Darrick J. Wong | 6413a01 | 2016-10-03 09:11:25 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 Oracle. All Rights Reserved. |
| 3 | * |
| 4 | * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version 2 |
| 9 | * of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it would be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| 19 | */ |
| 20 | #include "xfs.h" |
| 21 | #include "xfs_fs.h" |
| 22 | #include "xfs_format.h" |
| 23 | #include "xfs_log_format.h" |
| 24 | #include "xfs_trans_resv.h" |
Darrick J. Wong | 77d61fe | 2016-10-03 09:11:26 -0700 | [diff] [blame^] | 25 | #include "xfs_bit.h" |
Darrick J. Wong | 6413a01 | 2016-10-03 09:11:25 -0700 | [diff] [blame] | 26 | #include "xfs_mount.h" |
Darrick J. Wong | 77d61fe | 2016-10-03 09:11:26 -0700 | [diff] [blame^] | 27 | #include "xfs_defer.h" |
| 28 | #include "xfs_inode.h" |
Darrick J. Wong | 6413a01 | 2016-10-03 09:11:25 -0700 | [diff] [blame] | 29 | #include "xfs_trans.h" |
| 30 | #include "xfs_trans_priv.h" |
| 31 | #include "xfs_buf_item.h" |
| 32 | #include "xfs_bmap_item.h" |
| 33 | #include "xfs_log.h" |
Darrick J. Wong | 77d61fe | 2016-10-03 09:11:26 -0700 | [diff] [blame^] | 34 | #include "xfs_bmap.h" |
| 35 | #include "xfs_icache.h" |
| 36 | #include "xfs_trace.h" |
Darrick J. Wong | 6413a01 | 2016-10-03 09:11:25 -0700 | [diff] [blame] | 37 | |
| 38 | |
| 39 | kmem_zone_t *xfs_bui_zone; |
| 40 | kmem_zone_t *xfs_bud_zone; |
| 41 | |
| 42 | static inline struct xfs_bui_log_item *BUI_ITEM(struct xfs_log_item *lip) |
| 43 | { |
| 44 | return container_of(lip, struct xfs_bui_log_item, bui_item); |
| 45 | } |
| 46 | |
| 47 | void |
| 48 | xfs_bui_item_free( |
| 49 | struct xfs_bui_log_item *buip) |
| 50 | { |
| 51 | kmem_zone_free(xfs_bui_zone, buip); |
| 52 | } |
| 53 | |
| 54 | STATIC void |
| 55 | xfs_bui_item_size( |
| 56 | struct xfs_log_item *lip, |
| 57 | int *nvecs, |
| 58 | int *nbytes) |
| 59 | { |
| 60 | struct xfs_bui_log_item *buip = BUI_ITEM(lip); |
| 61 | |
| 62 | *nvecs += 1; |
| 63 | *nbytes += xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents); |
| 64 | } |
| 65 | |
| 66 | /* |
| 67 | * This is called to fill in the vector of log iovecs for the |
| 68 | * given bui log item. We use only 1 iovec, and we point that |
| 69 | * at the bui_log_format structure embedded in the bui item. |
| 70 | * It is at this point that we assert that all of the extent |
| 71 | * slots in the bui item have been filled. |
| 72 | */ |
| 73 | STATIC void |
| 74 | xfs_bui_item_format( |
| 75 | struct xfs_log_item *lip, |
| 76 | struct xfs_log_vec *lv) |
| 77 | { |
| 78 | struct xfs_bui_log_item *buip = BUI_ITEM(lip); |
| 79 | struct xfs_log_iovec *vecp = NULL; |
| 80 | |
| 81 | ASSERT(atomic_read(&buip->bui_next_extent) == |
| 82 | buip->bui_format.bui_nextents); |
| 83 | |
| 84 | buip->bui_format.bui_type = XFS_LI_BUI; |
| 85 | buip->bui_format.bui_size = 1; |
| 86 | |
| 87 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUI_FORMAT, &buip->bui_format, |
| 88 | xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents)); |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Pinning has no meaning for an bui item, so just return. |
| 93 | */ |
| 94 | STATIC void |
| 95 | xfs_bui_item_pin( |
| 96 | struct xfs_log_item *lip) |
| 97 | { |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * The unpin operation is the last place an BUI is manipulated in the log. It is |
| 102 | * either inserted in the AIL or aborted in the event of a log I/O error. In |
| 103 | * either case, the BUI transaction has been successfully committed to make it |
| 104 | * this far. Therefore, we expect whoever committed the BUI to either construct |
| 105 | * and commit the BUD or drop the BUD's reference in the event of error. Simply |
| 106 | * drop the log's BUI reference now that the log is done with it. |
| 107 | */ |
| 108 | STATIC void |
| 109 | xfs_bui_item_unpin( |
