blob: c98bfb9f0248ae50c4335854b288167fc70d490f [file] [log] [blame]
Vitaly Kuznetsov7e0563d2017-04-04 14:48:17 +02001/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
41#include <linux/sched/mm.h>
42#include <linux/highmem.h>
43#include <linux/debugfs.h>
44#include <linux/bug.h>
45#include <linux/vmalloc.h>
46#include <linux/export.h>
47#include <linux/init.h>
48#include <linux/gfp.h>
49#include <linux/memblock.h>
50#include <linux/seq_file.h>
51#include <linux/crash_dump.h>
52
53#include <trace/events/xen.h>
54
55#include <asm/pgtable.h>
56#include <asm/tlbflush.h>
57#include <asm/fixmap.h>
58#include <asm/mmu_context.h>
59#include <asm/setup.h>
60#include <asm/paravirt.h>
61#include <asm/e820/api.h>
62#include <asm/linkage.h>
63#include <asm/page.h>
64#include <asm/init.h>
65#include <asm/pat.h>
66#include <asm/smp.h>
67
68#include <asm/xen/hypercall.h>
69#include <asm/xen/hypervisor.h>
70
71#include <xen/xen.h>
72#include <xen/page.h>
73#include <xen/interface/xen.h>
74#include <xen/interface/hvm/hvm_op.h>
75#include <xen/interface/version.h>
76#include <xen/interface/memory.h>
77#include <xen/hvc-console.h>
78
79#include "multicalls.h"
80#include "mmu.h"
81#include "debugfs.h"
82
83#ifdef CONFIG_X86_32
84/*
85 * Identity map, in addition to plain kernel map. This needs to be
86 * large enough to allocate page table pages to allocate the rest.
87 * Each page can map 2MB.
88 */
89#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
90static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
91#endif
92#ifdef CONFIG_X86_64
93/* l3 pud for userspace vsyscall mapping */
94static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
95#endif /* CONFIG_X86_64 */
96
97/*
98 * Note about cr3 (pagetable base) values:
99 *
100 * xen_cr3 contains the current logical cr3 value; it contains the
101 * last set cr3. This may not be the current effective cr3, because
102 * its update may be being lazily deferred. However, a vcpu looking
103 * at its own cr3 can use this value knowing that it everything will
104 * be self-consistent.
105 *
106 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
107 * hypercall to set the vcpu cr3 is complete (so it may be a little
108 * out of date, but it will never be set early). If one vcpu is
109 * looking at another vcpu's cr3 value, it should use this variable.
110 */
111DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
112DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
113
114static phys_addr_t xen_pt_base, xen_pt_size __initdata;
115
116/*
117 * Just beyond the highest usermode address. STACK_TOP_MAX has a
118 * redzone above it, so round it up to a PGD boundary.
119 */
120#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
121
122void make_lowmem_page_readonly(void *vaddr)
123{
124 pte_t *pte, ptev;
125 unsigned long address = (unsigned long)vaddr;
126 unsigned int level;
127
128 pte = lookup_address(address, &level);
129 if (pte == NULL)
130 return; /* vaddr missing */
131
132 ptev = pte_wrprotect(*pte);
133
134 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
135 BUG();
136}
137
138void make_lowmem_page_readwrite(void *vaddr)
139{
140 pte_t *pte, ptev;
141 unsigned long address = (unsigned long)vaddr;
142 unsigned int level;
143
144 pte = lookup_address(address, &level);
145 if (pte == NULL)
146 return; /* vaddr missing */
147
148 ptev = pte_mkwrite(*pte);
149
150 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
151 BUG();
152}
153
154
155static bool xen_page_pinned(void *ptr)
156{
157 struct page *page = virt_to_page(ptr);
158
159 return PagePinned(page);
160}
161
162void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
163{
164 struct multicall_space mcs;
165 struct mmu_update *u;
166
167 trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
168
169 mcs = xen_mc_entry(sizeof(*u));
170 u = mcs.args;
171
172 /* ptep might be kmapped when using 32-bit HIGHPTE */
173 u->ptr = virt_to_machine(ptep).maddr;
174 u->val = pte_val_ma(pteval);
175
176 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
177
178 xen_mc_issue(PARAVIRT_LAZY_MMU);
179}
180EXPORT_SYMBOL_GPL(xen_set_domain_pte);
181
182static void xen_extend_mmu_update(const struct mmu_update *update)
183{
184 struct multicall_space mcs;
185 struct mmu_update *u;
186
187 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
188
189 if (mcs.mc != NULL) {
190 mcs.mc->args[1]++;
191 } else {
192 mcs = __xen_mc_entry(sizeof(*u));
193 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
194 }
195
196 u = mcs.args;
197 *u = *update;
198}
199
200static void xen_extend_mmuext_op(const struct mmuext_op *op)
201{
202 struct multicall_space mcs;
203 struct mmuext_op *u;
204
205 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
206
207 if (mcs.mc != NULL) {
208 mcs.mc->args[1]++;
209 } else {
210 mcs = __xen_mc_entry(sizeof(*u));
211 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
212 }
213
214 u = mcs.args;
215 *u = *op;
216}
217
218static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
219{
220 struct mmu_update u;
221
222 preempt_disable();
223
224 xen_mc_batch();
225
226 /* ptr may be ioremapped for 64-bit pagetable setup */
227 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
228 u.val = pmd_val_ma(val);
229 xen_extend_mmu_update(&u);
230
231 xen_mc_issue(PARAVIRT_LAZY_MMU);
232
233 preempt_enable();
234}
235
236static void xen_set_pmd(pmd_t *ptr, pmd_t val)
237{
238 trace_xen_mmu_set_pmd(ptr, val);
239
240 /* If page is not pinned, we can just update the entry
241 directly */
242 if (!xen_page_pinned(ptr)) {
243 *ptr = val;
244 return;
245 }
246
247 xen_set_pmd_hyper(ptr, val);
248}
249
250/*
251 * Associate a virtual page frame with a given physical page frame
252 * and protection flags for that frame.
253 */
254void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
255{
256 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
257}
258
259static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
260{
261 struct mmu_update u;
262
263 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
264 return false;
265
266 xen_mc_batch();
267
268 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
269 u.val = pte_val_ma(pteval);
270 xen_extend_mmu_update(&u);
271
272 xen_mc_issue(PARAVIRT_LAZY_MMU);
273
274 return true;
275}
276
277static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
278{
279 if (!xen_batched_set_pte(ptep, pteval)) {
280 /*
281 * Could call native_set_pte() here and trap and
282 * emulate the PTE write but with 32-bit guests this
283 * needs two traps (one for each of the two 32-bit
284 * words in the PTE) so do one hypercall directly
285 * instead.
286 */
287 struct mmu_update u;
288
289 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
290 u.val = pte_val_ma(pteval);
291 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
292 }
293}
294
295static void xen_set_pte(pte_t *ptep, pte_t pteval)
296{
297 trace_xen_mmu_set_pte(ptep, pteval);
298 __xen_set_pte(ptep, pteval);
299}
300
301static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
302 pte_t *ptep, pte_t pteval)
303{
304 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
305 __xen_set_pte(ptep, pteval);
306}
307
308pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
309 unsigned long addr, pte_t *ptep)
310{
311 /* Just return the pte as-is. We preserve the bits on commit */
312 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
313 return *ptep;
314}
315
316void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
317 pte_t *ptep, pte_t pte)
318{
319 struct mmu_update u;
320
321 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
322 xen_mc_batch();
323
324 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
325 u.val = pte_val_ma(pte);
326 xen_extend_mmu_update(&u);
327
328 xen_mc_issue(PARAVIRT_LAZY_MMU);
329}
330
331/* Assume pteval_t is equivalent to all the other *val_t types. */
332static pteval_t pte_mfn_to_pfn(pteval_t val)
333{
334 if (val & _PAGE_PRESENT) {
335 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
336 unsigned long pfn = mfn_to_pfn(mfn);
337
338 pteval_t flags = val & PTE_FLAGS_MASK;
339 if (unlikely(pfn == ~0))
340 val = flags & ~_PAGE_PRESENT;
341 else
342 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
343 }
344
345 return val;
346}
347
348static pteval_t pte_pfn_to_mfn(pteval_t val)
349{
350 if (val & _PAGE_PRESENT) {
351 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
352 pteval_t flags = val & PTE_FLAGS_MASK;
353 unsigned long mfn;
354
355 if (!xen_feature(XENFEAT_auto_translated_physmap))
356 mfn = __pfn_to_mfn(pfn);
357 else
358 mfn = pfn;
359 /*
360 * If there's no mfn for the pfn, then just create an
361 * empty non-present pte. Unfortunately this loses
362 * information about the original pfn, so
363 * pte_mfn_to_pfn is asymmetric.
