Vitaly Kuznetsov | 7e0563d | 2017-04-04 14:48:17 +0200 | [diff] [blame^] | 1 | /* |
| 2 | * Xen mmu operations |
| 3 | * |
| 4 | * This file contains the various mmu fetch and update operations. |
| 5 | * The most important job they must perform is the mapping between the |
| 6 | * domain's pfn and the overall machine mfns. |
| 7 | * |
| 8 | * Xen allows guests to directly update the pagetable, in a controlled |
| 9 | * fashion. In other words, the guest modifies the same pagetable |
| 10 | * that the CPU actually uses, which eliminates the overhead of having |
| 11 | * a separate shadow pagetable. |
| 12 | * |
| 13 | * In order to allow this, it falls on the guest domain to map its |
| 14 | * notion of a "physical" pfn - which is just a domain-local linear |
| 15 | * address - into a real "machine address" which the CPU's MMU can |
| 16 | * use. |
| 17 | * |
| 18 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be |
| 19 | * inserted directly into the pagetable. When creating a new |
| 20 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, |
| 21 | * when reading the content back with __(pgd|pmd|pte)_val, it converts |
| 22 | * the mfn back into a pfn. |
| 23 | * |
| 24 | * The other constraint is that all pages which make up a pagetable |
| 25 | * must be mapped read-only in the guest. This prevents uncontrolled |
| 26 | * guest updates to the pagetable. Xen strictly enforces this, and |
| 27 | * will disallow any pagetable update which will end up mapping a |
| 28 | * pagetable page RW, and will disallow using any writable page as a |
| 29 | * pagetable. |
| 30 | * |
| 31 | * Naively, when loading %cr3 with the base of a new pagetable, Xen |
| 32 | * would need to validate the whole pagetable before going on. |
| 33 | * Naturally, this is quite slow. The solution is to "pin" a |
| 34 | * pagetable, which enforces all the constraints on the pagetable even |
| 35 | * when it is not actively in use. This menas that Xen can be assured |
| 36 | * that it is still valid when you do load it into %cr3, and doesn't |
| 37 | * need to revalidate it. |
| 38 | * |
| 39 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 40 | */ |
| 41 | #include <linux/sched/mm.h> |
| 42 | #include <linux/highmem.h> |
| 43 | #include <linux/debugfs.h> |
| 44 | #include <linux/bug.h> |
| 45 | #include <linux/vmalloc.h> |
| 46 | #include <linux/export.h> |
| 47 | #include <linux/init.h> |
| 48 | #include <linux/gfp.h> |
| 49 | #include <linux/memblock.h> |
| 50 | #include <linux/seq_file.h> |
| 51 | #include <linux/crash_dump.h> |
| 52 | |
| 53 | #include <trace/events/xen.h> |
| 54 | |
| 55 | #include <asm/pgtable.h> |
| 56 | #include <asm/tlbflush.h> |
| 57 | #include <asm/fixmap.h> |
| 58 | #include <asm/mmu_context.h> |
| 59 | #include <asm/setup.h> |
| 60 | #include <asm/paravirt.h> |
| 61 | #include <asm/e820/api.h> |
| 62 | #include <asm/linkage.h> |
| 63 | #include <asm/page.h> |
| 64 | #include <asm/init.h> |
| 65 | #include <asm/pat.h> |
| 66 | #include <asm/smp.h> |
| 67 | |
| 68 | #include <asm/xen/hypercall.h> |
| 69 | #include <asm/xen/hypervisor.h> |
| 70 | |
| 71 | #include <xen/xen.h> |
| 72 | #include <xen/page.h> |
| 73 | #include <xen/interface/xen.h> |
| 74 | #include <xen/interface/hvm/hvm_op.h> |
| 75 | #include <xen/interface/version.h> |
| 76 | #include <xen/interface/memory.h> |
| 77 | #include <xen/hvc-console.h> |
| 78 | |
| 79 | #include "multicalls.h" |
| 80 | #include "mmu.h" |
| 81 | #include "debugfs.h" |
| 82 | |
| 83 | #ifdef CONFIG_X86_32 |
| 84 | /* |
| 85 | * Identity map, in addition to plain kernel map. This needs to be |
| 86 | * large enough to allocate page table pages to allocate the rest. |
| 87 | * Each page can map 2MB. |
| 88 | */ |
| 89 | #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) |
| 90 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); |
| 91 | #endif |
| 92 | #ifdef CONFIG_X86_64 |
| 93 | /* l3 pud for userspace vsyscall mapping */ |
| 94 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; |
| 95 | #endif /* CONFIG_X86_64 */ |
| 96 | |
| 97 | /* |
| 98 | * Note about cr3 (pagetable base) values: |
| 99 | * |
| 100 | * xen_cr3 contains the current logical cr3 value; it contains the |
| 101 | * last set cr3. This may not be the current effective cr3, because |
| 102 | * its update may be being lazily deferred. However, a vcpu looking |
| 103 | * at its own cr3 can use this value knowing that it everything will |
| 104 | * be self-consistent. |
| 105 | * |
| 106 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the |
| 107 | * hypercall to set the vcpu cr3 is complete (so it may be a little |
| 108 | * out of date, but it will never be set early). If one vcpu is |
| 109 | * looking at another vcpu's cr3 value, it should use this variable. |
| 110 | */ |
| 111 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ |
| 112 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ |
| 113 | |
| 114 | static phys_addr_t xen_pt_base, xen_pt_size __initdata; |
| 115 | |
| 116 | /* |
| 117 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
| 118 | * redzone above it, so round it up to a PGD boundary. |
| 119 | */ |
| 120 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) |
| 121 | |
| 122 | void make_lowmem_page_readonly(void *vaddr) |
| 123 | { |
| 124 | pte_t *pte, ptev; |
| 125 | unsigned long address = (unsigned long)vaddr; |
| 126 | unsigned int level; |
| 127 | |
| 128 | pte = lookup_address(address, &level); |
| 129 | if (pte == NULL) |
| 130 | return; /* vaddr missing */ |
| 131 | |
| 132 | ptev = pte_wrprotect(*pte); |
| 133 | |
| 134 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 135 | BUG(); |
| 136 | } |
| 137 | |
| 138 | void make_lowmem_page_readwrite(void *vaddr) |
| 139 | { |
| 140 | pte_t *pte, ptev; |
| 141 | unsigned long address = (unsigned long)vaddr; |
| 142 | unsigned int level; |
| 143 | |
| 144 | pte = lookup_address(address, &level); |
| 145 | if (pte == NULL) |
| 146 | return; /* vaddr missing */ |
| 147 | |
| 148 | ptev = pte_mkwrite(*pte); |
| 149 | |
| 150 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 151 | BUG(); |
| 152 | } |
| 153 | |
| 154 | |
| 155 | static bool xen_page_pinned(void *ptr) |
| 156 | { |
| 157 | struct page *page = virt_to_page(ptr); |
| 158 | |
| 159 | return PagePinned(page); |
| 160 | } |
| 161 | |
| 162 | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) |
| 163 | { |
| 164 | struct multicall_space mcs; |
| 165 | struct mmu_update *u; |
| 166 | |
| 167 | trace_xen_mmu_set_domain_pte(ptep, pteval, domid); |
| 168 | |
| 169 | mcs = xen_mc_entry(sizeof(*u)); |
| 170 | u = mcs.args; |
| 171 | |
| 172 | /* ptep might be kmapped when using 32-bit HIGHPTE */ |
| 173 | u->ptr = virt_to_machine(ptep).maddr; |
| 174 | u->val = pte_val_ma(pteval); |
| 175 | |
| 176 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); |
| 177 | |
| 178 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 179 | } |
| 180 | EXPORT_SYMBOL_GPL(xen_set_domain_pte); |
| 181 | |
| 182 | static void xen_extend_mmu_update(const struct mmu_update *update) |
| 183 | { |
| 184 | struct multicall_space mcs; |
| 185 | struct mmu_update *u; |
| 186 | |
| 187 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
| 188 | |
| 189 | if (mcs.mc != NULL) { |
| 190 | mcs.mc->args[1]++; |
| 191 | } else { |
| 192 | mcs = __xen_mc_entry(sizeof(*u)); |
| 193 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 194 | } |
| 195 | |
| 196 | u = mcs.args; |
| 197 | *u = *update; |
| 198 | } |
| 199 | |
| 200 | static void xen_extend_mmuext_op(const struct mmuext_op *op) |
| 201 | { |
| 202 | struct multicall_space mcs; |
| 203 | struct mmuext_op *u; |
| 204 | |
| 205 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); |
| 206 | |
| 207 | if (mcs.mc != NULL) { |
| 208 | mcs.mc->args[1]++; |
| 209 | } else { |
| 210 | mcs = __xen_mc_entry(sizeof(*u)); |
| 211 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 212 | } |
| 213 | |
| 214 | u = mcs.args; |
| 215 | *u = *op; |
| 216 | } |
| 217 | |
| 218 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
| 219 | { |
| 220 | struct mmu_update u; |
| 221 | |
| 222 | preempt_disable(); |
| 223 | |
| 224 | xen_mc_batch(); |
| 225 | |
| 226 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 227 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 228 | u.val = pmd_val_ma(val); |
| 229 | xen_extend_mmu_update(&u); |
| 230 | |
| 231 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 232 | |
| 233 | preempt_enable(); |
| 234 | } |
| 235 | |
| 236 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) |
| 237 | { |
| 238 | trace_xen_mmu_set_pmd(ptr, val); |
| 239 | |
| 240 | /* If page is not pinned, we can just update the entry |
| 241 | directly */ |
| 242 | if (!xen_page_pinned(ptr)) { |
| 243 | *ptr = val; |
| 244 | return; |
| 245 | } |
| 246 | |
| 247 | xen_set_pmd_hyper(ptr, val); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * Associate a virtual page frame with a given physical page frame |
| 252 | * and protection flags for that frame. |
| 253 | */ |
| 254 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) |
| 255 | { |
| 256 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
| 257 | } |
| 258 | |
| 259 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) |
| 260 | { |
| 261 | struct mmu_update u; |
| 262 | |
| 263 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) |
| 264 | return false; |
| 265 | |
| 266 | xen_mc_batch(); |
| 267 | |
| 268 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 269 | u.val = pte_val_ma(pteval); |
| 270 | xen_extend_mmu_update(&u); |
| 271 | |
| 272 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 273 | |
| 274 | return true; |
| 275 | } |
| 276 | |
| 277 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) |
| 278 | { |
| 279 | if (!xen_batched_set_pte(ptep, pteval)) { |
| 280 | /* |
| 281 | * Could call native_set_pte() here and trap and |
| 282 | * emulate the PTE write but with 32-bit guests this |
| 283 | * needs two traps (one for each of the two 32-bit |
| 284 | * words in the PTE) so do one hypercall directly |
| 285 | * instead. |
| 286 | */ |
| 287 | struct mmu_update u; |
| 288 | |
| 289 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 290 | u.val = pte_val_ma(pteval); |
| 291 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | static void xen_set_pte(pte_t *ptep, pte_t pteval) |
| 296 | { |
| 297 | trace_xen_mmu_set_pte(ptep, pteval); |
| 298 | __xen_set_pte(ptep, pteval); |
| 299 | } |
| 300 | |
| 301 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, |
| 302 | pte_t *ptep, pte_t pteval) |
| 303 | { |
| 304 | trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); |
| 305 | __xen_set_pte(ptep, pteval); |
| 306 | } |
| 307 | |
| 308 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, |
| 309 | unsigned long addr, pte_t *ptep) |
| 310 | { |
| 311 | /* Just return the pte as-is. We preserve the bits on commit */ |
| 312 | trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); |
| 313 | return *ptep; |
| 314 | } |
| 315 | |
| 316 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
| 317 | pte_t *ptep, pte_t pte) |
| 318 | { |
| 319 | struct mmu_update u; |
| 320 | |
| 321 | trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); |
| 322 | xen_mc_batch(); |
| 323 | |
| 324 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
| 325 | u.val = pte_val_ma(pte); |
| 326 | xen_extend_mmu_update(&u); |
| 327 | |
| 328 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 329 | } |
| 330 | |
| 331 | /* Assume pteval_t is equivalent to all the other *val_t types. */ |
| 332 | static pteval_t pte_mfn_to_pfn(pteval_t val) |
| 333 | { |
| 334 | if (val & _PAGE_PRESENT) { |
| 335 | unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 336 | unsigned long pfn = mfn_to_pfn(mfn); |
| 337 | |
| 338 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 339 | if (unlikely(pfn == ~0)) |
| 340 | val = flags & ~_PAGE_PRESENT; |
| 341 | else |
| 342 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; |