| 110 | struct xfs_log_item *lip, |
| 111 | int remove) |
| 112 | { |
| 113 | struct xfs_bui_log_item *buip = BUI_ITEM(lip); |
| 114 | |
| 115 | xfs_bui_release(buip); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * BUI items have no locking or pushing. However, since BUIs are pulled from |
| 120 | * the AIL when their corresponding BUDs are committed to disk, their situation |
| 121 | * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller |
| 122 | * will eventually flush the log. This should help in getting the BUI out of |
| 123 | * the AIL. |
| 124 | */ |
| 125 | STATIC uint |
| 126 | xfs_bui_item_push( |
| 127 | struct xfs_log_item *lip, |
| 128 | struct list_head *buffer_list) |
| 129 | { |
| 130 | return XFS_ITEM_PINNED; |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * The BUI has been either committed or aborted if the transaction has been |
| 135 | * cancelled. If the transaction was cancelled, an BUD isn't going to be |
| 136 | * constructed and thus we free the BUI here directly. |
| 137 | */ |
| 138 | STATIC void |
| 139 | xfs_bui_item_unlock( |
| 140 | struct xfs_log_item *lip) |
| 141 | { |
| 142 | if (lip->li_flags & XFS_LI_ABORTED) |
| 143 | xfs_bui_item_free(BUI_ITEM(lip)); |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * The BUI is logged only once and cannot be moved in the log, so simply return |
| 148 | * the lsn at which it's been logged. |
| 149 | */ |
| 150 | STATIC xfs_lsn_t |
| 151 | xfs_bui_item_committed( |
| 152 | struct xfs_log_item *lip, |
| 153 | xfs_lsn_t lsn) |
| 154 | { |
| 155 | return lsn; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * The BUI dependency tracking op doesn't do squat. It can't because |
| 160 | * it doesn't know where the free extent is coming from. The dependency |
| 161 | * tracking has to be handled by the "enclosing" metadata object. For |
| 162 | * example, for inodes, the inode is locked throughout the extent freeing |
| 163 | * so the dependency should be recorded there. |
| 164 | */ |
| 165 | STATIC void |
| 166 | xfs_bui_item_committing( |
| 167 | struct xfs_log_item *lip, |
| 168 | xfs_lsn_t lsn) |
| 169 | { |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * This is the ops vector shared by all bui log items. |
| 174 | */ |
| 175 | static const struct xfs_item_ops xfs_bui_item_ops = { |
| 176 | .iop_size = xfs_bui_item_size, |
| 177 | .iop_format = xfs_bui_item_format, |
| 178 | .iop_pin = xfs_bui_item_pin, |
| 179 | .iop_unpin = xfs_bui_item_unpin, |
| 180 | .iop_unlock = xfs_bui_item_unlock, |
| 181 | .iop_committed = xfs_bui_item_committed, |
| 182 | .iop_push = xfs_bui_item_push, |
| 183 | .iop_committing = xfs_bui_item_committing, |
| 184 | }; |
| 185 | |
| 186 | /* |
| 187 | * Allocate and initialize an bui item with the given number of extents. |
| 188 | */ |
| 189 | struct xfs_bui_log_item * |
| 190 | xfs_bui_init( |
| 191 | struct xfs_mount *mp) |
| 192 | |
| 193 | { |
| 194 | struct xfs_bui_log_item *buip; |
| 195 | |
| 196 | buip = kmem_zone_zalloc(xfs_bui_zone, KM_SLEEP); |
| 197 | |
| 198 | xfs_log_item_init(mp, &buip->bui_item, XFS_LI_BUI, &xfs_bui_item_ops); |
| 199 | buip->bui_format.bui_nextents = XFS_BUI_MAX_FAST_EXTENTS; |
| 200 | buip->bui_format.bui_id = (uintptr_t)(void *)buip; |
| 201 | atomic_set(&buip->bui_next_extent, 0); |
| 202 | atomic_set(&buip->bui_refcount, 2); |
| 203 | |
| 204 | return buip; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Freeing the BUI requires that we remove it from the AIL if it has already |
| 209 | * been placed there. However, the BUI may not yet have been placed in the AIL |
| 210 | * when called by xfs_bui_release() from BUD processing due to the ordering of |
| 211 | * committed vs unpin operations in bulk insert operations. Hence the reference |
| 212 | * count to ensure only the last caller frees the BUI. |
| 213 | */ |
| 214 | void |
| 215 | xfs_bui_release( |
| 216 | struct xfs_bui_log_item *buip) |