364 */
365 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
366 mfn = 0;
367 flags = 0;
368 } else
369 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
370 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
371 }
372
373 return val;
374}
375
376__visible pteval_t xen_pte_val(pte_t pte)
377{
378 pteval_t pteval = pte.pte;
379
380 return pte_mfn_to_pfn(pteval);
381}
382PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
383
384__visible pgdval_t xen_pgd_val(pgd_t pgd)
385{
386 return pte_mfn_to_pfn(pgd.pgd);
387}
388PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
389
390__visible pte_t xen_make_pte(pteval_t pte)
391{
392 pte = pte_pfn_to_mfn(pte);
393
394 return native_make_pte(pte);
395}
396PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
397
398__visible pgd_t xen_make_pgd(pgdval_t pgd)
399{
400 pgd = pte_pfn_to_mfn(pgd);
401 return native_make_pgd(pgd);
402}
403PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
404
405__visible pmdval_t xen_pmd_val(pmd_t pmd)
406{
407 return pte_mfn_to_pfn(pmd.pmd);
408}
409PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
410
411static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
412{
413 struct mmu_update u;
414
415 preempt_disable();
416
417 xen_mc_batch();
418
419 /* ptr may be ioremapped for 64-bit pagetable setup */
420 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
421 u.val = pud_val_ma(val);
422 xen_extend_mmu_update(&u);
423
424 xen_mc_issue(PARAVIRT_LAZY_MMU);
425
426 preempt_enable();
427}
428
429static void xen_set_pud(pud_t *ptr, pud_t val)
430{
431 trace_xen_mmu_set_pud(ptr, val);
432
433 /* If page is not pinned, we can just update the entry
434 directly */
435 if (!xen_page_pinned(ptr)) {
436 *ptr = val;
437 return;
438 }
439
440 xen_set_pud_hyper(ptr, val);
441}
442
443#ifdef CONFIG_X86_PAE
444static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
445{
446 trace_xen_mmu_set_pte_atomic(ptep, pte);
447 set_64bit((u64 *)ptep, native_pte_val(pte));
448}
449
450static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
451{
452 trace_xen_mmu_pte_clear(mm, addr, ptep);
453 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
454 native_pte_clear(mm, addr, ptep);
455}
456
457static void xen_pmd_clear(pmd_t *pmdp)
458{
459 trace_xen_mmu_pmd_clear(pmdp);
460 set_pmd(pmdp, __pmd(0));
461}
462#endif /* CONFIG_X86_PAE */
463
464__visible pmd_t xen_make_pmd(pmdval_t pmd)
465{
466 pmd = pte_pfn_to_mfn(pmd);
467 return native_make_pmd(pmd);
468}
469PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
470
471#if CONFIG_PGTABLE_LEVELS == 4
472__visible pudval_t xen_pud_val(pud_t pud)
473{
474 return pte_mfn_to_pfn(pud.pud);
475}
476PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
477
478__visible pud_t xen_make_pud(pudval_t pud)
479{
480 pud = pte_pfn_to_mfn(pud);
481
482 return native_make_pud(pud);
483}
484PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
485
486static pgd_t *xen_get_user_pgd(pgd_t *pgd)
487{
488 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
489 unsigned offset = pgd - pgd_page;
490 pgd_t *user_ptr = NULL;
491
492 if (offset < pgd_index(USER_LIMIT)) {
493 struct page *page = virt_to_page(pgd_page);
494 user_ptr = (pgd_t *)page->private;
495 if (user_ptr)
496 user_ptr += offset;
497 }
498
499 return user_ptr;
500}
501
502static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
503{
504 struct mmu_update u;
505
506 u.ptr = virt_to_machine(ptr).maddr;
507 u.val = p4d_val_ma(val);
508 xen_extend_mmu_update(&u);
509}
510
511/*
512 * Raw hypercall-based set_p4d, intended for in early boot before
513 * there's a page structure. This implies:
514 * 1. The only existing pagetable is the kernel's
515 * 2. It is always pinned
516 * 3. It has no user pagetable attached to it
517 */
518static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
519{
520 preempt_disable();
521
522 xen_mc_batch();
523
524 __xen_set_p4d_hyper(ptr, val);
525
526 xen_mc_issue(PARAVIRT_LAZY_MMU);
527
528 preempt_enable();
529}
530
531static void xen_set_p4d(p4d_t *ptr, p4d_t val)
532{
533 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
534 pgd_t pgd_val;
535
536 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
537
538 /* If page is not pinned, we can just update the entry
539 directly */
540 if (!xen_page_pinned(ptr)) {
541 *ptr = val;
542 if (user_ptr) {
543 WARN_ON(xen_page_pinned(user_ptr));
544 pgd_val.pgd = p4d_val_ma(val);
545 *user_ptr = pgd_val;
546 }
547 return;
548 }
549
550 /* If it's pinned, then we can at least batch the kernel and
551 user updates together. */
552 xen_mc_batch();
553
554 __xen_set_p4d_hyper(ptr, val);
555 if (user_ptr)
556 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
557
558 xen_mc_issue(PARAVIRT_LAZY_MMU);
559}
560#endif /* CONFIG_PGTABLE_LEVELS == 4 */
561
562static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
563 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
564 bool last, unsigned long limit)
565{
566 int i, nr, flush = 0;
567
568 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
569 for (i = 0; i < nr; i++) {
570 if (!pmd_none(pmd[i]))
571 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
572 }
573 return flush;
574}
575
576static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
577 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
578 bool last, unsigned long limit)
579{
580 int i, nr, flush = 0;
581
582 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
583 for (i = 0; i < nr; i++) {
584 pmd_t *pmd;
585
586 if (pud_none(pud[i]))
587 continue;
588
589 pmd = pmd_offset(&pud[i], 0);
590 if (PTRS_PER_PMD > 1)
591 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
592 flush |= xen_pmd_walk(mm, pmd, func,
593 last && i == nr - 1, limit);
594 }
595 return flush;
596}
597
598static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
599 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
600 bool last, unsigned long limit)
601{
602 int i, nr, flush = 0;
603
604 nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D;
605 for (i = 0; i < nr; i++) {
606 pud_t *pud;
607
608 if (p4d_none(p4d[i]))
609 continue;
610
611 pud = pud_offset(&p4d[i], 0);
612 if (PTRS_PER_PUD > 1)
613 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
614 flush |= xen_pud_walk(mm, pud, func,
615 last && i == nr - 1, limit);
616 }
617 return flush;
618}
619
620/*
621 * (Yet another) pagetable walker. This one is intended for pinning a
622 * pagetable. This means that it walks a pagetable and calls the
623 * callback function on each page it finds making up the page table,
624 * at every level. It walks the entire pagetable, but it only bothers
625 * pinning pte pages which are below limit. In the normal case this
626 * will be STACK_TOP_MAX, but at boot we need to pin up to
627 * FIXADDR_TOP.
628 *
629 * For 32-bit the important bit is that we don't pin beyond there,
630 * because then we start getting into Xen's ptes.
631 *
632 * For 64-bit, we must skip the Xen hole in the middle of the address
633 * space, just after the big x86-64 virtual hole.
634 */
635static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
636 int (*func)(struct mm_struct *mm, struct page *,
637 enum pt_level),
638 unsigned long limit)
639{
640 int i, nr, flush = 0;
641 unsigned hole_low, hole_high;
642
643 /* The limit is the last byte to be touched */
644 limit--;
645 BUG_ON(limit >= FIXADDR_TOP);
646
647 if (xen_feature(XENFEAT_auto_translated_physmap))
648 return 0;
649
650 /*
651 * 64-bit has a great big hole in the middle of the address
652 * space, which contains the Xen mappings. On 32-bit these
653 * will end up making a zero-sized hole and so is a no-op.
654 */
655 hole_low = pgd_index(USER_LIMIT);
656 hole_high = pgd_index(PAGE_OFFSET);
657
658 nr = pgd_index(limit) + 1;
659 for (i = 0; i < nr; i++) {
660 p4d_t *p4d;
661
662 if (i >= hole_low && i < hole_high)
663 continue;
664
665 if (pgd_none(pgd[i]))
666 continue;
667
668 p4d = p4d_offset(&pgd[i], 0);
669 if (PTRS_PER_P4D > 1)
670 flush |= (*func)(mm, virt_to_page(p4d), PT_P4D);
671 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
672 }
673
674 /* Do the top level last, so that the callbacks can use it as
675 a cue to do final things like tlb flushes. */
676 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
677
678 return flush;
679}
680
681static int xen_pgd_walk(struct mm_struct *mm,
682 int (*func)(struct mm_struct *mm, struct page *,
683 enum pt_level),
684 unsigned long limit)
685{
686 return __xen_pgd_walk(mm, mm->pgd, func, limit);
687}
688
689/* If we're using split pte locks, then take the page's lock and
690 return a pointer to it. Otherwise return NULL. */
691static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
692{
693 spinlock_t *ptl = NULL;
694
695#if USE_SPLIT_PTE_PTLOCKS
696 ptl = ptlock_ptr(page);
697 spin_lock_nest_lock(ptl, &mm->page_table_lock);
698#endif
699
700 return ptl;
701}
702
703static void xen_pte_unlock(void *v)
704{
705 spinlock_t *ptl = v;
706 spin_unlock(ptl);
707}
708
709static void xen_do_pin(unsigned level, unsigned long pfn)
710{
711 struct mmuext_op op;
712
713 op.cmd = level;
714 op.arg1.mfn = pfn_to_mfn(pfn);
715
716 xen_extend_mmuext_op(&op);
717}
718
719static int xen_pin_page(struct mm_struct *mm, struct page *page,
720 enum pt_level level)
721{
722 unsigned pgfl = TestSetPagePinned(page);
723 int flush;
724
725 if (pgfl)
726 flush = 0; /* already pinned */
727 else if (PageHighMem(page))
728 /* kmaps need flushing if we found an unpinned
729 highpage */
730 flush = 1;
731 else {
732 void *pt = lowmem_page_address(page);
733 unsigned long pfn = page_to_pfn(page);
734 struct multicall_space mcs = __xen_mc_entry(0);
735 spinlock_t *ptl;
736
737 flush = 0;
738
739 /*
740 * We need to hold the pagetable lock between the time
741 * we make the pagetable RO and when we actually pin
742 * it. If we don't, then other users may come in and
743 * attempt to update the pagetable by writing it,
744 * which will fail because the memory is RO but not
745 * pinned, so Xen won't do the trap'n'emulate.