| 343 | } |
| 344 | |
| 345 | return val; |
| 346 | } |
| 347 | |
| 348 | static pteval_t pte_pfn_to_mfn(pteval_t val) |
| 349 | { |
| 350 | if (val & _PAGE_PRESENT) { |
| 351 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 352 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 353 | unsigned long mfn; |
| 354 | |
| 355 | if (!xen_feature(XENFEAT_auto_translated_physmap)) |
| 356 | mfn = __pfn_to_mfn(pfn); |
| 357 | else |
| 358 | mfn = pfn; |
| 359 | /* |
| 360 | * If there's no mfn for the pfn, then just create an |
| 361 | * empty non-present pte. Unfortunately this loses |
| 362 | * information about the original pfn, so |
| 363 | * pte_mfn_to_pfn is asymmetric. |
| 364 | */ |
| 365 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { |
| 366 | mfn = 0; |
| 367 | flags = 0; |
| 368 | } else |
| 369 | mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); |
| 370 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; |
| 371 | } |
| 372 | |
| 373 | return val; |
| 374 | } |
| 375 | |
| 376 | __visible pteval_t xen_pte_val(pte_t pte) |
| 377 | { |
| 378 | pteval_t pteval = pte.pte; |
| 379 | |
| 380 | return pte_mfn_to_pfn(pteval); |
| 381 | } |
| 382 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); |
| 383 | |
| 384 | __visible pgdval_t xen_pgd_val(pgd_t pgd) |
| 385 | { |
| 386 | return pte_mfn_to_pfn(pgd.pgd); |
| 387 | } |
| 388 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); |
| 389 | |
| 390 | __visible pte_t xen_make_pte(pteval_t pte) |
| 391 | { |
| 392 | pte = pte_pfn_to_mfn(pte); |
| 393 | |
| 394 | return native_make_pte(pte); |
| 395 | } |
| 396 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); |
| 397 | |
| 398 | __visible pgd_t xen_make_pgd(pgdval_t pgd) |
| 399 | { |
| 400 | pgd = pte_pfn_to_mfn(pgd); |
| 401 | return native_make_pgd(pgd); |
| 402 | } |
| 403 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); |
| 404 | |
| 405 | __visible pmdval_t xen_pmd_val(pmd_t pmd) |
| 406 | { |
| 407 | return pte_mfn_to_pfn(pmd.pmd); |
| 408 | } |
| 409 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); |
| 410 | |
| 411 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
| 412 | { |
| 413 | struct mmu_update u; |
| 414 | |
| 415 | preempt_disable(); |
| 416 | |
| 417 | xen_mc_batch(); |
| 418 | |
| 419 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 420 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 421 | u.val = pud_val_ma(val); |
| 422 | xen_extend_mmu_update(&u); |
| 423 | |
| 424 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 425 | |
| 426 | preempt_enable(); |
| 427 | } |
| 428 | |
| 429 | static void xen_set_pud(pud_t *ptr, pud_t val) |
| 430 | { |
| 431 | trace_xen_mmu_set_pud(ptr, val); |
| 432 | |
| 433 | /* If page is not pinned, we can just update the entry |
| 434 | directly */ |
| 435 | if (!xen_page_pinned(ptr)) { |
| 436 | *ptr = val; |
| 437 | return; |
| 438 | } |
| 439 | |
| 440 | xen_set_pud_hyper(ptr, val); |
| 441 | } |
| 442 | |
| 443 | #ifdef CONFIG_X86_PAE |
| 444 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) |
| 445 | { |
| 446 | trace_xen_mmu_set_pte_atomic(ptep, pte); |
| 447 | set_64bit((u64 *)ptep, native_pte_val(pte)); |
| 448 | } |
| 449 | |
| 450 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| 451 | { |
| 452 | trace_xen_mmu_pte_clear(mm, addr, ptep); |
| 453 | if (!xen_batched_set_pte(ptep, native_make_pte(0))) |
| 454 | native_pte_clear(mm, addr, ptep); |
| 455 | } |
| 456 | |
| 457 | static void xen_pmd_clear(pmd_t *pmdp) |
| 458 | { |
| 459 | trace_xen_mmu_pmd_clear(pmdp); |
| 460 | set_pmd(pmdp, __pmd(0)); |
| 461 | } |
| 462 | #endif /* CONFIG_X86_PAE */ |
| 463 | |
| 464 | __visible pmd_t xen_make_pmd(pmdval_t pmd) |
| 465 | { |
| 466 | pmd = pte_pfn_to_mfn(pmd); |
| 467 | return native_make_pmd(pmd); |
| 468 | } |
| 469 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); |
| 470 | |
| 471 | #if CONFIG_PGTABLE_LEVELS == 4 |
| 472 | __visible pudval_t xen_pud_val(pud_t pud) |
| 473 | { |
| 474 | return pte_mfn_to_pfn(pud.pud); |
| 475 | } |
| 476 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); |
| 477 | |
| 478 | __visible pud_t xen_make_pud(pudval_t pud) |
| 479 | { |
| 480 | pud = pte_pfn_to_mfn(pud); |
| 481 | |
| 482 | return native_make_pud(pud); |
| 483 | } |
| 484 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); |
| 485 | |
| 486 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) |
| 487 | { |
| 488 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
| 489 | unsigned offset = pgd - pgd_page; |
| 490 | pgd_t *user_ptr = NULL; |
| 491 | |
| 492 | if (offset < pgd_index(USER_LIMIT)) { |
| 493 | struct page *page = virt_to_page(pgd_page); |
| 494 | user_ptr = (pgd_t *)page->private; |
| 495 | if (user_ptr) |
| 496 | user_ptr += offset; |
| 497 | } |
| 498 | |
| 499 | return user_ptr; |
| 500 | } |
| 501 | |
| 502 | static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 503 | { |
| 504 | struct mmu_update u; |
| 505 | |
| 506 | u.ptr = virt_to_machine(ptr).maddr; |
| 507 | u.val = p4d_val_ma(val); |
| 508 | xen_extend_mmu_update(&u); |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Raw hypercall-based set_p4d, intended for in early boot before |
| 513 | * there's a page structure. This implies: |
| 514 | * 1. The only existing pagetable is the kernel's |
| 515 | * 2. It is always pinned |
| 516 | * 3. It has no user pagetable attached to it |
| 517 | */ |
| 518 | static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 519 | { |
| 520 | preempt_disable(); |
| 521 | |
| 522 | xen_mc_batch(); |
| 523 | |
| 524 | __xen_set_p4d_hyper(ptr, val); |
| 525 | |
| 526 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 527 | |
| 528 | preempt_enable(); |
| 529 | } |
| 530 | |
| 531 | static void xen_set_p4d(p4d_t *ptr, p4d_t val) |
| 532 | { |
| 533 | pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); |
| 534 | pgd_t pgd_val; |
| 535 | |
| 536 | trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); |
| 537 | |
| 538 | /* If page is not pinned, we can just update the entry |
| 539 | directly */ |
| 540 | if (!xen_page_pinned(ptr)) { |
| 541 | *ptr = val; |
| 542 | if (user_ptr) { |
| 543 | WARN_ON(xen_page_pinned(user_ptr)); |
| 544 | pgd_val.pgd = p4d_val_ma(val); |
| 545 | *user_ptr = pgd_val; |
| 546 | } |
| 547 | return; |
| 548 | } |
| 549 | |
| 550 | /* If it's pinned, then we can at least batch the kernel and |
| 551 | user updates together. */ |
| 552 | xen_mc_batch(); |
| 553 | |
| 554 | __xen_set_p4d_hyper(ptr, val); |
| 555 | if (user_ptr) |
| 556 | __xen_set_p4d_hyper((p4d_t *)user_ptr, val); |
| 557 | |
| 558 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 559 | } |
| 560 | #endif /* CONFIG_PGTABLE_LEVELS == 4 */ |
| 561 | |
| 562 | static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, |
| 563 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 564 | bool last, unsigned long limit) |
| 565 | { |
| 566 | int i, nr, flush = 0; |
| 567 | |
| 568 | nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; |
| 569 | for (i = 0; i < nr; i++) { |
| 570 | if (!pmd_none(pmd[i])) |
| 571 | flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); |
| 572 | } |
| 573 | return flush; |
| 574 | } |
| 575 | |
| 576 | static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, |
| 577 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 578 | bool last, unsigned long limit) |
| 579 | { |
| 580 | int i, nr, flush = 0; |
| 581 | |
| 582 | nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; |
| 583 | for (i = 0; i < nr; i++) { |
| 584 | pmd_t *pmd; |
| 585 | |
| 586 | if (pud_none(pud[i])) |
| 587 | continue; |
| 588 | |
| 589 | pmd = pmd_offset(&pud[i], 0); |
| 590 | if (PTRS_PER_PMD > 1) |
| 591 | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); |
| 592 | flush |= xen_pmd_walk(mm, pmd, func, |
| 593 | last && i == nr - 1, limit); |
| 594 | } |
| 595 | return flush; |
| 596 | } |
| 597 | |
| 598 | static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, |
| 599 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 600 | bool last, unsigned long limit) |
| 601 | { |
| 602 | int i, nr, flush = 0; |
| 603 | |
| 604 | nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D; |
| 605 | for (i = 0; i < nr; i++) { |
| 606 | pud_t *pud; |
| 607 | |
| 608 | if (p4d_none(p4d[i])) |
| 609 | continue; |
| 610 | |
| 611 | pud = pud_offset(&p4d[i], 0); |
| 612 | if (PTRS_PER_PUD > 1) |
| 613 | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); |
| 614 | flush |= xen_pud_walk(mm, pud, func, |
| 615 | last && i == nr - 1, limit); |
| 616 | } |
| 617 | return flush; |
| 618 | } |
| 619 | |
| 620 | /* |
| 621 | * (Yet another) pagetable walker. This one is intended for pinning a |
| 622 | * pagetable. This means that it walks a pagetable and calls the |
| 623 | * callback function on each page it finds making up the page table, |
| 624 | * at every level. It walks the entire pagetable, but it only bothers |
| 625 | * pinning pte pages which are below limit. In the normal case this |
| 626 | * will be STACK_TOP_MAX, but at boot we need to pin up to |
| 627 | * FIXADDR_TOP. |
| 628 | * |
| 629 | * For 32-bit the important bit is that we don't pin beyond there, |
| 630 | * because then we start getting into Xen's ptes. |
| 631 | * |
| 632 | * For 64-bit, we must skip the Xen hole in the middle of the address |
| 633 | * space, just after the big x86-64 virtual hole. |
| 634 | */ |
| 635 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
| 636 | int (*func)(struct mm_struct *mm, struct page *, |
| 637 | enum pt_level), |
| 638 | unsigned long limit) |
| 639 | { |
| 640 | int i, nr, flush = 0; |
| 641 | unsigned hole_low, hole_high; |
| 642 | |
| 643 | /* The limit is the last byte to be touched */ |
| 644 | limit--; |
| 645 | BUG_ON(limit >= FIXADDR_TOP); |
| 646 | |
| 647 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
| 648 | return 0; |
| 649 | |
| 650 | /* |
| 651 | * 64-bit has a great big hole in the middle of the address |
| 652 | * space, which contains the Xen mappings. On 32-bit these |
| 653 | * will end up making a zero-sized hole and so is a no-op. |
| 654 | */ |
| 655 | hole_low = pgd_index(USER_LIMIT); |
| 656 | hole_high = pgd_index(PAGE_OFFSET); |
| 657 | |
| 658 | nr = pgd_index(limit) + 1; |
| 659 | for (i = 0; i < nr; i++) { |
| 660 | p4d_t *p4d; |
| 661 | |
| 662 | if (i >= hole_low && i < hole_high) |
| 663 | continue; |
| 664 | |
| 665 | if (pgd_none(pgd[i])) |
| 666 | continue; |
| 667 | |
| 668 | p4d = p4d_offset(&pgd[i], 0); |
| 669 | if (PTRS_PER_P4D > 1) |
| 670 | flush |= (*func)(mm, virt_to_page(p4d), PT_P4D); |
| 671 | flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); |
| 672 | } |
| 673 | |
| 674 | /* Do the top level last, so that the callbacks can use it as |
| 675 | a cue to do final things like tlb flushes. */ |
| 676 | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); |
| 677 | |
| 678 | return flush; |
| 679 | } |
| 680 | |
| 681 | static int xen_pgd_walk(struct mm_struct *mm, |
| 682 | int (*func)(struct mm_struct *mm, struct page *, |
| 683 | enum pt_level), |
| 684 | unsigned long limit) |
| 685 | { |
| 686 | return __xen_pgd_walk(mm, mm->pgd, func, limit); |
| 687 | } |
| 688 | |
| 689 | /* If we're using split pte locks, then take the page's lock and |
| 690 | return a pointer to it. Otherwise return NULL. */ |
| 691 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
| 692 | { |
| 693 | spinlock_t *ptl = NULL; |
| 694 | |
| 695 | #if USE_SPLIT_PTE_PTLOCKS |
| 696 | ptl = ptlock_ptr(page); |
| 697 | spin_lock_nest_lock(ptl, &mm->page_table_lock); |
| 698 | #endif |
| 699 | |
| 700 | return ptl; |
| 701 | } |
| 702 | |
| 703 | static void xen_pte_unlock(void *v) |
| 704 | { |
| 705 | spinlock_t *ptl = v; |
| 706 | spin_unlock(ptl); |
| 707 | } |
| 708 | |
| 709 | static void xen_do_pin(unsigned level, unsigned long pfn) |
| 710 | { |
| 711 | struct mmuext_op op; |
| 712 | |
| 713 | op.cmd = level; |
| 714 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 715 | |
