Chris Metcalf | e3d62d7 | 2012-06-07 10:45:02 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Tilera Corporation. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation, version 2. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 11 | * NON INFRINGEMENT. See the GNU General Public License for |
| 12 | * more details. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/moduleparam.h> |
| 18 | #include <linux/sched.h> |
| 19 | #include <linux/kernel.h> /* printk() */ |
| 20 | #include <linux/slab.h> /* kmalloc() */ |
| 21 | #include <linux/errno.h> /* error codes */ |
| 22 | #include <linux/types.h> /* size_t */ |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/in.h> |
| 25 | #include <linux/irq.h> |
| 26 | #include <linux/netdevice.h> /* struct device, and other headers */ |
| 27 | #include <linux/etherdevice.h> /* eth_type_trans */ |
| 28 | #include <linux/skbuff.h> |
| 29 | #include <linux/ioctl.h> |
| 30 | #include <linux/cdev.h> |
| 31 | #include <linux/hugetlb.h> |
| 32 | #include <linux/in6.h> |
| 33 | #include <linux/timer.h> |
| 34 | #include <linux/hrtimer.h> |
| 35 | #include <linux/ktime.h> |
| 36 | #include <linux/io.h> |
| 37 | #include <linux/ctype.h> |
| 38 | #include <linux/ip.h> |
| 39 | #include <linux/tcp.h> |
| 40 | |
| 41 | #include <asm/checksum.h> |
| 42 | #include <asm/homecache.h> |
| 43 | #include <gxio/mpipe.h> |
| 44 | #include <arch/sim.h> |
| 45 | |
| 46 | /* Default transmit lockup timeout period, in jiffies. */ |
| 47 | #define TILE_NET_TIMEOUT (5 * HZ) |
| 48 | |
| 49 | /* The maximum number of distinct channels (idesc.channel is 5 bits). */ |
| 50 | #define TILE_NET_CHANNELS 32 |
| 51 | |
| 52 | /* Maximum number of idescs to handle per "poll". */ |
| 53 | #define TILE_NET_BATCH 128 |
| 54 | |
| 55 | /* Maximum number of packets to handle per "poll". */ |
| 56 | #define TILE_NET_WEIGHT 64 |
| 57 | |
| 58 | /* Number of entries in each iqueue. */ |
| 59 | #define IQUEUE_ENTRIES 512 |
| 60 | |
| 61 | /* Number of entries in each equeue. */ |
| 62 | #define EQUEUE_ENTRIES 2048 |
| 63 | |
| 64 | /* Total header bytes per equeue slot. Must be big enough for 2 bytes |
| 65 | * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to |
| 66 | * 60 bytes of actual TCP header. We round up to align to cache lines. |
| 67 | */ |
| 68 | #define HEADER_BYTES 128 |
| 69 | |
| 70 | /* Maximum completions per cpu per device (must be a power of two). |
| 71 | * ISSUE: What is the right number here? If this is too small, then |
| 72 | * egress might block waiting for free space in a completions array. |
| 73 | * ISSUE: At the least, allocate these only for initialized echannels. |
| 74 | */ |
| 75 | #define TILE_NET_MAX_COMPS 64 |
| 76 | |
| 77 | #define MAX_FRAGS (MAX_SKB_FRAGS + 1) |
| 78 | |
| 79 | /* Size of completions data to allocate. |
| 80 | * ISSUE: Probably more than needed since we don't use all the channels. |
| 81 | */ |
| 82 | #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps)) |
| 83 | |
| 84 | /* Size of NotifRing data to allocate. */ |
| 85 | #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t)) |
| 86 | |
| 87 | /* Timeout to wake the per-device TX timer after we stop the queue. |
| 88 | * We don't want the timeout too short (adds overhead, and might end |
| 89 | * up causing stop/wake/stop/wake cycles) or too long (affects performance). |
| 90 | * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets. |
| 91 | */ |
| 92 | #define TX_TIMER_DELAY_USEC 30 |
| 93 | |
| 94 | /* Timeout to wake the per-cpu egress timer to free completions. */ |
| 95 | #define EGRESS_TIMER_DELAY_USEC 1000 |
| 96 | |
| 97 | MODULE_AUTHOR("Tilera Corporation"); |
| 98 | MODULE_LICENSE("GPL"); |
| 99 | |
| 100 | /* A "packet fragment" (a chunk of memory). */ |
| 101 | struct frag { |
| 102 | void *buf; |
| 103 | size_t length; |
| 104 | }; |
| 105 | |
| 106 | /* A single completion. */ |
| 107 | struct tile_net_comp { |
| 108 | /* The "complete_count" when the completion will be complete. */ |
| 109 | s64 when; |
| 110 | /* The buffer to be freed when the completion is complete. */ |
| 111 | struct sk_buff *skb; |
| 112 | }; |
| 113 | |
| 114 | /* The completions for a given cpu and echannel. */ |
| 115 | struct tile_net_comps { |
| 116 | /* The completions. */ |
| 117 | struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS]; |
| 118 | /* The number of completions used. */ |
| 119 | unsigned long comp_next; |
| 120 | /* The number of completions freed. */ |
| 121 | unsigned long comp_last; |
| 122 | }; |
| 123 | |
| 124 | /* The transmit wake timer for a given cpu and echannel. */ |
| 125 | struct tile_net_tx_wake { |
| 126 | struct hrtimer timer; |
| 127 | struct net_device *dev; |
| 128 | }; |
| 129 | |
| 130 | /* Info for a specific cpu. */ |
| 131 | struct tile_net_info { |
| 132 | /* The NAPI struct. */ |
| 133 | struct napi_struct napi; |
| 134 | /* Packet queue. */ |
| 135 | gxio_mpipe_iqueue_t iqueue; |
| 136 | /* Our cpu. */ |
| 137 | int my_cpu; |
| 138 | /* True if iqueue is valid. */ |
| 139 | bool has_iqueue; |
| 140 | /* NAPI flags. */ |
| 141 | bool napi_added; |
| 142 | bool napi_enabled; |
| 143 | /* Number of small sk_buffs which must still be provided. */ |
| 144 | unsigned int num_needed_small_buffers; |
| 145 | /* Number of large sk_buffs which must still be provided. */ |
| 146 | unsigned int num_needed_large_buffers; |
| 147 | /* A timer for handling egress completions. */ |
| 148 | struct hrtimer egress_timer; |
| 149 | /* True if "egress_timer" is scheduled. */ |
| 150 | bool egress_timer_scheduled; |
| 151 | /* Comps for each egress channel. */ |
| 152 | struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS]; |
| 153 | /* Transmit wake timer for each egress channel. */ |
| 154 | struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS]; |
| 155 | }; |
| 156 | |
| 157 | /* Info for egress on a particular egress channel. */ |
| 158 | struct tile_net_egress { |
| 159 | /* The "equeue". */ |
| 160 | gxio_mpipe_equeue_t *equeue; |
| 161 | /* The headers for TSO. */ |
| 162 | unsigned char *headers; |
| 163 | }; |
| 164 | |
| 165 | /* Info for a specific device. */ |
| 166 | struct tile_net_priv { |
| 167 | /* Our network device. */ |
| 168 | struct net_device *dev; |
| 169 | /* The primary link. */ |
| 170 | gxio_mpipe_link_t link; |
| 171 | /* The primary channel, if open, else -1. */ |
| 172 | int channel; |
| 173 | /* The "loopify" egress link, if needed. */ |
| 174 | gxio_mpipe_link_t loopify_link; |
| 175 | /* The "loopify" egress channel, if open, else -1. */ |
| 176 | int loopify_channel; |
| 177 | /* The egress channel (channel or loopify_channel). */ |
| 178 | int echannel; |
| 179 | /* Total stats. */ |
| 180 | struct net_device_stats stats; |
| 181 | }; |
| 182 | |
| 183 | /* Egress info, indexed by "priv->echannel" (lazily created as needed). */ |
| 184 | static struct tile_net_egress egress_for_echannel[TILE_NET_CHANNELS]; |
| 185 | |
| 186 | /* Devices currently associated with each channel. |
| 187 | * NOTE: The array entry can become NULL after ifconfig down, but |
| 188 | * we do not free the underlying net_device structures, so it is |
| 189 | * safe to use a pointer after reading it from this array. |
| 190 | */ |
| 191 | static struct net_device *tile_net_devs_for_channel[TILE_NET_CHANNELS]; |
| 192 | |
| 193 | /* A mutex for "tile_net_devs_for_channel". */ |
| 194 | static DEFINE_MUTEX(tile_net_devs_for_channel_mutex); |
| 195 | |
| 196 | /* The per-cpu info. */ |
| 197 | static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info); |
| 198 | |
| 199 | /* The "context" for all devices. */ |
| 200 | static gxio_mpipe_context_t context; |
| 201 | |
| 202 | /* Buffer sizes and mpipe enum codes for buffer stacks. |
| 203 | * See arch/tile/include/gxio/mpipe.h for the set of possible values. |
| 204 | */ |
| 205 | #define BUFFER_SIZE_SMALL_ENUM GXIO_MPIPE_BUFFER_SIZE_128 |
| 206 | #define BUFFER_SIZE_SMALL 128 |
| 207 | #define BUFFER_SIZE_LARGE_ENUM GXIO_MPIPE_BUFFER_SIZE_1664 |
| 208 | #define BUFFER_SIZE_LARGE 1664 |
| 209 | |
| 210 | /* The small/large "buffer stacks". */ |
| 211 | static int small_buffer_stack = -1; |
| 212 | static int large_buffer_stack = -1; |
| 213 | |
| 214 | /* Amount of memory allocated for each buffer stack. */ |
| 215 | static size_t buffer_stack_size; |
| 216 | |
| 217 | /* The actual memory allocated for the buffer stacks. */ |
| 218 | static void *small_buffer_stack_va; |
| 219 | static void *large_buffer_stack_va; |
| 220 | |
| 221 | /* The buckets. */ |
| 222 | static int first_bucket = -1; |
| 223 | static int num_buckets = 1; |
| 224 | |
| 225 | /* The ingress irq. */ |
| 226 | static int ingress_irq = -1; |
| 227 | |
| 228 | /* Text value of tile_net.cpus if passed as a module parameter. */ |
