Tejun Heo | 7caa471 | 2019-08-28 15:05:58 -0700 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 |
| 2 | * |
| 3 | * IO cost model based controller. |
| 4 | * |
| 5 | * Copyright (C) 2019 Tejun Heo <tj@kernel.org> |
| 6 | * Copyright (C) 2019 Andy Newell <newella@fb.com> |
| 7 | * Copyright (C) 2019 Facebook |
| 8 | * |
| 9 | * One challenge of controlling IO resources is the lack of trivially |
| 10 | * observable cost metric. This is distinguished from CPU and memory where |
| 11 | * wallclock time and the number of bytes can serve as accurate enough |
| 12 | * approximations. |
| 13 | * |
| 14 | * Bandwidth and iops are the most commonly used metrics for IO devices but |
| 15 | * depending on the type and specifics of the device, different IO patterns |
| 16 | * easily lead to multiple orders of magnitude variations rendering them |
| 17 | * useless for the purpose of IO capacity distribution. While on-device |
| 18 | * time, with a lot of clutches, could serve as a useful approximation for |
| 19 | * non-queued rotational devices, this is no longer viable with modern |
| 20 | * devices, even the rotational ones. |
| 21 | * |
| 22 | * While there is no cost metric we can trivially observe, it isn't a |
| 23 | * complete mystery. For example, on a rotational device, seek cost |
| 24 | * dominates while a contiguous transfer contributes a smaller amount |
| 25 | * proportional to the size. If we can characterize at least the relative |
| 26 | * costs of these different types of IOs, it should be possible to |
| 27 | * implement a reasonable work-conserving proportional IO resource |
| 28 | * distribution. |
| 29 | * |
| 30 | * 1. IO Cost Model |
| 31 | * |
| 32 | * IO cost model estimates the cost of an IO given its basic parameters and |
| 33 | * history (e.g. the end sector of the last IO). The cost is measured in |
| 34 | * device time. If a given IO is estimated to cost 10ms, the device should |
| 35 | * be able to process ~100 of those IOs in a second. |
| 36 | * |
| 37 | * Currently, there's only one builtin cost model - linear. Each IO is |
| 38 | * classified as sequential or random and given a base cost accordingly. |
| 39 | * On top of that, a size cost proportional to the length of the IO is |
| 40 | * added. While simple, this model captures the operational |
| 41 | * characteristics of a wide varienty of devices well enough. Default |
| 42 | * paramters for several different classes of devices are provided and the |
| 43 | * parameters can be configured from userspace via |
| 44 | * /sys/fs/cgroup/io.cost.model. |
| 45 | * |
| 46 | * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate |
| 47 | * device-specific coefficients. |
| 48 | * |
| 49 | * 2. Control Strategy |
| 50 | * |
| 51 | * The device virtual time (vtime) is used as the primary control metric. |
| 52 | * The control strategy is composed of the following three parts. |
| 53 | * |
| 54 | * 2-1. Vtime Distribution |
| 55 | * |
| 56 | * When a cgroup becomes active in terms of IOs, its hierarchical share is |
| 57 | * calculated. Please consider the following hierarchy where the numbers |
| 58 | * inside parentheses denote the configured weights. |
| 59 | * |
| 60 | * root |
| 61 | * / \ |
| 62 | * A (w:100) B (w:300) |
| 63 | * / \ |
| 64 | * A0 (w:100) A1 (w:100) |
| 65 | * |
| 66 | * If B is idle and only A0 and A1 are actively issuing IOs, as the two are |
| 67 | * of equal weight, each gets 50% share. If then B starts issuing IOs, B |
| 68 | * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, |
| 69 | * 12.5% each. The distribution mechanism only cares about these flattened |
| 70 | * shares. They're called hweights (hierarchical weights) and always add |
| 71 | * upto 1 (HWEIGHT_WHOLE). |
| 72 | * |
| 73 | * A given cgroup's vtime runs slower in inverse proportion to its hweight. |
| 74 | * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) |
| 75 | * against the device vtime - an IO which takes 10ms on the underlying |
| 76 | * device is considered to take 80ms on A0. |
| 77 | * |
| 78 | * This constitutes the basis of IO capacity distribution. Each cgroup's |
| 79 | * vtime is running at a rate determined by its hweight. A cgroup tracks |
| 80 | * the vtime consumed by past IOs and can issue a new IO iff doing so |
| 81 | * wouldn't outrun the current device vtime. Otherwise, the IO is |
| 82 | * suspended until the vtime has progressed enough to cover it. |
| 83 | * |
| 84 | * 2-2. Vrate Adjustment |
| 85 | * |
| 86 | * It's unrealistic to expect the cost model to be perfect. There are too |
| 87 | * many devices and even on the same device the overall performance |
| 88 | * fluctuates depending on numerous factors such as IO mixture and device |
| 89 | * internal garbage collection. The controller needs to adapt dynamically. |
| 90 | * |
| 91 | * This is achieved by adjusting the overall IO rate according to how busy |
| 92 | * the device is. If the device becomes overloaded, we're sending down too |
| 93 | * many IOs and should generally slow down. If there are waiting issuers |
| 94 | * but the device isn't saturated, we're issuing too few and should |
| 95 | * generally speed up. |
| 96 | * |
| 97 | * To slow down, we lower the vrate - the rate at which the device vtime |
| 98 | * passes compared to the wall clock. For example, if the vtime is running |
| 99 | * at the vrate of 75%, all cgroups added up would only be able to issue |
| 100 | * 750ms worth of IOs per second, and vice-versa for speeding up. |
| 101 | * |
| 102 | * Device business is determined using two criteria - rq wait and |
| 103 | * completion latencies. |
| 104 | * |
| 105 | * When a device gets saturated, the on-device and then the request queues |
| 106 | * fill up and a bio which is ready to be issued has to wait for a request |
| 107 | * to become available. When this delay becomes noticeable, it's a clear |
| 108 | * indication that the device is saturated and we lower the vrate. This |
| 109 | * saturation signal is fairly conservative as it only triggers when both |
| 110 | * hardware and software queues are filled up, and is used as the default |
| 111 | * busy signal. |
| 112 | * |
| 113 | * As devices can have deep queues and be unfair in how the queued commands |
| 114 | * are executed, soley depending on rq wait may not result in satisfactory |
| 115 | * control quality. For a better control quality, completion latency QoS |
| 116 | * parameters can be configured so that the device is considered saturated |
| 117 | * if N'th percentile completion latency rises above the set point. |
| 118 | * |
| 119 | * The completion latency requirements are a function of both the |
| 120 | * underlying device characteristics and the desired IO latency quality of |
| 121 | * service. There is an inherent trade-off - the tighter the latency QoS, |
| 122 | * the higher the bandwidth lossage. Latency QoS is disabled by default |
| 123 | * and can be set through /sys/fs/cgroup/io.cost.qos. |
| 124 | * |
| 125 | * 2-3. Work Conservation |
| 126 | * |
| 127 | * Imagine two cgroups A and B with equal weights. A is issuing a small IO |
| 128 | * periodically while B is sending out enough parallel IOs to saturate the |
| 129 | * device on its own. Let's say A's usage amounts to 100ms worth of IO |
| 130 | * cost per second, i.e., 10% of the device capacity. The naive |
| 131 | * distribution of half and half would lead to 60% utilization of the |
| 132 | * device, a significant reduction in the total amount of work done |
| 133 | * compared to free-for-all competition. This is too high a cost to pay |
| 134 | * for IO control. |
| 135 | * |
| 136 | * To conserve the total amount of work done, we keep track of how much |
| 137 | * each active cgroup is actually using and yield part of its weight if |
| 138 | * there are other cgroups which can make use of it. In the above case, |
| 139 | * A's weight will be lowered so that it hovers above the actual usage and |
| 140 | * B would be able to use the rest. |
| 141 | * |
| 142 | * As we don't want to penalize a cgroup for donating its weight, the |
| 143 | * surplus weight adjustment factors in a margin and has an immediate |
| 144 | * snapback mechanism in case the cgroup needs more IO vtime for itself. |
| 145 | * |
| 146 | * Note that adjusting down surplus weights has the same effects as |
| 147 | * accelerating vtime for other cgroups and work conservation can also be |
| 148 | * implemented by adjusting vrate dynamically. However, squaring who can |
| 149 | * donate and should take back how much requires hweight propagations |
| 150 | * anyway making it easier to implement and understand as a separate |
| 151 | * mechanism. |
| 152 | */ |
| 153 | |
| 154 | #include <linux/kernel.h> |
| 155 | #include <linux/module.h> |
| 156 | #include <linux/timer.h> |
| 157 | #include <linux/time64.h> |
| 158 | #include <linux/parser.h> |
| 159 | #include <linux/sched/signal.h> |
| 160 | #include <linux/blk-cgroup.h> |
| 161 | #include "blk-rq-qos.h" |
| 162 | #include "blk-stat.h" |
| 163 | #include "blk-wbt.h" |
| 164 | |
| 165 | #ifdef CONFIG_TRACEPOINTS |
| 166 | |
| 167 | /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ |
| 168 | #define TRACE_IOCG_PATH_LEN 1024 |
| 169 | static DEFINE_SPINLOCK(trace_iocg_path_lock); |
| 170 | static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; |
| 171 | |
| 172 | #define TRACE_IOCG_PATH(type, iocg, ...) \ |
| 173 | do { \ |
| 174 | unsigned long flags; \ |
| 175 | if (trace_iocost_##type##_enabled()) { \ |
| 176 | spin_lock_irqsave(&trace_iocg_path_lock, flags); \ |
| 177 | cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ |
| 178 | trace_iocg_path, TRACE_IOCG_PATH_LEN); \ |
| 179 | trace_iocost_##type(iocg, trace_iocg_path, \ |
| 180 | ##__VA_ARGS__); \ |
| 181 | spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ |
| 182 | } \ |
| 183 | } while (0) |
| 184 | |
| 185 | #else /* CONFIG_TRACE_POINTS */ |
| 186 | #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) |
| 187 | #endif /* CONFIG_TRACE_POINTS */ |
| 188 | |
| 189 | enum { |
| 190 | MILLION = 1000000, |
| 191 | |
| 192 | /* timer period is calculated from latency requirements, bound it */ |
| 193 | MIN_PERIOD = USEC_PER_MSEC, |
| 194 | MAX_PERIOD = USEC_PER_SEC, |
| 195 | |
| 196 | /* |
| 197 | * A cgroup's vtime can run 50% behind the device vtime, which |
| 198 | * serves as its IO credit buffer. Surplus weight adjustment is |
| 199 | * immediately canceled if the vtime margin runs below 10%. |
| 200 | */ |
| 201 | MARGIN_PCT = 50, |
| 202 | INUSE_MARGIN_PCT = 10, |
| 203 | |
| 204 | /* Have some play in waitq timer operations */ |
| 205 | WAITQ_TIMER_MARGIN_PCT = 5, |
| 206 | |
| 207 | /* |