746 *
747 * If we're using split pte locks, we can't hold the
748 * entire pagetable's worth of locks during the
749 * traverse, because we may wrap the preempt count (8
750 * bits). The solution is to mark RO and pin each PTE
751 * page while holding the lock. This means the number
752 * of locks we end up holding is never more than a
753 * batch size (~32 entries, at present).
754 *
755 * If we're not using split pte locks, we needn't pin
756 * the PTE pages independently, because we're
757 * protected by the overall pagetable lock.
758 */
759 ptl = NULL;
760 if (level == PT_PTE)
761 ptl = xen_pte_lock(page, mm);
762
763 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
764 pfn_pte(pfn, PAGE_KERNEL_RO),
765 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
766
767 if (ptl) {
768 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
769
770 /* Queue a deferred unlock for when this batch
771 is completed. */
772 xen_mc_callback(xen_pte_unlock, ptl);
773 }
774 }
775
776 return flush;
777}
778
779/* This is called just after a mm has been created, but it has not
780 been used yet. We need to make sure that its pagetable is all
781 read-only, and can be pinned. */
782static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
783{
784 trace_xen_mmu_pgd_pin(mm, pgd);
785
786 xen_mc_batch();
787
788 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
789 /* re-enable interrupts for flushing */
790 xen_mc_issue(0);
791
792 kmap_flush_unused();
793
794 xen_mc_batch();
795 }
796
797#ifdef CONFIG_X86_64
798 {
799 pgd_t *user_pgd = xen_get_user_pgd(pgd);
800
801 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
802
803 if (user_pgd) {
804 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
805 xen_do_pin(MMUEXT_PIN_L4_TABLE,
806 PFN_DOWN(__pa(user_pgd)));
807 }
808 }
809#else /* CONFIG_X86_32 */
810#ifdef CONFIG_X86_PAE
811 /* Need to make sure unshared kernel PMD is pinnable */
812 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
813 PT_PMD);
814#endif
815 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
816#endif /* CONFIG_X86_64 */
817 xen_mc_issue(0);
818}
819
820static void xen_pgd_pin(struct mm_struct *mm)
821{
822 __xen_pgd_pin(mm, mm->pgd);
823}
824
825/*
826 * On save, we need to pin all pagetables to make sure they get their
827 * mfns turned into pfns. Search the list for any unpinned pgds and pin
828 * them (unpinned pgds are not currently in use, probably because the
829 * process is under construction or destruction).
830 *
831 * Expected to be called in stop_machine() ("equivalent to taking
832 * every spinlock in the system"), so the locking doesn't really
833 * matter all that much.
834 */
835void xen_mm_pin_all(void)
836{
837 struct page *page;
838
839 spin_lock(&pgd_lock);
840
841 list_for_each_entry(page, &pgd_list, lru) {
842 if (!PagePinned(page)) {
843 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
844 SetPageSavePinned(page);
845 }
846 }
847
848 spin_unlock(&pgd_lock);
849}
850
851/*
852 * The init_mm pagetable is really pinned as soon as its created, but
853 * that's before we have page structures to store the bits. So do all
854 * the book-keeping now.
855 */
856static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
857 enum pt_level level)
858{
859 SetPagePinned(page);
860 return 0;
861}
862
863static void __init xen_mark_init_mm_pinned(void)
864{
865 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
866}
867
868static int xen_unpin_page(struct mm_struct *mm, struct page *page,
869 enum pt_level level)
870{
871 unsigned pgfl = TestClearPagePinned(page);
872
873 if (pgfl && !PageHighMem(page)) {
874 void *pt = lowmem_page_address(page);
875 unsigned long pfn = page_to_pfn(page);
876 spinlock_t *ptl = NULL;
877 struct multicall_space mcs;
878
879 /*
880 * Do the converse to pin_page. If we're using split
881 * pte locks, we must be holding the lock for while
882 * the pte page is unpinned but still RO to prevent
883 * concurrent updates from seeing it in this
884 * partially-pinned state.
885 */
886 if (level == PT_PTE) {
887 ptl = xen_pte_lock(page, mm);
888
889 if (ptl)
890 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
891 }
892
893 mcs = __xen_mc_entry(0);
894
895 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
896 pfn_pte(pfn, PAGE_KERNEL),
897 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
898
899 if (ptl) {
900 /* unlock when batch completed */
901 xen_mc_callback(xen_pte_unlock, ptl);
902 }
903 }
904
905 return 0; /* never need to flush on unpin */
906}
907
908/* Release a pagetables pages back as normal RW */
909static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
910{
911 trace_xen_mmu_pgd_unpin(mm, pgd);
912
913 xen_mc_batch();
914
915 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
916
917#ifdef CONFIG_X86_64
918 {
919 pgd_t *user_pgd = xen_get_user_pgd(pgd);
920
921 if (user_pgd) {
922 xen_do_pin(MMUEXT_UNPIN_TABLE,
923 PFN_DOWN(__pa(user_pgd)));
924 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
925 }
926 }
927#endif
928
929#ifdef CONFIG_X86_PAE
930 /* Need to make sure unshared kernel PMD is unpinned */
931 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
932 PT_PMD);
933#endif
934
935 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
936
937 xen_mc_issue(0);
938}
939
940static void xen_pgd_unpin(struct mm_struct *mm)
941{
942 __xen_pgd_unpin(mm, mm->pgd);
943}
944
945/*
946 * On resume, undo any pinning done at save, so that the rest of the
947 * kernel doesn't see any unexpected pinned pagetables.
948 */
949void xen_mm_unpin_all(void)
950{
951 struct page *page;
952
953 spin_lock(&pgd_lock);
954
955 list_for_each_entry(page, &pgd_list, lru) {
956 if (PageSavePinned(page)) {
957 BUG_ON(!PagePinned(page));
958 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
959 ClearPageSavePinned(page);
960 }
961 }
962
963 spin_unlock(&pgd_lock);
964}
965
966static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
967{
968 spin_lock(&next->page_table_lock);
969 xen_pgd_pin(next);
970 spin_unlock(&next->page_table_lock);
971}
972
973static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
974{
975 spin_lock(&mm->page_table_lock);
976 xen_pgd_pin(mm);
977 spin_unlock(&mm->page_table_lock);
978}
979
980
981#ifdef CONFIG_SMP
982/* Another cpu may still have their %cr3 pointing at the pagetable, so
983 we need to repoint it somewhere else before we can unpin it. */
984static void drop_other_mm_ref(void *info)
985{
986 struct mm_struct *mm = info;
987 struct mm_struct *active_mm;
988
989 active_mm = this_cpu_read(cpu_tlbstate.active_mm);
990
991 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
992 leave_mm(smp_processor_id());
993
994 /* If this cpu still has a stale cr3 reference, then make sure
995 it has been flushed. */
996 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
997 load_cr3(swapper_pg_dir);
998}
999
1000static void xen_drop_mm_ref(struct mm_struct *mm)
1001{
1002 cpumask_var_t mask;
1003 unsigned cpu;
1004
1005 if (current->active_mm == mm) {
1006 if (current->mm == mm)
1007 load_cr3(swapper_pg_dir);
1008 else
1009 leave_mm(smp_processor_id());
1010 }
1011
1012 /* Get the "official" set of cpus referring to our pagetable. */
1013 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1014 for_each_online_cpu(cpu) {
1015 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1016 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1017 continue;
1018 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1019 }
1020 return;
1021 }
1022 cpumask_copy(mask, mm_cpumask(mm));
1023
1024 /* It's possible that a vcpu may have a stale reference to our
1025 cr3, because its in lazy mode, and it hasn't yet flushed
1026 its set of pending hypercalls yet. In this case, we can
1027 look at its actual current cr3 value, and force it to flush
1028 if needed. */
1029 for_each_online_cpu(cpu) {
1030 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1031 cpumask_set_cpu(cpu, mask);
1032 }
1033
1034 if (!cpumask_empty(mask))
1035 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1036 free_cpumask_var(mask);
1037}
1038#else
1039static void xen_drop_mm_ref(struct mm_struct *mm)
1040{
1041 if (current->active_mm == mm)
1042 load_cr3(swapper_pg_dir);
1043}
1044#endif
1045
1046/*
1047 * While a process runs, Xen pins its pagetables, which means that the
1048 * hypervisor forces it to be read-only, and it controls all updates
1049 * to it. This means that all pagetable updates have to go via the
1050 * hypervisor, which is moderately expensive.
1051 *
1052 * Since we're pulling the pagetable down, we switch to use init_mm,
1053 * unpin old process pagetable and mark it all read-write, which
1054 * allows further operations on it to be simple memory accesses.
1055 *
1056 * The only subtle point is that another CPU may be still using the
1057 * pagetable because of lazy tlb flushing. This means we need need to
1058 * switch all CPUs off this pagetable before we can unpin it.