| 716 | xen_extend_mmuext_op(&op); |
| 717 | } |
| 718 | |
| 719 | static int xen_pin_page(struct mm_struct *mm, struct page *page, |
| 720 | enum pt_level level) |
| 721 | { |
| 722 | unsigned pgfl = TestSetPagePinned(page); |
| 723 | int flush; |
| 724 | |
| 725 | if (pgfl) |
| 726 | flush = 0; /* already pinned */ |
| 727 | else if (PageHighMem(page)) |
| 728 | /* kmaps need flushing if we found an unpinned |
| 729 | highpage */ |
| 730 | flush = 1; |
| 731 | else { |
| 732 | void *pt = lowmem_page_address(page); |
| 733 | unsigned long pfn = page_to_pfn(page); |
| 734 | struct multicall_space mcs = __xen_mc_entry(0); |
| 735 | spinlock_t *ptl; |
| 736 | |
| 737 | flush = 0; |
| 738 | |
| 739 | /* |
| 740 | * We need to hold the pagetable lock between the time |
| 741 | * we make the pagetable RO and when we actually pin |
| 742 | * it. If we don't, then other users may come in and |
| 743 | * attempt to update the pagetable by writing it, |
| 744 | * which will fail because the memory is RO but not |
| 745 | * pinned, so Xen won't do the trap'n'emulate. |
| 746 | * |
| 747 | * If we're using split pte locks, we can't hold the |
| 748 | * entire pagetable's worth of locks during the |
| 749 | * traverse, because we may wrap the preempt count (8 |
| 750 | * bits). The solution is to mark RO and pin each PTE |
| 751 | * page while holding the lock. This means the number |
| 752 | * of locks we end up holding is never more than a |
| 753 | * batch size (~32 entries, at present). |
| 754 | * |
| 755 | * If we're not using split pte locks, we needn't pin |
| 756 | * the PTE pages independently, because we're |
| 757 | * protected by the overall pagetable lock. |
| 758 | */ |
| 759 | ptl = NULL; |
| 760 | if (level == PT_PTE) |
| 761 | ptl = xen_pte_lock(page, mm); |
| 762 | |
| 763 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 764 | pfn_pte(pfn, PAGE_KERNEL_RO), |
| 765 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 766 | |
| 767 | if (ptl) { |
| 768 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
| 769 | |
| 770 | /* Queue a deferred unlock for when this batch |
| 771 | is completed. */ |
| 772 | xen_mc_callback(xen_pte_unlock, ptl); |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | return flush; |
| 777 | } |
| 778 | |
| 779 | /* This is called just after a mm has been created, but it has not |
| 780 | been used yet. We need to make sure that its pagetable is all |
| 781 | read-only, and can be pinned. */ |
| 782 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
| 783 | { |
| 784 | trace_xen_mmu_pgd_pin(mm, pgd); |
| 785 | |
| 786 | xen_mc_batch(); |
| 787 | |
| 788 | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { |
| 789 | /* re-enable interrupts for flushing */ |
| 790 | xen_mc_issue(0); |
| 791 | |
| 792 | kmap_flush_unused(); |
| 793 | |
| 794 | xen_mc_batch(); |
| 795 | } |
| 796 | |
| 797 | #ifdef CONFIG_X86_64 |
| 798 | { |
| 799 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 800 | |
| 801 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); |
| 802 | |
| 803 | if (user_pgd) { |
| 804 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 805 | xen_do_pin(MMUEXT_PIN_L4_TABLE, |
| 806 | PFN_DOWN(__pa(user_pgd))); |
| 807 | } |
| 808 | } |
| 809 | #else /* CONFIG_X86_32 */ |
| 810 | #ifdef CONFIG_X86_PAE |
| 811 | /* Need to make sure unshared kernel PMD is pinnable */ |
| 812 | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| 813 | PT_PMD); |
| 814 | #endif |
| 815 | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); |
| 816 | #endif /* CONFIG_X86_64 */ |
| 817 | xen_mc_issue(0); |
| 818 | } |
| 819 | |
| 820 | static void xen_pgd_pin(struct mm_struct *mm) |
| 821 | { |
| 822 | __xen_pgd_pin(mm, mm->pgd); |
| 823 | } |
| 824 | |
| 825 | /* |
| 826 | * On save, we need to pin all pagetables to make sure they get their |
| 827 | * mfns turned into pfns. Search the list for any unpinned pgds and pin |
| 828 | * them (unpinned pgds are not currently in use, probably because the |
| 829 | * process is under construction or destruction). |
| 830 | * |
| 831 | * Expected to be called in stop_machine() ("equivalent to taking |
| 832 | * every spinlock in the system"), so the locking doesn't really |
| 833 | * matter all that much. |
| 834 | */ |
| 835 | void xen_mm_pin_all(void) |
| 836 | { |
| 837 | struct page *page; |
| 838 | |
| 839 | spin_lock(&pgd_lock); |
| 840 | |
| 841 | list_for_each_entry(page, &pgd_list, lru) { |
| 842 | if (!PagePinned(page)) { |
| 843 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
| 844 | SetPageSavePinned(page); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | spin_unlock(&pgd_lock); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * The init_mm pagetable is really pinned as soon as its created, but |
| 853 | * that's before we have page structures to store the bits. So do all |
| 854 | * the book-keeping now. |
| 855 | */ |
| 856 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, |
| 857 | enum pt_level level) |
| 858 | { |
| 859 | SetPagePinned(page); |
| 860 | return 0; |
| 861 | } |
| 862 | |
| 863 | static void __init xen_mark_init_mm_pinned(void) |
| 864 | { |
| 865 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
| 866 | } |
| 867 | |
| 868 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, |
| 869 | enum pt_level level) |
| 870 | { |
| 871 | unsigned pgfl = TestClearPagePinned(page); |
| 872 | |
| 873 | if (pgfl && !PageHighMem(page)) { |
| 874 | void *pt = lowmem_page_address(page); |
| 875 | unsigned long pfn = page_to_pfn(page); |
| 876 | spinlock_t *ptl = NULL; |
| 877 | struct multicall_space mcs; |
| 878 | |
| 879 | /* |
| 880 | * Do the converse to pin_page. If we're using split |
| 881 | * pte locks, we must be holding the lock for while |
| 882 | * the pte page is unpinned but still RO to prevent |
| 883 | * concurrent updates from seeing it in this |
| 884 | * partially-pinned state. |
| 885 | */ |
| 886 | if (level == PT_PTE) { |
| 887 | ptl = xen_pte_lock(page, mm); |
| 888 | |
| 889 | if (ptl) |
| 890 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); |
| 891 | } |
| 892 | |
| 893 | mcs = __xen_mc_entry(0); |
| 894 | |
| 895 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 896 | pfn_pte(pfn, PAGE_KERNEL), |
| 897 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 898 | |
| 899 | if (ptl) { |
| 900 | /* unlock when batch completed */ |
| 901 | xen_mc_callback(xen_pte_unlock, ptl); |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | return 0; /* never need to flush on unpin */ |
| 906 | } |
| 907 | |
| 908 | /* Release a pagetables pages back as normal RW */ |
| 909 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
| 910 | { |
| 911 | trace_xen_mmu_pgd_unpin(mm, pgd); |
| 912 | |
| 913 | xen_mc_batch(); |
| 914 | |
| 915 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 916 | |
| 917 | #ifdef CONFIG_X86_64 |
| 918 | { |
| 919 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 920 | |
| 921 | if (user_pgd) { |
| 922 | xen_do_pin(MMUEXT_UNPIN_TABLE, |
| 923 | PFN_DOWN(__pa(user_pgd))); |
| 924 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 925 | } |
| 926 | } |
| 927 | #endif |
| 928 | |
| 929 | #ifdef CONFIG_X86_PAE |
| 930 | /* Need to make sure unshared kernel PMD is unpinned */ |
| 931 | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| 932 | PT_PMD); |
| 933 | #endif |
| 934 | |
| 935 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
| 936 | |
| 937 | xen_mc_issue(0); |
| 938 | } |
| 939 | |
| 940 | static void xen_pgd_unpin(struct mm_struct *mm) |
| 941 | { |
| 942 | __xen_pgd_unpin(mm, mm->pgd); |
| 943 | } |
| 944 | |
| 945 | /* |
| 946 | * On resume, undo any pinning done at save, so that the rest of the |
| 947 | * kernel doesn't see any unexpected pinned pagetables. |
| 948 | */ |
| 949 | void xen_mm_unpin_all(void) |
| 950 | { |
| 951 | struct page *page; |
| 952 | |
| 953 | spin_lock(&pgd_lock); |
| 954 | |
| 955 | list_for_each_entry(page, &pgd_list, lru) { |
| 956 | if (PageSavePinned(page)) { |
| 957 | BUG_ON(!PagePinned(page)); |
| 958 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
| 959 | ClearPageSavePinned(page); |
| 960 | } |
| 961 | } |
| 962 | |
| 963 | spin_unlock(&pgd_lock); |
| 964 | } |
| 965 | |
| 966 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
| 967 | { |
| 968 | spin_lock(&next->page_table_lock); |
| 969 | xen_pgd_pin(next); |
| 970 | spin_unlock(&next->page_table_lock); |
| 971 | } |
| 972 | |
| 973 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
| 974 | { |
| 975 | spin_lock(&mm->page_table_lock); |
| 976 | xen_pgd_pin(mm); |
| 977 | spin_unlock(&mm->page_table_lock); |
| 978 | } |
| 979 | |
| 980 | |
| 981 | #ifdef CONFIG_SMP |
| 982 | /* Another cpu may still have their %cr3 pointing at the pagetable, so |
| 983 | we need to repoint it somewhere else before we can unpin it. */ |
| 984 | static void drop_other_mm_ref(void *info) |
| 985 | { |
| 986 | struct mm_struct *mm = info; |
| 987 | struct mm_struct *active_mm; |
| 988 | |
| 989 | active_mm = this_cpu_read(cpu_tlbstate.active_mm); |
| 990 | |
| 991 | if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) |
| 992 | leave_mm(smp_processor_id()); |
| 993 | |
| 994 | /* If this cpu still has a stale cr3 reference, then make sure |
| 995 | it has been flushed. */ |
| 996 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) |
| 997 | load_cr3(swapper_pg_dir); |
| 998 | } |
| 999 | |
| 1000 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 1001 | { |
| 1002 | cpumask_var_t mask; |
| 1003 | unsigned cpu; |
| 1004 | |
| 1005 | if (current->active_mm == mm) { |
| 1006 | if (current->mm == mm) |
| 1007 | load_cr3(swapper_pg_dir); |
| 1008 | else |
| 1009 | leave_mm(smp_processor_id()); |
| 1010 | } |
| 1011 | |
| 1012 | /* Get the "official" set of cpus referring to our pagetable. */ |
| 1013 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { |
| 1014 | for_each_online_cpu(cpu) { |
| 1015 | if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) |
| 1016 | && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) |
| 1017 | continue; |
| 1018 | smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); |
| 1019 | } |
| 1020 | return; |
| 1021 | } |
| 1022 | cpumask_copy(mask, mm_cpumask(mm)); |
| 1023 | |
| 1024 | /* It's possible that a vcpu may have a stale reference to our |
| 1025 | cr3, because its in lazy mode, and it hasn't yet flushed |
| 1026 | its set of pending hypercalls yet. In this case, we can |
| 1027 | look at its actual current cr3 value, and force it to flush |
| 1028 | if needed. */ |
| 1029 | for_each_online_cpu(cpu) { |
| 1030 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) |
| 1031 | cpumask_set_cpu(cpu, mask); |
| 1032 | } |
| 1033 | |
| 1034 | if (!cpumask_empty(mask)) |
| 1035 | smp_call_function_many(mask, drop_other_mm_ref, mm, 1); |
| 1036 | free_cpumask_var(mask); |
| 1037 | } |
| 1038 | #else |
| 1039 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 1040 | { |
| 1041 | if (current->active_mm == mm) |
| 1042 | load_cr3(swapper_pg_dir); |
| 1043 | } |
| 1044 | #endif |
| 1045 | |
| 1046 | /* |
| 1047 | * While a process runs, Xen pins its pagetables, which means that the |
| 1048 | * hypervisor forces it to be read-only, and it controls all updates |
| 1049 | * to it. This means that all pagetable updates have to go via the |
| 1050 | * hypervisor, which is moderately expensive. |
| 1051 | * |
| 1052 | * Since we're pulling the pagetable down, we switch to use init_mm, |
| 1053 | * unpin old process pagetable and mark it all read-write, which |
| 1054 | * allows further operations on it to be simple memory accesses. |
| 1055 | * |
| 1056 | * The only subtle point is that another CPU may be still using the |
| 1057 | * pagetable because of lazy tlb flushing. This means we need need to |
| 1058 | * switch all CPUs off this pagetable before we can unpin it. |
| 1059 | */ |
| 1060 | static void xen_exit_mmap(struct mm_struct *mm) |
| 1061 | { |