| 208 | * vtime can wrap well within a reasonable uptime when vrate is |
| 209 | * consistently raised. Don't trust recorded cgroup vtime if the |
| 210 | * period counter indicates that it's older than 5mins. |
| 211 | */ |
| 212 | VTIME_VALID_DUR = 300 * USEC_PER_SEC, |
| 213 | |
| 214 | /* |
| 215 | * Remember the past three non-zero usages and use the max for |
| 216 | * surplus calculation. Three slots guarantee that we remember one |
| 217 | * full period usage from the last active stretch even after |
| 218 | * partial deactivation and re-activation periods. Don't start |
| 219 | * giving away weight before collecting two data points to prevent |
| 220 | * hweight adjustments based on one partial activation period. |
| 221 | */ |
| 222 | NR_USAGE_SLOTS = 3, |
| 223 | MIN_VALID_USAGES = 2, |
| 224 | |
| 225 | /* 1/64k is granular enough and can easily be handled w/ u32 */ |
| 226 | HWEIGHT_WHOLE = 1 << 16, |
| 227 | |
| 228 | /* |
| 229 | * As vtime is used to calculate the cost of each IO, it needs to |
| 230 | * be fairly high precision. For example, it should be able to |
| 231 | * represent the cost of a single page worth of discard with |
| 232 | * suffificient accuracy. At the same time, it should be able to |
| 233 | * represent reasonably long enough durations to be useful and |
| 234 | * convenient during operation. |
| 235 | * |
| 236 | * 1s worth of vtime is 2^37. This gives us both sub-nanosecond |
| 237 | * granularity and days of wrap-around time even at extreme vrates. |
| 238 | */ |
| 239 | VTIME_PER_SEC_SHIFT = 37, |
| 240 | VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, |
| 241 | VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, |
| 242 | |
| 243 | /* bound vrate adjustments within two orders of magnitude */ |
| 244 | VRATE_MIN_PPM = 10000, /* 1% */ |
| 245 | VRATE_MAX_PPM = 100000000, /* 10000% */ |
| 246 | |
| 247 | VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, |
| 248 | VRATE_CLAMP_ADJ_PCT = 4, |
| 249 | |
| 250 | /* if IOs end up waiting for requests, issue less */ |
| 251 | RQ_WAIT_BUSY_PCT = 5, |
| 252 | |
| 253 | /* unbusy hysterisis */ |
| 254 | UNBUSY_THR_PCT = 75, |
| 255 | |
| 256 | /* don't let cmds which take a very long time pin lagging for too long */ |
| 257 | MAX_LAGGING_PERIODS = 10, |
| 258 | |
| 259 | /* |
| 260 | * If usage% * 1.25 + 2% is lower than hweight% by more than 3%, |
| 261 | * donate the surplus. |
| 262 | */ |
| 263 | SURPLUS_SCALE_PCT = 125, /* * 125% */ |
| 264 | SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */ |
| 265 | SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */ |
| 266 | |
| 267 | /* switch iff the conditions are met for longer than this */ |
| 268 | AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, |
| 269 | |
| 270 | /* |
| 271 | * Count IO size in 4k pages. The 12bit shift helps keeping |
| 272 | * size-proportional components of cost calculation in closer |
| 273 | * numbers of digits to per-IO cost components. |
| 274 | */ |
| 275 | IOC_PAGE_SHIFT = 12, |
| 276 | IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, |
| 277 | IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, |
| 278 | |
| 279 | /* if apart further than 16M, consider randio for linear model */ |
| 280 | LCOEF_RANDIO_PAGES = 4096, |
| 281 | }; |
| 282 | |
| 283 | enum ioc_running { |
| 284 | IOC_IDLE, |
| 285 | IOC_RUNNING, |
| 286 | IOC_STOP, |
| 287 | }; |
| 288 | |
| 289 | /* io.cost.qos controls including per-dev enable of the whole controller */ |
| 290 | enum { |
| 291 | QOS_ENABLE, |
| 292 | QOS_CTRL, |
| 293 | NR_QOS_CTRL_PARAMS, |
| 294 | }; |
| 295 | |
| 296 | /* io.cost.qos params */ |
| 297 | enum { |
| 298 | QOS_RPPM, |
| 299 | QOS_RLAT, |
| 300 | QOS_WPPM, |
| 301 | QOS_WLAT, |
| 302 | QOS_MIN, |
| 303 | QOS_MAX, |
| 304 | NR_QOS_PARAMS, |
| 305 | }; |
| 306 | |
| 307 | /* io.cost.model controls */ |
| 308 | enum { |
| 309 | COST_CTRL, |
| 310 | COST_MODEL, |
| 311 | NR_COST_CTRL_PARAMS, |
| 312 | }; |
| 313 | |
| 314 | /* builtin linear cost model coefficients */ |
| 315 | enum { |
| 316 | I_LCOEF_RBPS, |
| 317 | I_LCOEF_RSEQIOPS, |
| 318 | I_LCOEF_RRANDIOPS, |
| 319 | I_LCOEF_WBPS, |
| 320 | I_LCOEF_WSEQIOPS, |
| 321 | I_LCOEF_WRANDIOPS, |
| 322 | NR_I_LCOEFS, |
| 323 | }; |
| 324 | |
| 325 | enum { |
| 326 | LCOEF_RPAGE, |
| 327 | LCOEF_RSEQIO, |
| 328 | LCOEF_RRANDIO, |
| 329 | LCOEF_WPAGE, |
| 330 | LCOEF_WSEQIO, |
| 331 | LCOEF_WRANDIO, |
| 332 | NR_LCOEFS, |
| 333 | }; |
| 334 | |
| 335 | enum { |
| 336 | AUTOP_INVALID, |
| 337 | AUTOP_HDD, |
| 338 | AUTOP_SSD_QD1, |
| 339 | AUTOP_SSD_DFL, |
| 340 | AUTOP_SSD_FAST, |
| 341 | }; |
| 342 | |
| 343 | struct ioc_gq; |
| 344 | |
| 345 | struct ioc_params { |
| 346 | u32 qos[NR_QOS_PARAMS]; |
| 347 | u64 i_lcoefs[NR_I_LCOEFS]; |
| 348 | u64 lcoefs[NR_LCOEFS]; |
| 349 | u32 too_fast_vrate_pct; |
| 350 | u32 too_slow_vrate_pct; |
| 351 | }; |
| 352 | |
| 353 | struct ioc_missed { |
| 354 | u32 nr_met; |
| 355 | u32 nr_missed; |
| 356 | u32 last_met; |
| 357 | u32 last_missed; |
| 358 | }; |
| 359 | |
| 360 | struct ioc_pcpu_stat { |
| 361 | struct ioc_missed missed[2]; |
| 362 | |
| 363 | u64 rq_wait_ns; |
| 364 | u64 last_rq_wait_ns; |
| 365 | }; |
| 366 | |
| 367 | /* per device */ |
| 368 | struct ioc { |
| 369 | struct rq_qos rqos; |
| 370 | |
| 371 | bool enabled; |
| 372 | |
| 373 | struct ioc_params params; |
| 374 | u32 period_us; |
| 375 | u32 margin_us; |
| 376 | u64 vrate_min; |
| 377 | u64 vrate_max; |
| 378 | |
| 379 | spinlock_t lock; |
| 380 | struct timer_list timer; |
| 381 | struct list_head active_iocgs; /* active cgroups */ |
| 382 | struct ioc_pcpu_stat __percpu *pcpu_stat; |
| 383 | |
| 384 | enum ioc_running running; |
| 385 | atomic64_t vtime_rate; |
| 386 | |
| 387 | seqcount_t period_seqcount; |
| 388 | u32 period_at; /* wallclock starttime */ |
| 389 | u64 period_at_vtime; /* vtime starttime */ |
| 390 | |
| 391 | atomic64_t cur_period; /* inc'd each period */ |
| 392 | int busy_level; /* saturation history */ |
| 393 | |
| 394 | u64 inuse_margin_vtime; |
| 395 | bool weights_updated; |
| 396 | atomic_t hweight_gen; /* for lazy hweights */ |
| 397 | |
| 398 | u64 autop_too_fast_at; |
| 399 | u64 autop_too_slow_at; |
| 400 | int autop_idx; |
| 401 | bool user_qos_params:1; |
| 402 | bool user_cost_model:1; |
| 403 | }; |
| 404 | |
| 405 | /* per device-cgroup pair */ |
| 406 | struct ioc_gq { |
| 407 | struct blkg_policy_data pd; |
| 408 | struct ioc *ioc; |
| 409 | |
| 410 | /* |
| 411 | * A iocg can get its weight from two sources - an explicit |
| 412 | * per-device-cgroup configuration or the default weight of the |
| 413 | * cgroup. `cfg_weight` is the explicit per-device-cgroup |
| 414 | * configuration. `weight` is the effective considering both |
| 415 | * sources. |
| 416 | * |
| 417 | * When an idle cgroup becomes active its `active` goes from 0 to |
| 418 | * `weight`. `inuse` is the surplus adjusted active weight. |
| 419 | * `active` and `inuse` are used to calculate `hweight_active` and |
| 420 | * `hweight_inuse`. |
| 421 | * |
| 422 | * `last_inuse` remembers `inuse` while an iocg is idle to persist |
| 423 | * surplus adjustments. |
| 424 | */ |
| 425 | u32 cfg_weight; |
| 426 | u32 weight; |
| 427 | u32 active; |
| 428 | u32 inuse; |
| 429 | u32 last_inuse; |
| 430 | |
| 431 | sector_t cursor; /* to detect randio */ |
| 432 | |
| 433 | /* |
| 434 | * `vtime` is this iocg's vtime cursor which progresses as IOs are |
| 435 | * issued. If lagging behind device vtime, the delta represents |
| 436 | * the currently available IO budget. If runnning ahead, the |
| 437 | * overage. |
| 438 | * |
| 439 | * `vtime_done` is the same but progressed on completion rather |
| 440 | * than issue. The delta behind `vtime` represents the cost of |
| 441 | * currently in-flight IOs. |
| 442 | * |
| 443 | * `last_vtime` is used to remember `vtime` at the end of the last |
| 444 | * period to calculate utilization. |
| 445 | */ |
| 446 | atomic64_t vtime; |
| 447 | atomic64_t done_vtime; |
| 448 | u64 last_vtime; |
| 449 | |
| 450 | /* |
| 451 | * The period this iocg was last active in. Used for deactivation |
| 452 | * and invalidating `vtime`. |
| 453 | */ |
| 454 | atomic64_t active_period; |
| 455 | struct list_head active_list; |
| 456 | |
| 457 | /* see __propagate_active_weight() and current_hweight() for details */ |
| 458 | u64 child_active_sum; |
| 459 | u64 child_inuse_sum; |
| 460 | int hweight_gen; |
| 461 | u32 hweight_active; |
| 462 | u32 hweight_inuse; |
| 463 | bool has_surplus; |
| 464 | |
| 465 | struct wait_queue_head waitq; |
| 466 | struct hrtimer waitq_timer; |
| 467 | struct hrtimer delay_timer; |
| 468 | |
| 469 | /* usage is recorded as fractions of HWEIGHT_WHOLE */ |
| 470 | int usage_idx; |
| 471 | u32 usages[NR_USAGE_SLOTS]; |
| 472 | |
| 473 | /* this iocg's depth in the hierarchy and ancestors including self */ |
| 474 | int level; |
| 475 | struct ioc_gq *ancestors[]; |
| 476 | }; |
| 477 | |
| 478 | /* per cgroup */ |
| 479 | struct ioc_cgrp { |
| 480 | struct blkcg_policy_data cpd; |
| 481 | unsigned int dfl_weight; |
| 482 | }; |
| 483 | |
| 484 | struct ioc_now { |
| 485 | u64 now_ns; |
| 486 | u32 now; |
| 487 | u64 vnow; |
| 488 | u64 vrate; |
| 489 | }; |
| 490 | |
| 491 | struct iocg_wait { |
| 492 | struct wait_queue_entry wait; |
| 493 | struct bio *bio; |
| 494 | u64 abs_cost; |
| 495 | bool committed; |
| 496 | }; |
| 497 | |
| 498 | struct iocg_wake_ctx { |
| 499 | struct ioc_gq *iocg; |
| 500 | u32 hw_inuse; |
| 501 | s64 vbudget; |
| 502 | }; |
| 503 | |
| 504 | static const struct ioc_params autop[] = { |
| 505 | [AUTOP_HDD] = { |
| 506 | .qos = { |
| 507 | [QOS_RLAT] = 50000, /* 50ms */ |
| 508 | [QOS_WLAT] = 50000, |
| 509 | [QOS_MIN] = VRATE_MIN_PPM, |
| 510 | [QOS_MAX] = VRATE_MAX_PPM, |
| 511 | }, |
| 512 | .i_lcoefs = { |
| 513 | [I_LCOEF_RBPS] = 174019176, |
| 514 | [I_LCOEF_RSEQIOPS] = 41708, |
| 515 | [I_LCOEF_RRANDIOPS] = 370, |
| 516 | [I_LCOEF_WBPS] = 178075866, |
| 517 | [I_LCOEF_WSEQIOPS] = 42705, |
| 518 | [I_LCOEF_WRANDIOPS] = 378, |
| 519 | }, |
| 520 | }, |
| 521 | [AUTOP_SSD_QD1] = { |
| 522 | .qos = { |
| 523 | [QOS_RLAT] = 25000, /* 25ms */ |
| 524 | [QOS_WLAT] = 25000, |
| 525 | [QOS_MIN] = VRATE_MIN_PPM, |
| 526 | [QOS_MAX] = VRATE_MAX_PPM, |
| 527 | }, |
| 528 | .i_lcoefs = { |
| 529 | [I_LCOEF_RBPS] = 245855193, |
| 530 | [I_LCOEF_RSEQIOPS] = 61575, |
| 531 | [I_LCOEF_RRANDIOPS] = 6946, |
| 532 | [I_LCOEF_WBPS] = 141365009, |
| 533 | [I_LCOEF_WSEQIOPS] = 33716, |
| 534 | [I_LCOEF_WRANDIOPS] = 26796, |
| 535 | }, |
| 536 | }, |
| 537 | [AUTOP_SSD_DFL] = { |
| 538 | .qos = { |
| 539 | [QOS_RLAT] = 25000, /* 25ms */ |
| 540 | [QOS_WLAT] = 25000, |