1059 */
1060static void xen_exit_mmap(struct mm_struct *mm)
1061{
1062 get_cpu(); /* make sure we don't move around */
1063 xen_drop_mm_ref(mm);
1064 put_cpu();
1065
1066 spin_lock(&mm->page_table_lock);
1067
1068 /* pgd may not be pinned in the error exit path of execve */
1069 if (xen_page_pinned(mm->pgd))
1070 xen_pgd_unpin(mm);
1071
1072 spin_unlock(&mm->page_table_lock);
1073}
1074
1075static void xen_post_allocator_init(void);
1076
1077static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1078{
1079 struct mmuext_op op;
1080
1081 op.cmd = cmd;
1082 op.arg1.mfn = pfn_to_mfn(pfn);
1083 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1084 BUG();
1085}
1086
1087#ifdef CONFIG_X86_64
1088static void __init xen_cleanhighmap(unsigned long vaddr,
1089 unsigned long vaddr_end)
1090{
1091 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1092 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1093
1094 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1095 * We include the PMD passed in on _both_ boundaries. */
1096 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1097 pmd++, vaddr += PMD_SIZE) {
1098 if (pmd_none(*pmd))
1099 continue;
1100 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1101 set_pmd(pmd, __pmd(0));
1102 }
1103 /* In case we did something silly, we should crash in this function
1104 * instead of somewhere later and be confusing. */
1105 xen_mc_flush();
1106}
1107
1108/*
1109 * Make a page range writeable and free it.
1110 */
1111static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1112{
1113 void *vaddr = __va(paddr);
1114 void *vaddr_end = vaddr + size;
1115
1116 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1117 make_lowmem_page_readwrite(vaddr);
1118
1119 memblock_free(paddr, size);
1120}
1121
1122static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1123{
1124 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1125
1126 if (unpin)
1127 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1128 ClearPagePinned(virt_to_page(__va(pa)));
1129 xen_free_ro_pages(pa, PAGE_SIZE);
1130}
1131
1132static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1133{
1134 unsigned long pa;
1135 pte_t *pte_tbl;
1136 int i;
1137
1138 if (pmd_large(*pmd)) {
1139 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1140 xen_free_ro_pages(pa, PMD_SIZE);
1141 return;
1142 }
1143
1144 pte_tbl = pte_offset_kernel(pmd, 0);
1145 for (i = 0; i < PTRS_PER_PTE; i++) {
1146 if (pte_none(pte_tbl[i]))
1147 continue;
1148 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1149 xen_free_ro_pages(pa, PAGE_SIZE);
1150 }
1151 set_pmd(pmd, __pmd(0));
1152 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1153}
1154
1155static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1156{
1157 unsigned long pa;
1158 pmd_t *pmd_tbl;
1159 int i;
1160
1161 if (pud_large(*pud)) {
1162 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1163 xen_free_ro_pages(pa, PUD_SIZE);
1164 return;
1165 }
1166
1167 pmd_tbl = pmd_offset(pud, 0);
1168 for (i = 0; i < PTRS_PER_PMD; i++) {
1169 if (pmd_none(pmd_tbl[i]))
1170 continue;
1171 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1172 }
1173 set_pud(pud, __pud(0));
1174 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1175}
1176
1177static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1178{
1179 unsigned long pa;
1180 pud_t *pud_tbl;
1181 int i;
1182
1183 if (p4d_large(*p4d)) {
1184 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1185 xen_free_ro_pages(pa, P4D_SIZE);
1186 return;
1187 }
1188
1189 pud_tbl = pud_offset(p4d, 0);
1190 for (i = 0; i < PTRS_PER_PUD; i++) {
1191 if (pud_none(pud_tbl[i]))
1192 continue;
1193 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1194 }
1195 set_p4d(p4d, __p4d(0));
1196 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1197}
1198
1199/*
1200 * Since it is well isolated we can (and since it is perhaps large we should)
1201 * also free the page tables mapping the initial P->M table.
1202 */
1203static void __init xen_cleanmfnmap(unsigned long vaddr)
1204{
1205 pgd_t *pgd;
1206 p4d_t *p4d;
1207 unsigned int i;
1208 bool unpin;
1209
1210 unpin = (vaddr == 2 * PGDIR_SIZE);
1211 vaddr &= PMD_MASK;
1212 pgd = pgd_offset_k(vaddr);
1213 p4d = p4d_offset(pgd, 0);
1214 for (i = 0; i < PTRS_PER_P4D; i++) {
1215 if (p4d_none(p4d[i]))
1216 continue;
1217 xen_cleanmfnmap_p4d(p4d + i, unpin);
1218 }
1219 if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
1220 set_pgd(pgd, __pgd(0));
1221 xen_cleanmfnmap_free_pgtbl(p4d, unpin);
1222 }
1223}
1224
1225static void __init xen_pagetable_p2m_free(void)
1226{
1227 unsigned long size;
1228 unsigned long addr;
1229
1230 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1231
1232 /* No memory or already called. */
1233 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1234 return;
1235
1236 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1237 memset((void *)xen_start_info->mfn_list, 0xff, size);
1238
1239 addr = xen_start_info->mfn_list;
1240 /*
1241 * We could be in __ka space.
1242 * We roundup to the PMD, which means that if anybody at this stage is
1243 * using the __ka address of xen_start_info or
1244 * xen_start_info->shared_info they are in going to crash. Fortunatly
1245 * we have already revectored in xen_setup_kernel_pagetable and in
1246 * xen_setup_shared_info.
1247 */
1248 size = roundup(size, PMD_SIZE);
1249
1250 if (addr >= __START_KERNEL_map) {
1251 xen_cleanhighmap(addr, addr + size);
1252 size = PAGE_ALIGN(xen_start_info->nr_pages *
1253 sizeof(unsigned long));
1254 memblock_free(__pa(addr), size);
1255 } else {
1256 xen_cleanmfnmap(addr);
1257 }
1258}
1259
1260static void __init xen_pagetable_cleanhighmap(void)
1261{
1262 unsigned long size;
1263 unsigned long addr;
1264
1265 /* At this stage, cleanup_highmap has already cleaned __ka space
1266 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1267 * the ramdisk). We continue on, erasing PMD entries that point to page
1268 * tables - do note that they are accessible at this stage via __va.
1269 * For good measure we also round up to the PMD - which means that if
1270 * anybody is using __ka address to the initial boot-stack - and try
1271 * to use it - they are going to crash. The xen_start_info has been
1272 * taken care of already in xen_setup_kernel_pagetable. */
1273 addr = xen_start_info->pt_base;
1274 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1275
1276 xen_cleanhighmap(addr, addr + size);
1277 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1278#ifdef DEBUG
1279 /* This is superfluous and is not necessary, but you know what
1280 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1281 * anything at this stage. */
1282 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1283#endif
1284}
1285#endif
1286
1287static void __init xen_pagetable_p2m_setup(void)
1288{
1289 if (xen_feature(XENFEAT_auto_translated_physmap))
1290 return;
1291
1292 xen_vmalloc_p2m_tree();
1293
1294#ifdef CONFIG_X86_64
1295 xen_pagetable_p2m_free();
1296
1297 xen_pagetable_cleanhighmap();
1298#endif
1299 /* And revector! Bye bye old array */
1300 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1301}
1302
1303static void __init xen_pagetable_init(void)
1304{
1305 paging_init();
1306 xen_post_allocator_init();
1307
1308 xen_pagetable_p2m_setup();
1309
1310 /* Allocate and initialize top and mid mfn levels for p2m structure */
1311 xen_build_mfn_list_list();
1312
1313 /* Remap memory freed due to conflicts with E820 map */
1314 if (!xen_feature(XENFEAT_auto_translated_physmap))
1315 xen_remap_memory();
1316
1317 xen_setup_shared_info();
1318}
1319static void xen_write_cr2(unsigned long cr2)
1320{
1321 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1322}
1323
1324static unsigned long xen_read_cr2(void)
1325{
1326 return this_cpu_read(xen_vcpu)->arch.cr2;
1327}
1328
1329unsigned long xen_read_cr2_direct(void)
1330{
1331 return this_cpu_read(xen_vcpu_info.arch.cr2);
1332}
1333
1334static void xen_flush_tlb(void)
1335{
1336 struct mmuext_op *op;
1337 struct multicall_space mcs;
1338
1339 trace_xen_mmu_flush_tlb(0);
1340
1341 preempt_disable();
1342
1343 mcs = xen_mc_entry(sizeof(*op));
1344
1345 op = mcs.args;
1346 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1347 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1348
1349 xen_mc_issue(PARAVIRT_LAZY_MMU);
1350
1351 preempt_enable();
1352}
1353
1354static void xen_flush_tlb_single(unsigned long addr)
1355{
1356 struct mmuext_op *op;
1357 struct multicall_space mcs;
1358
1359 trace_xen_mmu_flush_tlb_single(addr);
1360
1361 preempt_disable();
1362
1363 mcs = xen_mc_entry(sizeof(*op));
1364 op = mcs.args;
1365 op->cmd = MMUEXT_INVLPG_LOCAL;
1366 op->arg1.linear_addr = addr & PAGE_MASK;
1367 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1368
1369 xen_mc_issue(PARAVIRT_LAZY_MMU);
1370
1371 preempt_enable();
1372}
1373
1374static void xen_flush_tlb_others(const struct cpumask *cpus,
1375 struct mm_struct *mm, unsigned long start,
1376 unsigned long end)
1377{
1378 struct {
1379 struct mmuext_op op;
1380#ifdef CONFIG_SMP
1381 DECLARE_BITMAP(mask, num_processors);
1382#else
1383 DECLARE_BITMAP(mask, NR_CPUS);
1384#endif
1385 } *args;
1386 struct multicall_space mcs;
1387
1388 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1389
1390 if (cpumask_empty(cpus))
1391 return; /* nothing to do */
1392
1393 mcs = xen_mc_entry(sizeof(*args));
1394 args = mcs.args;
1395 args->op.arg2.vcpumask = to_cpumask(args->mask);
1396
1397 /* Remove us, and any offline CPUS. */
1398 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1399 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1400
1401 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1402 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1403 args->op.cmd = MMUEXT_INVLPG_MULTI;
1404 args->op.arg1.linear_addr = start;
1405 }
1406
1407 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1408
1409 xen_mc_issue(PARAVIRT_LAZY_MMU);
1410}
1411
1412static unsigned long xen_read_cr3(void)
1413{
1414 return this_cpu_read(xen_cr3);
1415}
1416
1417static void set_current_cr3(void *v)
1418{
1419 this_cpu_write(xen_current_cr3, (unsigned long)v);
1420}
1421
1422static void __xen_write_cr3(bool kernel, unsigned long cr3)
1423{
1424 struct mmuext_op op;
1425 unsigned long mfn;
1426
1427 trace_xen_mmu_write_cr3(kernel, cr3);
1428
1429 if (cr3)
1430 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1431 else
1432 mfn = 0;
1433
1434 WARN_ON(mfn == 0 && kernel);
1435
1436 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1437 op.arg1.mfn = mfn;
1438
1439 xen_extend_mmuext_op(&op);
1440
1441 if (kernel) {
1442 this_cpu_write(xen_cr3, cr3);
1443
1444 /* Update xen_current_cr3 once the batch has actually
1445 been submitted. */
1446 xen_mc_callback(set_current_cr3, (void *)cr3);
1447 }
1448}
1449static void xen_write_cr3(unsigned long cr3)
1450{
1451 BUG_ON(preemptible());
1452
1453 xen_mc_batch(); /* disables interrupts */
1454
1455 /* Update while interrupts are disabled, so its atomic with
1456 respect to ipis */
1457 this_cpu_write(xen_cr3, cr3);
1458
1459 __xen_write_cr3(true, cr3);
1460
1461#ifdef CONFIG_X86_64
1462 {
1463 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1464 if (user_pgd)
1465 __xen_write_cr3(false, __pa(user_pgd));
1466 else
1467 __xen_write_cr3(false, 0);
1468 }
1469#endif
1470
1471 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1472}
1473
1474#ifdef CONFIG_X86_64
1475/*
1476 * At the start of the day - when Xen launches a guest, it has already
1477 * built pagetables for the guest. We diligently look over them
1478 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1479 * init_level4_pgt and its friends. Then when we are happy we load
1480 * the new init_level4_pgt - and continue on.