| 217 | { |
| 218 | if (atomic_dec_and_test(&buip->bui_refcount)) { |
| 219 | xfs_trans_ail_remove(&buip->bui_item, SHUTDOWN_LOG_IO_ERROR); |
| 220 | xfs_bui_item_free(buip); |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | static inline struct xfs_bud_log_item *BUD_ITEM(struct xfs_log_item *lip) |
| 225 | { |
| 226 | return container_of(lip, struct xfs_bud_log_item, bud_item); |
| 227 | } |
| 228 | |
| 229 | STATIC void |
| 230 | xfs_bud_item_size( |
| 231 | struct xfs_log_item *lip, |
| 232 | int *nvecs, |
| 233 | int *nbytes) |
| 234 | { |
| 235 | *nvecs += 1; |
| 236 | *nbytes += sizeof(struct xfs_bud_log_format); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * This is called to fill in the vector of log iovecs for the |
| 241 | * given bud log item. We use only 1 iovec, and we point that |
| 242 | * at the bud_log_format structure embedded in the bud item. |
| 243 | * It is at this point that we assert that all of the extent |
| 244 | * slots in the bud item have been filled. |
| 245 | */ |
| 246 | STATIC void |
| 247 | xfs_bud_item_format( |
| 248 | struct xfs_log_item *lip, |
| 249 | struct xfs_log_vec *lv) |
| 250 | { |
| 251 | struct xfs_bud_log_item *budp = BUD_ITEM(lip); |
| 252 | struct xfs_log_iovec *vecp = NULL; |
| 253 | |
| 254 | budp->bud_format.bud_type = XFS_LI_BUD; |
| 255 | budp->bud_format.bud_size = 1; |
| 256 | |
| 257 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUD_FORMAT, &budp->bud_format, |
| 258 | sizeof(struct xfs_bud_log_format)); |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * Pinning has no meaning for an bud item, so just return. |
| 263 | */ |
| 264 | STATIC void |
| 265 | xfs_bud_item_pin( |
| 266 | struct xfs_log_item *lip) |
| 267 | { |
| 268 | } |
| 269 | |
| 270 | /* |
| 271 | * Since pinning has no meaning for an bud item, unpinning does |
| 272 | * not either. |
| 273 | */ |
| 274 | STATIC void |
| 275 | xfs_bud_item_unpin( |
| 276 | struct xfs_log_item *lip, |
| 277 | int remove) |
| 278 | { |
| 279 | } |
| 280 | |
| 281 | /* |
| 282 | * There isn't much you can do to push on an bud item. It is simply stuck |
| 283 | * waiting for the log to be flushed to disk. |
| 284 | */ |
| 285 | STATIC uint |
| 286 | xfs_bud_item_push( |
| 287 | struct xfs_log_item *lip, |
| 288 | struct list_head *buffer_list) |
| 289 | { |
| 290 | return XFS_ITEM_PINNED; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * The BUD is either committed or aborted if the transaction is cancelled. If |
| 295 | * the transaction is cancelled, drop our reference to the BUI and free the |
| 296 | * BUD. |
| 297 | */ |
| 298 | STATIC void |
| 299 | xfs_bud_item_unlock( |
| 300 | struct xfs_log_item *lip) |
| 301 | { |
| 302 | struct xfs_bud_log_item *budp = BUD_ITEM(lip); |
| 303 | |
| 304 | if (lip->li_flags & XFS_LI_ABORTED) { |
| 305 | xfs_bui_release(budp->bud_buip); |
| 306 | kmem_zone_free(xfs_bud_zone, budp); |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * When the bud item is committed to disk, all we need to do is delete our |
| 312 | * reference to our partner bui item and then free ourselves. Since we're |
| 313 | * freeing ourselves we must return -1 to keep the transaction code from |
| 314 | * further referencing this item. |
| 315 | */ |
| 316 | STATIC xfs_lsn_t |
| 317 | xfs_bud_item_committed( |
| 318 | struct xfs_log_item *lip, |
| 319 | xfs_lsn_t lsn) |
| 320 | { |
| 321 | struct xfs_bud_log_item *budp = BUD_ITEM(lip); |
| 322 | |
| 323 | /* |
| 324 | * Drop the BUI reference regardless of whether the BUD has been |
| 325 | * aborted. Once the BUD transaction is constructed, it is the sole |
| 326 | * responsibility of the BUD to release the BUI (even if the BUI is |
| 327 | * aborted due to log I/O error). |
| 328 | */ |
| 329 | xfs_bui_release(budp->bud_buip); |
| 330 | kmem_zone_free(xfs_bud_zone, budp); |
| 331 | |