| 541 | [QOS_MIN] = VRATE_MIN_PPM, |
| 542 | [QOS_MAX] = VRATE_MAX_PPM, |
| 543 | }, |
| 544 | .i_lcoefs = { |
| 545 | [I_LCOEF_RBPS] = 488636629, |
| 546 | [I_LCOEF_RSEQIOPS] = 8932, |
| 547 | [I_LCOEF_RRANDIOPS] = 8518, |
| 548 | [I_LCOEF_WBPS] = 427891549, |
| 549 | [I_LCOEF_WSEQIOPS] = 28755, |
| 550 | [I_LCOEF_WRANDIOPS] = 21940, |
| 551 | }, |
| 552 | .too_fast_vrate_pct = 500, |
| 553 | }, |
| 554 | [AUTOP_SSD_FAST] = { |
| 555 | .qos = { |
| 556 | [QOS_RLAT] = 5000, /* 5ms */ |
| 557 | [QOS_WLAT] = 5000, |
| 558 | [QOS_MIN] = VRATE_MIN_PPM, |
| 559 | [QOS_MAX] = VRATE_MAX_PPM, |
| 560 | }, |
| 561 | .i_lcoefs = { |
| 562 | [I_LCOEF_RBPS] = 3102524156LLU, |
| 563 | [I_LCOEF_RSEQIOPS] = 724816, |
| 564 | [I_LCOEF_RRANDIOPS] = 778122, |
| 565 | [I_LCOEF_WBPS] = 1742780862LLU, |
| 566 | [I_LCOEF_WSEQIOPS] = 425702, |
| 567 | [I_LCOEF_WRANDIOPS] = 443193, |
| 568 | }, |
| 569 | .too_slow_vrate_pct = 10, |
| 570 | }, |
| 571 | }; |
| 572 | |
| 573 | /* |
| 574 | * vrate adjust percentages indexed by ioc->busy_level. We adjust up on |
| 575 | * vtime credit shortage and down on device saturation. |
| 576 | */ |
| 577 | static u32 vrate_adj_pct[] = |
| 578 | { 0, 0, 0, 0, |
| 579 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 580 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 581 | 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; |
| 582 | |
| 583 | static struct blkcg_policy blkcg_policy_iocost; |
| 584 | |
| 585 | /* accessors and helpers */ |
| 586 | static struct ioc *rqos_to_ioc(struct rq_qos *rqos) |
| 587 | { |
| 588 | return container_of(rqos, struct ioc, rqos); |
| 589 | } |
| 590 | |
| 591 | static struct ioc *q_to_ioc(struct request_queue *q) |
| 592 | { |
| 593 | return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); |
| 594 | } |
| 595 | |
| 596 | static const char *q_name(struct request_queue *q) |
| 597 | { |
| 598 | if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) |
| 599 | return kobject_name(q->kobj.parent); |
| 600 | else |
| 601 | return "<unknown>"; |
| 602 | } |
| 603 | |
| 604 | static const char __maybe_unused *ioc_name(struct ioc *ioc) |
| 605 | { |
| 606 | return q_name(ioc->rqos.q); |
| 607 | } |
| 608 | |
| 609 | static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) |
| 610 | { |
| 611 | return pd ? container_of(pd, struct ioc_gq, pd) : NULL; |
| 612 | } |
| 613 | |
| 614 | static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) |
| 615 | { |
| 616 | return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); |
| 617 | } |
| 618 | |
| 619 | static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) |
| 620 | { |
| 621 | return pd_to_blkg(&iocg->pd); |
| 622 | } |
| 623 | |
| 624 | static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) |
| 625 | { |
| 626 | return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), |
| 627 | struct ioc_cgrp, cpd); |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical |
| 632 | * weight, the more expensive each IO. |
| 633 | */ |
| 634 | static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) |
| 635 | { |
| 636 | return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse); |
| 637 | } |
| 638 | |
| 639 | static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost) |
| 640 | { |
| 641 | bio->bi_iocost_cost = cost; |
| 642 | atomic64_add(cost, &iocg->vtime); |
| 643 | } |
| 644 | |
| 645 | #define CREATE_TRACE_POINTS |
| 646 | #include <trace/events/iocost.h> |
| 647 | |
| 648 | /* latency Qos params changed, update period_us and all the dependent params */ |
| 649 | static void ioc_refresh_period_us(struct ioc *ioc) |
| 650 | { |
| 651 | u32 ppm, lat, multi, period_us; |
| 652 | |
| 653 | lockdep_assert_held(&ioc->lock); |
| 654 | |
| 655 | /* pick the higher latency target */ |
| 656 | if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { |
| 657 | ppm = ioc->params.qos[QOS_RPPM]; |
| 658 | lat = ioc->params.qos[QOS_RLAT]; |
| 659 | } else { |
| 660 | ppm = ioc->params.qos[QOS_WPPM]; |
| 661 | lat = ioc->params.qos[QOS_WLAT]; |
| 662 | } |
| 663 | |
| 664 | /* |
| 665 | * We want the period to be long enough to contain a healthy number |
| 666 | * of IOs while short enough for granular control. Define it as a |
| 667 | * multiple of the latency target. Ideally, the multiplier should |
| 668 | * be scaled according to the percentile so that it would nominally |
| 669 | * contain a certain number of requests. Let's be simpler and |
| 670 | * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). |
| 671 | */ |
| 672 | if (ppm) |
| 673 | multi = max_t(u32, (MILLION - ppm) / 50000, 2); |
| 674 | else |
| 675 | multi = 2; |
| 676 | period_us = multi * lat; |
| 677 | period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); |
| 678 | |
| 679 | /* calculate dependent params */ |
| 680 | ioc->period_us = period_us; |
| 681 | ioc->margin_us = period_us * MARGIN_PCT / 100; |
| 682 | ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( |
| 683 | period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100); |
| 684 | } |
| 685 | |
| 686 | static int ioc_autop_idx(struct ioc *ioc) |
| 687 | { |
| 688 | int idx = ioc->autop_idx; |
| 689 | const struct ioc_params *p = &autop[idx]; |
| 690 | u32 vrate_pct; |
| 691 | u64 now_ns; |
| 692 | |
| 693 | /* rotational? */ |
| 694 | if (!blk_queue_nonrot(ioc->rqos.q)) |
| 695 | return AUTOP_HDD; |
| 696 | |
| 697 | /* handle SATA SSDs w/ broken NCQ */ |
| 698 | if (blk_queue_depth(ioc->rqos.q) == 1) |
| 699 | return AUTOP_SSD_QD1; |
| 700 | |
| 701 | /* use one of the normal ssd sets */ |
| 702 | if (idx < AUTOP_SSD_DFL) |
| 703 | return AUTOP_SSD_DFL; |
| 704 | |
| 705 | /* if user is overriding anything, maintain what was there */ |
| 706 | if (ioc->user_qos_params || ioc->user_cost_model) |
| 707 | return idx; |
| 708 | |
| 709 | /* step up/down based on the vrate */ |
| 710 | vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100, |
| 711 | VTIME_PER_USEC); |
| 712 | now_ns = ktime_get_ns(); |
| 713 | |
| 714 | if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { |
| 715 | if (!ioc->autop_too_fast_at) |
| 716 | ioc->autop_too_fast_at = now_ns; |
| 717 | if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) |
| 718 | return idx + 1; |
| 719 | } else { |
| 720 | ioc->autop_too_fast_at = 0; |
| 721 | } |
| 722 | |
| 723 | if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { |
| 724 | if (!ioc->autop_too_slow_at) |
| 725 | ioc->autop_too_slow_at = now_ns; |
| 726 | if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) |
| 727 | return idx - 1; |
| 728 | } else { |
| 729 | ioc->autop_too_slow_at = 0; |
| 730 | } |
| 731 | |
| 732 | return idx; |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * Take the followings as input |
| 737 | * |
| 738 | * @bps maximum sequential throughput |
| 739 | * @seqiops maximum sequential 4k iops |
| 740 | * @randiops maximum random 4k iops |
| 741 | * |
| 742 | * and calculate the linear model cost coefficients. |
| 743 | * |
| 744 | * *@page per-page cost 1s / (@bps / 4096) |
| 745 | * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) |
| 746 | * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) |
| 747 | */ |
| 748 | static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, |
| 749 | u64 *page, u64 *seqio, u64 *randio) |
| 750 | { |
| 751 | u64 v; |
| 752 | |
| 753 | *page = *seqio = *randio = 0; |
| 754 | |
| 755 | if (bps) |
| 756 | *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, |
| 757 | DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); |
| 758 | |
| 759 | if (seqiops) { |
| 760 | v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); |
| 761 | if (v > *page) |
| 762 | *seqio = v - *page; |
| 763 | } |
| 764 | |
| 765 | if (randiops) { |
| 766 | v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); |
| 767 | if (v > *page) |
| 768 | *randio = v - *page; |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | static void ioc_refresh_lcoefs(struct ioc *ioc) |
| 773 | { |
| 774 | u64 *u = ioc->params.i_lcoefs; |
| 775 | u64 *c = ioc->params.lcoefs; |
| 776 | |
| 777 | calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], |
| 778 | &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); |
| 779 | calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], |
| 780 | &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); |
| 781 | } |
| 782 | |
| 783 | static bool ioc_refresh_params(struct ioc *ioc, bool force) |
| 784 | { |
| 785 | const struct ioc_params *p; |
| 786 | int idx; |
| 787 | |
| 788 | lockdep_assert_held(&ioc->lock); |
| 789 | |
| 790 | idx = ioc_autop_idx(ioc); |
| 791 | p = &autop[idx]; |
| 792 | |
| 793 | if (idx == ioc->autop_idx && !force) |
| 794 | return false; |
| 795 | |
| 796 | if (idx != ioc->autop_idx) |
| 797 | atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); |
| 798 | |
| 799 | ioc->autop_idx = idx; |
| 800 | ioc->autop_too_fast_at = 0; |
| 801 | ioc->autop_too_slow_at = 0; |
| 802 | |
| 803 | if (!ioc->user_qos_params) |
| 804 | memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); |
| 805 | if (!ioc->user_cost_model) |
| 806 | memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); |
| 807 | |
| 808 | ioc_refresh_period_us(ioc); |
| 809 | ioc_refresh_lcoefs(ioc); |
| 810 | |
| 811 | ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * |
| 812 | VTIME_PER_USEC, MILLION); |
| 813 | ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * |
| 814 | VTIME_PER_USEC, MILLION); |
| 815 | |
| 816 | return true; |
| 817 | } |
| 818 | |
| 819 | /* take a snapshot of the current [v]time and vrate */ |
| 820 | static void ioc_now(struct ioc *ioc, struct ioc_now *now) |
| 821 | { |
| 822 | unsigned seq; |
| 823 | |
| 824 | now->now_ns = ktime_get(); |
| 825 | now->now = ktime_to_us(now->now_ns); |
| 826 | now->vrate = atomic64_read(&ioc->vtime_rate); |
| 827 | |
| 828 | /* |
| 829 | * The current vtime is |
| 830 | * |
| 831 | * vtime at period start + (wallclock time since the start) * vrate |
| 832 | * |
| 833 | * As a consistent snapshot of `period_at_vtime` and `period_at` is |
| 834 | * needed, they're seqcount protected. |
| 835 | */ |
| 836 | do { |
| 837 | seq = read_seqcount_begin(&ioc->period_seqcount); |
| 838 | now->vnow = ioc->period_at_vtime + |
| 839 | (now->now - ioc->period_at) * now->vrate; |
| 840 | } while (read_seqcount_retry(&ioc->period_seqcount, seq)); |
| 841 | } |
| 842 | |
| 843 | static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) |
| 844 | { |
| 845 | lockdep_assert_held(&ioc->lock); |
| 846 | WARN_ON_ONCE(ioc->running != IOC_RUNNING); |
| 847 | |
| 848 | write_seqcount_begin(&ioc->period_seqcount); |
| 849 | ioc->period_at = now->now; |
| 850 | ioc->period_at_vtime = now->vnow; |