| 229 | static char *network_cpus_string; |
| 230 | |
| 231 | /* The actual cpus in "network_cpus". */ |
| 232 | static struct cpumask network_cpus_map; |
| 233 | |
| 234 | /* If "loopify=LINK" was specified, this is "LINK". */ |
| 235 | static char *loopify_link_name; |
| 236 | |
| 237 | /* If "tile_net.custom" was specified, this is non-NULL. */ |
| 238 | static char *custom_str; |
| 239 | |
| 240 | /* The "tile_net.cpus" argument specifies the cpus that are dedicated |
| 241 | * to handle ingress packets. |
| 242 | * |
| 243 | * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where |
| 244 | * m, n, x, y are integer numbers that represent the cpus that can be |
| 245 | * neither a dedicated cpu nor a dataplane cpu. |
| 246 | */ |
| 247 | static bool network_cpus_init(void) |
| 248 | { |
| 249 | char buf[1024]; |
| 250 | int rc; |
| 251 | |
| 252 | if (network_cpus_string == NULL) |
| 253 | return false; |
| 254 | |
| 255 | rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map); |
| 256 | if (rc != 0) { |
| 257 | pr_warn("tile_net.cpus=%s: malformed cpu list\n", |
| 258 | network_cpus_string); |
| 259 | return false; |
| 260 | } |
| 261 | |
| 262 | /* Remove dedicated cpus. */ |
| 263 | cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask); |
| 264 | |
| 265 | if (cpumask_empty(&network_cpus_map)) { |
| 266 | pr_warn("Ignoring empty tile_net.cpus='%s'.\n", |
| 267 | network_cpus_string); |
| 268 | return false; |
| 269 | } |
| 270 | |
| 271 | cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map); |
| 272 | pr_info("Linux network CPUs: %s\n", buf); |
| 273 | return true; |
| 274 | } |
| 275 | |
| 276 | module_param_named(cpus, network_cpus_string, charp, 0444); |
| 277 | MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts"); |
| 278 | |
| 279 | /* The "tile_net.loopify=LINK" argument causes the named device to |
| 280 | * actually use "loop0" for ingress, and "loop1" for egress. This |
| 281 | * allows an app to sit between the actual link and linux, passing |
| 282 | * (some) packets along to linux, and forwarding (some) packets sent |
| 283 | * out by linux. |
| 284 | */ |
| 285 | module_param_named(loopify, loopify_link_name, charp, 0444); |
| 286 | MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress"); |
| 287 | |
| 288 | /* The "tile_net.custom" argument causes us to ignore the "conventional" |
| 289 | * classifier metadata, in particular, the "l2_offset". |
| 290 | */ |
| 291 | module_param_named(custom, custom_str, charp, 0444); |
| 292 | MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier"); |
| 293 | |
| 294 | /* Atomically update a statistics field. |
| 295 | * Note that on TILE-Gx, this operation is fire-and-forget on the |
| 296 | * issuing core (single-cycle dispatch) and takes only a few cycles |
| 297 | * longer than a regular store when the request reaches the home cache. |
| 298 | * No expensive bus management overhead is required. |
| 299 | */ |
| 300 | static void tile_net_stats_add(unsigned long value, unsigned long *field) |
| 301 | { |
| 302 | BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long)); |
| 303 | atomic_long_add(value, (atomic_long_t *)field); |
| 304 | } |
| 305 | |
| 306 | /* Allocate and push a buffer. */ |
| 307 | static bool tile_net_provide_buffer(bool small) |
| 308 | { |
| 309 | int stack = small ? small_buffer_stack : large_buffer_stack; |
| 310 | const unsigned long buffer_alignment = 128; |
| 311 | struct sk_buff *skb; |
| 312 | int len; |
| 313 | |
| 314 | len = sizeof(struct sk_buff **) + buffer_alignment; |
| 315 | len += (small ? BUFFER_SIZE_SMALL : BUFFER_SIZE_LARGE); |
| 316 | skb = dev_alloc_skb(len); |
| 317 | if (skb == NULL) |
| 318 | return false; |
| 319 | |
| 320 | /* Make room for a back-pointer to 'skb' and guarantee alignment. */ |
| 321 | skb_reserve(skb, sizeof(struct sk_buff **)); |
| 322 | skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1)); |
| 323 | |
| 324 | /* Save a back-pointer to 'skb'. */ |
| 325 | *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb; |
| 326 | |
| 327 | /* Make sure "skb" and the back-pointer have been flushed. */ |
| 328 | wmb(); |
| 329 | |
| 330 | gxio_mpipe_push_buffer(&context, stack, |
| 331 | (void *)va_to_tile_io_addr(skb->data)); |
| 332 | |
| 333 | return true; |
| 334 | } |
| 335 | |
| 336 | /* Convert a raw mpipe buffer to its matching skb pointer. */ |
| 337 | static struct sk_buff *mpipe_buf_to_skb(void *va) |
| 338 | { |
| 339 | /* Acquire the associated "skb". */ |
| 340 | struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| 341 | struct sk_buff *skb = *skb_ptr; |
| 342 | |
| 343 | /* Paranoia. */ |
| 344 | if (skb->data != va) { |
| 345 | /* Panic here since there's a reasonable chance |
| 346 | * that corrupt buffers means generic memory |
| 347 | * corruption, with unpredictable system effects. |
| 348 | */ |
| 349 | panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p", |
| 350 | va, skb, skb->data); |
| 351 | } |
| 352 | |
| 353 | return skb; |
| 354 | } |
| 355 | |
| 356 | static void tile_net_pop_all_buffers(int stack) |
| 357 | { |
| 358 | for (;;) { |
| 359 | tile_io_addr_t addr = |
| 360 | (tile_io_addr_t)gxio_mpipe_pop_buffer(&context, stack); |
| 361 | if (addr == 0) |
| 362 | break; |
| 363 | dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr))); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | /* Provide linux buffers to mPIPE. */ |
| 368 | static void tile_net_provide_needed_buffers(void) |
| 369 | { |
| 370 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 371 | |
| 372 | while (info->num_needed_small_buffers != 0) { |
| 373 | if (!tile_net_provide_buffer(true)) |
| 374 | goto oops; |
| 375 | info->num_needed_small_buffers--; |
| 376 | } |
| 377 | |
| 378 | while (info->num_needed_large_buffers != 0) { |
| 379 | if (!tile_net_provide_buffer(false)) |
| 380 | goto oops; |
| 381 | info->num_needed_large_buffers--; |
| 382 | } |
| 383 | |
| 384 | return; |
| 385 | |
| 386 | oops: |
| 387 | /* Add a description to the page allocation failure dump. */ |
| 388 | pr_notice("Tile %d still needs some buffers\n", info->my_cpu); |
| 389 | } |
| 390 | |
| 391 | static inline bool filter_packet(struct net_device *dev, void *buf) |
| 392 | { |
| 393 | /* Filter packets received before we're up. */ |
| 394 | if (dev == NULL || !(dev->flags & IFF_UP)) |
| 395 | return true; |
| 396 | |
| 397 | /* Filter out packets that aren't for us. */ |
| 398 | if (!(dev->flags & IFF_PROMISC) && |
| 399 | !is_multicast_ether_addr(buf) && |
| 400 | compare_ether_addr(dev->dev_addr, buf) != 0) |
| 401 | return true; |
| 402 | |
| 403 | return false; |
| 404 | } |
| 405 | |
| 406 | static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb, |
| 407 | gxio_mpipe_idesc_t *idesc, unsigned long len) |
| 408 | { |
| 409 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 410 | struct tile_net_priv *priv = netdev_priv(dev); |
| 411 | |
| 412 | /* Encode the actual packet length. */ |
| 413 | skb_put(skb, len); |
| 414 | |
| 415 | skb->protocol = eth_type_trans(skb, dev); |
| 416 | |
| 417 | /* Acknowledge "good" hardware checksums. */ |
| 418 | if (idesc->cs && idesc->csum_seed_val == 0xFFFF) |
| 419 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 420 | |
| 421 | netif_receive_skb(skb); |
| 422 | |
| 423 | /* Update stats. */ |
| 424 | tile_net_stats_add(1, &priv->stats.rx_packets); |
| 425 | tile_net_stats_add(len, &priv->stats.rx_bytes); |
| 426 | |
| 427 | /* Need a new buffer. */ |
| 428 | if (idesc->size == BUFFER_SIZE_SMALL_ENUM) |
| 429 | info->num_needed_small_buffers++; |
| 430 | else |
| 431 | info->num_needed_large_buffers++; |
| 432 | } |
| 433 | |
| 434 | /* Handle a packet. Return true if "processed", false if "filtered". */ |
| 435 | static bool tile_net_handle_packet(gxio_mpipe_idesc_t *idesc) |
| 436 | { |
| 437 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 438 | struct net_device *dev = tile_net_devs_for_channel[idesc->channel]; |
| 439 | uint8_t l2_offset; |
| 440 | void *va; |
| 441 | void *buf; |
| 442 | unsigned long len; |
| 443 | bool filter; |
| 444 | |
| 445 | /* Drop packets for which no buffer was available. |
| 446 | * NOTE: This happens under heavy load. |
| 447 | */ |
| 448 | if (idesc->be) { |
| 449 | struct tile_net_priv *priv = netdev_priv(dev); |
| 450 | tile_net_stats_add(1, &priv->stats.rx_dropped); |
| 451 | gxio_mpipe_iqueue_consume(&info->iqueue, idesc); |
| 452 | if (net_ratelimit()) |
| 453 | pr_info("Dropping packet (insufficient buffers).\n"); |
| 454 | return false; |
| 455 | } |
| 456 | |
| 457 | /* Get the "l2_offset", if allowed. */ |
| 458 | l2_offset = custom_str ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc); |
| 459 | |
| 460 | /* Get the raw buffer VA (includes "headroom"). */ |