| 332 | return (xfs_lsn_t)-1; |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * The BUD dependency tracking op doesn't do squat. It can't because |
| 337 | * it doesn't know where the free extent is coming from. The dependency |
| 338 | * tracking has to be handled by the "enclosing" metadata object. For |
| 339 | * example, for inodes, the inode is locked throughout the extent freeing |
| 340 | * so the dependency should be recorded there. |
| 341 | */ |
| 342 | STATIC void |
| 343 | xfs_bud_item_committing( |
| 344 | struct xfs_log_item *lip, |
| 345 | xfs_lsn_t lsn) |
| 346 | { |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * This is the ops vector shared by all bud log items. |
| 351 | */ |
| 352 | static const struct xfs_item_ops xfs_bud_item_ops = { |
| 353 | .iop_size = xfs_bud_item_size, |
| 354 | .iop_format = xfs_bud_item_format, |
| 355 | .iop_pin = xfs_bud_item_pin, |
| 356 | .iop_unpin = xfs_bud_item_unpin, |
| 357 | .iop_unlock = xfs_bud_item_unlock, |
| 358 | .iop_committed = xfs_bud_item_committed, |
| 359 | .iop_push = xfs_bud_item_push, |
| 360 | .iop_committing = xfs_bud_item_committing, |
| 361 | }; |
| 362 | |
| 363 | /* |
| 364 | * Allocate and initialize an bud item with the given number of extents. |
| 365 | */ |
| 366 | struct xfs_bud_log_item * |
| 367 | xfs_bud_init( |
| 368 | struct xfs_mount *mp, |
| 369 | struct xfs_bui_log_item *buip) |
| 370 | |
| 371 | { |
| 372 | struct xfs_bud_log_item *budp; |
| 373 | |
| 374 | budp = kmem_zone_zalloc(xfs_bud_zone, KM_SLEEP); |
| 375 | xfs_log_item_init(mp, &budp->bud_item, XFS_LI_BUD, &xfs_bud_item_ops); |
| 376 | budp->bud_buip = buip; |
| 377 | budp->bud_format.bud_bui_id = buip->bui_format.bui_id; |
| 378 | |
| 379 | return budp; |
| 380 | } |
Darrick J. Wong | 77d61fe | 2016-10-03 09:11:26 -0700 | [diff] [blame^] | 381 | |
| 382 | /* |
| 383 | * Process a bmap update intent item that was recovered from the log. |
| 384 | * We need to update some inode's bmbt. |
| 385 | */ |
| 386 | int |
| 387 | xfs_bui_recover( |
| 388 | struct xfs_mount *mp, |
| 389 | struct xfs_bui_log_item *buip) |
| 390 | { |
| 391 | int error = 0; |
| 392 | struct xfs_map_extent *bmap; |
| 393 | xfs_fsblock_t startblock_fsb; |
| 394 | xfs_fsblock_t inode_fsb; |
| 395 | bool op_ok; |
| 396 | |
| 397 | ASSERT(!test_bit(XFS_BUI_RECOVERED, &buip->bui_flags)); |
| 398 | |
| 399 | /* Only one mapping operation per BUI... */ |
| 400 | if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) { |
| 401 | set_bit(XFS_BUI_RECOVERED, &buip->bui_flags); |
| 402 | xfs_bui_release(buip); |
| 403 | return -EIO; |
| 404 | } |
| 405 | |
| 406 | /* |
| 407 | * First check the validity of the extent described by the |
| 408 | * BUI. If anything is bad, then toss the BUI. |
| 409 | */ |
| 410 | bmap = &buip->bui_format.bui_extents[0]; |
| 411 | startblock_fsb = XFS_BB_TO_FSB(mp, |
| 412 | XFS_FSB_TO_DADDR(mp, bmap->me_startblock)); |
| 413 | inode_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, |
| 414 | XFS_INO_TO_FSB(mp, bmap->me_owner))); |
| 415 | switch (bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) { |
| 416 | case XFS_BMAP_MAP: |
| 417 | case XFS_BMAP_UNMAP: |
| 418 | op_ok = true; |
| 419 | break; |
| 420 | default: |
| 421 | op_ok = false; |
| 422 | break; |
| 423 | } |
| 424 | if (!op_ok || startblock_fsb == 0 || |
| 425 | bmap->me_len == 0 || |
| 426 | inode_fsb == 0 || |
| 427 | startblock_fsb >= mp->m_sb.sb_dblocks || |
| 428 | bmap->me_len >= mp->m_sb.sb_agblocks || |
| 429 | inode_fsb >= mp->m_sb.sb_dblocks || |
| 430 | (bmap->me_flags & ~XFS_BMAP_EXTENT_FLAGS)) { |
| 431 | /* |
| 432 | * This will pull the BUI from the AIL and |
| 433 | * free the memory associated with it. |
| 434 | */ |
| 435 | set_bit(XFS_BUI_RECOVERED, &buip->bui_flags); |
| 436 | xfs_bui_release(buip); |
| 437 | return -EIO; |
| 438 | } |
| 439 | |
| 440 | set_bit(XFS_BUI_RECOVERED, &buip->bui_flags); |
| 441 | xfs_bui_release(buip); |
| 442 | return error; |
| 443 | } |