| 1062 | get_cpu(); /* make sure we don't move around */ |
| 1063 | xen_drop_mm_ref(mm); |
| 1064 | put_cpu(); |
| 1065 | |
| 1066 | spin_lock(&mm->page_table_lock); |
| 1067 | |
| 1068 | /* pgd may not be pinned in the error exit path of execve */ |
| 1069 | if (xen_page_pinned(mm->pgd)) |
| 1070 | xen_pgd_unpin(mm); |
| 1071 | |
| 1072 | spin_unlock(&mm->page_table_lock); |
| 1073 | } |
| 1074 | |
| 1075 | static void xen_post_allocator_init(void); |
| 1076 | |
| 1077 | static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1078 | { |
| 1079 | struct mmuext_op op; |
| 1080 | |
| 1081 | op.cmd = cmd; |
| 1082 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 1083 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) |
| 1084 | BUG(); |
| 1085 | } |
| 1086 | |
| 1087 | #ifdef CONFIG_X86_64 |
| 1088 | static void __init xen_cleanhighmap(unsigned long vaddr, |
| 1089 | unsigned long vaddr_end) |
| 1090 | { |
| 1091 | unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; |
| 1092 | pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); |
| 1093 | |
| 1094 | /* NOTE: The loop is more greedy than the cleanup_highmap variant. |
| 1095 | * We include the PMD passed in on _both_ boundaries. */ |
| 1096 | for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); |
| 1097 | pmd++, vaddr += PMD_SIZE) { |
| 1098 | if (pmd_none(*pmd)) |
| 1099 | continue; |
| 1100 | if (vaddr < (unsigned long) _text || vaddr > kernel_end) |
| 1101 | set_pmd(pmd, __pmd(0)); |
| 1102 | } |
| 1103 | /* In case we did something silly, we should crash in this function |
| 1104 | * instead of somewhere later and be confusing. */ |
| 1105 | xen_mc_flush(); |
| 1106 | } |
| 1107 | |
| 1108 | /* |
| 1109 | * Make a page range writeable and free it. |
| 1110 | */ |
| 1111 | static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) |
| 1112 | { |
| 1113 | void *vaddr = __va(paddr); |
| 1114 | void *vaddr_end = vaddr + size; |
| 1115 | |
| 1116 | for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) |
| 1117 | make_lowmem_page_readwrite(vaddr); |
| 1118 | |
| 1119 | memblock_free(paddr, size); |
| 1120 | } |
| 1121 | |
| 1122 | static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) |
| 1123 | { |
| 1124 | unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; |
| 1125 | |
| 1126 | if (unpin) |
| 1127 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); |
| 1128 | ClearPagePinned(virt_to_page(__va(pa))); |
| 1129 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1130 | } |
| 1131 | |
| 1132 | static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) |
| 1133 | { |
| 1134 | unsigned long pa; |
| 1135 | pte_t *pte_tbl; |
| 1136 | int i; |
| 1137 | |
| 1138 | if (pmd_large(*pmd)) { |
| 1139 | pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; |
| 1140 | xen_free_ro_pages(pa, PMD_SIZE); |
| 1141 | return; |
| 1142 | } |
| 1143 | |
| 1144 | pte_tbl = pte_offset_kernel(pmd, 0); |
| 1145 | for (i = 0; i < PTRS_PER_PTE; i++) { |
| 1146 | if (pte_none(pte_tbl[i])) |
| 1147 | continue; |
| 1148 | pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; |
| 1149 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1150 | } |
| 1151 | set_pmd(pmd, __pmd(0)); |
| 1152 | xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); |
| 1153 | } |
| 1154 | |
| 1155 | static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) |
| 1156 | { |
| 1157 | unsigned long pa; |
| 1158 | pmd_t *pmd_tbl; |
| 1159 | int i; |
| 1160 | |
| 1161 | if (pud_large(*pud)) { |
| 1162 | pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; |
| 1163 | xen_free_ro_pages(pa, PUD_SIZE); |
| 1164 | return; |
| 1165 | } |
| 1166 | |
| 1167 | pmd_tbl = pmd_offset(pud, 0); |
| 1168 | for (i = 0; i < PTRS_PER_PMD; i++) { |
| 1169 | if (pmd_none(pmd_tbl[i])) |
| 1170 | continue; |
| 1171 | xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); |
| 1172 | } |
| 1173 | set_pud(pud, __pud(0)); |
| 1174 | xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); |
| 1175 | } |
| 1176 | |
| 1177 | static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) |
| 1178 | { |
| 1179 | unsigned long pa; |
| 1180 | pud_t *pud_tbl; |
| 1181 | int i; |
| 1182 | |
| 1183 | if (p4d_large(*p4d)) { |
| 1184 | pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; |
| 1185 | xen_free_ro_pages(pa, P4D_SIZE); |
| 1186 | return; |
| 1187 | } |
| 1188 | |
| 1189 | pud_tbl = pud_offset(p4d, 0); |
| 1190 | for (i = 0; i < PTRS_PER_PUD; i++) { |
| 1191 | if (pud_none(pud_tbl[i])) |
| 1192 | continue; |
| 1193 | xen_cleanmfnmap_pud(pud_tbl + i, unpin); |
| 1194 | } |
| 1195 | set_p4d(p4d, __p4d(0)); |
| 1196 | xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); |
| 1197 | } |
| 1198 | |
| 1199 | /* |
| 1200 | * Since it is well isolated we can (and since it is perhaps large we should) |
| 1201 | * also free the page tables mapping the initial P->M table. |
| 1202 | */ |
| 1203 | static void __init xen_cleanmfnmap(unsigned long vaddr) |
| 1204 | { |
| 1205 | pgd_t *pgd; |
| 1206 | p4d_t *p4d; |
| 1207 | unsigned int i; |
| 1208 | bool unpin; |
| 1209 | |
| 1210 | unpin = (vaddr == 2 * PGDIR_SIZE); |
| 1211 | vaddr &= PMD_MASK; |
| 1212 | pgd = pgd_offset_k(vaddr); |
| 1213 | p4d = p4d_offset(pgd, 0); |
| 1214 | for (i = 0; i < PTRS_PER_P4D; i++) { |
| 1215 | if (p4d_none(p4d[i])) |
| 1216 | continue; |
| 1217 | xen_cleanmfnmap_p4d(p4d + i, unpin); |
| 1218 | } |
| 1219 | if (IS_ENABLED(CONFIG_X86_5LEVEL)) { |
| 1220 | set_pgd(pgd, __pgd(0)); |
| 1221 | xen_cleanmfnmap_free_pgtbl(p4d, unpin); |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | static void __init xen_pagetable_p2m_free(void) |
| 1226 | { |
| 1227 | unsigned long size; |
| 1228 | unsigned long addr; |
| 1229 | |
| 1230 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 1231 | |
| 1232 | /* No memory or already called. */ |
| 1233 | if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) |
| 1234 | return; |
| 1235 | |
| 1236 | /* using __ka address and sticking INVALID_P2M_ENTRY! */ |
| 1237 | memset((void *)xen_start_info->mfn_list, 0xff, size); |
| 1238 | |
| 1239 | addr = xen_start_info->mfn_list; |
| 1240 | /* |
| 1241 | * We could be in __ka space. |
| 1242 | * We roundup to the PMD, which means that if anybody at this stage is |
| 1243 | * using the __ka address of xen_start_info or |
| 1244 | * xen_start_info->shared_info they are in going to crash. Fortunatly |
| 1245 | * we have already revectored in xen_setup_kernel_pagetable and in |
| 1246 | * xen_setup_shared_info. |
| 1247 | */ |
| 1248 | size = roundup(size, PMD_SIZE); |
| 1249 | |
| 1250 | if (addr >= __START_KERNEL_map) { |
| 1251 | xen_cleanhighmap(addr, addr + size); |
| 1252 | size = PAGE_ALIGN(xen_start_info->nr_pages * |
| 1253 | sizeof(unsigned long)); |
| 1254 | memblock_free(__pa(addr), size); |
| 1255 | } else { |
| 1256 | xen_cleanmfnmap(addr); |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | static void __init xen_pagetable_cleanhighmap(void) |
| 1261 | { |
| 1262 | unsigned long size; |
| 1263 | unsigned long addr; |
| 1264 | |
| 1265 | /* At this stage, cleanup_highmap has already cleaned __ka space |
| 1266 | * from _brk_limit way up to the max_pfn_mapped (which is the end of |
| 1267 | * the ramdisk). We continue on, erasing PMD entries that point to page |
| 1268 | * tables - do note that they are accessible at this stage via __va. |
| 1269 | * For good measure we also round up to the PMD - which means that if |
| 1270 | * anybody is using __ka address to the initial boot-stack - and try |
| 1271 | * to use it - they are going to crash. The xen_start_info has been |
| 1272 | * taken care of already in xen_setup_kernel_pagetable. */ |
| 1273 | addr = xen_start_info->pt_base; |
| 1274 | size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); |
| 1275 | |
| 1276 | xen_cleanhighmap(addr, addr + size); |
| 1277 | xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); |
| 1278 | #ifdef DEBUG |
| 1279 | /* This is superfluous and is not necessary, but you know what |
| 1280 | * lets do it. The MODULES_VADDR -> MODULES_END should be clear of |
| 1281 | * anything at this stage. */ |
| 1282 | xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); |
| 1283 | #endif |
| 1284 | } |
| 1285 | #endif |
| 1286 | |
| 1287 | static void __init xen_pagetable_p2m_setup(void) |
| 1288 | { |
| 1289 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
| 1290 | return; |
| 1291 | |
| 1292 | xen_vmalloc_p2m_tree(); |
| 1293 | |
| 1294 | #ifdef CONFIG_X86_64 |
| 1295 | xen_pagetable_p2m_free(); |
| 1296 | |
| 1297 | xen_pagetable_cleanhighmap(); |
| 1298 | #endif |
| 1299 | /* And revector! Bye bye old array */ |
| 1300 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 1301 | } |
| 1302 | |
| 1303 | static void __init xen_pagetable_init(void) |
| 1304 | { |
| 1305 | paging_init(); |
| 1306 | xen_post_allocator_init(); |
| 1307 | |
| 1308 | xen_pagetable_p2m_setup(); |
| 1309 | |
| 1310 | /* Allocate and initialize top and mid mfn levels for p2m structure */ |
| 1311 | xen_build_mfn_list_list(); |
| 1312 | |
| 1313 | /* Remap memory freed due to conflicts with E820 map */ |
| 1314 | if (!xen_feature(XENFEAT_auto_translated_physmap)) |
| 1315 | xen_remap_memory(); |
| 1316 | |
| 1317 | xen_setup_shared_info(); |
| 1318 | } |
| 1319 | static void xen_write_cr2(unsigned long cr2) |
| 1320 | { |
| 1321 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; |
| 1322 | } |
| 1323 | |
| 1324 | static unsigned long xen_read_cr2(void) |
| 1325 | { |
| 1326 | return this_cpu_read(xen_vcpu)->arch.cr2; |
| 1327 | } |
| 1328 | |
| 1329 | unsigned long xen_read_cr2_direct(void) |
| 1330 | { |
| 1331 | return this_cpu_read(xen_vcpu_info.arch.cr2); |
| 1332 | } |
| 1333 | |
| 1334 | static void xen_flush_tlb(void) |
| 1335 | { |
| 1336 | struct mmuext_op *op; |
| 1337 | struct multicall_space mcs; |
| 1338 | |
| 1339 | trace_xen_mmu_flush_tlb(0); |
| 1340 | |
| 1341 | preempt_disable(); |
| 1342 | |
| 1343 | mcs = xen_mc_entry(sizeof(*op)); |
| 1344 | |
| 1345 | op = mcs.args; |
| 1346 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; |
| 1347 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1348 | |
| 1349 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1350 | |
| 1351 | preempt_enable(); |
| 1352 | } |
| 1353 | |
| 1354 | static void xen_flush_tlb_single(unsigned long addr) |
| 1355 | { |
| 1356 | struct mmuext_op *op; |
| 1357 | struct multicall_space mcs; |
| 1358 | |
| 1359 | trace_xen_mmu_flush_tlb_single(addr); |
| 1360 | |
| 1361 | preempt_disable(); |
| 1362 | |
| 1363 | mcs = xen_mc_entry(sizeof(*op)); |
| 1364 | op = mcs.args; |
| 1365 | op->cmd = MMUEXT_INVLPG_LOCAL; |
| 1366 | op->arg1.linear_addr = addr & PAGE_MASK; |
| 1367 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1368 | |
| 1369 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1370 | |
| 1371 | preempt_enable(); |
| 1372 | } |
| 1373 | |
| 1374 | static void xen_flush_tlb_others(const struct cpumask *cpus, |
| 1375 | struct mm_struct *mm, unsigned long start, |
| 1376 | unsigned long end) |
| 1377 | { |
| 1378 | struct { |
| 1379 | struct mmuext_op op; |
| 1380 | #ifdef CONFIG_SMP |
| 1381 | DECLARE_BITMAP(mask, num_processors); |
| 1382 | #else |
| 1383 | DECLARE_BITMAP(mask, NR_CPUS); |
| 1384 | #endif |
| 1385 | } *args; |
| 1386 | struct multicall_space mcs; |
| 1387 | |
| 1388 | trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); |
| 1389 | |
| 1390 | if (cpumask_empty(cpus)) |
| 1391 | return; /* nothing to do */ |
| 1392 | |
| 1393 | mcs = xen_mc_entry(sizeof(*args)); |
| 1394 | args = mcs.args; |
| 1395 | args->op.arg2.vcpumask = to_cpumask(args->mask); |
| 1396 | |
| 1397 | /* Remove us, and any offline CPUS. */ |
| 1398 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); |
| 1399 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); |
| 1400 | |
| 1401 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; |
| 1402 | if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { |
| 1403 | args->op.cmd = MMUEXT_INVLPG_MULTI; |