| 851 | write_seqcount_end(&ioc->period_seqcount); |
| 852 | |
| 853 | ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); |
| 854 | add_timer(&ioc->timer); |
| 855 | } |
| 856 | |
| 857 | /* |
| 858 | * Update @iocg's `active` and `inuse` to @active and @inuse, update level |
| 859 | * weight sums and propagate upwards accordingly. |
| 860 | */ |
| 861 | static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) |
| 862 | { |
| 863 | struct ioc *ioc = iocg->ioc; |
| 864 | int lvl; |
| 865 | |
| 866 | lockdep_assert_held(&ioc->lock); |
| 867 | |
| 868 | inuse = min(active, inuse); |
| 869 | |
| 870 | for (lvl = iocg->level - 1; lvl >= 0; lvl--) { |
| 871 | struct ioc_gq *parent = iocg->ancestors[lvl]; |
| 872 | struct ioc_gq *child = iocg->ancestors[lvl + 1]; |
| 873 | u32 parent_active = 0, parent_inuse = 0; |
| 874 | |
| 875 | /* update the level sums */ |
| 876 | parent->child_active_sum += (s32)(active - child->active); |
| 877 | parent->child_inuse_sum += (s32)(inuse - child->inuse); |
| 878 | /* apply the udpates */ |
| 879 | child->active = active; |
| 880 | child->inuse = inuse; |
| 881 | |
| 882 | /* |
| 883 | * The delta between inuse and active sums indicates that |
| 884 | * that much of weight is being given away. Parent's inuse |
| 885 | * and active should reflect the ratio. |
| 886 | */ |
| 887 | if (parent->child_active_sum) { |
| 888 | parent_active = parent->weight; |
| 889 | parent_inuse = DIV64_U64_ROUND_UP( |
| 890 | parent_active * parent->child_inuse_sum, |
| 891 | parent->child_active_sum); |
| 892 | } |
| 893 | |
| 894 | /* do we need to keep walking up? */ |
| 895 | if (parent_active == parent->active && |
| 896 | parent_inuse == parent->inuse) |
| 897 | break; |
| 898 | |
| 899 | active = parent_active; |
| 900 | inuse = parent_inuse; |
| 901 | } |
| 902 | |
| 903 | ioc->weights_updated = true; |
| 904 | } |
| 905 | |
| 906 | static void commit_active_weights(struct ioc *ioc) |
| 907 | { |
| 908 | lockdep_assert_held(&ioc->lock); |
| 909 | |
| 910 | if (ioc->weights_updated) { |
| 911 | /* paired with rmb in current_hweight(), see there */ |
| 912 | smp_wmb(); |
| 913 | atomic_inc(&ioc->hweight_gen); |
| 914 | ioc->weights_updated = false; |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) |
| 919 | { |
| 920 | __propagate_active_weight(iocg, active, inuse); |
| 921 | commit_active_weights(iocg->ioc); |
| 922 | } |
| 923 | |
| 924 | static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) |
| 925 | { |
| 926 | struct ioc *ioc = iocg->ioc; |
| 927 | int lvl; |
| 928 | u32 hwa, hwi; |
| 929 | int ioc_gen; |
| 930 | |
| 931 | /* hot path - if uptodate, use cached */ |
| 932 | ioc_gen = atomic_read(&ioc->hweight_gen); |
| 933 | if (ioc_gen == iocg->hweight_gen) |
| 934 | goto out; |
| 935 | |
| 936 | /* |
| 937 | * Paired with wmb in commit_active_weights(). If we saw the |
| 938 | * updated hweight_gen, all the weight updates from |
| 939 | * __propagate_active_weight() are visible too. |
| 940 | * |
| 941 | * We can race with weight updates during calculation and get it |
| 942 | * wrong. However, hweight_gen would have changed and a future |
| 943 | * reader will recalculate and we're guaranteed to discard the |
| 944 | * wrong result soon. |
| 945 | */ |
| 946 | smp_rmb(); |
| 947 | |
| 948 | hwa = hwi = HWEIGHT_WHOLE; |
| 949 | for (lvl = 0; lvl <= iocg->level - 1; lvl++) { |
| 950 | struct ioc_gq *parent = iocg->ancestors[lvl]; |
| 951 | struct ioc_gq *child = iocg->ancestors[lvl + 1]; |
| 952 | u32 active_sum = READ_ONCE(parent->child_active_sum); |
| 953 | u32 inuse_sum = READ_ONCE(parent->child_inuse_sum); |
| 954 | u32 active = READ_ONCE(child->active); |
| 955 | u32 inuse = READ_ONCE(child->inuse); |
| 956 | |
| 957 | /* we can race with deactivations and either may read as zero */ |
| 958 | if (!active_sum || !inuse_sum) |
| 959 | continue; |
| 960 | |
| 961 | active_sum = max(active, active_sum); |
| 962 | hwa = hwa * active / active_sum; /* max 16bits * 10000 */ |
| 963 | |
| 964 | inuse_sum = max(inuse, inuse_sum); |
| 965 | hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */ |
| 966 | } |
| 967 | |
| 968 | iocg->hweight_active = max_t(u32, hwa, 1); |
| 969 | iocg->hweight_inuse = max_t(u32, hwi, 1); |
| 970 | iocg->hweight_gen = ioc_gen; |
| 971 | out: |
| 972 | if (hw_activep) |
| 973 | *hw_activep = iocg->hweight_active; |
| 974 | if (hw_inusep) |
| 975 | *hw_inusep = iocg->hweight_inuse; |
| 976 | } |
| 977 | |
| 978 | static void weight_updated(struct ioc_gq *iocg) |
| 979 | { |
| 980 | struct ioc *ioc = iocg->ioc; |
| 981 | struct blkcg_gq *blkg = iocg_to_blkg(iocg); |
| 982 | struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); |
| 983 | u32 weight; |
| 984 | |
| 985 | lockdep_assert_held(&ioc->lock); |
| 986 | |
| 987 | weight = iocg->cfg_weight ?: iocc->dfl_weight; |
| 988 | if (weight != iocg->weight && iocg->active) |
| 989 | propagate_active_weight(iocg, weight, |
| 990 | DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight)); |
| 991 | iocg->weight = weight; |
| 992 | } |
| 993 | |
| 994 | static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) |
| 995 | { |
| 996 | struct ioc *ioc = iocg->ioc; |
| 997 | u64 last_period, cur_period, max_period_delta; |
| 998 | u64 vtime, vmargin, vmin; |
| 999 | int i; |
| 1000 | |
| 1001 | /* |
| 1002 | * If seem to be already active, just update the stamp to tell the |
| 1003 | * timer that we're still active. We don't mind occassional races. |
| 1004 | */ |
| 1005 | if (!list_empty(&iocg->active_list)) { |
| 1006 | ioc_now(ioc, now); |
| 1007 | cur_period = atomic64_read(&ioc->cur_period); |
| 1008 | if (atomic64_read(&iocg->active_period) != cur_period) |
| 1009 | atomic64_set(&iocg->active_period, cur_period); |
| 1010 | return true; |
| 1011 | } |
| 1012 | |
| 1013 | /* racy check on internal node IOs, treat as root level IOs */ |
| 1014 | if (iocg->child_active_sum) |
| 1015 | return false; |
| 1016 | |
| 1017 | spin_lock_irq(&ioc->lock); |
| 1018 | |
| 1019 | ioc_now(ioc, now); |
| 1020 | |
| 1021 | /* update period */ |
| 1022 | cur_period = atomic64_read(&ioc->cur_period); |
| 1023 | last_period = atomic64_read(&iocg->active_period); |
| 1024 | atomic64_set(&iocg->active_period, cur_period); |
| 1025 | |
| 1026 | /* already activated or breaking leaf-only constraint? */ |
| 1027 | for (i = iocg->level; i > 0; i--) |
| 1028 | if (!list_empty(&iocg->active_list)) |
| 1029 | goto fail_unlock; |
| 1030 | if (iocg->child_active_sum) |
| 1031 | goto fail_unlock; |
| 1032 | |
| 1033 | /* |
| 1034 | * vtime may wrap when vrate is raised substantially due to |
| 1035 | * underestimated IO costs. Look at the period and ignore its |
| 1036 | * vtime if the iocg has been idle for too long. Also, cap the |
| 1037 | * budget it can start with to the margin. |
| 1038 | */ |
| 1039 | max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us); |
| 1040 | vtime = atomic64_read(&iocg->vtime); |
| 1041 | vmargin = ioc->margin_us * now->vrate; |
| 1042 | vmin = now->vnow - vmargin; |
| 1043 | |
| 1044 | if (last_period + max_period_delta < cur_period || |
| 1045 | time_before64(vtime, vmin)) { |
| 1046 | atomic64_add(vmin - vtime, &iocg->vtime); |
| 1047 | atomic64_add(vmin - vtime, &iocg->done_vtime); |
| 1048 | vtime = vmin; |
| 1049 | } |
| 1050 | |
| 1051 | /* |
| 1052 | * Activate, propagate weight and start period timer if not |
| 1053 | * running. Reset hweight_gen to avoid accidental match from |
| 1054 | * wrapping. |
| 1055 | */ |
| 1056 | iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; |
| 1057 | list_add(&iocg->active_list, &ioc->active_iocgs); |
| 1058 | propagate_active_weight(iocg, iocg->weight, |
| 1059 | iocg->last_inuse ?: iocg->weight); |
| 1060 | |
| 1061 | TRACE_IOCG_PATH(iocg_activate, iocg, now, |
| 1062 | last_period, cur_period, vtime); |
| 1063 | |
| 1064 | iocg->last_vtime = vtime; |
| 1065 | |
| 1066 | if (ioc->running == IOC_IDLE) { |
| 1067 | ioc->running = IOC_RUNNING; |
| 1068 | ioc_start_period(ioc, now); |
| 1069 | } |
| 1070 | |
| 1071 | spin_unlock_irq(&ioc->lock); |
| 1072 | return true; |
| 1073 | |
| 1074 | fail_unlock: |
| 1075 | spin_unlock_irq(&ioc->lock); |
| 1076 | return false; |
| 1077 | } |
| 1078 | |
| 1079 | static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, |
| 1080 | int flags, void *key) |
| 1081 | { |
| 1082 | struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); |
| 1083 | struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; |
| 1084 | u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); |
| 1085 | |
| 1086 | ctx->vbudget -= cost; |
| 1087 | |
| 1088 | if (ctx->vbudget < 0) |
| 1089 | return -1; |
| 1090 | |
| 1091 | iocg_commit_bio(ctx->iocg, wait->bio, cost); |
| 1092 | |
| 1093 | /* |
| 1094 | * autoremove_wake_function() removes the wait entry only when it |
| 1095 | * actually changed the task state. We want the wait always |
| 1096 | * removed. Remove explicitly and use default_wake_function(). |
| 1097 | */ |
| 1098 | list_del_init(&wq_entry->entry); |
| 1099 | wait->committed = true; |
| 1100 | |
| 1101 | default_wake_function(wq_entry, mode, flags, key); |
| 1102 | return 0; |
| 1103 | } |
| 1104 | |
| 1105 | static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now) |
| 1106 | { |
| 1107 | struct ioc *ioc = iocg->ioc; |
| 1108 | struct iocg_wake_ctx ctx = { .iocg = iocg }; |
| 1109 | u64 margin_ns = (u64)(ioc->period_us * |
| 1110 | WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC; |
| 1111 | u64 vshortage, expires, oexpires; |
| 1112 | |
| 1113 | lockdep_assert_held(&iocg->waitq.lock); |
| 1114 | |
| 1115 | /* |
| 1116 | * Wake up the ones which are due and see how much vtime we'll need |
| 1117 | * for the next one. |
| 1118 | */ |
| 1119 | current_hweight(iocg, NULL, &ctx.hw_inuse); |
| 1120 | ctx.vbudget = now->vnow - atomic64_read(&iocg->vtime); |
| 1121 | __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); |
| 1122 | if (!waitqueue_active(&iocg->waitq)) |
| 1123 | return; |
| 1124 | if (WARN_ON_ONCE(ctx.vbudget >= 0)) |
| 1125 | return; |
| 1126 | |
| 1127 | /* determine next wakeup, add a quarter margin to guarantee chunking */ |
| 1128 | vshortage = -ctx.vbudget; |
| 1129 | expires = now->now_ns + |
| 1130 | DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC; |
| 1131 | expires += margin_ns / 4; |
| 1132 | |
| 1133 | /* if already active and close enough, don't bother */ |
| 1134 | oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); |
| 1135 | if (hrtimer_is_queued(&iocg->waitq_timer) && |
| 1136 | abs(oexpires - expires) <= margin_ns / 4) |
| 1137 | return; |
| 1138 | |
| 1139 | hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), |
| 1140 | margin_ns / 4, HRTIMER_MODE_ABS); |