| 461 | va = tile_io_addr_to_va((unsigned long)(long)idesc->va); |
| 462 | |
| 463 | /* Get the actual packet start/length. */ |
| 464 | buf = va + l2_offset; |
| 465 | len = idesc->l2_size - l2_offset; |
| 466 | |
| 467 | /* Point "va" at the raw buffer. */ |
| 468 | va -= NET_IP_ALIGN; |
| 469 | |
| 470 | filter = filter_packet(dev, buf); |
| 471 | if (filter) { |
| 472 | gxio_mpipe_iqueue_drop(&info->iqueue, idesc); |
| 473 | } else { |
| 474 | struct sk_buff *skb = mpipe_buf_to_skb(va); |
| 475 | |
| 476 | /* Skip headroom, and any custom header. */ |
| 477 | skb_reserve(skb, NET_IP_ALIGN + l2_offset); |
| 478 | |
| 479 | tile_net_receive_skb(dev, skb, idesc, len); |
| 480 | } |
| 481 | |
| 482 | gxio_mpipe_iqueue_consume(&info->iqueue, idesc); |
| 483 | return !filter; |
| 484 | } |
| 485 | |
| 486 | /* Handle some packets for the current CPU. |
| 487 | * |
| 488 | * This function handles up to TILE_NET_BATCH idescs per call. |
| 489 | * |
| 490 | * ISSUE: Since we do not provide new buffers until this function is |
| 491 | * complete, we must initially provide enough buffers for each network |
| 492 | * cpu to fill its iqueue and also its batched idescs. |
| 493 | * |
| 494 | * ISSUE: The "rotting packet" race condition occurs if a packet |
| 495 | * arrives after the queue appears to be empty, and before the |
| 496 | * hypervisor interrupt is re-enabled. |
| 497 | */ |
| 498 | static int tile_net_poll(struct napi_struct *napi, int budget) |
| 499 | { |
| 500 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 501 | unsigned int work = 0; |
| 502 | gxio_mpipe_idesc_t *idesc; |
| 503 | int i, n; |
| 504 | |
| 505 | /* Process packets. */ |
| 506 | while ((n = gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc)) > 0) { |
| 507 | for (i = 0; i < n; i++) { |
| 508 | if (i == TILE_NET_BATCH) |
| 509 | goto done; |
| 510 | if (tile_net_handle_packet(idesc + i)) { |
| 511 | if (++work >= budget) |
| 512 | goto done; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | /* There are no packets left. */ |
| 518 | napi_complete(&info->napi); |
| 519 | |
| 520 | /* Re-enable hypervisor interrupts. */ |
| 521 | gxio_mpipe_enable_notif_ring_interrupt(&context, info->iqueue.ring); |
| 522 | |
| 523 | /* HACK: Avoid the "rotting packet" problem. */ |
| 524 | if (gxio_mpipe_iqueue_try_peek(&info->iqueue, &idesc) > 0) |
| 525 | napi_schedule(&info->napi); |
| 526 | |
| 527 | /* ISSUE: Handle completions? */ |
| 528 | |
| 529 | done: |
| 530 | tile_net_provide_needed_buffers(); |
| 531 | |
| 532 | return work; |
| 533 | } |
| 534 | |
| 535 | /* Handle an ingress interrupt on the current cpu. */ |
| 536 | static irqreturn_t tile_net_handle_ingress_irq(int irq, void *unused) |
| 537 | { |
| 538 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 539 | napi_schedule(&info->napi); |
| 540 | return IRQ_HANDLED; |
| 541 | } |
| 542 | |
| 543 | /* Free some completions. This must be called with interrupts blocked. */ |
| 544 | static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue, |
| 545 | struct tile_net_comps *comps, |
| 546 | int limit, bool force_update) |
| 547 | { |
| 548 | int n = 0; |
| 549 | while (comps->comp_last < comps->comp_next) { |
| 550 | unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS; |
| 551 | struct tile_net_comp *comp = &comps->comp_queue[cid]; |
| 552 | if (!gxio_mpipe_equeue_is_complete(equeue, comp->when, |
| 553 | force_update || n == 0)) |
| 554 | break; |
| 555 | dev_kfree_skb_irq(comp->skb); |
| 556 | comps->comp_last++; |
| 557 | if (++n == limit) |
| 558 | break; |
| 559 | } |
| 560 | return n; |
| 561 | } |
| 562 | |
| 563 | /* Add a completion. This must be called with interrupts blocked. |
| 564 | * tile_net_equeue_try_reserve() will have ensured a free completion entry. |
| 565 | */ |
| 566 | static void add_comp(gxio_mpipe_equeue_t *equeue, |
| 567 | struct tile_net_comps *comps, |
| 568 | uint64_t when, struct sk_buff *skb) |
| 569 | { |
| 570 | int cid = comps->comp_next % TILE_NET_MAX_COMPS; |
| 571 | comps->comp_queue[cid].when = when; |
| 572 | comps->comp_queue[cid].skb = skb; |
| 573 | comps->comp_next++; |
| 574 | } |
| 575 | |
| 576 | static void tile_net_schedule_tx_wake_timer(struct net_device *dev) |
| 577 | { |
| 578 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 579 | struct tile_net_priv *priv = netdev_priv(dev); |
| 580 | |
| 581 | hrtimer_start(&info->tx_wake[priv->echannel].timer, |
| 582 | ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL), |
| 583 | HRTIMER_MODE_REL_PINNED); |
| 584 | } |
| 585 | |
| 586 | static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t) |
| 587 | { |
| 588 | struct tile_net_tx_wake *tx_wake = |
| 589 | container_of(t, struct tile_net_tx_wake, timer); |
| 590 | netif_wake_subqueue(tx_wake->dev, smp_processor_id()); |
| 591 | return HRTIMER_NORESTART; |
| 592 | } |
| 593 | |
| 594 | /* Make sure the egress timer is scheduled. */ |
| 595 | static void tile_net_schedule_egress_timer(void) |
| 596 | { |
| 597 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 598 | |
| 599 | if (!info->egress_timer_scheduled) { |
| 600 | hrtimer_start(&info->egress_timer, |
| 601 | ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL), |
| 602 | HRTIMER_MODE_REL_PINNED); |
| 603 | info->egress_timer_scheduled = true; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /* The "function" for "info->egress_timer". |
| 608 | * |
| 609 | * This timer will reschedule itself as long as there are any pending |
| 610 | * completions expected for this tile. |
| 611 | */ |
| 612 | static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t) |
| 613 | { |
| 614 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 615 | unsigned long irqflags; |
| 616 | bool pending = false; |
| 617 | int i; |
| 618 | |
| 619 | local_irq_save(irqflags); |
| 620 | |
| 621 | /* The timer is no longer scheduled. */ |
| 622 | info->egress_timer_scheduled = false; |
| 623 | |
| 624 | /* Free all possible comps for this tile. */ |
| 625 | for (i = 0; i < TILE_NET_CHANNELS; i++) { |
| 626 | struct tile_net_egress *egress = &egress_for_echannel[i]; |
| 627 | struct tile_net_comps *comps = info->comps_for_echannel[i]; |
| 628 | if (comps->comp_last >= comps->comp_next) |
| 629 | continue; |
| 630 | tile_net_free_comps(egress->equeue, comps, -1, true); |
| 631 | pending = pending || (comps->comp_last < comps->comp_next); |
| 632 | } |
| 633 | |
| 634 | /* Reschedule timer if needed. */ |
| 635 | if (pending) |
| 636 | tile_net_schedule_egress_timer(); |
| 637 | |
| 638 | local_irq_restore(irqflags); |
| 639 | |
| 640 | return HRTIMER_NORESTART; |
| 641 | } |
| 642 | |
| 643 | /* Helper function for "tile_net_update()". |
| 644 | * "dev" (i.e. arg) is the device being brought up or down, |
| 645 | * or NULL if all devices are now down. |
| 646 | */ |
| 647 | static void tile_net_update_cpu(void *arg) |
| 648 | { |
| 649 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 650 | struct net_device *dev = arg; |
| 651 | |
| 652 | if (!info->has_iqueue) |
| 653 | return; |
| 654 | |
| 655 | if (dev != NULL) { |
| 656 | if (!info->napi_added) { |
| 657 | netif_napi_add(dev, &info->napi, |
| 658 | tile_net_poll, TILE_NET_WEIGHT); |
| 659 | info->napi_added = true; |
| 660 | } |
| 661 | if (!info->napi_enabled) { |
| 662 | napi_enable(&info->napi); |
| 663 | info->napi_enabled = true; |
| 664 | } |
| 665 | enable_percpu_irq(ingress_irq, 0); |
| 666 | } else { |
| 667 | disable_percpu_irq(ingress_irq); |
| 668 | if (info->napi_enabled) { |
| 669 | napi_disable(&info->napi); |
| 670 | info->napi_enabled = false; |
| 671 | } |
| 672 | /* FIXME: Drain the iqueue. */ |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | /* Helper function for tile_net_open() and tile_net_stop(). |
| 677 | * Always called under tile_net_devs_for_channel_mutex. |
| 678 | */ |
| 679 | static int tile_net_update(struct net_device *dev) |
| 680 | { |
| 681 | static gxio_mpipe_rules_t rules; /* too big to fit on the stack */ |
| 682 | bool saw_channel = false; |
| 683 | int channel; |
| 684 | int rc; |
| 685 | int cpu; |
| 686 | |
| 687 | gxio_mpipe_rules_init(&rules, &context); |
| 688 | |
| 689 | for (channel = 0; channel < TILE_NET_CHANNELS; channel++) { |
| 690 | if (tile_net_devs_for_channel[channel] == NULL) |
| 691 | continue; |
| 692 | if (!saw_channel) { |
| 693 | saw_channel = true; |
| 694 | gxio_mpipe_rules_begin(&rules, first_bucket, |
| 695 | num_buckets, NULL); |
| 696 | gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN); |
| 697 | } |
| 698 | gxio_mpipe_rules_add_channel(&rules, channel); |
| 699 | } |
| 700 | |
| 701 | /* NOTE: This can fail if there is no classifier. |
| 702 | * ISSUE: Can anything else cause it to fail? |
| 703 | */ |
| 704 | rc = gxio_mpipe_rules_commit(&rules); |
| 705 | if (rc != 0) { |
