blob: aed223b1b897683f8f57281cf1f8da2e50b9bdcf [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
Auke Kok0abb6eb2006-09-27 12:53:14 -07003 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 more details.
Auke Kok0abb6eb2006-09-27 12:53:14 -070014
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 You should have received a copy of the GNU General Public License along with
Auke Kok0abb6eb2006-09-27 12:53:14 -070016 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 Contact Information:
23 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070024 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070027 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
Emil Tantilov675ad472010-04-27 14:02:58 +000033#include "e1000.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034
Joe Perches406874a2008-04-03 10:06:32 -070035static s32 e1000_check_downshift(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070036static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
Nicholas Nunley35574762006-09-27 12:53:34 -070038static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39static void e1000_clear_vfta(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070040static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
Joe Perches64798842008-07-11 15:17:02 -070041 bool link_up);
Joe Perches406874a2008-04-03 10:06:32 -070042static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070044static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070045static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
Joe Perches406874a2008-04-03 10:06:32 -070047static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070048static s32 e1000_id_led_init(struct e1000_hw *hw);
Nicholas Nunley35574762006-09-27 12:53:34 -070049static void e1000_init_rx_addrs(struct e1000_hw *hw);
Joe Perches64798842008-07-11 15:17:02 -070050static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
Joe Perches64798842008-07-11 15:17:02 -070052static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
Joe Perches406874a2008-04-03 10:06:32 -070054static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
Joe Perches406874a2008-04-03 10:06:32 -070055static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57static s32 e1000_set_phy_type(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070058static void e1000_phy_init_script(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070059static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070066static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
Joe Perches406874a2008-04-03 10:06:32 -070067static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070070 u16 words, u16 *data);
Joe Perches64798842008-07-11 15:17:02 -070071static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
Joe Perches406874a2008-04-03 10:06:32 -070073static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
Joe Perches64798842008-07-11 15:17:02 -070076static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
Joe Perches406874a2008-04-03 10:06:32 -070077static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
Joe Perches64798842008-07-11 15:17:02 -070078 u16 phy_data);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070079static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
Joe Perches64798842008-07-11 15:17:02 -070080 u16 *phy_data);
Joe Perches406874a2008-04-03 10:06:32 -070081static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070083static void e1000_release_eeprom(struct e1000_hw *hw);
84static void e1000_standby_eeprom(struct e1000_hw *hw);
Joe Perches406874a2008-04-03 10:06:32 -070085static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070088static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
Linus Torvalds1da177e2005-04-16 15:20:36 -070092
93/* IGP cable length table */
94static const
Jesse Brandeburg120a5d02009-09-25 15:19:46 -070095u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107};
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
Christopher Li78566fe2008-09-05 14:04:05 -0700109static DEFINE_SPINLOCK(e1000_eeprom_lock);
110
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700111/**
112 * e1000_set_phy_type - Set the phy type member in the hw struct.
113 * @hw: Struct containing variables accessed by shared code
114 */
Joe Perches64798842008-07-11 15:17:02 -0700115static s32 e1000_set_phy_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700116{
Emil Tantilov675ad472010-04-27 14:02:58 +0000117 e_dbg("e1000_set_phy_type");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700118
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700119 if (hw->mac_type == e1000_undefined)
120 return -E1000_ERR_PHY_TYPE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700121
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700122 switch (hw->phy_id) {
123 case M88E1000_E_PHY_ID:
124 case M88E1000_I_PHY_ID:
125 case M88E1011_I_PHY_ID:
126 case M88E1111_I_PHY_ID:
127 hw->phy_type = e1000_phy_m88;
128 break;
129 case IGP01E1000_I_PHY_ID:
130 if (hw->mac_type == e1000_82541 ||
131 hw->mac_type == e1000_82541_rev_2 ||
132 hw->mac_type == e1000_82547 ||
Dirk Brandewie5377a412011-01-06 14:29:54 +0000133 hw->mac_type == e1000_82547_rev_2)
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700134 hw->phy_type = e1000_phy_igp;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000135 break;
136 case RTL8211B_PHY_ID:
137 hw->phy_type = e1000_phy_8211;
138 break;
139 case RTL8201N_PHY_ID:
140 hw->phy_type = e1000_phy_8201;
141 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700142 default:
143 /* Should never have loaded on this device */
144 hw->phy_type = e1000_phy_undefined;
145 return -E1000_ERR_PHY_TYPE;
146 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700148 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149}
150
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700151/**