| 1404 | args->op.arg1.linear_addr = start; |
| 1405 | } |
| 1406 | |
| 1407 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); |
| 1408 | |
| 1409 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1410 | } |
| 1411 | |
| 1412 | static unsigned long xen_read_cr3(void) |
| 1413 | { |
| 1414 | return this_cpu_read(xen_cr3); |
| 1415 | } |
| 1416 | |
| 1417 | static void set_current_cr3(void *v) |
| 1418 | { |
| 1419 | this_cpu_write(xen_current_cr3, (unsigned long)v); |
| 1420 | } |
| 1421 | |
| 1422 | static void __xen_write_cr3(bool kernel, unsigned long cr3) |
| 1423 | { |
| 1424 | struct mmuext_op op; |
| 1425 | unsigned long mfn; |
| 1426 | |
| 1427 | trace_xen_mmu_write_cr3(kernel, cr3); |
| 1428 | |
| 1429 | if (cr3) |
| 1430 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); |
| 1431 | else |
| 1432 | mfn = 0; |
| 1433 | |
| 1434 | WARN_ON(mfn == 0 && kernel); |
| 1435 | |
| 1436 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; |
| 1437 | op.arg1.mfn = mfn; |
| 1438 | |
| 1439 | xen_extend_mmuext_op(&op); |
| 1440 | |
| 1441 | if (kernel) { |
| 1442 | this_cpu_write(xen_cr3, cr3); |
| 1443 | |
| 1444 | /* Update xen_current_cr3 once the batch has actually |
| 1445 | been submitted. */ |
| 1446 | xen_mc_callback(set_current_cr3, (void *)cr3); |
| 1447 | } |
| 1448 | } |
| 1449 | static void xen_write_cr3(unsigned long cr3) |
| 1450 | { |
| 1451 | BUG_ON(preemptible()); |
| 1452 | |
| 1453 | xen_mc_batch(); /* disables interrupts */ |
| 1454 | |
| 1455 | /* Update while interrupts are disabled, so its atomic with |
| 1456 | respect to ipis */ |
| 1457 | this_cpu_write(xen_cr3, cr3); |
| 1458 | |
| 1459 | __xen_write_cr3(true, cr3); |
| 1460 | |
| 1461 | #ifdef CONFIG_X86_64 |
| 1462 | { |
| 1463 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); |
| 1464 | if (user_pgd) |
| 1465 | __xen_write_cr3(false, __pa(user_pgd)); |
| 1466 | else |
| 1467 | __xen_write_cr3(false, 0); |
| 1468 | } |
| 1469 | #endif |
| 1470 | |
| 1471 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1472 | } |
| 1473 | |
| 1474 | #ifdef CONFIG_X86_64 |
| 1475 | /* |
| 1476 | * At the start of the day - when Xen launches a guest, it has already |
| 1477 | * built pagetables for the guest. We diligently look over them |
| 1478 | * in xen_setup_kernel_pagetable and graft as appropriate them in the |
| 1479 | * init_level4_pgt and its friends. Then when we are happy we load |
| 1480 | * the new init_level4_pgt - and continue on. |
| 1481 | * |
| 1482 | * The generic code starts (start_kernel) and 'init_mem_mapping' sets |
| 1483 | * up the rest of the pagetables. When it has completed it loads the cr3. |
| 1484 | * N.B. that baremetal would start at 'start_kernel' (and the early |
| 1485 | * #PF handler would create bootstrap pagetables) - so we are running |
| 1486 | * with the same assumptions as what to do when write_cr3 is executed |
| 1487 | * at this point. |
| 1488 | * |
| 1489 | * Since there are no user-page tables at all, we have two variants |
| 1490 | * of xen_write_cr3 - the early bootup (this one), and the late one |
| 1491 | * (xen_write_cr3). The reason we have to do that is that in 64-bit |
| 1492 | * the Linux kernel and user-space are both in ring 3 while the |
| 1493 | * hypervisor is in ring 0. |
| 1494 | */ |
| 1495 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 1496 | { |
| 1497 | BUG_ON(preemptible()); |
| 1498 | |
| 1499 | xen_mc_batch(); /* disables interrupts */ |
| 1500 | |
| 1501 | /* Update while interrupts are disabled, so its atomic with |
| 1502 | respect to ipis */ |
| 1503 | this_cpu_write(xen_cr3, cr3); |
| 1504 | |
| 1505 | __xen_write_cr3(true, cr3); |
| 1506 | |
| 1507 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1508 | } |
| 1509 | #endif |
| 1510 | |
| 1511 | static int xen_pgd_alloc(struct mm_struct *mm) |
| 1512 | { |
| 1513 | pgd_t *pgd = mm->pgd; |
| 1514 | int ret = 0; |
| 1515 | |
| 1516 | BUG_ON(PagePinned(virt_to_page(pgd))); |
| 1517 | |
| 1518 | #ifdef CONFIG_X86_64 |
| 1519 | { |
| 1520 | struct page *page = virt_to_page(pgd); |
| 1521 | pgd_t *user_pgd; |
| 1522 | |
| 1523 | BUG_ON(page->private != 0); |
| 1524 | |
| 1525 | ret = -ENOMEM; |
| 1526 | |
| 1527 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
| 1528 | page->private = (unsigned long)user_pgd; |
| 1529 | |
| 1530 | if (user_pgd != NULL) { |
| 1531 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 1532 | user_pgd[pgd_index(VSYSCALL_ADDR)] = |
| 1533 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); |
| 1534 | #endif |
| 1535 | ret = 0; |
| 1536 | } |
| 1537 | |
| 1538 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); |
| 1539 | } |
| 1540 | #endif |
| 1541 | return ret; |
| 1542 | } |
| 1543 | |
| 1544 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| 1545 | { |
| 1546 | #ifdef CONFIG_X86_64 |
| 1547 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 1548 | |
| 1549 | if (user_pgd) |
| 1550 | free_page((unsigned long)user_pgd); |
| 1551 | #endif |
| 1552 | } |
| 1553 | |
| 1554 | /* |
| 1555 | * Init-time set_pte while constructing initial pagetables, which |
| 1556 | * doesn't allow RO page table pages to be remapped RW. |
| 1557 | * |
| 1558 | * If there is no MFN for this PFN then this page is initially |
| 1559 | * ballooned out so clear the PTE (as in decrease_reservation() in |
| 1560 | * drivers/xen/balloon.c). |
| 1561 | * |
| 1562 | * Many of these PTE updates are done on unpinned and writable pages |
| 1563 | * and doing a hypercall for these is unnecessary and expensive. At |
| 1564 | * this point it is not possible to tell if a page is pinned or not, |
| 1565 | * so always write the PTE directly and rely on Xen trapping and |
| 1566 | * emulating any updates as necessary. |
| 1567 | */ |
| 1568 | __visible pte_t xen_make_pte_init(pteval_t pte) |
| 1569 | { |
| 1570 | #ifdef CONFIG_X86_64 |
| 1571 | unsigned long pfn; |
| 1572 | |
| 1573 | /* |
| 1574 | * Pages belonging to the initial p2m list mapped outside the default |
| 1575 | * address range must be mapped read-only. This region contains the |
| 1576 | * page tables for mapping the p2m list, too, and page tables MUST be |
| 1577 | * mapped read-only. |
| 1578 | */ |
| 1579 | pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 1580 | if (xen_start_info->mfn_list < __START_KERNEL_map && |
| 1581 | pfn >= xen_start_info->first_p2m_pfn && |
| 1582 | pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) |
| 1583 | pte &= ~_PAGE_RW; |
| 1584 | #endif |
| 1585 | pte = pte_pfn_to_mfn(pte); |
| 1586 | return native_make_pte(pte); |
| 1587 | } |
| 1588 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); |
| 1589 | |
| 1590 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) |
| 1591 | { |
| 1592 | #ifdef CONFIG_X86_32 |
| 1593 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ |
| 1594 | if (pte_mfn(pte) != INVALID_P2M_ENTRY |
| 1595 | && pte_val_ma(*ptep) & _PAGE_PRESENT) |
| 1596 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & |
| 1597 | pte_val_ma(pte)); |
| 1598 | #endif |
| 1599 | native_set_pte(ptep, pte); |
| 1600 | } |
| 1601 | |
| 1602 | /* Early in boot, while setting up the initial pagetable, assume |
| 1603 | everything is pinned. */ |
| 1604 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) |
| 1605 | { |
| 1606 | #ifdef CONFIG_FLATMEM |
| 1607 | BUG_ON(mem_map); /* should only be used early */ |
| 1608 | #endif |
| 1609 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1610 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1611 | } |
| 1612 | |
| 1613 | /* Used for pmd and pud */ |
| 1614 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) |
| 1615 | { |
| 1616 | #ifdef CONFIG_FLATMEM |
| 1617 | BUG_ON(mem_map); /* should only be used early */ |
| 1618 | #endif |
| 1619 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1620 | } |
| 1621 | |
| 1622 | /* Early release_pte assumes that all pts are pinned, since there's |
| 1623 | only init_mm and anything attached to that is pinned. */ |
| 1624 | static void __init xen_release_pte_init(unsigned long pfn) |
| 1625 | { |
| 1626 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1627 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1628 | } |
| 1629 | |
| 1630 | static void __init xen_release_pmd_init(unsigned long pfn) |
| 1631 | { |
| 1632 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1633 | } |
| 1634 | |
| 1635 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1636 | { |
| 1637 | struct multicall_space mcs; |
| 1638 | struct mmuext_op *op; |
| 1639 | |
| 1640 | mcs = __xen_mc_entry(sizeof(*op)); |
| 1641 | op = mcs.args; |
| 1642 | op->cmd = cmd; |
| 1643 | op->arg1.mfn = pfn_to_mfn(pfn); |
| 1644 | |
| 1645 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 1646 | } |
| 1647 | |
| 1648 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) |
| 1649 | { |
| 1650 | struct multicall_space mcs; |
| 1651 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); |
| 1652 | |
| 1653 | mcs = __xen_mc_entry(0); |
| 1654 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, |
| 1655 | pfn_pte(pfn, prot), 0); |
| 1656 | } |
| 1657 | |
| 1658 | /* This needs to make sure the new pte page is pinned iff its being |
| 1659 | attached to a pinned pagetable. */ |
| 1660 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, |
| 1661 | unsigned level) |
| 1662 | { |
| 1663 | bool pinned = PagePinned(virt_to_page(mm->pgd)); |
| 1664 | |
| 1665 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); |
| 1666 | |
| 1667 | if (pinned) { |
| 1668 | struct page *page = pfn_to_page(pfn); |
| 1669 | |
| 1670 | SetPagePinned(page); |
| 1671 | |
| 1672 | if (!PageHighMem(page)) { |
| 1673 | xen_mc_batch(); |
| 1674 | |
| 1675 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); |
| 1676 | |
| 1677 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1678 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1679 | |
| 1680 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1681 | } else { |
| 1682 | /* make sure there are no stray mappings of |
| 1683 | this page */ |
| 1684 | kmap_flush_unused(); |
| 1685 | } |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) |
| 1690 | { |
| 1691 | xen_alloc_ptpage(mm, pfn, PT_PTE); |
| 1692 | } |
| 1693 | |
| 1694 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) |
| 1695 | { |
| 1696 | xen_alloc_ptpage(mm, pfn, PT_PMD); |
| 1697 | } |
| 1698 | |
| 1699 | /* This should never happen until we're OK to use struct page */ |
| 1700 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) |
| 1701 | { |
| 1702 | struct page *page = pfn_to_page(pfn); |
| 1703 | bool pinned = PagePinned(page); |
| 1704 | |
| 1705 | trace_xen_mmu_release_ptpage(pfn, level, pinned); |
| 1706 | |
| 1707 | if (pinned) { |
| 1708 | if (!PageHighMem(page)) { |
| 1709 | xen_mc_batch(); |
| 1710 | |
| 1711 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1712 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1713 | |
| 1714 | __set_pfn_prot(pfn, PAGE_KERNEL); |
| 1715 | |
| 1716 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1717 | } |
| 1718 | ClearPagePinned(page); |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | static void xen_release_pte(unsigned long pfn) |
| 1723 | { |
| 1724 | xen_release_ptpage(pfn, PT_PTE); |
| 1725 | } |
| 1726 | |
| 1727 | static void xen_release_pmd(unsigned long pfn) |
| 1728 | { |
| 1729 | xen_release_ptpage(pfn, PT_PMD); |
| 1730 | } |
| 1731 | |
| 1732 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 1733 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) |
| 1734 | { |
| 1735 | xen_alloc_ptpage(mm, pfn, PT_PUD); |
| 1736 | } |
| 1737 | |
| 1738 | static void xen_release_pud(unsigned long pfn) |
| 1739 | { |
| 1740 | xen_release_ptpage(pfn, PT_PUD); |
| 1741 | } |
| 1742 | #endif |
| 1743 | |
| 1744 | void __init xen_reserve_top(void) |
| 1745 | { |
| 1746 | #ifdef CONFIG_X86_32 |
| 1747 | unsigned long top = HYPERVISOR_VIRT_START; |
| 1748 | struct xen_platform_parameters pp; |
| 1749 | |