| 706 | netdev_warn(dev, "gxio_mpipe_rules_commit failed: %d\n", rc); |
| 707 | return -EIO; |
| 708 | } |
| 709 | |
| 710 | /* Update all cpus, sequentially (to protect "netif_napi_add()"). */ |
| 711 | for_each_online_cpu(cpu) |
| 712 | smp_call_function_single(cpu, tile_net_update_cpu, |
| 713 | (saw_channel ? dev : NULL), 1); |
| 714 | |
| 715 | /* HACK: Allow packets to flow in the simulator. */ |
| 716 | if (saw_channel) |
| 717 | sim_enable_mpipe_links(0, -1); |
| 718 | |
| 719 | return 0; |
| 720 | } |
| 721 | |
| 722 | /* Allocate and initialize mpipe buffer stacks, and register them in |
| 723 | * the mPIPE TLBs, for both small and large packet sizes. |
| 724 | * This routine supports tile_net_init_mpipe(), below. |
| 725 | */ |
| 726 | static int init_buffer_stacks(struct net_device *dev, int num_buffers) |
| 727 | { |
| 728 | pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH); |
| 729 | int rc; |
| 730 | |
| 731 | /* Compute stack bytes; we round up to 64KB and then use |
| 732 | * alloc_pages() so we get the required 64KB alignment as well. |
| 733 | */ |
| 734 | buffer_stack_size = |
| 735 | ALIGN(gxio_mpipe_calc_buffer_stack_bytes(num_buffers), |
| 736 | 64 * 1024); |
| 737 | |
| 738 | /* Allocate two buffer stack indices. */ |
| 739 | rc = gxio_mpipe_alloc_buffer_stacks(&context, 2, 0, 0); |
| 740 | if (rc < 0) { |
| 741 | netdev_err(dev, "gxio_mpipe_alloc_buffer_stacks failed: %d\n", |
| 742 | rc); |
| 743 | return rc; |
| 744 | } |
| 745 | small_buffer_stack = rc; |
| 746 | large_buffer_stack = rc + 1; |
| 747 | |
| 748 | /* Allocate the small memory stack. */ |
| 749 | small_buffer_stack_va = |
| 750 | alloc_pages_exact(buffer_stack_size, GFP_KERNEL); |
| 751 | if (small_buffer_stack_va == NULL) { |
| 752 | netdev_err(dev, |
| 753 | "Could not alloc %zd bytes for buffer stacks\n", |
| 754 | buffer_stack_size); |
| 755 | return -ENOMEM; |
| 756 | } |
| 757 | rc = gxio_mpipe_init_buffer_stack(&context, small_buffer_stack, |
| 758 | BUFFER_SIZE_SMALL_ENUM, |
| 759 | small_buffer_stack_va, |
| 760 | buffer_stack_size, 0); |
| 761 | if (rc != 0) { |
| 762 | netdev_err(dev, "gxio_mpipe_init_buffer_stack: %d\n", rc); |
| 763 | return rc; |
| 764 | } |
| 765 | rc = gxio_mpipe_register_client_memory(&context, small_buffer_stack, |
| 766 | hash_pte, 0); |
| 767 | if (rc != 0) { |
| 768 | netdev_err(dev, |
| 769 | "gxio_mpipe_register_buffer_memory failed: %d\n", |
| 770 | rc); |
| 771 | return rc; |
| 772 | } |
| 773 | |
| 774 | /* Allocate the large buffer stack. */ |
| 775 | large_buffer_stack_va = |
| 776 | alloc_pages_exact(buffer_stack_size, GFP_KERNEL); |
| 777 | if (large_buffer_stack_va == NULL) { |
| 778 | netdev_err(dev, |
| 779 | "Could not alloc %zd bytes for buffer stacks\n", |
| 780 | buffer_stack_size); |
| 781 | return -ENOMEM; |
| 782 | } |
| 783 | rc = gxio_mpipe_init_buffer_stack(&context, large_buffer_stack, |
| 784 | BUFFER_SIZE_LARGE_ENUM, |
| 785 | large_buffer_stack_va, |
| 786 | buffer_stack_size, 0); |
| 787 | if (rc != 0) { |
| 788 | netdev_err(dev, "gxio_mpipe_init_buffer_stack failed: %d\n", |
| 789 | rc); |
| 790 | return rc; |
| 791 | } |
| 792 | rc = gxio_mpipe_register_client_memory(&context, large_buffer_stack, |
| 793 | hash_pte, 0); |
| 794 | if (rc != 0) { |
| 795 | netdev_err(dev, |
| 796 | "gxio_mpipe_register_buffer_memory failed: %d\n", |
| 797 | rc); |
| 798 | return rc; |
| 799 | } |
| 800 | |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | /* Allocate per-cpu resources (memory for completions and idescs). |
| 805 | * This routine supports tile_net_init_mpipe(), below. |
| 806 | */ |
| 807 | static int alloc_percpu_mpipe_resources(struct net_device *dev, |
| 808 | int cpu, int ring) |
| 809 | { |
| 810 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| 811 | int order, i, rc; |
| 812 | struct page *page; |
| 813 | void *addr; |
| 814 | |
| 815 | /* Allocate the "comps". */ |
| 816 | order = get_order(COMPS_SIZE); |
| 817 | page = homecache_alloc_pages(GFP_KERNEL, order, cpu); |
| 818 | if (page == NULL) { |
| 819 | netdev_err(dev, "Failed to alloc %zd bytes comps memory\n", |
| 820 | COMPS_SIZE); |
| 821 | return -ENOMEM; |
| 822 | } |
| 823 | addr = pfn_to_kaddr(page_to_pfn(page)); |
| 824 | memset(addr, 0, COMPS_SIZE); |
| 825 | for (i = 0; i < TILE_NET_CHANNELS; i++) |
| 826 | info->comps_for_echannel[i] = |
| 827 | addr + i * sizeof(struct tile_net_comps); |
| 828 | |
| 829 | /* If this is a network cpu, create an iqueue. */ |
| 830 | if (cpu_isset(cpu, network_cpus_map)) { |
| 831 | order = get_order(NOTIF_RING_SIZE); |
| 832 | page = homecache_alloc_pages(GFP_KERNEL, order, cpu); |
| 833 | if (page == NULL) { |
| 834 | netdev_err(dev, |
| 835 | "Failed to alloc %zd bytes iqueue memory\n", |
| 836 | NOTIF_RING_SIZE); |
| 837 | return -ENOMEM; |
| 838 | } |
| 839 | addr = pfn_to_kaddr(page_to_pfn(page)); |
| 840 | rc = gxio_mpipe_iqueue_init(&info->iqueue, &context, ring++, |
| 841 | addr, NOTIF_RING_SIZE, 0); |
| 842 | if (rc < 0) { |
| 843 | netdev_err(dev, |
| 844 | "gxio_mpipe_iqueue_init failed: %d\n", rc); |
| 845 | return rc; |
| 846 | } |
| 847 | info->has_iqueue = true; |
| 848 | } |
| 849 | |
| 850 | return ring; |
| 851 | } |
| 852 | |
| 853 | /* Initialize NotifGroup and buckets. |
| 854 | * This routine supports tile_net_init_mpipe(), below. |
| 855 | */ |
| 856 | static int init_notif_group_and_buckets(struct net_device *dev, |
| 857 | int ring, int network_cpus_count) |
| 858 | { |
| 859 | int group, rc; |
| 860 | |
| 861 | /* Allocate one NotifGroup. */ |
| 862 | rc = gxio_mpipe_alloc_notif_groups(&context, 1, 0, 0); |
| 863 | if (rc < 0) { |
| 864 | netdev_err(dev, "gxio_mpipe_alloc_notif_groups failed: %d\n", |
| 865 | rc); |
| 866 | return rc; |
| 867 | } |
| 868 | group = rc; |
| 869 | |
| 870 | /* Initialize global num_buckets value. */ |
| 871 | if (network_cpus_count > 4) |
| 872 | num_buckets = 256; |
| 873 | else if (network_cpus_count > 1) |
| 874 | num_buckets = 16; |
| 875 | |
| 876 | /* Allocate some buckets, and set global first_bucket value. */ |
| 877 | rc = gxio_mpipe_alloc_buckets(&context, num_buckets, 0, 0); |
| 878 | if (rc < 0) { |
| 879 | netdev_err(dev, "gxio_mpipe_alloc_buckets failed: %d\n", rc); |
| 880 | return rc; |
| 881 | } |
| 882 | first_bucket = rc; |
| 883 | |
| 884 | /* Init group and buckets. */ |
| 885 | rc = gxio_mpipe_init_notif_group_and_buckets( |
| 886 | &context, group, ring, network_cpus_count, |
| 887 | first_bucket, num_buckets, |
| 888 | GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY); |
| 889 | if (rc != 0) { |
| 890 | netdev_err( |
| 891 | dev, |
| 892 | "gxio_mpipe_init_notif_group_and_buckets failed: %d\n", |
| 893 | rc); |
| 894 | return rc; |
| 895 | } |
| 896 | |
| 897 | return 0; |
| 898 | } |
| 899 | |
| 900 | /* Create an irq and register it, then activate the irq and request |
| 901 | * interrupts on all cores. Note that "ingress_irq" being initialized |
| 902 | * is how we know not to call tile_net_init_mpipe() again. |
| 903 | * This routine supports tile_net_init_mpipe(), below. |
| 904 | */ |
| 905 | static int tile_net_setup_interrupts(struct net_device *dev) |
| 906 | { |
| 907 | int cpu, rc; |
| 908 | |
| 909 | rc = create_irq(); |
| 910 | if (rc < 0) { |
| 911 | netdev_err(dev, "create_irq failed: %d\n", rc); |
| 912 | return rc; |
| 913 | } |
| 914 | ingress_irq = rc; |
| 915 | tile_irq_activate(ingress_irq, TILE_IRQ_PERCPU); |
| 916 | rc = request_irq(ingress_irq, tile_net_handle_ingress_irq, |
| 917 | 0, NULL, NULL); |
| 918 | if (rc != 0) { |
| 919 | netdev_err(dev, "request_irq failed: %d\n", rc); |
| 920 | destroy_irq(ingress_irq); |
| 921 | ingress_irq = -1; |
| 922 | return rc; |
| 923 | } |
| 924 | |
| 925 | for_each_online_cpu(cpu) { |
| 926 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| 927 | if (info->has_iqueue) { |
| 928 | gxio_mpipe_request_notif_ring_interrupt( |
| 929 | &context, cpu_x(cpu), cpu_y(cpu), |
| 930 | 1, ingress_irq, info->iqueue.ring); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | return 0; |
| 935 | } |
| 936 | |
| 937 | /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */ |
| 938 | static void tile_net_init_mpipe_fail(void) |
| 939 | { |
| 940 | int cpu; |
| 941 | |
| 942 | /* Do cleanups that require the mpipe context first. */ |
| 943 | if (small_buffer_stack >= 0) |
| 944 | tile_net_pop_all_buffers(small_buffer_stack); |
| 945 | if (large_buffer_stack >= 0) |
| 946 | tile_net_pop_all_buffers(large_buffer_stack); |
| 947 | |
| 948 | /* Destroy mpipe context so the hardware no longer owns any memory. */ |
| 949 | gxio_mpipe_destroy(&context); |
| 950 | |
| 951 | for_each_online_cpu(cpu) { |
| 952 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| 953 | free_pages((unsigned long)(info->comps_for_echannel[0]), |