1481 *
1482 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1483 * up the rest of the pagetables. When it has completed it loads the cr3.
1484 * N.B. that baremetal would start at 'start_kernel' (and the early
1485 * #PF handler would create bootstrap pagetables) - so we are running
1486 * with the same assumptions as what to do when write_cr3 is executed
1487 * at this point.
1488 *
1489 * Since there are no user-page tables at all, we have two variants
1490 * of xen_write_cr3 - the early bootup (this one), and the late one
1491 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1492 * the Linux kernel and user-space are both in ring 3 while the
1493 * hypervisor is in ring 0.
1494 */
1495static void __init xen_write_cr3_init(unsigned long cr3)
1496{
1497 BUG_ON(preemptible());
1498
1499 xen_mc_batch(); /* disables interrupts */
1500
1501 /* Update while interrupts are disabled, so its atomic with
1502 respect to ipis */
1503 this_cpu_write(xen_cr3, cr3);
1504
1505 __xen_write_cr3(true, cr3);
1506
1507 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1508}
1509#endif
1510
1511static int xen_pgd_alloc(struct mm_struct *mm)
1512{
1513 pgd_t *pgd = mm->pgd;
1514 int ret = 0;
1515
1516 BUG_ON(PagePinned(virt_to_page(pgd)));
1517
1518#ifdef CONFIG_X86_64
1519 {
1520 struct page *page = virt_to_page(pgd);
1521 pgd_t *user_pgd;
1522
1523 BUG_ON(page->private != 0);
1524
1525 ret = -ENOMEM;
1526
1527 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1528 page->private = (unsigned long)user_pgd;
1529
1530 if (user_pgd != NULL) {
1531#ifdef CONFIG_X86_VSYSCALL_EMULATION
1532 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1533 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1534#endif
1535 ret = 0;
1536 }
1537
1538 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1539 }
1540#endif
1541 return ret;
1542}
1543
1544static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1545{
1546#ifdef CONFIG_X86_64
1547 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1548
1549 if (user_pgd)
1550 free_page((unsigned long)user_pgd);
1551#endif
1552}
1553
1554/*
1555 * Init-time set_pte while constructing initial pagetables, which
1556 * doesn't allow RO page table pages to be remapped RW.
1557 *
1558 * If there is no MFN for this PFN then this page is initially
1559 * ballooned out so clear the PTE (as in decrease_reservation() in
1560 * drivers/xen/balloon.c).
1561 *
1562 * Many of these PTE updates are done on unpinned and writable pages
1563 * and doing a hypercall for these is unnecessary and expensive. At
1564 * this point it is not possible to tell if a page is pinned or not,
1565 * so always write the PTE directly and rely on Xen trapping and
1566 * emulating any updates as necessary.
1567 */
1568__visible pte_t xen_make_pte_init(pteval_t pte)
1569{
1570#ifdef CONFIG_X86_64
1571 unsigned long pfn;
1572
1573 /*
1574 * Pages belonging to the initial p2m list mapped outside the default
1575 * address range must be mapped read-only. This region contains the
1576 * page tables for mapping the p2m list, too, and page tables MUST be
1577 * mapped read-only.
1578 */
1579 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1580 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1581 pfn >= xen_start_info->first_p2m_pfn &&
1582 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1583 pte &= ~_PAGE_RW;
1584#endif
1585 pte = pte_pfn_to_mfn(pte);
1586 return native_make_pte(pte);
1587}
1588PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1589
1590static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1591{
1592#ifdef CONFIG_X86_32
1593 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1594 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1595 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1596 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1597 pte_val_ma(pte));
1598#endif
1599 native_set_pte(ptep, pte);
1600}
1601
1602/* Early in boot, while setting up the initial pagetable, assume
1603 everything is pinned. */
1604static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1605{
1606#ifdef CONFIG_FLATMEM
1607 BUG_ON(mem_map); /* should only be used early */
1608#endif
1609 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1610 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1611}
1612
1613/* Used for pmd and pud */
1614static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1615{
1616#ifdef CONFIG_FLATMEM
1617 BUG_ON(mem_map); /* should only be used early */
1618#endif
1619 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1620}
1621
1622/* Early release_pte assumes that all pts are pinned, since there's
1623 only init_mm and anything attached to that is pinned. */
1624static void __init xen_release_pte_init(unsigned long pfn)
1625{
1626 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1627 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1628}
1629
1630static void __init xen_release_pmd_init(unsigned long pfn)
1631{
1632 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1633}
1634
1635static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1636{
1637 struct multicall_space mcs;
1638 struct mmuext_op *op;
1639
1640 mcs = __xen_mc_entry(sizeof(*op));
1641 op = mcs.args;
1642 op->cmd = cmd;
1643 op->arg1.mfn = pfn_to_mfn(pfn);
1644
1645 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1646}
1647
1648static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1649{
1650 struct multicall_space mcs;
1651 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1652
1653 mcs = __xen_mc_entry(0);
1654 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1655 pfn_pte(pfn, prot), 0);
1656}
1657
1658/* This needs to make sure the new pte page is pinned iff its being
1659 attached to a pinned pagetable. */
1660static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1661 unsigned level)
1662{
1663 bool pinned = PagePinned(virt_to_page(mm->pgd));
1664
1665 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1666
1667 if (pinned) {
1668 struct page *page = pfn_to_page(pfn);
1669
1670 SetPagePinned(page);
1671
1672 if (!PageHighMem(page)) {
1673 xen_mc_batch();
1674
1675 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1676
1677 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1678 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1679
1680 xen_mc_issue(PARAVIRT_LAZY_MMU);
1681 } else {
1682 /* make sure there are no stray mappings of
1683 this page */
1684 kmap_flush_unused();
1685 }
1686 }
1687}
1688
1689static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1690{
1691 xen_alloc_ptpage(mm, pfn, PT_PTE);
1692}
1693
1694static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1695{
1696 xen_alloc_ptpage(mm, pfn, PT_PMD);
1697}
1698
1699/* This should never happen until we're OK to use struct page */
1700static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1701{
1702 struct page *page = pfn_to_page(pfn);
1703 bool pinned = PagePinned(page);
1704
1705 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1706
1707 if (pinned) {
1708 if (!PageHighMem(page)) {
1709 xen_mc_batch();
1710
1711 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1712 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1713
1714 __set_pfn_prot(pfn, PAGE_KERNEL);
1715
1716 xen_mc_issue(PARAVIRT_LAZY_MMU);
1717 }
1718 ClearPagePinned(page);
1719 }
1720}
1721
1722static void xen_release_pte(unsigned long pfn)
1723{
1724 xen_release_ptpage(pfn, PT_PTE);
1725}
1726
1727static void xen_release_pmd(unsigned long pfn)
1728{
1729 xen_release_ptpage(pfn, PT_PMD);
1730}
1731
1732#if CONFIG_PGTABLE_LEVELS >= 4
1733static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1734{
1735 xen_alloc_ptpage(mm, pfn, PT_PUD);
1736}
1737
1738static void xen_release_pud(unsigned long pfn)
1739{
1740 xen_release_ptpage(pfn, PT_PUD);
1741}
1742#endif
1743
1744void __init xen_reserve_top(void)
1745{
1746#ifdef CONFIG_X86_32
1747 unsigned long top = HYPERVISOR_VIRT_START;
1748 struct xen_platform_parameters pp;
1749
1750 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1751 top = pp.virt_start;
1752
1753 reserve_top_address(-top);
1754#endif /* CONFIG_X86_32 */
1755}
1756
1757/*
1758 * Like __va(), but returns address in the kernel mapping (which is
1759 * all we have until the physical memory mapping has been set up.