| 1141 | } |
| 1142 | |
| 1143 | static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) |
| 1144 | { |
| 1145 | struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); |
| 1146 | struct ioc_now now; |
| 1147 | unsigned long flags; |
| 1148 | |
| 1149 | ioc_now(iocg->ioc, &now); |
| 1150 | |
| 1151 | spin_lock_irqsave(&iocg->waitq.lock, flags); |
| 1152 | iocg_kick_waitq(iocg, &now); |
| 1153 | spin_unlock_irqrestore(&iocg->waitq.lock, flags); |
| 1154 | |
| 1155 | return HRTIMER_NORESTART; |
| 1156 | } |
| 1157 | |
| 1158 | static void iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost) |
| 1159 | { |
| 1160 | struct ioc *ioc = iocg->ioc; |
| 1161 | struct blkcg_gq *blkg = iocg_to_blkg(iocg); |
| 1162 | u64 vtime = atomic64_read(&iocg->vtime); |
| 1163 | u64 vmargin = ioc->margin_us * now->vrate; |
| 1164 | u64 margin_ns = ioc->margin_us * NSEC_PER_USEC; |
| 1165 | u64 expires, oexpires; |
| 1166 | |
| 1167 | /* clear or maintain depending on the overage */ |
| 1168 | if (time_before_eq64(vtime, now->vnow)) { |
| 1169 | blkcg_clear_delay(blkg); |
| 1170 | return; |
| 1171 | } |
| 1172 | if (!atomic_read(&blkg->use_delay) && |
| 1173 | time_before_eq64(vtime, now->vnow + vmargin)) |
| 1174 | return; |
| 1175 | |
| 1176 | /* use delay */ |
| 1177 | if (cost) { |
| 1178 | u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC, |
| 1179 | now->vrate); |
| 1180 | blkcg_add_delay(blkg, now->now_ns, cost_ns); |
| 1181 | } |
| 1182 | blkcg_use_delay(blkg); |
| 1183 | |
| 1184 | expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow, |
| 1185 | now->vrate) * NSEC_PER_USEC; |
| 1186 | |
| 1187 | /* if already active and close enough, don't bother */ |
| 1188 | oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer)); |
| 1189 | if (hrtimer_is_queued(&iocg->delay_timer) && |
| 1190 | abs(oexpires - expires) <= margin_ns / 4) |
| 1191 | return; |
| 1192 | |
| 1193 | hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires), |
| 1194 | margin_ns / 4, HRTIMER_MODE_ABS); |
| 1195 | } |
| 1196 | |
| 1197 | static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer) |
| 1198 | { |
| 1199 | struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer); |
| 1200 | struct ioc_now now; |
| 1201 | |
| 1202 | ioc_now(iocg->ioc, &now); |
| 1203 | iocg_kick_delay(iocg, &now, 0); |
| 1204 | |
| 1205 | return HRTIMER_NORESTART; |
| 1206 | } |
| 1207 | |
| 1208 | static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) |
| 1209 | { |
| 1210 | u32 nr_met[2] = { }; |
| 1211 | u32 nr_missed[2] = { }; |
| 1212 | u64 rq_wait_ns = 0; |
| 1213 | int cpu, rw; |
| 1214 | |
| 1215 | for_each_online_cpu(cpu) { |
| 1216 | struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); |
| 1217 | u64 this_rq_wait_ns; |
| 1218 | |
| 1219 | for (rw = READ; rw <= WRITE; rw++) { |
| 1220 | u32 this_met = READ_ONCE(stat->missed[rw].nr_met); |
| 1221 | u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed); |
| 1222 | |
| 1223 | nr_met[rw] += this_met - stat->missed[rw].last_met; |
| 1224 | nr_missed[rw] += this_missed - stat->missed[rw].last_missed; |
| 1225 | stat->missed[rw].last_met = this_met; |
| 1226 | stat->missed[rw].last_missed = this_missed; |
| 1227 | } |
| 1228 | |
| 1229 | this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns); |
| 1230 | rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; |
| 1231 | stat->last_rq_wait_ns = this_rq_wait_ns; |
| 1232 | } |
| 1233 | |
| 1234 | for (rw = READ; rw <= WRITE; rw++) { |
| 1235 | if (nr_met[rw] + nr_missed[rw]) |
| 1236 | missed_ppm_ar[rw] = |
| 1237 | DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, |
| 1238 | nr_met[rw] + nr_missed[rw]); |
| 1239 | else |
| 1240 | missed_ppm_ar[rw] = 0; |
| 1241 | } |
| 1242 | |
| 1243 | *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, |
| 1244 | ioc->period_us * NSEC_PER_USEC); |
| 1245 | } |
| 1246 | |
| 1247 | /* was iocg idle this period? */ |
| 1248 | static bool iocg_is_idle(struct ioc_gq *iocg) |
| 1249 | { |
| 1250 | struct ioc *ioc = iocg->ioc; |
| 1251 | |
| 1252 | /* did something get issued this period? */ |
| 1253 | if (atomic64_read(&iocg->active_period) == |
| 1254 | atomic64_read(&ioc->cur_period)) |
| 1255 | return false; |
| 1256 | |
| 1257 | /* is something in flight? */ |
| 1258 | if (atomic64_read(&iocg->done_vtime) < atomic64_read(&iocg->vtime)) |
| 1259 | return false; |
| 1260 | |
| 1261 | return true; |
| 1262 | } |
| 1263 | |
| 1264 | /* returns usage with margin added if surplus is large enough */ |
| 1265 | static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse) |
| 1266 | { |
| 1267 | /* add margin */ |
| 1268 | usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100); |
| 1269 | usage += SURPLUS_SCALE_ABS; |
| 1270 | |
| 1271 | /* don't bother if the surplus is too small */ |
| 1272 | if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse) |
| 1273 | return 0; |
| 1274 | |
| 1275 | return usage; |
| 1276 | } |
| 1277 | |
| 1278 | static void ioc_timer_fn(struct timer_list *timer) |
| 1279 | { |
| 1280 | struct ioc *ioc = container_of(timer, struct ioc, timer); |
| 1281 | struct ioc_gq *iocg, *tiocg; |
| 1282 | struct ioc_now now; |
| 1283 | int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0; |
| 1284 | u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; |
| 1285 | u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; |
| 1286 | u32 missed_ppm[2], rq_wait_pct; |
| 1287 | u64 period_vtime; |
| 1288 | int i; |
| 1289 | |
| 1290 | /* how were the latencies during the period? */ |
| 1291 | ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); |
| 1292 | |
| 1293 | /* take care of active iocgs */ |
| 1294 | spin_lock_irq(&ioc->lock); |
| 1295 | |
| 1296 | ioc_now(ioc, &now); |
| 1297 | |
| 1298 | period_vtime = now.vnow - ioc->period_at_vtime; |
| 1299 | if (WARN_ON_ONCE(!period_vtime)) { |
| 1300 | spin_unlock_irq(&ioc->lock); |
| 1301 | return; |
| 1302 | } |
| 1303 | |
| 1304 | /* |
| 1305 | * Waiters determine the sleep durations based on the vrate they |
| 1306 | * saw at the time of sleep. If vrate has increased, some waiters |
| 1307 | * could be sleeping for too long. Wake up tardy waiters which |
| 1308 | * should have woken up in the last period and expire idle iocgs. |
| 1309 | */ |
| 1310 | list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { |
| 1311 | if (!waitqueue_active(&iocg->waitq) && !iocg_is_idle(iocg)) |
| 1312 | continue; |
| 1313 | |
| 1314 | spin_lock(&iocg->waitq.lock); |
| 1315 | |
| 1316 | if (waitqueue_active(&iocg->waitq)) { |
| 1317 | /* might be oversleeping vtime / hweight changes, kick */ |
| 1318 | iocg_kick_waitq(iocg, &now); |
| 1319 | iocg_kick_delay(iocg, &now, 0); |
| 1320 | } else if (iocg_is_idle(iocg)) { |
| 1321 | /* no waiter and idle, deactivate */ |
| 1322 | iocg->last_inuse = iocg->inuse; |
| 1323 | __propagate_active_weight(iocg, 0, 0); |
| 1324 | list_del_init(&iocg->active_list); |
| 1325 | } |
| 1326 | |
| 1327 | spin_unlock(&iocg->waitq.lock); |
| 1328 | } |
| 1329 | commit_active_weights(ioc); |
| 1330 | |
| 1331 | /* calc usages and see whether some weights need to be moved around */ |
| 1332 | list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { |
| 1333 | u64 vdone, vtime, vusage, vmargin, vmin; |
| 1334 | u32 hw_active, hw_inuse, usage; |
| 1335 | |
| 1336 | /* |
| 1337 | * Collect unused and wind vtime closer to vnow to prevent |
| 1338 | * iocgs from accumulating a large amount of budget. |
| 1339 | */ |
| 1340 | vdone = atomic64_read(&iocg->done_vtime); |
| 1341 | vtime = atomic64_read(&iocg->vtime); |
| 1342 | current_hweight(iocg, &hw_active, &hw_inuse); |
| 1343 | |
| 1344 | /* |
| 1345 | * Latency QoS detection doesn't account for IOs which are |
| 1346 | * in-flight for longer than a period. Detect them by |
| 1347 | * comparing vdone against period start. If lagging behind |
| 1348 | * IOs from past periods, don't increase vrate. |
| 1349 | */ |
| 1350 | if (!atomic_read(&iocg_to_blkg(iocg)->use_delay) && |
| 1351 | time_after64(vtime, vdone) && |
| 1352 | time_after64(vtime, now.vnow - |
| 1353 | MAX_LAGGING_PERIODS * period_vtime) && |
| 1354 | time_before64(vdone, now.vnow - period_vtime)) |
| 1355 | nr_lagging++; |
| 1356 | |
| 1357 | if (waitqueue_active(&iocg->waitq)) |
| 1358 | vusage = now.vnow - iocg->last_vtime; |
| 1359 | else if (time_before64(iocg->last_vtime, vtime)) |
| 1360 | vusage = vtime - iocg->last_vtime; |
| 1361 | else |
| 1362 | vusage = 0; |
| 1363 | |
| 1364 | iocg->last_vtime += vusage; |
| 1365 | /* |
| 1366 | * Factor in in-flight vtime into vusage to avoid |
| 1367 | * high-latency completions appearing as idle. This should |
| 1368 | * be done after the above ->last_time adjustment. |
| 1369 | */ |
| 1370 | vusage = max(vusage, vtime - vdone); |
| 1371 | |
| 1372 | /* calculate hweight based usage ratio and record */ |
| 1373 | if (vusage) { |
| 1374 | usage = DIV64_U64_ROUND_UP(vusage * hw_inuse, |
| 1375 | period_vtime); |
| 1376 | iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS; |
| 1377 | iocg->usages[iocg->usage_idx] = usage; |
| 1378 | } else { |
| 1379 | usage = 0; |
| 1380 | } |
| 1381 | |
| 1382 | /* see whether there's surplus vtime */ |
| 1383 | vmargin = ioc->margin_us * now.vrate; |
| 1384 | vmin = now.vnow - vmargin; |
| 1385 | |
| 1386 | iocg->has_surplus = false; |
| 1387 | |
| 1388 | if (!waitqueue_active(&iocg->waitq) && |
| 1389 | time_before64(vtime, vmin)) { |
| 1390 | u64 delta = vmin - vtime; |
| 1391 | |
| 1392 | /* throw away surplus vtime */ |
| 1393 | atomic64_add(delta, &iocg->vtime); |
| 1394 | atomic64_add(delta, &iocg->done_vtime); |
| 1395 | iocg->last_vtime += delta; |
| 1396 | /* if usage is sufficiently low, maybe it can donate */ |
| 1397 | if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) { |
| 1398 | iocg->has_surplus = true; |
| 1399 | nr_surpluses++; |
| 1400 | } |
| 1401 | } else if (hw_inuse < hw_active) { |
| 1402 | u32 new_hwi, new_inuse; |
| 1403 | |
| 1404 | /* was donating but might need to take back some */ |
| 1405 | if (waitqueue_active(&iocg->waitq)) { |
| 1406 | new_hwi = hw_active; |
| 1407 | } else { |
| 1408 | new_hwi = max(hw_inuse, |
| 1409 | usage * SURPLUS_SCALE_PCT / 100 + |
| 1410 | SURPLUS_SCALE_ABS); |
| 1411 | } |
| 1412 | |
| 1413 | new_inuse = div64_u64((u64)iocg->inuse * new_hwi, |
| 1414 | hw_inuse); |
| 1415 | new_inuse = clamp_t(u32, new_inuse, 1, iocg->active); |
| 1416 | |
| 1417 | if (new_inuse > iocg->inuse) { |
| 1418 | TRACE_IOCG_PATH(inuse_takeback, iocg, &now, |
| 1419 | iocg->inuse, new_inuse, |
| 1420 | hw_inuse, new_hwi); |
| 1421 | __propagate_active_weight(iocg, iocg->weight, |
| 1422 | new_inuse); |
| 1423 | } |
| 1424 | } else { |