| 954 | get_order(COMPS_SIZE)); |
| 955 | info->comps_for_echannel[0] = NULL; |
| 956 | free_pages((unsigned long)(info->iqueue.idescs), |
| 957 | get_order(NOTIF_RING_SIZE)); |
| 958 | info->iqueue.idescs = NULL; |
| 959 | } |
| 960 | |
| 961 | if (small_buffer_stack_va) |
| 962 | free_pages_exact(small_buffer_stack_va, buffer_stack_size); |
| 963 | if (large_buffer_stack_va) |
| 964 | free_pages_exact(large_buffer_stack_va, buffer_stack_size); |
| 965 | |
| 966 | small_buffer_stack_va = NULL; |
| 967 | large_buffer_stack_va = NULL; |
| 968 | large_buffer_stack = -1; |
| 969 | small_buffer_stack = -1; |
| 970 | first_bucket = -1; |
| 971 | } |
| 972 | |
| 973 | /* The first time any tilegx network device is opened, we initialize |
| 974 | * the global mpipe state. If this step fails, we fail to open the |
| 975 | * device, but if it succeeds, we never need to do it again, and since |
| 976 | * tile_net can't be unloaded, we never undo it. |
| 977 | * |
| 978 | * Note that some resources in this path (buffer stack indices, |
| 979 | * bindings from init_buffer_stack, etc.) are hypervisor resources |
| 980 | * that are freed implicitly by gxio_mpipe_destroy(). |
| 981 | */ |
| 982 | static int tile_net_init_mpipe(struct net_device *dev) |
| 983 | { |
| 984 | int i, num_buffers, rc; |
| 985 | int cpu; |
| 986 | int first_ring, ring; |
| 987 | int network_cpus_count = cpus_weight(network_cpus_map); |
| 988 | |
| 989 | if (!hash_default) { |
| 990 | netdev_err(dev, "Networking requires hash_default!\n"); |
| 991 | return -EIO; |
| 992 | } |
| 993 | |
| 994 | rc = gxio_mpipe_init(&context, 0); |
| 995 | if (rc != 0) { |
| 996 | netdev_err(dev, "gxio_mpipe_init failed: %d\n", rc); |
| 997 | return -EIO; |
| 998 | } |
| 999 | |
| 1000 | /* Set up the buffer stacks. */ |
| 1001 | num_buffers = |
| 1002 | network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH); |
| 1003 | rc = init_buffer_stacks(dev, num_buffers); |
| 1004 | if (rc != 0) |
| 1005 | goto fail; |
| 1006 | |
| 1007 | /* Provide initial buffers. */ |
| 1008 | rc = -ENOMEM; |
| 1009 | for (i = 0; i < num_buffers; i++) { |
| 1010 | if (!tile_net_provide_buffer(true)) { |
| 1011 | netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); |
| 1012 | goto fail; |
| 1013 | } |
| 1014 | } |
| 1015 | for (i = 0; i < num_buffers; i++) { |
| 1016 | if (!tile_net_provide_buffer(false)) { |
| 1017 | netdev_err(dev, "Cannot allocate initial sk_bufs!\n"); |
| 1018 | goto fail; |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | /* Allocate one NotifRing for each network cpu. */ |
| 1023 | rc = gxio_mpipe_alloc_notif_rings(&context, network_cpus_count, 0, 0); |
| 1024 | if (rc < 0) { |
| 1025 | netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n", |
| 1026 | rc); |
| 1027 | goto fail; |
| 1028 | } |
| 1029 | |
| 1030 | /* Init NotifRings per-cpu. */ |
| 1031 | first_ring = rc; |
| 1032 | ring = first_ring; |
| 1033 | for_each_online_cpu(cpu) { |
| 1034 | rc = alloc_percpu_mpipe_resources(dev, cpu, ring); |
| 1035 | if (rc < 0) |
| 1036 | goto fail; |
| 1037 | ring = rc; |
| 1038 | } |
| 1039 | |
| 1040 | /* Initialize NotifGroup and buckets. */ |
| 1041 | rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count); |
| 1042 | if (rc != 0) |
| 1043 | goto fail; |
| 1044 | |
| 1045 | /* Create and enable interrupts. */ |
| 1046 | rc = tile_net_setup_interrupts(dev); |
| 1047 | if (rc != 0) |
| 1048 | goto fail; |
| 1049 | |
| 1050 | return 0; |
| 1051 | |
| 1052 | fail: |
| 1053 | tile_net_init_mpipe_fail(); |
| 1054 | return rc; |
| 1055 | } |
| 1056 | |
| 1057 | /* Create persistent egress info for a given egress channel. |
| 1058 | * Note that this may be shared between, say, "gbe0" and "xgbe0". |
| 1059 | * ISSUE: Defer header allocation until TSO is actually needed? |
| 1060 | */ |
| 1061 | static int tile_net_init_egress(struct net_device *dev, int echannel) |
| 1062 | { |
| 1063 | struct page *headers_page, *edescs_page, *equeue_page; |
| 1064 | gxio_mpipe_edesc_t *edescs; |
| 1065 | gxio_mpipe_equeue_t *equeue; |
| 1066 | unsigned char *headers; |
| 1067 | int headers_order, edescs_order, equeue_order; |
| 1068 | size_t edescs_size; |
| 1069 | int edma; |
| 1070 | int rc = -ENOMEM; |
| 1071 | |
| 1072 | /* Only initialize once. */ |
| 1073 | if (egress_for_echannel[echannel].equeue != NULL) |
| 1074 | return 0; |
| 1075 | |
| 1076 | /* Allocate memory for the "headers". */ |
| 1077 | headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES); |
| 1078 | headers_page = alloc_pages(GFP_KERNEL, headers_order); |
| 1079 | if (headers_page == NULL) { |
| 1080 | netdev_warn(dev, |
| 1081 | "Could not alloc %zd bytes for TSO headers.\n", |
| 1082 | PAGE_SIZE << headers_order); |
| 1083 | goto fail; |
| 1084 | } |
| 1085 | headers = pfn_to_kaddr(page_to_pfn(headers_page)); |
| 1086 | |
| 1087 | /* Allocate memory for the "edescs". */ |
| 1088 | edescs_size = EQUEUE_ENTRIES * sizeof(*edescs); |
| 1089 | edescs_order = get_order(edescs_size); |
| 1090 | edescs_page = alloc_pages(GFP_KERNEL, edescs_order); |
| 1091 | if (edescs_page == NULL) { |
| 1092 | netdev_warn(dev, |
| 1093 | "Could not alloc %zd bytes for eDMA ring.\n", |
| 1094 | edescs_size); |
| 1095 | goto fail_headers; |
| 1096 | } |
| 1097 | edescs = pfn_to_kaddr(page_to_pfn(edescs_page)); |
| 1098 | |
| 1099 | /* Allocate memory for the "equeue". */ |
| 1100 | equeue_order = get_order(sizeof(*equeue)); |
| 1101 | equeue_page = alloc_pages(GFP_KERNEL, equeue_order); |
| 1102 | if (equeue_page == NULL) { |
| 1103 | netdev_warn(dev, |
| 1104 | "Could not alloc %zd bytes for equeue info.\n", |
| 1105 | PAGE_SIZE << equeue_order); |
| 1106 | goto fail_edescs; |
| 1107 | } |
| 1108 | equeue = pfn_to_kaddr(page_to_pfn(equeue_page)); |
| 1109 | |
| 1110 | /* Allocate an edma ring. Note that in practice this can't |
| 1111 | * fail, which is good, because we will leak an edma ring if so. |
| 1112 | */ |
| 1113 | rc = gxio_mpipe_alloc_edma_rings(&context, 1, 0, 0); |
| 1114 | if (rc < 0) { |
| 1115 | netdev_warn(dev, "gxio_mpipe_alloc_edma_rings failed: %d\n", |
| 1116 | rc); |
| 1117 | goto fail_equeue; |
| 1118 | } |
| 1119 | edma = rc; |
| 1120 | |
| 1121 | /* Initialize the equeue. */ |
| 1122 | rc = gxio_mpipe_equeue_init(equeue, &context, edma, echannel, |
| 1123 | edescs, edescs_size, 0); |
| 1124 | if (rc != 0) { |
| 1125 | netdev_err(dev, "gxio_mpipe_equeue_init failed: %d\n", rc); |
| 1126 | goto fail_equeue; |
| 1127 | } |
| 1128 | |
| 1129 | /* Done. */ |
| 1130 | egress_for_echannel[echannel].equeue = equeue; |
| 1131 | egress_for_echannel[echannel].headers = headers; |
| 1132 | return 0; |
| 1133 | |
| 1134 | fail_equeue: |
| 1135 | __free_pages(equeue_page, equeue_order); |
| 1136 | |
| 1137 | fail_edescs: |
| 1138 | __free_pages(edescs_page, edescs_order); |
| 1139 | |
| 1140 | fail_headers: |
| 1141 | __free_pages(headers_page, headers_order); |
| 1142 | |
| 1143 | fail: |
| 1144 | return rc; |
| 1145 | } |
| 1146 | |
| 1147 | /* Return channel number for a newly-opened link. */ |
| 1148 | static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link, |
| 1149 | const char *link_name) |
| 1150 | { |
| 1151 | int rc = gxio_mpipe_link_open(link, &context, link_name, 0); |
| 1152 | if (rc < 0) { |
| 1153 | netdev_err(dev, "Failed to open '%s'\n", link_name); |
| 1154 | return rc; |
| 1155 | } |
| 1156 | rc = gxio_mpipe_link_channel(link); |
| 1157 | if (rc < 0 || rc >= TILE_NET_CHANNELS) { |
| 1158 | netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc); |
| 1159 | gxio_mpipe_link_close(link); |
| 1160 | return -EINVAL; |
| 1161 | } |
| 1162 | return rc; |
| 1163 | } |
| 1164 | |
| 1165 | /* Help the kernel activate the given network interface. */ |
| 1166 | static int tile_net_open(struct net_device *dev) |
| 1167 | { |
| 1168 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1169 | int cpu, rc; |
| 1170 | |
| 1171 | mutex_lock(&tile_net_devs_for_channel_mutex); |
| 1172 | |
| 1173 | /* Do one-time initialization the first time any device is opened. */ |
| 1174 | if (ingress_irq < 0) { |
| 1175 | rc = tile_net_init_mpipe(dev); |
| 1176 | if (rc != 0) |
| 1177 | goto fail; |
| 1178 | } |
| 1179 | |
| 1180 | /* Determine if this is the "loopify" device. */ |
| 1181 | if (unlikely((loopify_link_name != NULL) && |
| 1182 | !strcmp(dev->name, loopify_link_name))) { |
| 1183 | rc = tile_net_link_open(dev, &priv->link, "loop0"); |
| 1184 | if (rc < 0) |
| 1185 | goto fail; |
| 1186 | priv->channel = rc; |
| 1187 | rc = tile_net_link_open(dev, &priv->loopify_link, "loop1"); |
| 1188 | if (rc < 0) |
| 1189 | goto fail; |
| 1190 | priv->loopify_channel = rc; |
| 1191 | priv->echannel = rc; |
| 1192 | } else { |
| 1193 | rc = tile_net_link_open(dev, &priv->link, dev->name); |
| 1194 | if (rc < 0) |