1760 */
1761static void * __init __ka(phys_addr_t paddr)
1762{
1763#ifdef CONFIG_X86_64
1764 return (void *)(paddr + __START_KERNEL_map);
1765#else
1766 return __va(paddr);
1767#endif
1768}
1769
1770/* Convert a machine address to physical address */
1771static unsigned long __init m2p(phys_addr_t maddr)
1772{
1773 phys_addr_t paddr;
1774
1775 maddr &= PTE_PFN_MASK;
1776 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1777
1778 return paddr;
1779}
1780
1781/* Convert a machine address to kernel virtual */
1782static void * __init m2v(phys_addr_t maddr)
1783{
1784 return __ka(m2p(maddr));
1785}
1786
1787/* Set the page permissions on an identity-mapped pages */
1788static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1789 unsigned long flags)
1790{
1791 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1792 pte_t pte = pfn_pte(pfn, prot);
1793
1794 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1795 BUG();
1796}
1797static void __init set_page_prot(void *addr, pgprot_t prot)
1798{
1799 return set_page_prot_flags(addr, prot, UVMF_NONE);
1800}
1801#ifdef CONFIG_X86_32
1802static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1803{
1804 unsigned pmdidx, pteidx;
1805 unsigned ident_pte;
1806 unsigned long pfn;
1807
1808 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1809 PAGE_SIZE);
1810
1811 ident_pte = 0;
1812 pfn = 0;
1813 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1814 pte_t *pte_page;
1815
1816 /* Reuse or allocate a page of ptes */
1817 if (pmd_present(pmd[pmdidx]))
1818 pte_page = m2v(pmd[pmdidx].pmd);
1819 else {
1820 /* Check for free pte pages */
1821 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1822 break;
1823
1824 pte_page = &level1_ident_pgt[ident_pte];
1825 ident_pte += PTRS_PER_PTE;
1826
1827 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1828 }
1829
1830 /* Install mappings */
1831 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1832 pte_t pte;
1833
1834 if (pfn > max_pfn_mapped)
1835 max_pfn_mapped = pfn;
1836
1837 if (!pte_none(pte_page[pteidx]))
1838 continue;
1839
1840 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1841 pte_page[pteidx] = pte;
1842 }
1843 }
1844
1845 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1846 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1847
1848 set_page_prot(pmd, PAGE_KERNEL_RO);
1849}
1850#endif
1851void __init xen_setup_machphys_mapping(void)
1852{
1853 struct xen_machphys_mapping mapping;
1854
1855 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1856 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1857 machine_to_phys_nr = mapping.max_mfn + 1;
1858 } else {
1859 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1860 }
1861#ifdef CONFIG_X86_32
1862 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1863 < machine_to_phys_mapping);
1864#endif
1865}
1866
1867#ifdef CONFIG_X86_64
1868static void __init convert_pfn_mfn(void *v)
1869{
1870 pte_t *pte = v;
1871 int i;
1872
1873 /* All levels are converted the same way, so just treat them
1874 as ptes. */
1875 for (i = 0; i < PTRS_PER_PTE; i++)
1876 pte[i] = xen_make_pte(pte[i].pte);
1877}
1878static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1879 unsigned long addr)
1880{
1881 if (*pt_base == PFN_DOWN(__pa(addr))) {
1882 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1883 clear_page((void *)addr);
1884 (*pt_base)++;
1885 }
1886 if (*pt_end == PFN_DOWN(__pa(addr))) {
1887 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1888 clear_page((void *)addr);
1889 (*pt_end)--;
1890 }
1891}
1892/*
1893 * Set up the initial kernel pagetable.
1894 *
1895 * We can construct this by grafting the Xen provided pagetable into
1896 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1897 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1898 * kernel has a physical mapping to start with - but that's enough to
1899 * get __va working. We need to fill in the rest of the physical
1900 * mapping once some sort of allocator has been set up.
1901 */
1902void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1903{
1904 pud_t *l3;
1905 pmd_t *l2;
1906 unsigned long addr[3];
1907 unsigned long pt_base, pt_end;
1908 unsigned i;
1909
1910 /* max_pfn_mapped is the last pfn mapped in the initial memory
1911 * mappings. Considering that on Xen after the kernel mappings we
1912 * have the mappings of some pages that don't exist in pfn space, we
1913 * set max_pfn_mapped to the last real pfn mapped. */
1914 if (xen_start_info->mfn_list < __START_KERNEL_map)
1915 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1916 else
1917 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1918
1919 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1920 pt_end = pt_base + xen_start_info->nr_pt_frames;
1921
1922 /* Zap identity mapping */
1923 init_level4_pgt[0] = __pgd(0);
1924
1925 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1926 /* Pre-constructed entries are in pfn, so convert to mfn */
1927 /* L4[272] -> level3_ident_pgt
1928 * L4[511] -> level3_kernel_pgt */
1929 convert_pfn_mfn(init_level4_pgt);
1930
1931 /* L3_i[0] -> level2_ident_pgt */
1932 convert_pfn_mfn(level3_ident_pgt);
1933 /* L3_k[510] -> level2_kernel_pgt
1934 * L3_k[511] -> level2_fixmap_pgt */
1935 convert_pfn_mfn(level3_kernel_pgt);
1936
1937 /* L3_k[511][506] -> level1_fixmap_pgt */
1938 convert_pfn_mfn(level2_fixmap_pgt);
1939 }
1940 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1941 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1942 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1943
1944 addr[0] = (unsigned long)pgd;
1945 addr[1] = (unsigned long)l3;
1946 addr[2] = (unsigned long)l2;
1947 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1948 * Both L4[272][0] and L4[511][510] have entries that point to the same
1949 * L2 (PMD) tables. Meaning that if you modify it in __va space
1950 * it will be also modified in the __ka space! (But if you just
1951 * modify the PMD table to point to other PTE's or none, then you
1952 * are OK - which is what cleanup_highmap does) */
1953 copy_page(level2_ident_pgt, l2);
1954 /* Graft it onto L4[511][510] */
1955 copy_page(level2_kernel_pgt, l2);
1956
1957 /* Copy the initial P->M table mappings if necessary. */
1958 i = pgd_index(xen_start_info->mfn_list);
1959 if (i && i < pgd_index(__START_KERNEL_map))
1960 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1961
1962 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1963 /* Make pagetable pieces RO */
1964 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1965 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1966 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1967 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1968 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1969 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1970 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1971 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1972
1973 /* Pin down new L4 */
1974 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1975 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1976
1977 /* Unpin Xen-provided one */
1978 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1979
1980 /*
1981 * At this stage there can be no user pgd, and no page
1982 * structure to attach it to, so make sure we just set kernel
1983 * pgd.
1984 */
1985 xen_mc_batch();
1986 __xen_write_cr3(true, __pa(init_level4_pgt));
1987 xen_mc_issue(PARAVIRT_LAZY_CPU);
1988 } else
1989 native_write_cr3(__pa(init_level4_pgt));
1990
1991 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1992 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1993 * the initial domain. For guests using the toolstack, they are in:
1994 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1995 * rip out the [L4] (pgd), but for guests we shave off three pages.
1996 */
1997 for (i = 0; i < ARRAY_SIZE(addr); i++)
1998 check_pt_base(&pt_base, &pt_end, addr[i]);
1999
2000 /* Our (by three pages) smaller Xen pagetable that we are using */
2001 xen_pt_base = PFN_PHYS(pt_base);
2002 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
2003 memblock_reserve(xen_pt_base, xen_pt_size);
2004
2005 /* Revector the xen_start_info */
2006 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2007}
2008
2009/*
2010 * Read a value from a physical address.
2011 */
2012static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2013{
2014 unsigned long *vaddr;
2015 unsigned long val;
2016
2017 vaddr = early_memremap_ro(addr, sizeof(val));
2018 val = *vaddr;
2019 early_memunmap(vaddr, sizeof(val));
2020 return val;
2021}
2022
2023/*
2024 * Translate a virtual address to a physical one without relying on mapped
2025 * page tables.
2026 */
2027static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2028{
2029 phys_addr_t pa;
2030 pgd_t pgd;
2031 pud_t pud;
2032 pmd_t pmd;
2033 pte_t pte;
2034
2035 pa = read_cr3();
2036 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2037 sizeof(pgd)));
2038 if (!pgd_present(pgd))
2039 return 0;
2040
2041 pa = pgd_val(pgd) & PTE_PFN_MASK;
2042 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2043 sizeof(pud)));
2044 if (!pud_present(pud))
2045 return 0;
2046 pa = pud_pfn(pud) << PAGE_SHIFT;
2047 if (pud_large(pud))
2048 return pa + (vaddr & ~PUD_MASK);
2049
2050 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2051 sizeof(pmd)));
2052 if (!pmd_present(pmd))
2053 return 0;
2054 pa = pmd_pfn(pmd) << PAGE_SHIFT;
2055 if (pmd_large(pmd))
2056 return pa + (vaddr & ~PMD_MASK);
2057
2058 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2059 sizeof(pte)));
2060 if (!pte_present(pte))
2061 return 0;
2062 pa = pte_pfn(pte) << PAGE_SHIFT;
2063
2064 return pa | (vaddr & ~PAGE_MASK);
2065}
2066
2067/*
2068 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2069 * this area.