| 1425 | /* genuninely out of vtime */ |
| 1426 | nr_shortages++; |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | if (!nr_shortages || !nr_surpluses) |
| 1431 | goto skip_surplus_transfers; |
| 1432 | |
| 1433 | /* there are both shortages and surpluses, transfer surpluses */ |
| 1434 | list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { |
| 1435 | u32 usage, hw_active, hw_inuse, new_hwi, new_inuse; |
| 1436 | int nr_valid = 0; |
| 1437 | |
| 1438 | if (!iocg->has_surplus) |
| 1439 | continue; |
| 1440 | |
| 1441 | /* base the decision on max historical usage */ |
| 1442 | for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) { |
| 1443 | if (iocg->usages[i]) { |
| 1444 | usage = max(usage, iocg->usages[i]); |
| 1445 | nr_valid++; |
| 1446 | } |
| 1447 | } |
| 1448 | if (nr_valid < MIN_VALID_USAGES) |
| 1449 | continue; |
| 1450 | |
| 1451 | current_hweight(iocg, &hw_active, &hw_inuse); |
| 1452 | new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse); |
| 1453 | if (!new_hwi) |
| 1454 | continue; |
| 1455 | |
| 1456 | new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi, |
| 1457 | hw_inuse); |
| 1458 | if (new_inuse < iocg->inuse) { |
| 1459 | TRACE_IOCG_PATH(inuse_giveaway, iocg, &now, |
| 1460 | iocg->inuse, new_inuse, |
| 1461 | hw_inuse, new_hwi); |
| 1462 | __propagate_active_weight(iocg, iocg->weight, new_inuse); |
| 1463 | } |
| 1464 | } |
| 1465 | skip_surplus_transfers: |
| 1466 | commit_active_weights(ioc); |
| 1467 | |
| 1468 | /* |
| 1469 | * If q is getting clogged or we're missing too much, we're issuing |
| 1470 | * too much IO and should lower vtime rate. If we're not missing |
| 1471 | * and experiencing shortages but not surpluses, we're too stingy |
| 1472 | * and should increase vtime rate. |
| 1473 | */ |
| 1474 | if (rq_wait_pct > RQ_WAIT_BUSY_PCT || |
| 1475 | missed_ppm[READ] > ppm_rthr || |
| 1476 | missed_ppm[WRITE] > ppm_wthr) { |
| 1477 | ioc->busy_level = max(ioc->busy_level, 0); |
| 1478 | ioc->busy_level++; |
| 1479 | } else if (nr_lagging) { |
| 1480 | ioc->busy_level = max(ioc->busy_level, 0); |
| 1481 | } else if (nr_shortages && !nr_surpluses && |
| 1482 | rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && |
| 1483 | missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && |
| 1484 | missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { |
| 1485 | ioc->busy_level = min(ioc->busy_level, 0); |
| 1486 | ioc->busy_level--; |
| 1487 | } else { |
| 1488 | ioc->busy_level = 0; |
| 1489 | } |
| 1490 | |
| 1491 | ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); |
| 1492 | |
| 1493 | if (ioc->busy_level) { |
| 1494 | u64 vrate = atomic64_read(&ioc->vtime_rate); |
| 1495 | u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; |
| 1496 | |
| 1497 | /* rq_wait signal is always reliable, ignore user vrate_min */ |
| 1498 | if (rq_wait_pct > RQ_WAIT_BUSY_PCT) |
| 1499 | vrate_min = VRATE_MIN; |
| 1500 | |
| 1501 | /* |
| 1502 | * If vrate is out of bounds, apply clamp gradually as the |
| 1503 | * bounds can change abruptly. Otherwise, apply busy_level |
| 1504 | * based adjustment. |
| 1505 | */ |
| 1506 | if (vrate < vrate_min) { |
| 1507 | vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), |
| 1508 | 100); |
| 1509 | vrate = min(vrate, vrate_min); |
| 1510 | } else if (vrate > vrate_max) { |
| 1511 | vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), |
| 1512 | 100); |
| 1513 | vrate = max(vrate, vrate_max); |
| 1514 | } else { |
| 1515 | int idx = min_t(int, abs(ioc->busy_level), |
| 1516 | ARRAY_SIZE(vrate_adj_pct) - 1); |
| 1517 | u32 adj_pct = vrate_adj_pct[idx]; |
| 1518 | |
| 1519 | if (ioc->busy_level > 0) |
| 1520 | adj_pct = 100 - adj_pct; |
| 1521 | else |
| 1522 | adj_pct = 100 + adj_pct; |
| 1523 | |
| 1524 | vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), |
| 1525 | vrate_min, vrate_max); |
| 1526 | } |
| 1527 | |
| 1528 | trace_iocost_ioc_vrate_adj(ioc, vrate, &missed_ppm, rq_wait_pct, |
| 1529 | nr_lagging, nr_shortages, |
| 1530 | nr_surpluses); |
| 1531 | |
| 1532 | atomic64_set(&ioc->vtime_rate, vrate); |
| 1533 | ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( |
| 1534 | ioc->period_us * vrate * INUSE_MARGIN_PCT, 100); |
| 1535 | } |
| 1536 | |
| 1537 | ioc_refresh_params(ioc, false); |
| 1538 | |
| 1539 | /* |
| 1540 | * This period is done. Move onto the next one. If nothing's |
| 1541 | * going on with the device, stop the timer. |
| 1542 | */ |
| 1543 | atomic64_inc(&ioc->cur_period); |
| 1544 | |
| 1545 | if (ioc->running != IOC_STOP) { |
| 1546 | if (!list_empty(&ioc->active_iocgs)) { |
| 1547 | ioc_start_period(ioc, &now); |
| 1548 | } else { |
| 1549 | ioc->busy_level = 0; |
| 1550 | ioc->running = IOC_IDLE; |
| 1551 | } |
| 1552 | } |
| 1553 | |
| 1554 | spin_unlock_irq(&ioc->lock); |
| 1555 | } |
| 1556 | |
| 1557 | static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, |
| 1558 | bool is_merge, u64 *costp) |
| 1559 | { |
| 1560 | struct ioc *ioc = iocg->ioc; |
| 1561 | u64 coef_seqio, coef_randio, coef_page; |
| 1562 | u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); |
| 1563 | u64 seek_pages = 0; |
| 1564 | u64 cost = 0; |
| 1565 | |
| 1566 | switch (bio_op(bio)) { |
| 1567 | case REQ_OP_READ: |
| 1568 | coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; |
| 1569 | coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; |
| 1570 | coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; |
| 1571 | break; |
| 1572 | case REQ_OP_WRITE: |
| 1573 | coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; |
| 1574 | coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; |
| 1575 | coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; |
| 1576 | break; |
| 1577 | default: |
| 1578 | goto out; |
| 1579 | } |
| 1580 | |
| 1581 | if (iocg->cursor) { |
| 1582 | seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); |
| 1583 | seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; |
| 1584 | } |
| 1585 | |
| 1586 | if (!is_merge) { |
| 1587 | if (seek_pages > LCOEF_RANDIO_PAGES) { |
| 1588 | cost += coef_randio; |
| 1589 | } else { |
| 1590 | cost += coef_seqio; |
| 1591 | } |
| 1592 | } |
| 1593 | cost += pages * coef_page; |
| 1594 | out: |
| 1595 | *costp = cost; |
| 1596 | } |
| 1597 | |
| 1598 | static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) |
| 1599 | { |
| 1600 | u64 cost; |
| 1601 | |
| 1602 | calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); |
| 1603 | return cost; |
| 1604 | } |
| 1605 | |
| 1606 | static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) |
| 1607 | { |
| 1608 | struct blkcg_gq *blkg = bio->bi_blkg; |
| 1609 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 1610 | struct ioc_gq *iocg = blkg_to_iocg(blkg); |
| 1611 | struct ioc_now now; |
| 1612 | struct iocg_wait wait; |
| 1613 | u32 hw_active, hw_inuse; |
| 1614 | u64 abs_cost, cost, vtime; |
| 1615 | |
| 1616 | /* bypass IOs if disabled or for root cgroup */ |
| 1617 | if (!ioc->enabled || !iocg->level) |
| 1618 | return; |
| 1619 | |
| 1620 | /* always activate so that even 0 cost IOs get protected to some level */ |
| 1621 | if (!iocg_activate(iocg, &now)) |
| 1622 | return; |
| 1623 | |
| 1624 | /* calculate the absolute vtime cost */ |
| 1625 | abs_cost = calc_vtime_cost(bio, iocg, false); |
| 1626 | if (!abs_cost) |
| 1627 | return; |
| 1628 | |
| 1629 | iocg->cursor = bio_end_sector(bio); |
| 1630 | |
| 1631 | vtime = atomic64_read(&iocg->vtime); |
| 1632 | current_hweight(iocg, &hw_active, &hw_inuse); |
| 1633 | |
| 1634 | if (hw_inuse < hw_active && |
| 1635 | time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) { |
| 1636 | TRACE_IOCG_PATH(inuse_reset, iocg, &now, |
| 1637 | iocg->inuse, iocg->weight, hw_inuse, hw_active); |
| 1638 | spin_lock_irq(&ioc->lock); |
| 1639 | propagate_active_weight(iocg, iocg->weight, iocg->weight); |
| 1640 | spin_unlock_irq(&ioc->lock); |
| 1641 | current_hweight(iocg, &hw_active, &hw_inuse); |
| 1642 | } |
| 1643 | |
| 1644 | cost = abs_cost_to_cost(abs_cost, hw_inuse); |
| 1645 | |
| 1646 | /* |
| 1647 | * If no one's waiting and within budget, issue right away. The |
| 1648 | * tests are racy but the races aren't systemic - we only miss once |
| 1649 | * in a while which is fine. |
| 1650 | */ |
| 1651 | if (!waitqueue_active(&iocg->waitq) && |
| 1652 | time_before_eq64(vtime + cost, now.vnow)) { |
| 1653 | iocg_commit_bio(iocg, bio, cost); |
| 1654 | return; |
| 1655 | } |
| 1656 | |
| 1657 | if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) { |
| 1658 | iocg_commit_bio(iocg, bio, cost); |
| 1659 | iocg_kick_delay(iocg, &now, cost); |
| 1660 | return; |
| 1661 | } |
| 1662 | |
| 1663 | /* |
| 1664 | * Append self to the waitq and schedule the wakeup timer if we're |
| 1665 | * the first waiter. The timer duration is calculated based on the |
| 1666 | * current vrate. vtime and hweight changes can make it too short |
| 1667 | * or too long. Each wait entry records the absolute cost it's |
| 1668 | * waiting for to allow re-evaluation using a custom wait entry. |
| 1669 | * |
| 1670 | * If too short, the timer simply reschedules itself. If too long, |
| 1671 | * the period timer will notice and trigger wakeups. |
| 1672 | * |
| 1673 | * All waiters are on iocg->waitq and the wait states are |
| 1674 | * synchronized using waitq.lock. |
| 1675 | */ |
| 1676 | spin_lock_irq(&iocg->waitq.lock); |
| 1677 | |
| 1678 | /* |
| 1679 | * We activated above but w/o any synchronization. Deactivation is |
| 1680 | * synchronized with waitq.lock and we won't get deactivated as |
| 1681 | * long as we're waiting, so we're good if we're activated here. |
| 1682 | * In the unlikely case that we are deactivated, just issue the IO. |
| 1683 | */ |
| 1684 | if (unlikely(list_empty(&iocg->active_list))) { |
| 1685 | spin_unlock_irq(&iocg->waitq.lock); |
| 1686 | iocg_commit_bio(iocg, bio, cost); |
| 1687 | return; |
| 1688 | } |
| 1689 | |
| 1690 | init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); |
| 1691 | wait.wait.private = current; |
| 1692 | wait.bio = bio; |
| 1693 | wait.abs_cost = abs_cost; |
| 1694 | wait.committed = false; /* will be set true by waker */ |
| 1695 | |
| 1696 | __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); |
| 1697 | iocg_kick_waitq(iocg, &now); |
| 1698 | |
| 1699 | spin_unlock_irq(&iocg->waitq.lock); |
| 1700 | |
| 1701 | while (true) { |
| 1702 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1703 | if (wait.committed) |
| 1704 | break; |
| 1705 | io_schedule(); |
| 1706 | } |
| 1707 | |
| 1708 | /* waker already committed us, proceed */ |
| 1709 | finish_wait(&iocg->waitq, &wait.wait); |
| 1710 | } |
| 1711 | |
| 1712 | static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, |