| 1195 | goto fail; |
| 1196 | priv->channel = rc; |
| 1197 | priv->echannel = rc; |
| 1198 | } |
| 1199 | |
| 1200 | /* Initialize egress info (if needed). Once ever, per echannel. */ |
| 1201 | rc = tile_net_init_egress(dev, priv->echannel); |
| 1202 | if (rc != 0) |
| 1203 | goto fail; |
| 1204 | |
| 1205 | tile_net_devs_for_channel[priv->channel] = dev; |
| 1206 | |
| 1207 | rc = tile_net_update(dev); |
| 1208 | if (rc != 0) |
| 1209 | goto fail; |
| 1210 | |
| 1211 | mutex_unlock(&tile_net_devs_for_channel_mutex); |
| 1212 | |
| 1213 | /* Initialize the transmit wake timer for this device for each cpu. */ |
| 1214 | for_each_online_cpu(cpu) { |
| 1215 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| 1216 | struct tile_net_tx_wake *tx_wake = |
| 1217 | &info->tx_wake[priv->echannel]; |
| 1218 | |
| 1219 | hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC, |
| 1220 | HRTIMER_MODE_REL); |
| 1221 | tx_wake->timer.function = tile_net_handle_tx_wake_timer; |
| 1222 | tx_wake->dev = dev; |
| 1223 | } |
| 1224 | |
| 1225 | for_each_online_cpu(cpu) |
| 1226 | netif_start_subqueue(dev, cpu); |
| 1227 | netif_carrier_on(dev); |
| 1228 | return 0; |
| 1229 | |
| 1230 | fail: |
| 1231 | if (priv->loopify_channel >= 0) { |
| 1232 | if (gxio_mpipe_link_close(&priv->loopify_link) != 0) |
| 1233 | netdev_warn(dev, "Failed to close loopify link!\n"); |
| 1234 | priv->loopify_channel = -1; |
| 1235 | } |
| 1236 | if (priv->channel >= 0) { |
| 1237 | if (gxio_mpipe_link_close(&priv->link) != 0) |
| 1238 | netdev_warn(dev, "Failed to close link!\n"); |
| 1239 | priv->channel = -1; |
| 1240 | } |
| 1241 | priv->echannel = -1; |
| 1242 | tile_net_devs_for_channel[priv->channel] = NULL; |
| 1243 | mutex_unlock(&tile_net_devs_for_channel_mutex); |
| 1244 | |
| 1245 | /* Don't return raw gxio error codes to generic Linux. */ |
| 1246 | return (rc > -512) ? rc : -EIO; |
| 1247 | } |
| 1248 | |
| 1249 | /* Help the kernel deactivate the given network interface. */ |
| 1250 | static int tile_net_stop(struct net_device *dev) |
| 1251 | { |
| 1252 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1253 | int cpu; |
| 1254 | |
| 1255 | for_each_online_cpu(cpu) { |
| 1256 | struct tile_net_info *info = &per_cpu(per_cpu_info, cpu); |
| 1257 | struct tile_net_tx_wake *tx_wake = |
| 1258 | &info->tx_wake[priv->echannel]; |
| 1259 | |
| 1260 | hrtimer_cancel(&tx_wake->timer); |
| 1261 | netif_stop_subqueue(dev, cpu); |
| 1262 | } |
| 1263 | |
| 1264 | mutex_lock(&tile_net_devs_for_channel_mutex); |
| 1265 | tile_net_devs_for_channel[priv->channel] = NULL; |
| 1266 | (void)tile_net_update(dev); |
| 1267 | if (priv->loopify_channel >= 0) { |
| 1268 | if (gxio_mpipe_link_close(&priv->loopify_link) != 0) |
| 1269 | netdev_warn(dev, "Failed to close loopify link!\n"); |
| 1270 | priv->loopify_channel = -1; |
| 1271 | } |
| 1272 | if (priv->channel >= 0) { |
| 1273 | if (gxio_mpipe_link_close(&priv->link) != 0) |
| 1274 | netdev_warn(dev, "Failed to close link!\n"); |
| 1275 | priv->channel = -1; |
| 1276 | } |
| 1277 | priv->echannel = -1; |
| 1278 | mutex_unlock(&tile_net_devs_for_channel_mutex); |
| 1279 | |
| 1280 | return 0; |
| 1281 | } |
| 1282 | |
| 1283 | /* Determine the VA for a fragment. */ |
| 1284 | static inline void *tile_net_frag_buf(skb_frag_t *f) |
| 1285 | { |
| 1286 | unsigned long pfn = page_to_pfn(skb_frag_page(f)); |
| 1287 | return pfn_to_kaddr(pfn) + f->page_offset; |
| 1288 | } |
| 1289 | |
| 1290 | /* Acquire a completion entry and an egress slot, or if we can't, |
| 1291 | * stop the queue and schedule the tx_wake timer. |
| 1292 | */ |
| 1293 | static s64 tile_net_equeue_try_reserve(struct net_device *dev, |
| 1294 | struct tile_net_comps *comps, |
| 1295 | gxio_mpipe_equeue_t *equeue, |
| 1296 | int num_edescs) |
| 1297 | { |
| 1298 | /* Try to acquire a completion entry. */ |
| 1299 | if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 || |
| 1300 | tile_net_free_comps(equeue, comps, 32, false) != 0) { |
| 1301 | |
| 1302 | /* Try to acquire an egress slot. */ |
| 1303 | s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); |
| 1304 | if (slot >= 0) |
| 1305 | return slot; |
| 1306 | |
| 1307 | /* Freeing some completions gives the equeue time to drain. */ |
| 1308 | tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false); |
| 1309 | |
| 1310 | slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs); |
| 1311 | if (slot >= 0) |
| 1312 | return slot; |
| 1313 | } |
| 1314 | |
| 1315 | /* Still nothing; give up and stop the queue for a short while. */ |
| 1316 | netif_stop_subqueue(dev, smp_processor_id()); |
| 1317 | tile_net_schedule_tx_wake_timer(dev); |
| 1318 | return -1; |
| 1319 | } |
| 1320 | |
| 1321 | /* Determine how many edesc's are needed for TSO. |
| 1322 | * |
| 1323 | * Sometimes, if "sendfile()" requires copying, we will be called with |
| 1324 | * "data" containing the header and payload, with "frags" being empty. |
| 1325 | * Sometimes, for example when using NFS over TCP, a single segment can |
| 1326 | * span 3 fragments. This requires special care. |
| 1327 | */ |
| 1328 | static int tso_count_edescs(struct sk_buff *skb) |
| 1329 | { |
| 1330 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1331 | unsigned int data_len = skb->data_len; |
| 1332 | unsigned int p_len = sh->gso_size; |
| 1333 | long f_id = -1; /* id of the current fragment */ |
| 1334 | long f_size = -1; /* size of the current fragment */ |
| 1335 | long f_used = -1; /* bytes used from the current fragment */ |
| 1336 | long n; /* size of the current piece of payload */ |
| 1337 | int num_edescs = 0; |
| 1338 | int segment; |
| 1339 | |
| 1340 | for (segment = 0; segment < sh->gso_segs; segment++) { |
| 1341 | |
| 1342 | unsigned int p_used = 0; |
| 1343 | |
| 1344 | /* One edesc for header and for each piece of the payload. */ |
| 1345 | for (num_edescs++; p_used < p_len; num_edescs++) { |
| 1346 | |
| 1347 | /* Advance as needed. */ |
| 1348 | while (f_used >= f_size) { |
| 1349 | f_id++; |
| 1350 | f_size = sh->frags[f_id].size; |
| 1351 | f_used = 0; |
| 1352 | } |
| 1353 | |
| 1354 | /* Use bytes from the current fragment. */ |
| 1355 | n = p_len - p_used; |
| 1356 | if (n > f_size - f_used) |
| 1357 | n = f_size - f_used; |
| 1358 | f_used += n; |
| 1359 | p_used += n; |
| 1360 | } |
| 1361 | |
| 1362 | /* The last segment may be less than gso_size. */ |
| 1363 | data_len -= p_len; |
| 1364 | if (data_len < p_len) |
| 1365 | p_len = data_len; |
| 1366 | } |
| 1367 | |
| 1368 | return num_edescs; |
| 1369 | } |
| 1370 | |
| 1371 | /* Prepare modified copies of the skbuff headers. |
| 1372 | * FIXME: add support for IPv6. |
| 1373 | */ |
| 1374 | static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers, |
| 1375 | s64 slot) |
| 1376 | { |
| 1377 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1378 | struct iphdr *ih; |
| 1379 | struct tcphdr *th; |
| 1380 | unsigned int data_len = skb->data_len; |
| 1381 | unsigned char *data = skb->data; |
| 1382 | unsigned int ih_off, th_off, sh_len, p_len; |
| 1383 | unsigned int isum_seed, tsum_seed, id, seq; |
| 1384 | long f_id = -1; /* id of the current fragment */ |
| 1385 | long f_size = -1; /* size of the current fragment */ |
| 1386 | long f_used = -1; /* bytes used from the current fragment */ |
| 1387 | long n; /* size of the current piece of payload */ |
| 1388 | int segment; |
| 1389 | |
| 1390 | /* Locate original headers and compute various lengths. */ |
| 1391 | ih = ip_hdr(skb); |
| 1392 | th = tcp_hdr(skb); |
| 1393 | ih_off = skb_network_offset(skb); |
| 1394 | th_off = skb_transport_offset(skb); |
| 1395 | sh_len = th_off + tcp_hdrlen(skb); |
| 1396 | p_len = sh->gso_size; |
| 1397 | |
| 1398 | /* Set up seed values for IP and TCP csum and initialize id and seq. */ |
| 1399 | isum_seed = ((0xFFFF - ih->check) + |
| 1400 | (0xFFFF - ih->tot_len) + |
| 1401 | (0xFFFF - ih->id)); |
| 1402 | tsum_seed = th->check + (0xFFFF ^ htons(skb->len)); |
| 1403 | id = ntohs(ih->id); |
| 1404 | seq = ntohl(th->seq); |
| 1405 | |
| 1406 | /* Prepare all the headers. */ |
| 1407 | for (segment = 0; segment < sh->gso_segs; segment++) { |
| 1408 | unsigned char *buf; |
| 1409 | unsigned int p_used = 0; |
| 1410 | |
| 1411 | /* Copy to the header memory for this segment. */ |
| 1412 | buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + |
| 1413 | NET_IP_ALIGN; |
| 1414 | memcpy(buf, data, sh_len); |
| 1415 | |
| 1416 | /* Update copied ip header. */ |
| 1417 | ih = (struct iphdr *)(buf + ih_off); |
| 1418 | ih->tot_len = htons(sh_len + p_len - ih_off); |
| 1419 | ih->id = htons(id); |
| 1420 | ih->check = csum_long(isum_seed + ih->tot_len + |
| 1421 | ih->id) ^ 0xffff; |
| 1422 | |
| 1423 | /* Update copied tcp header. */ |
| 1424 | th = (struct tcphdr *)(buf + th_off); |
