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); |
| 968 | |
| 969 | if (dib7000p_identify(st) != 0) |
| 970 | goto error; |
| 971 | |
| 972 | dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); |
| 973 | |
| 974 | dib7000p_demod_reset(st); |
| 975 | |
| 976 | return demod; |
| 977 | |
| 978 | error: |
| 979 | kfree(st); |
| 980 | return NULL; |
| 981 | } |
| 982 | EXPORT_SYMBOL(dib7000p_attach); |
| 983 | |
| 984 | static struct dvb_frontend_ops dib7000p_ops = { |
| 985 | .info = { |
| 986 | .name = "DiBcom 7000PC", |
| 987 | .type = FE_OFDM, |
| 988 | .frequency_min = 44250000, |
| 989 | .frequency_max = 867250000, |
| 990 | .frequency_stepsize = 62500, |
| 991 | .caps = FE_CAN_INVERSION_AUTO | |
| 992 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| 993 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| 994 | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| 995 | FE_CAN_TRANSMISSION_MODE_AUTO | |
| 996 | FE_CAN_GUARD_INTERVAL_AUTO | |
| 997 | FE_CAN_RECOVER | |
| 998 | FE_CAN_HIERARCHY_AUTO, |
| 999 | }, |
| 1000 | |
| 1001 | .release = dib7000p_release, |
| 1002 | |
| 1003 | .init = dib7000p_init, |
| 1004 | .sleep = dib7000p_sleep, |
| 1005 | |
| 1006 | .set_frontend = dib7000p_set_frontend, |
| 1007 | .get_tune_settings = dib7000p_fe_get_tune_settings, |
| 1008 | .get_frontend = dib7000p_get_frontend, |
| 1009 | |
| 1010 | .read_status = dib7000p_read_status, |
| 1011 | .read_ber = dib7000p_read_ber, |
| 1012 | .read_signal_strength = dib7000p_read_signal_strength, |
| 1013 | .read_snr = dib7000p_read_snr, |
| 1014 | .read_ucblocks = dib7000p_read_unc_blocks, |
| 1015 | }; |
| 1016 | |
| 1017 | MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); |
| 1018 | MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); |
| 1019 | MODULE_LICENSE("GPL"); |