| 1713 | struct bio *bio) |
| 1714 | { |
| 1715 | struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); |
| 1716 | sector_t bio_end = bio_end_sector(bio); |
| 1717 | u32 hw_inuse; |
| 1718 | u64 abs_cost, cost; |
| 1719 | |
| 1720 | /* add iff the existing request has cost assigned */ |
| 1721 | if (!rq->bio || !rq->bio->bi_iocost_cost) |
| 1722 | return; |
| 1723 | |
| 1724 | abs_cost = calc_vtime_cost(bio, iocg, true); |
| 1725 | if (!abs_cost) |
| 1726 | return; |
| 1727 | |
| 1728 | /* update cursor if backmerging into the request at the cursor */ |
| 1729 | if (blk_rq_pos(rq) < bio_end && |
| 1730 | blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) |
| 1731 | iocg->cursor = bio_end; |
| 1732 | |
| 1733 | current_hweight(iocg, NULL, &hw_inuse); |
| 1734 | cost = div64_u64(abs_cost * HWEIGHT_WHOLE, hw_inuse); |
| 1735 | bio->bi_iocost_cost = cost; |
| 1736 | |
| 1737 | atomic64_add(cost, &iocg->vtime); |
| 1738 | } |
| 1739 | |
| 1740 | static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) |
| 1741 | { |
| 1742 | struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); |
| 1743 | |
| 1744 | if (iocg && bio->bi_iocost_cost) |
| 1745 | atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); |
| 1746 | } |
| 1747 | |
| 1748 | static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) |
| 1749 | { |
| 1750 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 1751 | u64 on_q_ns, rq_wait_ns; |
| 1752 | int pidx, rw; |
| 1753 | |
| 1754 | if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) |
| 1755 | return; |
| 1756 | |
| 1757 | switch (req_op(rq) & REQ_OP_MASK) { |
| 1758 | case REQ_OP_READ: |
| 1759 | pidx = QOS_RLAT; |
| 1760 | rw = READ; |
| 1761 | break; |
| 1762 | case REQ_OP_WRITE: |
| 1763 | pidx = QOS_WLAT; |
| 1764 | rw = WRITE; |
| 1765 | break; |
| 1766 | default: |
| 1767 | return; |
| 1768 | } |
| 1769 | |
| 1770 | on_q_ns = ktime_get_ns() - rq->alloc_time_ns; |
| 1771 | rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; |
| 1772 | |
| 1773 | if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC) |
| 1774 | this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met); |
| 1775 | else |
| 1776 | this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed); |
| 1777 | |
| 1778 | this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns); |
| 1779 | } |
| 1780 | |
| 1781 | static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) |
| 1782 | { |
| 1783 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 1784 | |
| 1785 | spin_lock_irq(&ioc->lock); |
| 1786 | ioc_refresh_params(ioc, false); |
| 1787 | spin_unlock_irq(&ioc->lock); |
| 1788 | } |
| 1789 | |
| 1790 | static void ioc_rqos_exit(struct rq_qos *rqos) |
| 1791 | { |
| 1792 | struct ioc *ioc = rqos_to_ioc(rqos); |
| 1793 | |
| 1794 | blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); |
| 1795 | |
| 1796 | spin_lock_irq(&ioc->lock); |
| 1797 | ioc->running = IOC_STOP; |
| 1798 | spin_unlock_irq(&ioc->lock); |
| 1799 | |
| 1800 | del_timer_sync(&ioc->timer); |
| 1801 | free_percpu(ioc->pcpu_stat); |
| 1802 | kfree(ioc); |
| 1803 | } |
| 1804 | |
| 1805 | static struct rq_qos_ops ioc_rqos_ops = { |
| 1806 | .throttle = ioc_rqos_throttle, |
| 1807 | .merge = ioc_rqos_merge, |
| 1808 | .done_bio = ioc_rqos_done_bio, |
| 1809 | .done = ioc_rqos_done, |
| 1810 | .queue_depth_changed = ioc_rqos_queue_depth_changed, |
| 1811 | .exit = ioc_rqos_exit, |
| 1812 | }; |
| 1813 | |
| 1814 | static int blk_iocost_init(struct request_queue *q) |
| 1815 | { |
| 1816 | struct ioc *ioc; |
| 1817 | struct rq_qos *rqos; |
| 1818 | int ret; |
| 1819 | |
| 1820 | ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); |
| 1821 | if (!ioc) |
| 1822 | return -ENOMEM; |
| 1823 | |
| 1824 | ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); |
| 1825 | if (!ioc->pcpu_stat) { |
| 1826 | kfree(ioc); |
| 1827 | return -ENOMEM; |
| 1828 | } |
| 1829 | |
| 1830 | rqos = &ioc->rqos; |
| 1831 | rqos->id = RQ_QOS_COST; |
| 1832 | rqos->ops = &ioc_rqos_ops; |
| 1833 | rqos->q = q; |
| 1834 | |
| 1835 | spin_lock_init(&ioc->lock); |
| 1836 | timer_setup(&ioc->timer, ioc_timer_fn, 0); |
| 1837 | INIT_LIST_HEAD(&ioc->active_iocgs); |
| 1838 | |
| 1839 | ioc->running = IOC_IDLE; |
| 1840 | atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); |
| 1841 | seqcount_init(&ioc->period_seqcount); |
| 1842 | ioc->period_at = ktime_to_us(ktime_get()); |
| 1843 | atomic64_set(&ioc->cur_period, 0); |
| 1844 | atomic_set(&ioc->hweight_gen, 0); |
| 1845 | |
| 1846 | spin_lock_irq(&ioc->lock); |
| 1847 | ioc->autop_idx = AUTOP_INVALID; |
| 1848 | ioc_refresh_params(ioc, true); |
| 1849 | spin_unlock_irq(&ioc->lock); |
| 1850 | |
| 1851 | rq_qos_add(q, rqos); |
| 1852 | ret = blkcg_activate_policy(q, &blkcg_policy_iocost); |
| 1853 | if (ret) { |
| 1854 | rq_qos_del(q, rqos); |
| 1855 | kfree(ioc); |
| 1856 | return ret; |
| 1857 | } |
| 1858 | return 0; |
| 1859 | } |
| 1860 | |
| 1861 | static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) |
| 1862 | { |
| 1863 | struct ioc_cgrp *iocc; |
| 1864 | |
| 1865 | iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); |
| 1866 | iocc->dfl_weight = CGROUP_WEIGHT_DFL; |
| 1867 | |
| 1868 | return &iocc->cpd; |
| 1869 | } |
| 1870 | |
| 1871 | static void ioc_cpd_free(struct blkcg_policy_data *cpd) |
| 1872 | { |
| 1873 | kfree(container_of(cpd, struct ioc_cgrp, cpd)); |
| 1874 | } |
| 1875 | |
| 1876 | static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, |
| 1877 | struct blkcg *blkcg) |
| 1878 | { |
| 1879 | int levels = blkcg->css.cgroup->level + 1; |
| 1880 | struct ioc_gq *iocg; |
| 1881 | |
| 1882 | iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]), |
| 1883 | gfp, q->node); |
| 1884 | if (!iocg) |
| 1885 | return NULL; |
| 1886 | |
| 1887 | return &iocg->pd; |
| 1888 | } |
| 1889 | |
| 1890 | static void ioc_pd_init(struct blkg_policy_data *pd) |
| 1891 | { |
| 1892 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 1893 | struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); |
| 1894 | struct ioc *ioc = q_to_ioc(blkg->q); |
| 1895 | struct ioc_now now; |
| 1896 | struct blkcg_gq *tblkg; |
| 1897 | unsigned long flags; |
| 1898 | |
| 1899 | ioc_now(ioc, &now); |
| 1900 | |
| 1901 | iocg->ioc = ioc; |
| 1902 | atomic64_set(&iocg->vtime, now.vnow); |
| 1903 | atomic64_set(&iocg->done_vtime, now.vnow); |
| 1904 | atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); |
| 1905 | INIT_LIST_HEAD(&iocg->active_list); |
| 1906 | iocg->hweight_active = HWEIGHT_WHOLE; |
| 1907 | iocg->hweight_inuse = HWEIGHT_WHOLE; |
| 1908 | |
| 1909 | init_waitqueue_head(&iocg->waitq); |
| 1910 | hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| 1911 | iocg->waitq_timer.function = iocg_waitq_timer_fn; |
| 1912 | hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); |
| 1913 | iocg->delay_timer.function = iocg_delay_timer_fn; |
| 1914 | |
| 1915 | iocg->level = blkg->blkcg->css.cgroup->level; |
| 1916 | |
| 1917 | for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { |
| 1918 | struct ioc_gq *tiocg = blkg_to_iocg(tblkg); |
| 1919 | iocg->ancestors[tiocg->level] = tiocg; |
| 1920 | } |
| 1921 | |
| 1922 | spin_lock_irqsave(&ioc->lock, flags); |
| 1923 | weight_updated(iocg); |
| 1924 | spin_unlock_irqrestore(&ioc->lock, flags); |
| 1925 | } |
| 1926 | |
| 1927 | static void ioc_pd_free(struct blkg_policy_data *pd) |
| 1928 | { |
| 1929 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 1930 | struct ioc *ioc = iocg->ioc; |
| 1931 | |
| 1932 | if (ioc) { |
| 1933 | hrtimer_cancel(&iocg->waitq_timer); |
| 1934 | hrtimer_cancel(&iocg->delay_timer); |
| 1935 | |
| 1936 | spin_lock(&ioc->lock); |
| 1937 | if (!list_empty(&iocg->active_list)) { |
| 1938 | propagate_active_weight(iocg, 0, 0); |
| 1939 | list_del_init(&iocg->active_list); |
| 1940 | } |
| 1941 | spin_unlock(&ioc->lock); |
| 1942 | } |
| 1943 | kfree(iocg); |
| 1944 | } |
| 1945 | |
| 1946 | static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, |
| 1947 | int off) |
| 1948 | { |
| 1949 | const char *dname = blkg_dev_name(pd->blkg); |
| 1950 | struct ioc_gq *iocg = pd_to_iocg(pd); |
| 1951 | |
| 1952 | if (dname && iocg->cfg_weight) |
| 1953 | seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight); |
| 1954 | return 0; |
| 1955 | } |
| 1956 | |
| 1957 | |
| 1958 | static int ioc_weight_show(struct seq_file *sf, void *v) |
| 1959 | { |
| 1960 | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); |
| 1961 | struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); |
| 1962 | |
| 1963 | seq_printf(sf, "default %u\n", iocc->dfl_weight); |
| 1964 | blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, |
| 1965 | &blkcg_policy_iocost, seq_cft(sf)->private, false); |
| 1966 | return 0; |
| 1967 | } |
| 1968 | |
| 1969 | static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, |
| 1970 | size_t nbytes, loff_t off) |
| 1971 | { |
| 1972 | struct blkcg *blkcg = css_to_blkcg(of_css(of)); |
| 1973 | struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); |
| 1974 | struct blkg_conf_ctx ctx; |
| 1975 | struct ioc_gq *iocg; |
| 1976 | u32 v; |
| 1977 | int ret; |
| 1978 | |
| 1979 | if (!strchr(buf, ':')) { |
| 1980 | struct blkcg_gq *blkg; |
| 1981 | |
| 1982 | if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) |
| 1983 | return -EINVAL; |
| 1984 | |
| 1985 | if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) |
| 1986 | return -EINVAL; |
| 1987 | |
| 1988 | spin_lock(&blkcg->lock); |
| 1989 | iocc->dfl_weight = v; |
| 1990 | hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { |
| 1991 | struct ioc_gq *iocg = blkg_to_iocg(blkg); |
| 1992 | |
| 1993 | if (iocg) { |
| 1994 | spin_lock_irq(&iocg->ioc->lock); |
| 1995 | weight_updated(iocg); |
| 1996 | spin_unlock_irq(&iocg->ioc->lock); |
| 1997 | } |
| 1998 | } |
| 1999 | spin_unlock(&blkcg->lock); |
| 2000 | |
| 2001 | return nbytes; |
| 2002 | } |
| 2003 | |
| 2004 | ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); |
| 2005 | if (ret) |
| 2006 | return ret; |
| 2007 | |
| 2008 | iocg = blkg_to_iocg(ctx.blkg); |
| 2009 | |
| 2010 | if (!strncmp(ctx.body, "default", 7)) { |
| 2011 | v = 0; |
| 2012 | } else { |
| 2013 | if (!sscanf(ctx.body, "%u", &v)) |
| 2014 | goto einval; |
| 2015 | if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) |
| 2016 | goto einval; |
| 2017 | } |
| 2018 | |
| 2019 | spin_lock_irq(&iocg->ioc->lock); |
| 2020 | iocg->cfg_weight = v; |
| 2021 | weight_updated(iocg); |
| 2022 | spin_unlock_irq(&iocg->ioc->lock); |
| 2023 | |
| 2024 | blkg_conf_finish(&ctx); |
| 2025 | return nbytes; |
| 2026 | |
| 2027 | einval: |
| 2028 | blkg_conf_finish(&ctx); |
| 2029 | return -EINVAL; |
| 2030 | } |