| 1425 | th->seq = htonl(seq); |
| 1426 | th->check = csum_long(tsum_seed + htons(sh_len + p_len)); |
| 1427 | if (segment != sh->gso_segs - 1) { |
| 1428 | th->fin = 0; |
| 1429 | th->psh = 0; |
| 1430 | } |
| 1431 | |
| 1432 | /* Skip past the header. */ |
| 1433 | slot++; |
| 1434 | |
| 1435 | /* Skip past the payload. */ |
| 1436 | while (p_used < p_len) { |
| 1437 | |
| 1438 | /* Advance as needed. */ |
| 1439 | while (f_used >= f_size) { |
| 1440 | f_id++; |
| 1441 | f_size = sh->frags[f_id].size; |
| 1442 | f_used = 0; |
| 1443 | } |
| 1444 | |
| 1445 | /* Use bytes from the current fragment. */ |
| 1446 | n = p_len - p_used; |
| 1447 | if (n > f_size - f_used) |
| 1448 | n = f_size - f_used; |
| 1449 | f_used += n; |
| 1450 | p_used += n; |
| 1451 | |
| 1452 | slot++; |
| 1453 | } |
| 1454 | |
| 1455 | id++; |
| 1456 | seq += p_len; |
| 1457 | |
| 1458 | /* The last segment may be less than gso_size. */ |
| 1459 | data_len -= p_len; |
| 1460 | if (data_len < p_len) |
| 1461 | p_len = data_len; |
| 1462 | } |
| 1463 | |
| 1464 | /* Flush the headers so they are ready for hardware DMA. */ |
| 1465 | wmb(); |
| 1466 | } |
| 1467 | |
| 1468 | /* Pass all the data to mpipe for egress. */ |
| 1469 | static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue, |
| 1470 | struct sk_buff *skb, unsigned char *headers, s64 slot) |
| 1471 | { |
| 1472 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1473 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1474 | unsigned int data_len = skb->data_len; |
| 1475 | unsigned int p_len = sh->gso_size; |
| 1476 | gxio_mpipe_edesc_t edesc_head = { { 0 } }; |
| 1477 | gxio_mpipe_edesc_t edesc_body = { { 0 } }; |
| 1478 | long f_id = -1; /* id of the current fragment */ |
| 1479 | long f_size = -1; /* size of the current fragment */ |
| 1480 | long f_used = -1; /* bytes used from the current fragment */ |
| 1481 | long n; /* size of the current piece of payload */ |
| 1482 | unsigned long tx_packets = 0, tx_bytes = 0; |
| 1483 | unsigned int csum_start, sh_len; |
| 1484 | int segment; |
| 1485 | |
| 1486 | /* Prepare to egress the headers: set up header edesc. */ |
| 1487 | csum_start = skb_checksum_start_offset(skb); |
| 1488 | sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| 1489 | edesc_head.csum = 1; |
| 1490 | edesc_head.csum_start = csum_start; |
| 1491 | edesc_head.csum_dest = csum_start + skb->csum_offset; |
| 1492 | edesc_head.xfer_size = sh_len; |
| 1493 | |
| 1494 | /* This is only used to specify the TLB. */ |
| 1495 | edesc_head.stack_idx = large_buffer_stack; |
| 1496 | edesc_body.stack_idx = large_buffer_stack; |
| 1497 | |
| 1498 | /* Egress all the edescs. */ |
| 1499 | for (segment = 0; segment < sh->gso_segs; segment++) { |
| 1500 | void *va; |
| 1501 | unsigned char *buf; |
| 1502 | unsigned int p_used = 0; |
| 1503 | |
| 1504 | /* Egress the header. */ |
| 1505 | buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES + |
| 1506 | NET_IP_ALIGN; |
| 1507 | edesc_head.va = va_to_tile_io_addr(buf); |
| 1508 | gxio_mpipe_equeue_put_at(equeue, edesc_head, slot); |
| 1509 | slot++; |
| 1510 | |
| 1511 | /* Egress the payload. */ |
| 1512 | while (p_used < p_len) { |
| 1513 | |
| 1514 | /* Advance as needed. */ |
| 1515 | while (f_used >= f_size) { |
| 1516 | f_id++; |
| 1517 | f_size = sh->frags[f_id].size; |
| 1518 | f_used = 0; |
| 1519 | } |
| 1520 | |
| 1521 | va = tile_net_frag_buf(&sh->frags[f_id]) + f_used; |
| 1522 | |
| 1523 | /* Use bytes from the current fragment. */ |
| 1524 | n = p_len - p_used; |
| 1525 | if (n > f_size - f_used) |
| 1526 | n = f_size - f_used; |
| 1527 | f_used += n; |
| 1528 | p_used += n; |
| 1529 | |
| 1530 | /* Egress a piece of the payload. */ |
| 1531 | edesc_body.va = va_to_tile_io_addr(va); |
| 1532 | edesc_body.xfer_size = n; |
| 1533 | edesc_body.bound = !(p_used < p_len); |
| 1534 | gxio_mpipe_equeue_put_at(equeue, edesc_body, slot); |
| 1535 | slot++; |
| 1536 | } |
| 1537 | |
| 1538 | tx_packets++; |
| 1539 | tx_bytes += sh_len + p_len; |
| 1540 | |
| 1541 | /* The last segment may be less than gso_size. */ |
| 1542 | data_len -= p_len; |
| 1543 | if (data_len < p_len) |
| 1544 | p_len = data_len; |
| 1545 | } |
| 1546 | |
| 1547 | /* Update stats. */ |
| 1548 | tile_net_stats_add(tx_packets, &priv->stats.tx_packets); |
| 1549 | tile_net_stats_add(tx_bytes, &priv->stats.tx_bytes); |
| 1550 | } |
| 1551 | |
| 1552 | /* Do "TSO" handling for egress. |
| 1553 | * |
| 1554 | * Normally drivers set NETIF_F_TSO only to support hardware TSO; |
| 1555 | * otherwise the stack uses scatter-gather to implement GSO in software. |
| 1556 | * On our testing, enabling GSO support (via NETIF_F_SG) drops network |
| 1557 | * performance down to around 7.5 Gbps on the 10G interfaces, although |
| 1558 | * also dropping cpu utilization way down, to under 8%. But |
| 1559 | * implementing "TSO" in the driver brings performance back up to line |
| 1560 | * rate, while dropping cpu usage even further, to less than 4%. In |
| 1561 | * practice, profiling of GSO shows that skb_segment() is what causes |
| 1562 | * the performance overheads; we benefit in the driver from using |
| 1563 | * preallocated memory to duplicate the TCP/IP headers. |
| 1564 | */ |
| 1565 | static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) |
| 1566 | { |
| 1567 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 1568 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1569 | int channel = priv->echannel; |
| 1570 | struct tile_net_egress *egress = &egress_for_echannel[channel]; |
| 1571 | struct tile_net_comps *comps = info->comps_for_echannel[channel]; |
| 1572 | gxio_mpipe_equeue_t *equeue = egress->equeue; |
| 1573 | unsigned long irqflags; |
| 1574 | int num_edescs; |
| 1575 | s64 slot; |
| 1576 | |
| 1577 | /* Determine how many mpipe edesc's are needed. */ |
| 1578 | num_edescs = tso_count_edescs(skb); |
| 1579 | |
| 1580 | local_irq_save(irqflags); |
| 1581 | |
| 1582 | /* Try to acquire a completion entry and an egress slot. */ |
| 1583 | slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); |
| 1584 | if (slot < 0) { |
| 1585 | local_irq_restore(irqflags); |
| 1586 | return NETDEV_TX_BUSY; |
| 1587 | } |
| 1588 | |
| 1589 | /* Set up copies of header data properly. */ |
| 1590 | tso_headers_prepare(skb, egress->headers, slot); |
| 1591 | |
| 1592 | /* Actually pass the data to the network hardware. */ |
| 1593 | tso_egress(dev, equeue, skb, egress->headers, slot); |
| 1594 | |
| 1595 | /* Add a completion record. */ |
| 1596 | add_comp(equeue, comps, slot + num_edescs - 1, skb); |
| 1597 | |
| 1598 | local_irq_restore(irqflags); |
| 1599 | |
| 1600 | /* Make sure the egress timer is scheduled. */ |
| 1601 | tile_net_schedule_egress_timer(); |
| 1602 | |
| 1603 | return NETDEV_TX_OK; |
| 1604 | } |
| 1605 | |
| 1606 | /* Analyze the body and frags for a transmit request. */ |
| 1607 | static unsigned int tile_net_tx_frags(struct frag *frags, |
| 1608 | struct sk_buff *skb, |
| 1609 | void *b_data, unsigned int b_len) |
| 1610 | { |
| 1611 | unsigned int i, n = 0; |
| 1612 | |
| 1613 | struct skb_shared_info *sh = skb_shinfo(skb); |
| 1614 | |
| 1615 | if (b_len != 0) { |
| 1616 | frags[n].buf = b_data; |
| 1617 | frags[n++].length = b_len; |
| 1618 | } |
| 1619 | |
| 1620 | for (i = 0; i < sh->nr_frags; i++) { |
| 1621 | skb_frag_t *f = &sh->frags[i]; |
| 1622 | frags[n].buf = tile_net_frag_buf(f); |
| 1623 | frags[n++].length = skb_frag_size(f); |
| 1624 | } |
| 1625 | |
| 1626 | return n; |
| 1627 | } |
| 1628 | |
| 1629 | /* Help the kernel transmit a packet. */ |
| 1630 | static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) |
| 1631 | { |
| 1632 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 1633 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1634 | struct tile_net_egress *egress = &egress_for_echannel[priv->echannel]; |
| 1635 | gxio_mpipe_equeue_t *equeue = egress->equeue; |
| 1636 | struct tile_net_comps *comps = |
| 1637 | info->comps_for_echannel[priv->echannel]; |
| 1638 | unsigned int len = skb->len; |
| 1639 | unsigned char *data = skb->data; |
| 1640 | unsigned int num_edescs; |
| 1641 | struct frag frags[MAX_FRAGS]; |
| 1642 | gxio_mpipe_edesc_t edescs[MAX_FRAGS]; |
| 1643 | unsigned long irqflags; |
| 1644 | gxio_mpipe_edesc_t edesc = { { 0 } }; |
| 1645 | unsigned int i; |
| 1646 | s64 slot; |
| 1647 | |
| 1648 | if (skb_is_gso(skb)) |
| 1649 | return tile_net_tx_tso(skb, dev); |
| 1650 | |
| 1651 | num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); |
| 1652 | |
| 1653 | /* This is only used to specify the TLB. */ |
| 1654 | edesc.stack_idx = large_buffer_stack; |
| 1655 | |
| 1656 | /* Prepare the edescs. */ |
| 1657 | for (i = 0; i < num_edescs; i++) { |