| 1750 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) |
| 1751 | top = pp.virt_start; |
| 1752 | |
| 1753 | reserve_top_address(-top); |
| 1754 | #endif /* CONFIG_X86_32 */ |
| 1755 | } |
| 1756 | |
| 1757 | /* |
| 1758 | * Like __va(), but returns address in the kernel mapping (which is |
| 1759 | * all we have until the physical memory mapping has been set up. |
| 1760 | */ |
| 1761 | static void * __init __ka(phys_addr_t paddr) |
| 1762 | { |
| 1763 | #ifdef CONFIG_X86_64 |
| 1764 | return (void *)(paddr + __START_KERNEL_map); |
| 1765 | #else |
| 1766 | return __va(paddr); |
| 1767 | #endif |
| 1768 | } |
| 1769 | |
| 1770 | /* Convert a machine address to physical address */ |
| 1771 | static unsigned long __init m2p(phys_addr_t maddr) |
| 1772 | { |
| 1773 | phys_addr_t paddr; |
| 1774 | |
| 1775 | maddr &= PTE_PFN_MASK; |
| 1776 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; |
| 1777 | |
| 1778 | return paddr; |
| 1779 | } |
| 1780 | |
| 1781 | /* Convert a machine address to kernel virtual */ |
| 1782 | static void * __init m2v(phys_addr_t maddr) |
| 1783 | { |
| 1784 | return __ka(m2p(maddr)); |
| 1785 | } |
| 1786 | |
| 1787 | /* Set the page permissions on an identity-mapped pages */ |
| 1788 | static void __init set_page_prot_flags(void *addr, pgprot_t prot, |
| 1789 | unsigned long flags) |
| 1790 | { |
| 1791 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; |
| 1792 | pte_t pte = pfn_pte(pfn, prot); |
| 1793 | |
| 1794 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) |
| 1795 | BUG(); |
| 1796 | } |
| 1797 | static void __init set_page_prot(void *addr, pgprot_t prot) |
| 1798 | { |
| 1799 | return set_page_prot_flags(addr, prot, UVMF_NONE); |
| 1800 | } |
| 1801 | #ifdef CONFIG_X86_32 |
| 1802 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) |
| 1803 | { |
| 1804 | unsigned pmdidx, pteidx; |
| 1805 | unsigned ident_pte; |
| 1806 | unsigned long pfn; |
| 1807 | |
| 1808 | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, |
| 1809 | PAGE_SIZE); |
| 1810 | |
| 1811 | ident_pte = 0; |
| 1812 | pfn = 0; |
| 1813 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { |
| 1814 | pte_t *pte_page; |
| 1815 | |
| 1816 | /* Reuse or allocate a page of ptes */ |
| 1817 | if (pmd_present(pmd[pmdidx])) |
| 1818 | pte_page = m2v(pmd[pmdidx].pmd); |
| 1819 | else { |
| 1820 | /* Check for free pte pages */ |
| 1821 | if (ident_pte == LEVEL1_IDENT_ENTRIES) |
| 1822 | break; |
| 1823 | |
| 1824 | pte_page = &level1_ident_pgt[ident_pte]; |
| 1825 | ident_pte += PTRS_PER_PTE; |
| 1826 | |
| 1827 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); |
| 1828 | } |
| 1829 | |
| 1830 | /* Install mappings */ |
| 1831 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { |
| 1832 | pte_t pte; |
| 1833 | |
| 1834 | if (pfn > max_pfn_mapped) |
| 1835 | max_pfn_mapped = pfn; |
| 1836 | |
| 1837 | if (!pte_none(pte_page[pteidx])) |
| 1838 | continue; |
| 1839 | |
| 1840 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); |
| 1841 | pte_page[pteidx] = pte; |
| 1842 | } |
| 1843 | } |
| 1844 | |
| 1845 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) |
| 1846 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); |
| 1847 | |
| 1848 | set_page_prot(pmd, PAGE_KERNEL_RO); |
| 1849 | } |
| 1850 | #endif |
| 1851 | void __init xen_setup_machphys_mapping(void) |
| 1852 | { |
| 1853 | struct xen_machphys_mapping mapping; |
| 1854 | |
| 1855 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { |
| 1856 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; |
| 1857 | machine_to_phys_nr = mapping.max_mfn + 1; |
| 1858 | } else { |
| 1859 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; |
| 1860 | } |
| 1861 | #ifdef CONFIG_X86_32 |
| 1862 | WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) |
| 1863 | < machine_to_phys_mapping); |
| 1864 | #endif |
| 1865 | } |
| 1866 | |
| 1867 | #ifdef CONFIG_X86_64 |
| 1868 | static void __init convert_pfn_mfn(void *v) |
| 1869 | { |
| 1870 | pte_t *pte = v; |
| 1871 | int i; |
| 1872 | |
| 1873 | /* All levels are converted the same way, so just treat them |
| 1874 | as ptes. */ |
| 1875 | for (i = 0; i < PTRS_PER_PTE; i++) |
| 1876 | pte[i] = xen_make_pte(pte[i].pte); |
| 1877 | } |
| 1878 | static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, |
| 1879 | unsigned long addr) |
| 1880 | { |
| 1881 | if (*pt_base == PFN_DOWN(__pa(addr))) { |
| 1882 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1883 | clear_page((void *)addr); |
| 1884 | (*pt_base)++; |
| 1885 | } |
| 1886 | if (*pt_end == PFN_DOWN(__pa(addr))) { |
| 1887 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1888 | clear_page((void *)addr); |
| 1889 | (*pt_end)--; |
| 1890 | } |
| 1891 | } |
| 1892 | /* |
| 1893 | * Set up the initial kernel pagetable. |
| 1894 | * |
| 1895 | * We can construct this by grafting the Xen provided pagetable into |
| 1896 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into |
| 1897 | * level2_ident_pgt, and level2_kernel_pgt. This means that only the |
| 1898 | * kernel has a physical mapping to start with - but that's enough to |
| 1899 | * get __va working. We need to fill in the rest of the physical |
| 1900 | * mapping once some sort of allocator has been set up. |
| 1901 | */ |
| 1902 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 1903 | { |
| 1904 | pud_t *l3; |
| 1905 | pmd_t *l2; |
| 1906 | unsigned long addr[3]; |
| 1907 | unsigned long pt_base, pt_end; |
| 1908 | unsigned i; |
| 1909 | |
| 1910 | /* max_pfn_mapped is the last pfn mapped in the initial memory |
| 1911 | * mappings. Considering that on Xen after the kernel mappings we |
| 1912 | * have the mappings of some pages that don't exist in pfn space, we |
| 1913 | * set max_pfn_mapped to the last real pfn mapped. */ |
| 1914 | if (xen_start_info->mfn_list < __START_KERNEL_map) |
| 1915 | max_pfn_mapped = xen_start_info->first_p2m_pfn; |
| 1916 | else |
| 1917 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); |
| 1918 | |
| 1919 | pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); |
| 1920 | pt_end = pt_base + xen_start_info->nr_pt_frames; |
| 1921 | |
| 1922 | /* Zap identity mapping */ |
| 1923 | init_level4_pgt[0] = __pgd(0); |
| 1924 | |
| 1925 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { |
| 1926 | /* Pre-constructed entries are in pfn, so convert to mfn */ |
| 1927 | /* L4[272] -> level3_ident_pgt |
| 1928 | * L4[511] -> level3_kernel_pgt */ |
| 1929 | convert_pfn_mfn(init_level4_pgt); |
| 1930 | |
| 1931 | /* L3_i[0] -> level2_ident_pgt */ |
| 1932 | convert_pfn_mfn(level3_ident_pgt); |
| 1933 | /* L3_k[510] -> level2_kernel_pgt |
| 1934 | * L3_k[511] -> level2_fixmap_pgt */ |
| 1935 | convert_pfn_mfn(level3_kernel_pgt); |
| 1936 | |
| 1937 | /* L3_k[511][506] -> level1_fixmap_pgt */ |
| 1938 | convert_pfn_mfn(level2_fixmap_pgt); |
| 1939 | } |
| 1940 | /* We get [511][511] and have Xen's version of level2_kernel_pgt */ |
| 1941 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); |
| 1942 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); |
| 1943 | |
| 1944 | addr[0] = (unsigned long)pgd; |
| 1945 | addr[1] = (unsigned long)l3; |
| 1946 | addr[2] = (unsigned long)l2; |
| 1947 | /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: |
| 1948 | * Both L4[272][0] and L4[511][510] have entries that point to the same |
| 1949 | * L2 (PMD) tables. Meaning that if you modify it in __va space |
| 1950 | * it will be also modified in the __ka space! (But if you just |
| 1951 | * modify the PMD table to point to other PTE's or none, then you |
| 1952 | * are OK - which is what cleanup_highmap does) */ |
| 1953 | copy_page(level2_ident_pgt, l2); |
| 1954 | /* Graft it onto L4[511][510] */ |
| 1955 | copy_page(level2_kernel_pgt, l2); |
| 1956 | |
| 1957 | /* Copy the initial P->M table mappings if necessary. */ |
| 1958 | i = pgd_index(xen_start_info->mfn_list); |
| 1959 | if (i && i < pgd_index(__START_KERNEL_map)) |
| 1960 | init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; |
| 1961 | |
| 1962 | if (!xen_feature(XENFEAT_auto_translated_physmap)) { |
| 1963 | /* Make pagetable pieces RO */ |
| 1964 | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); |
| 1965 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); |
| 1966 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); |
| 1967 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); |
| 1968 | set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); |
| 1969 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); |
| 1970 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); |
| 1971 | set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); |
| 1972 | |
| 1973 | /* Pin down new L4 */ |
| 1974 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, |
| 1975 | PFN_DOWN(__pa_symbol(init_level4_pgt))); |
| 1976 | |
| 1977 | /* Unpin Xen-provided one */ |
| 1978 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 1979 | |
| 1980 | /* |
| 1981 | * At this stage there can be no user pgd, and no page |
| 1982 | * structure to attach it to, so make sure we just set kernel |
| 1983 | * pgd. |
| 1984 | */ |
| 1985 | xen_mc_batch(); |
| 1986 | __xen_write_cr3(true, __pa(init_level4_pgt)); |
| 1987 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 1988 | } else |
| 1989 | native_write_cr3(__pa(init_level4_pgt)); |
| 1990 | |
| 1991 | /* We can't that easily rip out L3 and L2, as the Xen pagetables are |
| 1992 | * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for |
| 1993 | * the initial domain. For guests using the toolstack, they are in: |
| 1994 | * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only |
| 1995 | * rip out the [L4] (pgd), but for guests we shave off three pages. |
| 1996 | */ |
| 1997 | for (i = 0; i < ARRAY_SIZE(addr); i++) |
| 1998 | check_pt_base(&pt_base, &pt_end, addr[i]); |
| 1999 | |
| 2000 | /* Our (by three pages) smaller Xen pagetable that we are using */ |
| 2001 | xen_pt_base = PFN_PHYS(pt_base); |
| 2002 | xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; |
| 2003 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 2004 | |
| 2005 | /* Revector the xen_start_info */ |
| 2006 | xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); |
| 2007 | } |
| 2008 | |
| 2009 | /* |
| 2010 | * Read a value from a physical address. |
| 2011 | */ |
| 2012 | static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) |
| 2013 | { |
| 2014 | unsigned long *vaddr; |
| 2015 | unsigned long val; |
| 2016 | |
| 2017 | vaddr = early_memremap_ro(addr, sizeof(val)); |
| 2018 | val = *vaddr; |
| 2019 | early_memunmap(vaddr, sizeof(val)); |
| 2020 | return val; |
| 2021 | } |
| 2022 | |
| 2023 | /* |
| 2024 | * Translate a virtual address to a physical one without relying on mapped |
| 2025 | * page tables. |
| 2026 | */ |
| 2027 | static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) |
| 2028 | { |
| 2029 | phys_addr_t pa; |
| 2030 | pgd_t pgd; |
| 2031 | pud_t pud; |
| 2032 | pmd_t pmd; |
| 2033 | pte_t pte; |
| 2034 | |
| 2035 | pa = read_cr3(); |
| 2036 | pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * |
| 2037 | sizeof(pgd))); |
| 2038 | if (!pgd_present(pgd)) |
| 2039 | return 0; |
| 2040 | |
| 2041 | pa = pgd_val(pgd) & PTE_PFN_MASK; |
| 2042 | pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * |
| 2043 | sizeof(pud))); |
| 2044 | if (!pud_present(pud)) |
| 2045 | return 0; |
| 2046 | pa = pud_pfn(pud) << PAGE_SHIFT; |
| 2047 | if (pud_large(pud)) |
| 2048 | return pa + (vaddr & ~PUD_MASK); |
| 2049 | |
| 2050 | pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * |
| 2051 | sizeof(pmd))); |
| 2052 | if (!pmd_present(pmd)) |
| 2053 | return 0; |
| 2054 | pa = pmd_pfn(pmd) << PAGE_SHIFT; |
| 2055 | if (pmd_large(pmd)) |
| 2056 | return pa + (vaddr & ~PMD_MASK); |
| 2057 | |
| 2058 | pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * |
| 2059 | sizeof(pte))); |
| 2060 | if (!pte_present(pte)) |
| 2061 | return 0; |
| 2062 | pa = pte_pfn(pte) << PAGE_SHIFT; |
| 2063 | |
| 2064 | return pa | (vaddr & ~PAGE_MASK); |