2070 */
2071void __init xen_relocate_p2m(void)
2072{
2073 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys;
2074 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2075 int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d;
2076 pte_t *pt;
2077 pmd_t *pmd;
2078 pud_t *pud;
2079 p4d_t *p4d = NULL;
2080 pgd_t *pgd;
2081 unsigned long *new_p2m;
2082 int save_pud;
2083
2084 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2085 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2086 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2087 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2088 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2089 if (PTRS_PER_P4D > 1)
2090 n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2091 else
2092 n_p4d = 0;
2093 n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d;
2094
2095 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2096 if (!new_area) {
2097 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2098 BUG();
2099 }
2100
2101 /*
2102 * Setup the page tables for addressing the new p2m list.
2103 * We have asked the hypervisor to map the p2m list at the user address
2104 * PUD_SIZE. It may have done so, or it may have used a kernel space
2105 * address depending on the Xen version.
2106 * To avoid any possible virtual address collision, just use
2107 * 2 * PUD_SIZE for the new area.
2108 */
2109 p4d_phys = new_area;
2110 pud_phys = p4d_phys + PFN_PHYS(n_p4d);
2111 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2112 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2113 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2114
2115 pgd = __va(read_cr3());
2116 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2117 idx_p4d = 0;
2118 save_pud = n_pud;
2119 do {
2120 if (n_p4d > 0) {
2121 p4d = early_memremap(p4d_phys, PAGE_SIZE);
2122 clear_page(p4d);
2123 n_pud = min(save_pud, PTRS_PER_P4D);
2124 }
2125 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2126 pud = early_memremap(pud_phys, PAGE_SIZE);
2127 clear_page(pud);
2128 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2129 idx_pmd++) {
2130 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2131 clear_page(pmd);
2132 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2133 idx_pt++) {
2134 pt = early_memremap(pt_phys, PAGE_SIZE);
2135 clear_page(pt);
2136 for (idx_pte = 0;
2137 idx_pte < min(n_pte, PTRS_PER_PTE);
2138 idx_pte++) {
2139 set_pte(pt + idx_pte,
2140 pfn_pte(p2m_pfn, PAGE_KERNEL));
2141 p2m_pfn++;
2142 }
2143 n_pte -= PTRS_PER_PTE;
2144 early_memunmap(pt, PAGE_SIZE);
2145 make_lowmem_page_readonly(__va(pt_phys));
2146 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2147 PFN_DOWN(pt_phys));
2148 set_pmd(pmd + idx_pt,
2149 __pmd(_PAGE_TABLE | pt_phys));
2150 pt_phys += PAGE_SIZE;
2151 }
2152 n_pt -= PTRS_PER_PMD;
2153 early_memunmap(pmd, PAGE_SIZE);
2154 make_lowmem_page_readonly(__va(pmd_phys));
2155 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2156 PFN_DOWN(pmd_phys));
2157 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2158 pmd_phys += PAGE_SIZE;
2159 }
2160 n_pmd -= PTRS_PER_PUD;
2161 early_memunmap(pud, PAGE_SIZE);
2162 make_lowmem_page_readonly(__va(pud_phys));
2163 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2164 if (n_p4d > 0)
2165 set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys));
2166 else
2167 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2168 pud_phys += PAGE_SIZE;
2169 }
2170 if (n_p4d > 0) {
2171 save_pud -= PTRS_PER_P4D;
2172 early_memunmap(p4d, PAGE_SIZE);
2173 make_lowmem_page_readonly(__va(p4d_phys));
2174 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys));
2175 set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys));
2176 p4d_phys += PAGE_SIZE;
2177 }
2178 } while (++idx_p4d < n_p4d);
2179
2180 /* Now copy the old p2m info to the new area. */
2181 memcpy(new_p2m, xen_p2m_addr, size);
2182 xen_p2m_addr = new_p2m;
2183
2184 /* Release the old p2m list and set new list info. */
2185 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2186 BUG_ON(!p2m_pfn);
2187 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2188
2189 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2190 pfn = xen_start_info->first_p2m_pfn;
2191 pfn_end = xen_start_info->first_p2m_pfn +
2192 xen_start_info->nr_p2m_frames;
2193 set_pgd(pgd + 1, __pgd(0));
2194 } else {
2195 pfn = p2m_pfn;
2196 pfn_end = p2m_pfn_end;
2197 }
2198
2199 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2200 while (pfn < pfn_end) {
2201 if (pfn == p2m_pfn) {
2202 pfn = p2m_pfn_end;
2203 continue;
2204 }
2205 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2206 pfn++;
2207 }
2208
2209 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2210 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2211 xen_start_info->nr_p2m_frames = n_frames;
2212}
2213
2214#else /* !CONFIG_X86_64 */
2215static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2216static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2217
2218static void __init xen_write_cr3_init(unsigned long cr3)
2219{
2220 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2221
2222 BUG_ON(read_cr3() != __pa(initial_page_table));
2223 BUG_ON(cr3 != __pa(swapper_pg_dir));
2224
2225 /*
2226 * We are switching to swapper_pg_dir for the first time (from
2227 * initial_page_table) and therefore need to mark that page
2228 * read-only and then pin it.
2229 *
2230 * Xen disallows sharing of kernel PMDs for PAE
2231 * guests. Therefore we must copy the kernel PMD from
2232 * initial_page_table into a new kernel PMD to be used in
2233 * swapper_pg_dir.
2234 */
2235 swapper_kernel_pmd =
2236 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2237 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2238 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2239 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2240 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2241
2242 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2243 xen_write_cr3(cr3);
2244 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2245
2246 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2247 PFN_DOWN(__pa(initial_page_table)));
2248 set_page_prot(initial_page_table, PAGE_KERNEL);
2249 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2250
2251 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2252}
2253
2254/*
2255 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2256 * not the first page table in the page table pool.
2257 * Iterate through the initial page tables to find the real page table base.
2258 */
2259static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2260{
2261 phys_addr_t pt_base, paddr;
2262 unsigned pmdidx;
2263
2264 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2265
2266 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2267 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2268 paddr = m2p(pmd[pmdidx].pmd);
2269 pt_base = min(pt_base, paddr);
2270 }
2271
2272 return pt_base;
2273}
2274
2275void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2276{
2277 pmd_t *kernel_pmd;
2278
2279 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2280
2281 xen_pt_base = xen_find_pt_base(kernel_pmd);
2282 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2283
2284 initial_kernel_pmd =
2285 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2286
2287 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2288
2289 copy_page(initial_kernel_pmd, kernel_pmd);
2290
2291 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2292
2293 copy_page(initial_page_table, pgd);
2294 initial_page_table[KERNEL_PGD_BOUNDARY] =
2295 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2296
2297 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2298 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2299 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2300
2301 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2302
2303 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2304 PFN_DOWN(__pa(initial_page_table)));
2305 xen_write_cr3(__pa(initial_page_table));
2306
2307 memblock_reserve(xen_pt_base, xen_pt_size);
2308}
2309#endif /* CONFIG_X86_64 */
2310
2311void __init xen_reserve_special_pages(void)
2312{
2313 phys_addr_t paddr;
2314
2315 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2316 if (xen_start_info->store_mfn) {
2317 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2318 memblock_reserve(paddr, PAGE_SIZE);
2319 }
2320 if (!xen_initial_domain()) {
2321 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2322 memblock_reserve(paddr, PAGE_SIZE);
2323 }
2324}
2325
2326void __init xen_pt_check_e820(void)
2327{
2328 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2329 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2330 BUG();
2331 }
2332}
2333
2334static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2335
2336static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2337{
2338 pte_t pte;
2339
2340 phys >>= PAGE_SHIFT;
2341
2342 switch (idx) {
2343 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2344 case FIX_RO_IDT:
2345#ifdef CONFIG_X86_32
2346 case FIX_WP_TEST:
2347# ifdef CONFIG_HIGHMEM
2348 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2349# endif
2350#elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2351 case VSYSCALL_PAGE:
2352#endif
2353 case FIX_TEXT_POKE0:
2354 case FIX_TEXT_POKE1:
2355 case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END:
2356 /* All local page mappings */
2357 pte = pfn_pte(phys, prot);
2358 break;
2359
2360#ifdef CONFIG_X86_LOCAL_APIC
2361 case FIX_APIC_BASE: /* maps dummy local APIC */
2362 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2363 break;
2364#endif
2365
2366#ifdef CONFIG_X86_IO_APIC
2367 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2368 /*
2369 * We just don't map the IO APIC - all access is via
2370 * hypercalls. Keep the address in the pte for reference.