| 2031 | |
| 2032 | static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, |
| 2033 | int off) |
| 2034 | { |
| 2035 | const char *dname = blkg_dev_name(pd->blkg); |
| 2036 | struct ioc *ioc = pd_to_iocg(pd)->ioc; |
| 2037 | |
| 2038 | if (!dname) |
| 2039 | return 0; |
| 2040 | |
| 2041 | seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", |
| 2042 | dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", |
| 2043 | ioc->params.qos[QOS_RPPM] / 10000, |
| 2044 | ioc->params.qos[QOS_RPPM] % 10000 / 100, |
| 2045 | ioc->params.qos[QOS_RLAT], |
| 2046 | ioc->params.qos[QOS_WPPM] / 10000, |
| 2047 | ioc->params.qos[QOS_WPPM] % 10000 / 100, |
| 2048 | ioc->params.qos[QOS_WLAT], |
| 2049 | ioc->params.qos[QOS_MIN] / 10000, |
| 2050 | ioc->params.qos[QOS_MIN] % 10000 / 100, |
| 2051 | ioc->params.qos[QOS_MAX] / 10000, |
| 2052 | ioc->params.qos[QOS_MAX] % 10000 / 100); |
| 2053 | return 0; |
| 2054 | } |
| 2055 | |
| 2056 | static int ioc_qos_show(struct seq_file *sf, void *v) |
| 2057 | { |
| 2058 | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); |
| 2059 | |
| 2060 | blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, |
| 2061 | &blkcg_policy_iocost, seq_cft(sf)->private, false); |
| 2062 | return 0; |
| 2063 | } |
| 2064 | |
| 2065 | static const match_table_t qos_ctrl_tokens = { |
| 2066 | { QOS_ENABLE, "enable=%u" }, |
| 2067 | { QOS_CTRL, "ctrl=%s" }, |
| 2068 | { NR_QOS_CTRL_PARAMS, NULL }, |
| 2069 | }; |
| 2070 | |
| 2071 | static const match_table_t qos_tokens = { |
| 2072 | { QOS_RPPM, "rpct=%s" }, |
| 2073 | { QOS_RLAT, "rlat=%u" }, |
| 2074 | { QOS_WPPM, "wpct=%s" }, |
| 2075 | { QOS_WLAT, "wlat=%u" }, |
| 2076 | { QOS_MIN, "min=%s" }, |
| 2077 | { QOS_MAX, "max=%s" }, |
| 2078 | { NR_QOS_PARAMS, NULL }, |
| 2079 | }; |
| 2080 | |
| 2081 | static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, |
| 2082 | size_t nbytes, loff_t off) |
| 2083 | { |
| 2084 | struct gendisk *disk; |
| 2085 | struct ioc *ioc; |
| 2086 | u32 qos[NR_QOS_PARAMS]; |
| 2087 | bool enable, user; |
| 2088 | char *p; |
| 2089 | int ret; |
| 2090 | |
| 2091 | disk = blkcg_conf_get_disk(&input); |
| 2092 | if (IS_ERR(disk)) |
| 2093 | return PTR_ERR(disk); |
| 2094 | |
| 2095 | ioc = q_to_ioc(disk->queue); |
| 2096 | if (!ioc) { |
| 2097 | ret = blk_iocost_init(disk->queue); |
| 2098 | if (ret) |
| 2099 | goto err; |
| 2100 | ioc = q_to_ioc(disk->queue); |
| 2101 | } |
| 2102 | |
| 2103 | spin_lock_irq(&ioc->lock); |
| 2104 | memcpy(qos, ioc->params.qos, sizeof(qos)); |
| 2105 | enable = ioc->enabled; |
| 2106 | user = ioc->user_qos_params; |
| 2107 | spin_unlock_irq(&ioc->lock); |
| 2108 | |
| 2109 | while ((p = strsep(&input, " \t\n"))) { |
| 2110 | substring_t args[MAX_OPT_ARGS]; |
| 2111 | char buf[32]; |
| 2112 | int tok; |
| 2113 | s64 v; |
| 2114 | |
| 2115 | if (!*p) |
| 2116 | continue; |
| 2117 | |
| 2118 | switch (match_token(p, qos_ctrl_tokens, args)) { |
| 2119 | case QOS_ENABLE: |
| 2120 | match_u64(&args[0], &v); |
| 2121 | enable = v; |
| 2122 | continue; |
| 2123 | case QOS_CTRL: |
| 2124 | match_strlcpy(buf, &args[0], sizeof(buf)); |
| 2125 | if (!strcmp(buf, "auto")) |
| 2126 | user = false; |
| 2127 | else if (!strcmp(buf, "user")) |
| 2128 | user = true; |
| 2129 | else |
| 2130 | goto einval; |
| 2131 | continue; |
| 2132 | } |
| 2133 | |
| 2134 | tok = match_token(p, qos_tokens, args); |
| 2135 | switch (tok) { |
| 2136 | case QOS_RPPM: |
| 2137 | case QOS_WPPM: |
| 2138 | if (match_strlcpy(buf, &args[0], sizeof(buf)) >= |
| 2139 | sizeof(buf)) |
| 2140 | goto einval; |
| 2141 | if (cgroup_parse_float(buf, 2, &v)) |
| 2142 | goto einval; |
| 2143 | if (v < 0 || v > 10000) |
| 2144 | goto einval; |
| 2145 | qos[tok] = v * 100; |
| 2146 | break; |
| 2147 | case QOS_RLAT: |
| 2148 | case QOS_WLAT: |
| 2149 | if (match_u64(&args[0], &v)) |
| 2150 | goto einval; |
| 2151 | qos[tok] = v; |
| 2152 | break; |
| 2153 | case QOS_MIN: |
| 2154 | case QOS_MAX: |
| 2155 | if (match_strlcpy(buf, &args[0], sizeof(buf)) >= |
| 2156 | sizeof(buf)) |
| 2157 | goto einval; |
| 2158 | if (cgroup_parse_float(buf, 2, &v)) |
| 2159 | goto einval; |
| 2160 | if (v < 0) |
| 2161 | goto einval; |
| 2162 | qos[tok] = clamp_t(s64, v * 100, |
| 2163 | VRATE_MIN_PPM, VRATE_MAX_PPM); |
| 2164 | break; |
| 2165 | default: |
| 2166 | goto einval; |
| 2167 | } |
| 2168 | user = true; |
| 2169 | } |
| 2170 | |
| 2171 | if (qos[QOS_MIN] > qos[QOS_MAX]) |
| 2172 | goto einval; |
| 2173 | |
| 2174 | spin_lock_irq(&ioc->lock); |
| 2175 | |
| 2176 | if (enable) { |
| 2177 | blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); |
| 2178 | ioc->enabled = true; |
| 2179 | } else { |
| 2180 | blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); |
| 2181 | ioc->enabled = false; |
| 2182 | } |
| 2183 | |
| 2184 | if (user) { |
| 2185 | memcpy(ioc->params.qos, qos, sizeof(qos)); |
| 2186 | ioc->user_qos_params = true; |
| 2187 | } else { |
| 2188 | ioc->user_qos_params = false; |
| 2189 | } |
| 2190 | |
| 2191 | ioc_refresh_params(ioc, true); |
| 2192 | spin_unlock_irq(&ioc->lock); |
| 2193 | |
| 2194 | put_disk_and_module(disk); |
| 2195 | return nbytes; |
| 2196 | einval: |
| 2197 | ret = -EINVAL; |
| 2198 | err: |
| 2199 | put_disk_and_module(disk); |
| 2200 | return ret; |
| 2201 | } |
| 2202 | |
| 2203 | static u64 ioc_cost_model_prfill(struct seq_file *sf, |
| 2204 | struct blkg_policy_data *pd, int off) |
| 2205 | { |
| 2206 | const char *dname = blkg_dev_name(pd->blkg); |
| 2207 | struct ioc *ioc = pd_to_iocg(pd)->ioc; |
| 2208 | u64 *u = ioc->params.i_lcoefs; |
| 2209 | |
| 2210 | if (!dname) |
| 2211 | return 0; |
| 2212 | |
| 2213 | seq_printf(sf, "%s ctrl=%s model=linear " |
| 2214 | "rbps=%llu rseqiops=%llu rrandiops=%llu " |
| 2215 | "wbps=%llu wseqiops=%llu wrandiops=%llu\n", |
| 2216 | dname, ioc->user_cost_model ? "user" : "auto", |
| 2217 | u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], |
| 2218 | u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); |
| 2219 | return 0; |
| 2220 | } |
| 2221 | |
| 2222 | static int ioc_cost_model_show(struct seq_file *sf, void *v) |
| 2223 | { |
| 2224 | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); |
| 2225 | |
| 2226 | blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, |
| 2227 | &blkcg_policy_iocost, seq_cft(sf)->private, false); |
| 2228 | return 0; |
| 2229 | } |
| 2230 | |
| 2231 | static const match_table_t cost_ctrl_tokens = { |
| 2232 | { COST_CTRL, "ctrl=%s" }, |
| 2233 | { COST_MODEL, "model=%s" }, |
| 2234 | { NR_COST_CTRL_PARAMS, NULL }, |
| 2235 | }; |
| 2236 | |
| 2237 | static const match_table_t i_lcoef_tokens = { |
| 2238 | { I_LCOEF_RBPS, "rbps=%u" }, |
| 2239 | { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, |
| 2240 | { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, |
| 2241 | { I_LCOEF_WBPS, "wbps=%u" }, |
| 2242 | { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, |
| 2243 | { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, |
| 2244 | { NR_I_LCOEFS, NULL }, |
| 2245 | }; |
| 2246 | |
| 2247 | static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, |
| 2248 | size_t nbytes, loff_t off) |
| 2249 | { |
| 2250 | struct gendisk *disk; |
| 2251 | struct ioc *ioc; |
| 2252 | u64 u[NR_I_LCOEFS]; |
| 2253 | bool user; |
| 2254 | char *p; |
| 2255 | int ret; |
| 2256 | |
| 2257 | disk = blkcg_conf_get_disk(&input); |
| 2258 | if (IS_ERR(disk)) |
| 2259 | return PTR_ERR(disk); |
| 2260 | |
| 2261 | ioc = q_to_ioc(disk->queue); |
| 2262 | if (!ioc) { |
| 2263 | ret = blk_iocost_init(disk->queue); |
| 2264 | if (ret) |
| 2265 | goto err; |
| 2266 | ioc = q_to_ioc(disk->queue); |
| 2267 | } |
| 2268 | |
| 2269 | spin_lock_irq(&ioc->lock); |
| 2270 | memcpy(u, ioc->params.i_lcoefs, sizeof(u)); |
| 2271 | user = ioc->user_cost_model; |
| 2272 | spin_unlock_irq(&ioc->lock); |
| 2273 | |
| 2274 | while ((p = strsep(&input, " \t\n"))) { |
| 2275 | substring_t args[MAX_OPT_ARGS]; |
| 2276 | char buf[32]; |
| 2277 | int tok; |
| 2278 | u64 v; |
| 2279 | |
| 2280 | if (!*p) |
| 2281 | continue; |
| 2282 | |
| 2283 | switch (match_token(p, cost_ctrl_tokens, args)) { |
| 2284 | case COST_CTRL: |
| 2285 | match_strlcpy(buf, &args[0], sizeof(buf)); |
| 2286 | if (!strcmp(buf, "auto")) |
| 2287 | user = false; |
| 2288 | else if (!strcmp(buf, "user")) |
| 2289 | user = true; |
| 2290 | else |
| 2291 | goto einval; |
| 2292 | continue; |
| 2293 | case COST_MODEL: |
| 2294 | match_strlcpy(buf, &args[0], sizeof(buf)); |
| 2295 | if (strcmp(buf, "linear")) |
| 2296 | goto einval; |
| 2297 | continue; |
| 2298 | } |
| 2299 | |
| 2300 | tok = match_token(p, i_lcoef_tokens, args); |
| 2301 | if (tok == NR_I_LCOEFS) |
| 2302 | goto einval; |
| 2303 | if (match_u64(&args[0], &v)) |
| 2304 | goto einval; |
| 2305 | u[tok] = v; |
| 2306 | user = true; |
| 2307 | } |
| 2308 | |
| 2309 | spin_lock_irq(&ioc->lock); |
| 2310 | if (user) { |
| 2311 | memcpy(ioc->params.i_lcoefs, u, sizeof(u)); |
| 2312 | ioc->user_cost_model = true; |
| 2313 | } else { |
| 2314 | ioc->user_cost_model = false; |
| 2315 | } |
| 2316 | ioc_refresh_params(ioc, true); |
| 2317 | spin_unlock_irq(&ioc->lock); |
| 2318 | |
| 2319 | put_disk_and_module(disk); |
| 2320 | return nbytes; |
| 2321 | |
| 2322 | einval: |
| 2323 | ret = -EINVAL; |
| 2324 | err: |
| 2325 | put_disk_and_module(disk); |
| 2326 | return ret; |
| 2327 | } |
| 2328 | |
| 2329 | static struct cftype ioc_files[] = { |
| 2330 | { |
| 2331 | .name = "weight", |
| 2332 | .flags = CFTYPE_NOT_ON_ROOT, |
| 2333 | .seq_show = ioc_weight_show, |
| 2334 | .write = ioc_weight_write, |
| 2335 | }, |
| 2336 | { |
| 2337 | .name = "cost.qos", |
| 2338 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 2339 | .seq_show = ioc_qos_show, |
| 2340 | .write = ioc_qos_write, |
| 2341 | }, |
| 2342 | { |
| 2343 | .name = "cost.model", |
| 2344 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 2345 | .seq_show = ioc_cost_model_show, |
| 2346 | .write = ioc_cost_model_write, |
| 2347 | }, |
| 2348 | {} |
| 2349 | }; |
| 2350 | |
| 2351 | static struct blkcg_policy blkcg_policy_iocost = { |
| 2352 | .dfl_cftypes = ioc_files, |
| 2353 | .cpd_alloc_fn = ioc_cpd_alloc, |
| 2354 | .cpd_free_fn = ioc_cpd_free, |
| 2355 | .pd_alloc_fn = ioc_pd_alloc, |
| 2356 | .pd_init_fn = ioc_pd_init, |
| 2357 | .pd_free_fn = ioc_pd_free, |
| 2358 | }; |
| 2359 | |
| 2360 | static int __init ioc_init(void) |
| 2361 | { |
| 2362 | return blkcg_policy_register(&blkcg_policy_iocost); |
| 2363 | } |
| 2364 | |
| 2365 | static void __exit ioc_exit(void) |
| 2366 | { |
| 2367 | return blkcg_policy_unregister(&blkcg_policy_iocost); |
| 2368 | } |
| 2369 | |
| 2370 | module_init(ioc_init); |
| 2371 | module_exit(ioc_exit); |