| 2065 | } |
| 2066 | |
| 2067 | /* |
| 2068 | * Find a new area for the hypervisor supplied p2m list and relocate the p2m to |
| 2069 | * this area. |
| 2070 | */ |
| 2071 | void __init xen_relocate_p2m(void) |
| 2072 | { |
| 2073 | phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys; |
| 2074 | unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; |
| 2075 | int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d; |
| 2076 | pte_t *pt; |
| 2077 | pmd_t *pmd; |
| 2078 | pud_t *pud; |
| 2079 | p4d_t *p4d = NULL; |
| 2080 | pgd_t *pgd; |
| 2081 | unsigned long *new_p2m; |
| 2082 | int save_pud; |
| 2083 | |
| 2084 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 2085 | n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; |
| 2086 | n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; |
| 2087 | n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; |
| 2088 | n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; |
| 2089 | if (PTRS_PER_P4D > 1) |
| 2090 | n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT; |
| 2091 | else |
| 2092 | n_p4d = 0; |
| 2093 | n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d; |
| 2094 | |
| 2095 | new_area = xen_find_free_area(PFN_PHYS(n_frames)); |
| 2096 | if (!new_area) { |
| 2097 | xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); |
| 2098 | BUG(); |
| 2099 | } |
| 2100 | |
| 2101 | /* |
| 2102 | * Setup the page tables for addressing the new p2m list. |
| 2103 | * We have asked the hypervisor to map the p2m list at the user address |
| 2104 | * PUD_SIZE. It may have done so, or it may have used a kernel space |
| 2105 | * address depending on the Xen version. |
| 2106 | * To avoid any possible virtual address collision, just use |
| 2107 | * 2 * PUD_SIZE for the new area. |
| 2108 | */ |
| 2109 | p4d_phys = new_area; |
| 2110 | pud_phys = p4d_phys + PFN_PHYS(n_p4d); |
| 2111 | pmd_phys = pud_phys + PFN_PHYS(n_pud); |
| 2112 | pt_phys = pmd_phys + PFN_PHYS(n_pmd); |
| 2113 | p2m_pfn = PFN_DOWN(pt_phys) + n_pt; |
| 2114 | |
| 2115 | pgd = __va(read_cr3()); |
| 2116 | new_p2m = (unsigned long *)(2 * PGDIR_SIZE); |
| 2117 | idx_p4d = 0; |
| 2118 | save_pud = n_pud; |
| 2119 | do { |
| 2120 | if (n_p4d > 0) { |
| 2121 | p4d = early_memremap(p4d_phys, PAGE_SIZE); |
| 2122 | clear_page(p4d); |
| 2123 | n_pud = min(save_pud, PTRS_PER_P4D); |
| 2124 | } |
| 2125 | for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { |
| 2126 | pud = early_memremap(pud_phys, PAGE_SIZE); |
| 2127 | clear_page(pud); |
| 2128 | for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); |
| 2129 | idx_pmd++) { |
| 2130 | pmd = early_memremap(pmd_phys, PAGE_SIZE); |
| 2131 | clear_page(pmd); |
| 2132 | for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); |
| 2133 | idx_pt++) { |
| 2134 | pt = early_memremap(pt_phys, PAGE_SIZE); |
| 2135 | clear_page(pt); |
| 2136 | for (idx_pte = 0; |
| 2137 | idx_pte < min(n_pte, PTRS_PER_PTE); |
| 2138 | idx_pte++) { |
| 2139 | set_pte(pt + idx_pte, |
| 2140 | pfn_pte(p2m_pfn, PAGE_KERNEL)); |
| 2141 | p2m_pfn++; |
| 2142 | } |
| 2143 | n_pte -= PTRS_PER_PTE; |
| 2144 | early_memunmap(pt, PAGE_SIZE); |
| 2145 | make_lowmem_page_readonly(__va(pt_phys)); |
| 2146 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, |
| 2147 | PFN_DOWN(pt_phys)); |
| 2148 | set_pmd(pmd + idx_pt, |
| 2149 | __pmd(_PAGE_TABLE | pt_phys)); |
| 2150 | pt_phys += PAGE_SIZE; |
| 2151 | } |
| 2152 | n_pt -= PTRS_PER_PMD; |
| 2153 | early_memunmap(pmd, PAGE_SIZE); |
| 2154 | make_lowmem_page_readonly(__va(pmd_phys)); |
| 2155 | pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, |
| 2156 | PFN_DOWN(pmd_phys)); |
| 2157 | set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); |
| 2158 | pmd_phys += PAGE_SIZE; |
| 2159 | } |
| 2160 | n_pmd -= PTRS_PER_PUD; |
| 2161 | early_memunmap(pud, PAGE_SIZE); |
| 2162 | make_lowmem_page_readonly(__va(pud_phys)); |
| 2163 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); |
| 2164 | if (n_p4d > 0) |
| 2165 | set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys)); |
| 2166 | else |
| 2167 | set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); |
| 2168 | pud_phys += PAGE_SIZE; |
| 2169 | } |
| 2170 | if (n_p4d > 0) { |
| 2171 | save_pud -= PTRS_PER_P4D; |
| 2172 | early_memunmap(p4d, PAGE_SIZE); |
| 2173 | make_lowmem_page_readonly(__va(p4d_phys)); |
| 2174 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys)); |
| 2175 | set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys)); |
| 2176 | p4d_phys += PAGE_SIZE; |
| 2177 | } |
| 2178 | } while (++idx_p4d < n_p4d); |
| 2179 | |
| 2180 | /* Now copy the old p2m info to the new area. */ |
| 2181 | memcpy(new_p2m, xen_p2m_addr, size); |
| 2182 | xen_p2m_addr = new_p2m; |
| 2183 | |
| 2184 | /* Release the old p2m list and set new list info. */ |
| 2185 | p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); |
| 2186 | BUG_ON(!p2m_pfn); |
| 2187 | p2m_pfn_end = p2m_pfn + PFN_DOWN(size); |
| 2188 | |
| 2189 | if (xen_start_info->mfn_list < __START_KERNEL_map) { |
| 2190 | pfn = xen_start_info->first_p2m_pfn; |
| 2191 | pfn_end = xen_start_info->first_p2m_pfn + |
| 2192 | xen_start_info->nr_p2m_frames; |
| 2193 | set_pgd(pgd + 1, __pgd(0)); |
| 2194 | } else { |
| 2195 | pfn = p2m_pfn; |
| 2196 | pfn_end = p2m_pfn_end; |
| 2197 | } |
| 2198 | |
| 2199 | memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); |
| 2200 | while (pfn < pfn_end) { |
| 2201 | if (pfn == p2m_pfn) { |
| 2202 | pfn = p2m_pfn_end; |
| 2203 | continue; |
| 2204 | } |
| 2205 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 2206 | pfn++; |
| 2207 | } |
| 2208 | |
| 2209 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 2210 | xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); |
| 2211 | xen_start_info->nr_p2m_frames = n_frames; |
| 2212 | } |
| 2213 | |
| 2214 | #else /* !CONFIG_X86_64 */ |
| 2215 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); |
| 2216 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); |
| 2217 | |
| 2218 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 2219 | { |
| 2220 | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); |
| 2221 | |
| 2222 | BUG_ON(read_cr3() != __pa(initial_page_table)); |
| 2223 | BUG_ON(cr3 != __pa(swapper_pg_dir)); |
| 2224 | |
| 2225 | /* |
| 2226 | * We are switching to swapper_pg_dir for the first time (from |
| 2227 | * initial_page_table) and therefore need to mark that page |
| 2228 | * read-only and then pin it. |
| 2229 | * |
| 2230 | * Xen disallows sharing of kernel PMDs for PAE |
| 2231 | * guests. Therefore we must copy the kernel PMD from |
| 2232 | * initial_page_table into a new kernel PMD to be used in |
| 2233 | * swapper_pg_dir. |
| 2234 | */ |
| 2235 | swapper_kernel_pmd = |
| 2236 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
| 2237 | copy_page(swapper_kernel_pmd, initial_kernel_pmd); |
| 2238 | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = |
| 2239 | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); |
| 2240 | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); |
| 2241 | |
| 2242 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); |
| 2243 | xen_write_cr3(cr3); |
| 2244 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); |
| 2245 | |
| 2246 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, |
| 2247 | PFN_DOWN(__pa(initial_page_table))); |
| 2248 | set_page_prot(initial_page_table, PAGE_KERNEL); |
| 2249 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); |
| 2250 | |
| 2251 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
| 2252 | } |
| 2253 | |
| 2254 | /* |
| 2255 | * For 32 bit domains xen_start_info->pt_base is the pgd address which might be |
| 2256 | * not the first page table in the page table pool. |
| 2257 | * Iterate through the initial page tables to find the real page table base. |
| 2258 | */ |
| 2259 | static phys_addr_t xen_find_pt_base(pmd_t *pmd) |
| 2260 | { |
| 2261 | phys_addr_t pt_base, paddr; |
| 2262 | unsigned pmdidx; |
| 2263 | |
| 2264 | pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); |
| 2265 | |
| 2266 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) |
| 2267 | if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { |
| 2268 | paddr = m2p(pmd[pmdidx].pmd); |
| 2269 | pt_base = min(pt_base, paddr); |
| 2270 | } |
| 2271 | |
| 2272 | return pt_base; |
| 2273 | } |
| 2274 | |
| 2275 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 2276 | { |
| 2277 | pmd_t *kernel_pmd; |
| 2278 | |
| 2279 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); |
| 2280 | |
| 2281 | xen_pt_base = xen_find_pt_base(kernel_pmd); |
| 2282 | xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; |
| 2283 | |
| 2284 | initial_kernel_pmd = |
| 2285 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
| 2286 | |
| 2287 | max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); |
| 2288 | |
| 2289 | copy_page(initial_kernel_pmd, kernel_pmd); |
| 2290 | |
| 2291 | xen_map_identity_early(initial_kernel_pmd, max_pfn); |
| 2292 | |
| 2293 | copy_page(initial_page_table, pgd); |
| 2294 | initial_page_table[KERNEL_PGD_BOUNDARY] = |
| 2295 | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); |
| 2296 | |
| 2297 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); |
| 2298 | set_page_prot(initial_page_table, PAGE_KERNEL_RO); |
| 2299 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); |
| 2300 | |
| 2301 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 2302 | |
| 2303 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, |
| 2304 | PFN_DOWN(__pa(initial_page_table))); |
| 2305 | xen_write_cr3(__pa(initial_page_table)); |
| 2306 | |
| 2307 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 2308 | } |
| 2309 | #endif /* CONFIG_X86_64 */ |
| 2310 | |
| 2311 | void __init xen_reserve_special_pages(void) |
| 2312 | { |
| 2313 | phys_addr_t paddr; |
| 2314 | |
| 2315 | memblock_reserve(__pa(xen_start_info), PAGE_SIZE); |
| 2316 | if (xen_start_info->store_mfn) { |
| 2317 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); |
| 2318 | memblock_reserve(paddr, PAGE_SIZE); |
| 2319 | } |
| 2320 | if (!xen_initial_domain()) { |
| 2321 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); |
| 2322 | memblock_reserve(paddr, PAGE_SIZE); |
| 2323 | } |
| 2324 | } |
| 2325 | |
| 2326 | void __init xen_pt_check_e820(void) |
| 2327 | { |
| 2328 | if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { |
| 2329 | xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); |
| 2330 | BUG(); |
| 2331 | } |
| 2332 | } |
| 2333 | |
| 2334 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; |
| 2335 | |
| 2336 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) |
| 2337 | { |
| 2338 | pte_t pte; |
| 2339 | |
| 2340 | phys >>= PAGE_SHIFT; |
| 2341 | |
| 2342 | switch (idx) { |
| 2343 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: |
| 2344 | case FIX_RO_IDT: |
| 2345 | #ifdef CONFIG_X86_32 |
| 2346 | case FIX_WP_TEST: |
| 2347 | # ifdef CONFIG_HIGHMEM |
| 2348 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: |
| 2349 | # endif |
| 2350 | #elif defined(CONFIG_X86_VSYSCALL_EMULATION) |
| 2351 | case VSYSCALL_PAGE: |
| 2352 | #endif |
| 2353 | case FIX_TEXT_POKE0: |
| 2354 | case FIX_TEXT_POKE1: |
| 2355 | case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END: |
| 2356 | /* All local page mappings */ |
| 2357 | pte = pfn_pte(phys, prot); |
| 2358 | break; |
| 2359 | |
| 2360 | #ifdef CONFIG_X86_LOCAL_APIC |
| 2361 | case FIX_APIC_BASE: /* maps dummy local APIC */ |
| 2362 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2363 | break; |
| 2364 | #endif |
| 2365 | |
| 2366 | #ifdef CONFIG_X86_IO_APIC |
| 2367 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: |
| 2368 | /* |
| 2369 | * We just don't map the IO APIC - all access is via |
| 2370 | * hypercalls. Keep the address in the pte for reference. |
| 2371 | */ |
| 2372 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2373 | break; |
| 2374 | #endif |
| 2375 | |