2371 */
2372 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2373 break;
2374#endif
2375
2376 case FIX_PARAVIRT_BOOTMAP:
2377 /* This is an MFN, but it isn't an IO mapping from the
2378 IO domain */
2379 pte = mfn_pte(phys, prot);
2380 break;
2381
2382 default:
2383 /* By default, set_fixmap is used for hardware mappings */
2384 pte = mfn_pte(phys, prot);
2385 break;
2386 }
2387
2388 __native_set_fixmap(idx, pte);
2389
2390#ifdef CONFIG_X86_VSYSCALL_EMULATION
2391 /* Replicate changes to map the vsyscall page into the user
2392 pagetable vsyscall mapping. */
2393 if (idx == VSYSCALL_PAGE) {
2394 unsigned long vaddr = __fix_to_virt(idx);
2395 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2396 }
2397#endif
2398}
2399
2400static void __init xen_post_allocator_init(void)
2401{
2402 if (xen_feature(XENFEAT_auto_translated_physmap))
2403 return;
2404
2405 pv_mmu_ops.set_pte = xen_set_pte;
2406 pv_mmu_ops.set_pmd = xen_set_pmd;
2407 pv_mmu_ops.set_pud = xen_set_pud;
2408#if CONFIG_PGTABLE_LEVELS >= 4
2409 pv_mmu_ops.set_p4d = xen_set_p4d;
2410#endif
2411
2412 /* This will work as long as patching hasn't happened yet
2413 (which it hasn't) */
2414 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2415 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2416 pv_mmu_ops.release_pte = xen_release_pte;
2417 pv_mmu_ops.release_pmd = xen_release_pmd;
2418#if CONFIG_PGTABLE_LEVELS >= 4
2419 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2420 pv_mmu_ops.release_pud = xen_release_pud;
2421#endif
2422 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2423
2424#ifdef CONFIG_X86_64
2425 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2426 SetPagePinned(virt_to_page(level3_user_vsyscall));
2427#endif
2428 xen_mark_init_mm_pinned();
2429}
2430
2431static void xen_leave_lazy_mmu(void)
2432{
2433 preempt_disable();
2434 xen_mc_flush();
2435 paravirt_leave_lazy_mmu();
2436 preempt_enable();
2437}
2438
2439static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2440 .read_cr2 = xen_read_cr2,
2441 .write_cr2 = xen_write_cr2,
2442
2443 .read_cr3 = xen_read_cr3,
2444 .write_cr3 = xen_write_cr3_init,
2445
2446 .flush_tlb_user = xen_flush_tlb,
2447 .flush_tlb_kernel = xen_flush_tlb,
2448 .flush_tlb_single = xen_flush_tlb_single,
2449 .flush_tlb_others = xen_flush_tlb_others,
2450
2451 .pte_update = paravirt_nop,
2452
2453 .pgd_alloc = xen_pgd_alloc,
2454 .pgd_free = xen_pgd_free,
2455
2456 .alloc_pte = xen_alloc_pte_init,
2457 .release_pte = xen_release_pte_init,
2458 .alloc_pmd = xen_alloc_pmd_init,
2459 .release_pmd = xen_release_pmd_init,
2460
2461 .set_pte = xen_set_pte_init,
2462 .set_pte_at = xen_set_pte_at,
2463 .set_pmd = xen_set_pmd_hyper,
2464
2465 .ptep_modify_prot_start = __ptep_modify_prot_start,
2466 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2467
2468 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2469 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2470
2471 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2472 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2473
2474#ifdef CONFIG_X86_PAE
2475 .set_pte_atomic = xen_set_pte_atomic,
2476 .pte_clear = xen_pte_clear,
2477 .pmd_clear = xen_pmd_clear,
2478#endif /* CONFIG_X86_PAE */
2479 .set_pud = xen_set_pud_hyper,
2480
2481 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2482 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2483
2484#if CONFIG_PGTABLE_LEVELS >= 4
2485 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2486 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2487 .set_p4d = xen_set_p4d_hyper,
2488
2489 .alloc_pud = xen_alloc_pmd_init,
2490 .release_pud = xen_release_pmd_init,
2491#endif /* CONFIG_PGTABLE_LEVELS == 4 */
2492
2493 .activate_mm = xen_activate_mm,
2494 .dup_mmap = xen_dup_mmap,
2495 .exit_mmap = xen_exit_mmap,
2496
2497 .lazy_mode = {
2498 .enter = paravirt_enter_lazy_mmu,
2499 .leave = xen_leave_lazy_mmu,
2500 .flush = paravirt_flush_lazy_mmu,
2501 },
2502
2503 .set_fixmap = xen_set_fixmap,
2504};
2505
2506void __init xen_init_mmu_ops(void)
2507{
2508 x86_init.paging.pagetable_init = xen_pagetable_init;
2509
2510 if (xen_feature(XENFEAT_auto_translated_physmap))
2511 return;
2512
2513 pv_mmu_ops = xen_mmu_ops;
2514
2515 memset(dummy_mapping, 0xff, PAGE_SIZE);
2516}
2517
2518/* Protected by xen_reservation_lock. */
2519#define MAX_CONTIG_ORDER 9 /* 2MB */
2520static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2521
2522#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2523static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2524 unsigned long *in_frames,
2525 unsigned long *out_frames)
2526{
2527 int i;
2528 struct multicall_space mcs;
2529
2530 xen_mc_batch();
2531 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2532 mcs = __xen_mc_entry(0);
2533
2534 if (in_frames)
2535 in_frames[i] = virt_to_mfn(vaddr);
2536
2537 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2538 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2539
2540 if (out_frames)
2541 out_frames[i] = virt_to_pfn(vaddr);
2542 }
2543 xen_mc_issue(0);
2544}
2545
2546/*
2547 * Update the pfn-to-mfn mappings for a virtual address range, either to
2548 * point to an array of mfns, or contiguously from a single starting
2549 * mfn.
2550 */
2551static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2552 unsigned long *mfns,
2553 unsigned long first_mfn)
2554{
2555 unsigned i, limit;
2556 unsigned long mfn;
2557
2558 xen_mc_batch();
2559
2560 limit = 1u << order;
2561 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2562 struct multicall_space mcs;
2563 unsigned flags;
2564
2565 mcs = __xen_mc_entry(0);
2566 if (mfns)
2567 mfn = mfns[i];
2568 else
2569 mfn = first_mfn + i;
2570
2571 if (i < (limit - 1))
2572 flags = 0;
2573 else {
2574 if (order == 0)
2575 flags = UVMF_INVLPG | UVMF_ALL;
2576 else
2577 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2578 }
2579
2580 MULTI_update_va_mapping(mcs.mc, vaddr,
2581 mfn_pte(mfn, PAGE_KERNEL), flags);
2582
2583 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2584 }
2585
2586 xen_mc_issue(0);
2587}
2588
2589/*
2590 * Perform the hypercall to exchange a region of our pfns to point to
2591 * memory with the required contiguous alignment. Takes the pfns as
2592 * input, and populates mfns as output.
2593 *
2594 * Returns a success code indicating whether the hypervisor was able to
2595 * satisfy the request or not.
2596 */
2597static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2598 unsigned long *pfns_in,
2599 unsigned long extents_out,
2600 unsigned int order_out,
2601 unsigned long *mfns_out,
2602 unsigned int address_bits)
2603{
2604 long rc;
2605 int success;
2606
2607 struct xen_memory_exchange exchange = {
2608 .in = {
2609 .nr_extents = extents_in,
2610 .extent_order = order_in,
2611 .extent_start = pfns_in,
2612 .domid = DOMID_SELF
2613 },
2614 .out = {
2615 .nr_extents = extents_out,
2616 .extent_order = order_out,
2617 .extent_start = mfns_out,
2618 .address_bits = address_bits,
2619 .domid = DOMID_SELF
2620 }
2621 };
2622
2623 BUG_ON(extents_in << order_in != extents_out << order_out);
2624
2625 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2626 success = (exchange.nr_exchanged == extents_in);
2627
2628 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2629 BUG_ON(success && (rc != 0));
2630
2631 return success;
2632}
2633
2634int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2635 unsigned int address_bits,
2636 dma_addr_t *dma_handle)
2637{
2638 unsigned long *in_frames = discontig_frames, out_frame;
2639 unsigned long flags;
2640 int success;
2641 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2642
2643 /*
2644 * Currently an auto-translated guest will not perform I/O, nor will
2645 * it require PAE page directories below 4GB. Therefore any calls to
2646 * this function are redundant and can be ignored.
2647 */
2648
2649 if (xen_feature(XENFEAT_auto_translated_physmap))
2650 return 0;
2651
2652 if (unlikely(order > MAX_CONTIG_ORDER))
2653 return -ENOMEM;
2654
2655 memset((void *) vstart, 0, PAGE_SIZE << order);
2656
2657 spin_lock_irqsave(&xen_reservation_lock, flags);
2658
2659 /* 1. Zap current PTEs, remembering MFNs. */
2660 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2661
2662 /* 2. Get a new contiguous memory extent. */
2663 out_frame = virt_to_pfn(vstart);
2664 success = xen_exchange_memory(1UL << order, 0, in_frames,
2665 1, order, &out_frame,
2666 address_bits);
2667
2668 /* 3. Map the new extent in place of old pages. */
2669 if (success)
2670 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2671 else
2672 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2673
2674 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2675
2676 *dma_handle = virt_to_machine(vstart).maddr;
2677 return success ? 0 : -ENOMEM;
2678}
2679EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2680
2681void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2682{
2683 unsigned long *out_frames = discontig_frames, in_frame;
2684 unsigned long flags;
2685 int success;
2686 unsigned long vstart;
2687
2688 if (xen_feature(XENFEAT_auto_translated_physmap))
2689 return;
2690
2691 if (unlikely(order > MAX_CONTIG_ORDER))
2692 return;
2693
2694 vstart = (unsigned long)phys_to_virt(pstart);
2695 memset((void *) vstart, 0, PAGE_SIZE << order);
2696
2697 spin_lock_irqsave(&xen_reservation_lock, flags);
2698
2699 /* 1. Find start MFN of contiguous extent. */
2700 in_frame = virt_to_mfn(vstart);
2701
2702 /* 2. Zap current PTEs. */
2703 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2704
2705 /* 3. Do the exchange for non-contiguous MFNs. */
2706 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2707 0, out_frames, 0);
2708
2709 /* 4. Map new pages in place of old pages. */
2710 if (success)
2711 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2712 else
2713 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2714
2715 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2716}
2717EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);