| 1658 | edesc.xfer_size = frags[i].length; |
| 1659 | edesc.va = va_to_tile_io_addr(frags[i].buf); |
| 1660 | edescs[i] = edesc; |
| 1661 | } |
| 1662 | |
| 1663 | /* Mark the final edesc. */ |
| 1664 | edescs[num_edescs - 1].bound = 1; |
| 1665 | |
| 1666 | /* Add checksum info to the initial edesc, if needed. */ |
| 1667 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 1668 | unsigned int csum_start = skb_checksum_start_offset(skb); |
| 1669 | edescs[0].csum = 1; |
| 1670 | edescs[0].csum_start = csum_start; |
| 1671 | edescs[0].csum_dest = csum_start + skb->csum_offset; |
| 1672 | } |
| 1673 | |
| 1674 | local_irq_save(irqflags); |
| 1675 | |
| 1676 | /* Try to acquire a completion entry and an egress slot. */ |
| 1677 | slot = tile_net_equeue_try_reserve(dev, comps, equeue, num_edescs); |
| 1678 | if (slot < 0) { |
| 1679 | local_irq_restore(irqflags); |
| 1680 | return NETDEV_TX_BUSY; |
| 1681 | } |
| 1682 | |
| 1683 | for (i = 0; i < num_edescs; i++) |
| 1684 | gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++); |
| 1685 | |
| 1686 | /* Add a completion record. */ |
| 1687 | add_comp(equeue, comps, slot - 1, skb); |
| 1688 | |
| 1689 | /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */ |
| 1690 | tile_net_stats_add(1, &priv->stats.tx_packets); |
| 1691 | tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN), |
| 1692 | &priv->stats.tx_bytes); |
| 1693 | |
| 1694 | local_irq_restore(irqflags); |
| 1695 | |
| 1696 | /* Make sure the egress timer is scheduled. */ |
| 1697 | tile_net_schedule_egress_timer(); |
| 1698 | |
| 1699 | return NETDEV_TX_OK; |
| 1700 | } |
| 1701 | |
| 1702 | /* Return subqueue id on this core (one per core). */ |
| 1703 | static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb) |
| 1704 | { |
| 1705 | return smp_processor_id(); |
| 1706 | } |
| 1707 | |
| 1708 | /* Deal with a transmit timeout. */ |
| 1709 | static void tile_net_tx_timeout(struct net_device *dev) |
| 1710 | { |
| 1711 | int cpu; |
| 1712 | |
| 1713 | for_each_online_cpu(cpu) |
| 1714 | netif_wake_subqueue(dev, cpu); |
| 1715 | } |
| 1716 | |
| 1717 | /* Ioctl commands. */ |
| 1718 | static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 1719 | { |
| 1720 | return -EOPNOTSUPP; |
| 1721 | } |
| 1722 | |
| 1723 | /* Get system network statistics for device. */ |
| 1724 | static struct net_device_stats *tile_net_get_stats(struct net_device *dev) |
| 1725 | { |
| 1726 | struct tile_net_priv *priv = netdev_priv(dev); |
| 1727 | return &priv->stats; |
| 1728 | } |
| 1729 | |
| 1730 | /* Change the MTU. */ |
| 1731 | static int tile_net_change_mtu(struct net_device *dev, int new_mtu) |
| 1732 | { |
| 1733 | if ((new_mtu < 68) || (new_mtu > 1500)) |
| 1734 | return -EINVAL; |
| 1735 | dev->mtu = new_mtu; |
| 1736 | return 0; |
| 1737 | } |
| 1738 | |
| 1739 | /* Change the Ethernet address of the NIC. |
| 1740 | * |
| 1741 | * The hypervisor driver does not support changing MAC address. However, |
| 1742 | * the hardware does not do anything with the MAC address, so the address |
| 1743 | * which gets used on outgoing packets, and which is accepted on incoming |
| 1744 | * packets, is completely up to us. |
| 1745 | * |
| 1746 | * Returns 0 on success, negative on failure. |
| 1747 | */ |
| 1748 | static int tile_net_set_mac_address(struct net_device *dev, void *p) |
| 1749 | { |
| 1750 | struct sockaddr *addr = p; |
| 1751 | |
| 1752 | if (!is_valid_ether_addr(addr->sa_data)) |
| 1753 | return -EINVAL; |
| 1754 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| 1755 | return 0; |
| 1756 | } |
| 1757 | |
| 1758 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1759 | /* Polling 'interrupt' - used by things like netconsole to send skbs |
| 1760 | * without having to re-enable interrupts. It's not called while |
| 1761 | * the interrupt routine is executing. |
| 1762 | */ |
| 1763 | static void tile_net_netpoll(struct net_device *dev) |
| 1764 | { |
| 1765 | disable_percpu_irq(ingress_irq); |
| 1766 | tile_net_handle_ingress_irq(ingress_irq, NULL); |
| 1767 | enable_percpu_irq(ingress_irq, 0); |
| 1768 | } |
| 1769 | #endif |
| 1770 | |
| 1771 | static const struct net_device_ops tile_net_ops = { |
| 1772 | .ndo_open = tile_net_open, |
| 1773 | .ndo_stop = tile_net_stop, |
| 1774 | .ndo_start_xmit = tile_net_tx, |
| 1775 | .ndo_select_queue = tile_net_select_queue, |
| 1776 | .ndo_do_ioctl = tile_net_ioctl, |
| 1777 | .ndo_get_stats = tile_net_get_stats, |
| 1778 | .ndo_change_mtu = tile_net_change_mtu, |
| 1779 | .ndo_tx_timeout = tile_net_tx_timeout, |
| 1780 | .ndo_set_mac_address = tile_net_set_mac_address, |
| 1781 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 1782 | .ndo_poll_controller = tile_net_netpoll, |
| 1783 | #endif |
| 1784 | }; |
| 1785 | |
| 1786 | /* The setup function. |
| 1787 | * |
| 1788 | * This uses ether_setup() to assign various fields in dev, including |
| 1789 | * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. |
| 1790 | */ |
| 1791 | static void tile_net_setup(struct net_device *dev) |
| 1792 | { |
| 1793 | ether_setup(dev); |
| 1794 | dev->netdev_ops = &tile_net_ops; |
| 1795 | dev->watchdog_timeo = TILE_NET_TIMEOUT; |
| 1796 | dev->features |= NETIF_F_LLTX; |
| 1797 | dev->features |= NETIF_F_HW_CSUM; |
| 1798 | dev->features |= NETIF_F_SG; |
| 1799 | dev->features |= NETIF_F_TSO; |
| 1800 | dev->mtu = 1500; |
| 1801 | } |
| 1802 | |
| 1803 | /* Allocate the device structure, register the device, and obtain the |
| 1804 | * MAC address from the hypervisor. |
| 1805 | */ |
| 1806 | static void tile_net_dev_init(const char *name, const uint8_t *mac) |
| 1807 | { |
| 1808 | int ret; |
| 1809 | int i; |
| 1810 | int nz_addr = 0; |
| 1811 | struct net_device *dev; |
| 1812 | struct tile_net_priv *priv; |
| 1813 | |
| 1814 | /* HACK: Ignore "loop" links. */ |
| 1815 | if (strncmp(name, "loop", 4) == 0) |
| 1816 | return; |
| 1817 | |
| 1818 | /* Allocate the device structure. Normally, "name" is a |
| 1819 | * template, instantiated by register_netdev(), but not for us. |
| 1820 | */ |
| 1821 | dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup, |
| 1822 | NR_CPUS, 1); |
| 1823 | if (!dev) { |
| 1824 | pr_err("alloc_netdev_mqs(%s) failed\n", name); |
| 1825 | return; |
| 1826 | } |
| 1827 | |
| 1828 | /* Initialize "priv". */ |
| 1829 | priv = netdev_priv(dev); |
| 1830 | memset(priv, 0, sizeof(*priv)); |
| 1831 | priv->dev = dev; |
| 1832 | priv->channel = -1; |
| 1833 | priv->loopify_channel = -1; |
| 1834 | priv->echannel = -1; |
| 1835 | |
| 1836 | /* Get the MAC address and set it in the device struct; this must |
| 1837 | * be done before the device is opened. If the MAC is all zeroes, |
| 1838 | * we use a random address, since we're probably on the simulator. |
| 1839 | */ |
| 1840 | for (i = 0; i < 6; i++) |
| 1841 | nz_addr |= mac[i]; |
| 1842 | |
| 1843 | if (nz_addr) { |
| 1844 | memcpy(dev->dev_addr, mac, 6); |
| 1845 | dev->addr_len = 6; |
| 1846 | } else { |
Joe Perches | 7efd26d | 2012-07-12 19:33:06 +0000 | [diff] [blame^] | 1847 | eth_random_addr(dev->dev_addr); |
Chris Metcalf | e3d62d7 | 2012-06-07 10:45:02 +0000 | [diff] [blame] | 1848 | } |
| 1849 | |
| 1850 | /* Register the network device. */ |
| 1851 | ret = register_netdev(dev); |
| 1852 | if (ret) { |
| 1853 | netdev_err(dev, "register_netdev failed %d\n", ret); |
| 1854 | free_netdev(dev); |
| 1855 | return; |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | /* Per-cpu module initialization. */ |
| 1860 | static void tile_net_init_module_percpu(void *unused) |
| 1861 | { |
| 1862 | struct tile_net_info *info = &__get_cpu_var(per_cpu_info); |
| 1863 | int my_cpu = smp_processor_id(); |
| 1864 | |
| 1865 | info->has_iqueue = false; |
| 1866 | |
| 1867 | info->my_cpu = my_cpu; |
| 1868 | |
| 1869 | /* Initialize the egress timer. */ |
| 1870 | hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 1871 | info->egress_timer.function = tile_net_handle_egress_timer; |
| 1872 | } |
| 1873 | |
| 1874 | /* Module initialization. */ |
| 1875 | static int __init tile_net_init_module(void) |
| 1876 | { |
| 1877 | int i; |
| 1878 | char name[GXIO_MPIPE_LINK_NAME_LEN]; |
| 1879 | uint8_t mac[6]; |
| 1880 | |
| 1881 | pr_info("Tilera Network Driver\n"); |
| 1882 | |
| 1883 | mutex_init(&tile_net_devs_for_channel_mutex); |
| 1884 | |
| 1885 | /* Initialize each CPU. */ |
| 1886 | on_each_cpu(tile_net_init_module_percpu, NULL, 1); |
| 1887 | |
| 1888 | /* Find out what devices we have, and initialize them. */ |
| 1889 | for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++) |
| 1890 | tile_net_dev_init(name, mac); |
| 1891 | |
| 1892 | if (!network_cpus_init()) |
| 1893 | network_cpus_map = *cpu_online_mask; |
| 1894 | |
| 1895 | return 0; |
| 1896 | } |
| 1897 | |
| 1898 | module_init(tile_net_init_module); |