| 2376 | case FIX_PARAVIRT_BOOTMAP: |
| 2377 | /* This is an MFN, but it isn't an IO mapping from the |
| 2378 | IO domain */ |
| 2379 | pte = mfn_pte(phys, prot); |
| 2380 | break; |
| 2381 | |
| 2382 | default: |
| 2383 | /* By default, set_fixmap is used for hardware mappings */ |
| 2384 | pte = mfn_pte(phys, prot); |
| 2385 | break; |
| 2386 | } |
| 2387 | |
| 2388 | __native_set_fixmap(idx, pte); |
| 2389 | |
| 2390 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 2391 | /* Replicate changes to map the vsyscall page into the user |
| 2392 | pagetable vsyscall mapping. */ |
| 2393 | if (idx == VSYSCALL_PAGE) { |
| 2394 | unsigned long vaddr = __fix_to_virt(idx); |
| 2395 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); |
| 2396 | } |
| 2397 | #endif |
| 2398 | } |
| 2399 | |
| 2400 | static void __init xen_post_allocator_init(void) |
| 2401 | { |
| 2402 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
| 2403 | return; |
| 2404 | |
| 2405 | pv_mmu_ops.set_pte = xen_set_pte; |
| 2406 | pv_mmu_ops.set_pmd = xen_set_pmd; |
| 2407 | pv_mmu_ops.set_pud = xen_set_pud; |
| 2408 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 2409 | pv_mmu_ops.set_p4d = xen_set_p4d; |
| 2410 | #endif |
| 2411 | |
| 2412 | /* This will work as long as patching hasn't happened yet |
| 2413 | (which it hasn't) */ |
| 2414 | pv_mmu_ops.alloc_pte = xen_alloc_pte; |
| 2415 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; |
| 2416 | pv_mmu_ops.release_pte = xen_release_pte; |
| 2417 | pv_mmu_ops.release_pmd = xen_release_pmd; |
| 2418 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 2419 | pv_mmu_ops.alloc_pud = xen_alloc_pud; |
| 2420 | pv_mmu_ops.release_pud = xen_release_pud; |
| 2421 | #endif |
| 2422 | pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); |
| 2423 | |
| 2424 | #ifdef CONFIG_X86_64 |
| 2425 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
| 2426 | SetPagePinned(virt_to_page(level3_user_vsyscall)); |
| 2427 | #endif |
| 2428 | xen_mark_init_mm_pinned(); |
| 2429 | } |
| 2430 | |
| 2431 | static void xen_leave_lazy_mmu(void) |
| 2432 | { |
| 2433 | preempt_disable(); |
| 2434 | xen_mc_flush(); |
| 2435 | paravirt_leave_lazy_mmu(); |
| 2436 | preempt_enable(); |
| 2437 | } |
| 2438 | |
| 2439 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { |
| 2440 | .read_cr2 = xen_read_cr2, |
| 2441 | .write_cr2 = xen_write_cr2, |
| 2442 | |
| 2443 | .read_cr3 = xen_read_cr3, |
| 2444 | .write_cr3 = xen_write_cr3_init, |
| 2445 | |
| 2446 | .flush_tlb_user = xen_flush_tlb, |
| 2447 | .flush_tlb_kernel = xen_flush_tlb, |
| 2448 | .flush_tlb_single = xen_flush_tlb_single, |
| 2449 | .flush_tlb_others = xen_flush_tlb_others, |
| 2450 | |
| 2451 | .pte_update = paravirt_nop, |
| 2452 | |
| 2453 | .pgd_alloc = xen_pgd_alloc, |
| 2454 | .pgd_free = xen_pgd_free, |
| 2455 | |
| 2456 | .alloc_pte = xen_alloc_pte_init, |
| 2457 | .release_pte = xen_release_pte_init, |
| 2458 | .alloc_pmd = xen_alloc_pmd_init, |
| 2459 | .release_pmd = xen_release_pmd_init, |
| 2460 | |
| 2461 | .set_pte = xen_set_pte_init, |
| 2462 | .set_pte_at = xen_set_pte_at, |
| 2463 | .set_pmd = xen_set_pmd_hyper, |
| 2464 | |
| 2465 | .ptep_modify_prot_start = __ptep_modify_prot_start, |
| 2466 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, |
| 2467 | |
| 2468 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), |
| 2469 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), |
| 2470 | |
| 2471 | .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), |
| 2472 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), |
| 2473 | |
| 2474 | #ifdef CONFIG_X86_PAE |
| 2475 | .set_pte_atomic = xen_set_pte_atomic, |
| 2476 | .pte_clear = xen_pte_clear, |
| 2477 | .pmd_clear = xen_pmd_clear, |
| 2478 | #endif /* CONFIG_X86_PAE */ |
| 2479 | .set_pud = xen_set_pud_hyper, |
| 2480 | |
| 2481 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), |
| 2482 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), |
| 2483 | |
| 2484 | #if CONFIG_PGTABLE_LEVELS >= 4 |
| 2485 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), |
| 2486 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), |
| 2487 | .set_p4d = xen_set_p4d_hyper, |
| 2488 | |
| 2489 | .alloc_pud = xen_alloc_pmd_init, |
| 2490 | .release_pud = xen_release_pmd_init, |
| 2491 | #endif /* CONFIG_PGTABLE_LEVELS == 4 */ |
| 2492 | |
| 2493 | .activate_mm = xen_activate_mm, |
| 2494 | .dup_mmap = xen_dup_mmap, |
| 2495 | .exit_mmap = xen_exit_mmap, |
| 2496 | |
| 2497 | .lazy_mode = { |
| 2498 | .enter = paravirt_enter_lazy_mmu, |
| 2499 | .leave = xen_leave_lazy_mmu, |
| 2500 | .flush = paravirt_flush_lazy_mmu, |
| 2501 | }, |
| 2502 | |
| 2503 | .set_fixmap = xen_set_fixmap, |
| 2504 | }; |
| 2505 | |
| 2506 | void __init xen_init_mmu_ops(void) |
| 2507 | { |
| 2508 | x86_init.paging.pagetable_init = xen_pagetable_init; |
| 2509 | |
| 2510 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
| 2511 | return; |
| 2512 | |
| 2513 | pv_mmu_ops = xen_mmu_ops; |
| 2514 | |
| 2515 | memset(dummy_mapping, 0xff, PAGE_SIZE); |
| 2516 | } |
| 2517 | |
| 2518 | /* Protected by xen_reservation_lock. */ |
| 2519 | #define MAX_CONTIG_ORDER 9 /* 2MB */ |
| 2520 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; |
| 2521 | |
| 2522 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) |
| 2523 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, |
| 2524 | unsigned long *in_frames, |
| 2525 | unsigned long *out_frames) |
| 2526 | { |
| 2527 | int i; |
| 2528 | struct multicall_space mcs; |
| 2529 | |
| 2530 | xen_mc_batch(); |
| 2531 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { |
| 2532 | mcs = __xen_mc_entry(0); |
| 2533 | |
| 2534 | if (in_frames) |
| 2535 | in_frames[i] = virt_to_mfn(vaddr); |
| 2536 | |
| 2537 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); |
| 2538 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); |
| 2539 | |
| 2540 | if (out_frames) |
| 2541 | out_frames[i] = virt_to_pfn(vaddr); |
| 2542 | } |
| 2543 | xen_mc_issue(0); |
| 2544 | } |
| 2545 | |
| 2546 | /* |
| 2547 | * Update the pfn-to-mfn mappings for a virtual address range, either to |
| 2548 | * point to an array of mfns, or contiguously from a single starting |
| 2549 | * mfn. |
| 2550 | */ |
| 2551 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, |
| 2552 | unsigned long *mfns, |
| 2553 | unsigned long first_mfn) |
| 2554 | { |
| 2555 | unsigned i, limit; |
| 2556 | unsigned long mfn; |
| 2557 | |
| 2558 | xen_mc_batch(); |
| 2559 | |
| 2560 | limit = 1u << order; |
| 2561 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { |
| 2562 | struct multicall_space mcs; |
| 2563 | unsigned flags; |
| 2564 | |
| 2565 | mcs = __xen_mc_entry(0); |
| 2566 | if (mfns) |
| 2567 | mfn = mfns[i]; |
| 2568 | else |
| 2569 | mfn = first_mfn + i; |
| 2570 | |
| 2571 | if (i < (limit - 1)) |
| 2572 | flags = 0; |
| 2573 | else { |
| 2574 | if (order == 0) |
| 2575 | flags = UVMF_INVLPG | UVMF_ALL; |
| 2576 | else |
| 2577 | flags = UVMF_TLB_FLUSH | UVMF_ALL; |
| 2578 | } |
| 2579 | |
| 2580 | MULTI_update_va_mapping(mcs.mc, vaddr, |
| 2581 | mfn_pte(mfn, PAGE_KERNEL), flags); |
| 2582 | |
| 2583 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); |
| 2584 | } |
| 2585 | |
| 2586 | xen_mc_issue(0); |
| 2587 | } |
| 2588 | |
| 2589 | /* |
| 2590 | * Perform the hypercall to exchange a region of our pfns to point to |
| 2591 | * memory with the required contiguous alignment. Takes the pfns as |
| 2592 | * input, and populates mfns as output. |
| 2593 | * |
| 2594 | * Returns a success code indicating whether the hypervisor was able to |
| 2595 | * satisfy the request or not. |
| 2596 | */ |
| 2597 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, |
| 2598 | unsigned long *pfns_in, |
| 2599 | unsigned long extents_out, |
| 2600 | unsigned int order_out, |
| 2601 | unsigned long *mfns_out, |
| 2602 | unsigned int address_bits) |
| 2603 | { |
| 2604 | long rc; |
| 2605 | int success; |
| 2606 | |
| 2607 | struct xen_memory_exchange exchange = { |
| 2608 | .in = { |
| 2609 | .nr_extents = extents_in, |
| 2610 | .extent_order = order_in, |
| 2611 | .extent_start = pfns_in, |
| 2612 | .domid = DOMID_SELF |
| 2613 | }, |
| 2614 | .out = { |
| 2615 | .nr_extents = extents_out, |
| 2616 | .extent_order = order_out, |
| 2617 | .extent_start = mfns_out, |
| 2618 | .address_bits = address_bits, |
| 2619 | .domid = DOMID_SELF |
| 2620 | } |
| 2621 | }; |
| 2622 | |
| 2623 | BUG_ON(extents_in << order_in != extents_out << order_out); |
| 2624 | |
| 2625 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); |
| 2626 | success = (exchange.nr_exchanged == extents_in); |
| 2627 | |
| 2628 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); |
| 2629 | BUG_ON(success && (rc != 0)); |
| 2630 | |
| 2631 | return success; |
| 2632 | } |
| 2633 | |
| 2634 | int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, |
| 2635 | unsigned int address_bits, |
| 2636 | dma_addr_t *dma_handle) |
| 2637 | { |
| 2638 | unsigned long *in_frames = discontig_frames, out_frame; |
| 2639 | unsigned long flags; |
| 2640 | int success; |
| 2641 | unsigned long vstart = (unsigned long)phys_to_virt(pstart); |
| 2642 | |
| 2643 | /* |
| 2644 | * Currently an auto-translated guest will not perform I/O, nor will |
| 2645 | * it require PAE page directories below 4GB. Therefore any calls to |
| 2646 | * this function are redundant and can be ignored. |
| 2647 | */ |
| 2648 | |
| 2649 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
| 2650 | return 0; |
| 2651 | |
| 2652 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2653 | return -ENOMEM; |
| 2654 | |
| 2655 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2656 | |
| 2657 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2658 | |
| 2659 | /* 1. Zap current PTEs, remembering MFNs. */ |
| 2660 | xen_zap_pfn_range(vstart, order, in_frames, NULL); |
| 2661 | |
| 2662 | /* 2. Get a new contiguous memory extent. */ |
| 2663 | out_frame = virt_to_pfn(vstart); |
| 2664 | success = xen_exchange_memory(1UL << order, 0, in_frames, |
| 2665 | 1, order, &out_frame, |
| 2666 | address_bits); |
| 2667 | |
| 2668 | /* 3. Map the new extent in place of old pages. */ |
| 2669 | if (success) |
| 2670 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); |
| 2671 | else |
| 2672 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); |
| 2673 | |
| 2674 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2675 | |
| 2676 | *dma_handle = virt_to_machine(vstart).maddr; |
| 2677 | return success ? 0 : -ENOMEM; |
| 2678 | } |
| 2679 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); |
| 2680 | |
| 2681 | void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) |
| 2682 | { |
| 2683 | unsigned long *out_frames = discontig_frames, in_frame; |
| 2684 | unsigned long flags; |
| 2685 | int success; |
| 2686 | unsigned long vstart; |
| 2687 | |
| 2688 | if (xen_feature(XENFEAT_auto_translated_physmap)) |
| 2689 | return; |
| 2690 | |
| 2691 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2692 | return; |
| 2693 | |
| 2694 | vstart = (unsigned long)phys_to_virt(pstart); |
| 2695 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2696 | |
| 2697 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2698 | |
| 2699 | /* 1. Find start MFN of contiguous extent. */ |
| 2700 | in_frame = virt_to_mfn(vstart); |
| 2701 | |
| 2702 | /* 2. Zap current PTEs. */ |
| 2703 | xen_zap_pfn_range(vstart, order, NULL, out_frames); |
| 2704 | |
| 2705 | /* 3. Do the exchange for non-contiguous MFNs. */ |
| 2706 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, |
| 2707 | 0, out_frames, 0); |
| 2708 | |
| 2709 | /* 4. Map new pages in place of old pages. */ |
| 2710 | if (success) |
| 2711 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); |
| 2712 | else |
| 2713 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); |
| 2714 | |
| 2715 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2716 | } |
| 2717 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); |