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
154 */
Joe Perches64798842008-07-11 15:17:02 -0700155static void e1000_phy_init_script(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700157 u32 ret_val;
158 u16 phy_saved_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159
Emil Tantilov675ad472010-04-27 14:02:58 +0000160 e_dbg("e1000_phy_init_script");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700162 if (hw->phy_init_script) {
163 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700165 /* Save off the current value of register 0x2F5B to be restored at
166 * the end of this routine. */
167 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700168
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700169 /* Disabled the PHY transmitter */
170 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
171 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700173 e1000_write_phy_reg(hw, 0x0000, 0x0140);
174 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700176 switch (hw->mac_type) {
177 case e1000_82541:
178 case e1000_82547:
179 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
180 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
181 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
182 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
183 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
184 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
185 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
186 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
187 e1000_write_phy_reg(hw, 0x2010, 0x0008);
188 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700189
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700190 case e1000_82541_rev_2:
191 case e1000_82547_rev_2:
192 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
193 break;
194 default:
195 break;
196 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700197
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700198 e1000_write_phy_reg(hw, 0x0000, 0x3300);
199 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700201 /* Now enable the transmitter */
202 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700204 if (hw->mac_type == e1000_82547) {
205 u16 fused, fine, coarse;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700206
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700207 /* Move to analog registers page */
208 e1000_read_phy_reg(hw,
209 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
210 &fused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700212 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
213 e1000_read_phy_reg(hw,
214 IGP01E1000_ANALOG_FUSE_STATUS,
215 &fused);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700216
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700217 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
218 coarse =
219 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700220
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700221 if (coarse >
222 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
223 coarse -=
224 IGP01E1000_ANALOG_FUSE_COARSE_10;
225 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
226 } else if (coarse ==
227 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
228 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700230 fused =
231 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
232 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
233 (coarse &
234 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700236 e1000_write_phy_reg(hw,
237 IGP01E1000_ANALOG_FUSE_CONTROL,
238 fused);
239 e1000_write_phy_reg(hw,
240 IGP01E1000_ANALOG_FUSE_BYPASS,
241 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
242 }
243 }
244 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245}
246
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700247/**
248 * e1000_set_mac_type - Set the mac type member in the hw struct.
249 * @hw: Struct containing variables accessed by shared code
250 */
Joe Perches64798842008-07-11 15:17:02 -0700251s32 e1000_set_mac_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700252{
Emil Tantilov675ad472010-04-27 14:02:58 +0000253 e_dbg("e1000_set_mac_type");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500255 switch (hw->device_id) {
256 case E1000_DEV_ID_82542:
257 switch (hw->revision_id) {
258 case E1000_82542_2_0_REV_ID:
259 hw->mac_type = e1000_82542_rev2_0;
260 break;
261 case E1000_82542_2_1_REV_ID:
262 hw->mac_type = e1000_82542_rev2_1;
263 break;
264 default:
265 /* Invalid 82542 revision ID */
266 return -E1000_ERR_MAC_TYPE;
267 }
268 break;
269 case E1000_DEV_ID_82543GC_FIBER:
270 case E1000_DEV_ID_82543GC_COPPER:
271 hw->mac_type = e1000_82543;
272 break;
273 case E1000_DEV_ID_82544EI_COPPER:
274 case E1000_DEV_ID_82544EI_FIBER:
275 case E1000_DEV_ID_82544GC_COPPER:
276 case E1000_DEV_ID_82544GC_LOM:
277 hw->mac_type = e1000_82544;
278 break;
279 case E1000_DEV_ID_82540EM:
280 case E1000_DEV_ID_82540EM_LOM:
281 case E1000_DEV_ID_82540EP:
282 case E1000_DEV_ID_82540EP_LOM:
283 case E1000_DEV_ID_82540EP_LP:
284 hw->mac_type = e1000_82540;
285 break;
286 case E1000_DEV_ID_82545EM_COPPER:
287 case E1000_DEV_ID_82545EM_FIBER:
288 hw->mac_type = e1000_82545;
289 break;
290 case E1000_DEV_ID_82545GM_COPPER:
291 case E1000_DEV_ID_82545GM_FIBER:
292 case E1000_DEV_ID_82545GM_SERDES:
293 hw->mac_type = e1000_82545_rev_3;
294 break;
295 case E1000_DEV_ID_82546EB_COPPER:
296 case E1000_DEV_ID_82546EB_FIBER:
297 case E1000_DEV_ID_82546EB_QUAD_COPPER:
298 hw->mac_type = e1000_82546;
299 break;
300 case E1000_DEV_ID_82546GB_COPPER:
301 case E1000_DEV_ID_82546GB_FIBER:
302 case E1000_DEV_ID_82546GB_SERDES:
303 case E1000_DEV_ID_82546GB_PCIE:
304 case E1000_DEV_ID_82546GB_QUAD_COPPER:
305 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
306 hw->mac_type = e1000_82546_rev_3;
307 break;
308 case E1000_DEV_ID_82541EI:
309 case E1000_DEV_ID_82541EI_MOBILE:
310 case E1000_DEV_ID_82541ER_LOM:
311 hw->mac_type = e1000_82541;
312 break;
313 case E1000_DEV_ID_82541ER:
314 case E1000_DEV_ID_82541GI:
315 case E1000_DEV_ID_82541GI_LF:
316 case E1000_DEV_ID_82541GI_MOBILE:
317 hw->mac_type = e1000_82541_rev_2;
318 break;
319 case E1000_DEV_ID_82547EI:
320 case E1000_DEV_ID_82547EI_MOBILE:
321 hw->mac_type = e1000_82547;
322 break;
323 case E1000_DEV_ID_82547GI:
324 hw->mac_type = e1000_82547_rev_2;
325 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000326 case E1000_DEV_ID_INTEL_CE4100_GBE:
327 hw->mac_type = e1000_ce4100;
328 break;
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500329 default:
330 /* Should never have loaded on this device */
331 return -E1000_ERR_MAC_TYPE;
332 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500334 switch (hw->mac_type) {
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500335 case e1000_82541:
336 case e1000_82547:
337 case e1000_82541_rev_2:
338 case e1000_82547_rev_2:
Joe Perchesc3033b02008-03-21 11:06:25 -0700339 hw->asf_firmware_present = true;
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500340 break;
341 default:
342 break;
343 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700344
Jeff Garzik167fb282006-12-15 10:41:15 -0500345 /* The 82543 chip does not count tx_carrier_errors properly in
346 * FD mode
347 */
348 if (hw->mac_type == e1000_82543)
Joe Perchesc3033b02008-03-21 11:06:25 -0700349 hw->bad_tx_carr_stats_fd = true;
Jeff Garzik167fb282006-12-15 10:41:15 -0500350
Jeff Garzik15e376b2006-12-15 11:16:33 -0500351 if (hw->mac_type > e1000_82544)
Joe Perchesc3033b02008-03-21 11:06:25 -0700352 hw->has_smbus = true;
Jeff Garzik15e376b2006-12-15 11:16:33 -0500353
Jeff Garzikbd2371e2006-12-15 10:31:40 -0500354 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700355}
356
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700357/**
358 * e1000_set_media_type - Set media type and TBI compatibility.
359 * @hw: Struct containing variables accessed by shared code
360 */
Joe Perches64798842008-07-11 15:17:02 -0700361void e1000_set_media_type(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700362{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700363 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
Emil Tantilov675ad472010-04-27 14:02:58 +0000365 e_dbg("e1000_set_media_type");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700367 if (hw->mac_type != e1000_82543) {
368 /* tbi_compatibility is only valid on 82543 */
369 hw->tbi_compatibility_en = false;
370 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700372 switch (hw->device_id) {
373 case E1000_DEV_ID_82545GM_SERDES:
374 case E1000_DEV_ID_82546GB_SERDES:
375 hw->media_type = e1000_media_type_internal_serdes;
376 break;
377 default:
378 switch (hw->mac_type) {
379 case e1000_82542_rev2_0:
380 case e1000_82542_rev2_1:
381 hw->media_type = e1000_media_type_fiber;
382 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000383 case e1000_ce4100:
384 hw->media_type = e1000_media_type_copper;
385 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700386 default:
387 status = er32(STATUS);
388 if (status & E1000_STATUS_TBIMODE) {
389 hw->media_type = e1000_media_type_fiber;
390 /* tbi_compatibility not valid on fiber */
391 hw->tbi_compatibility_en = false;
392 } else {
393 hw->media_type = e1000_media_type_copper;
394 }
395 break;
396 }
397 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398}
399
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700400/**
401 * e1000_reset_hw: reset the hardware completely
402 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700403 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700404 * Reset the transmit and receive units; mask and clear all interrupts.
405 */
Joe Perches64798842008-07-11 15:17:02 -0700406s32 e1000_reset_hw(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700408 u32 ctrl;
409 u32 ctrl_ext;
410 u32 icr;
411 u32 manc;
412 u32 led_ctrl;
413 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
Emil Tantilov675ad472010-04-27 14:02:58 +0000415 e_dbg("e1000_reset_hw");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700417 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
418 if (hw->mac_type == e1000_82542_rev2_0) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000419 e_dbg("Disabling MWI on 82542 rev 2.0\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700420 e1000_pci_clear_mwi(hw);
421 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700422
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700423 /* Clear interrupt mask to stop board from generating interrupts */
Emil Tantilov675ad472010-04-27 14:02:58 +0000424 e_dbg("Masking off all interrupts\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700425 ew32(IMC, 0xffffffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700426
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700427 /* Disable the Transmit and Receive units. Then delay to allow
428 * any pending transactions to complete before we hit the MAC with
429 * the global reset.
430 */
431 ew32(RCTL, 0);
432 ew32(TCTL, E1000_TCTL_PSP);
433 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700435 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
436 hw->tbi_compatibility_on = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700438 /* Delay to allow any outstanding PCI transactions to complete before
439 * resetting the device
440 */
441 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700443 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700445 /* Must reset the PHY before resetting the MAC */
446 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
447 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
448 msleep(5);
449 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700450
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700451 /* Issue a global reset to the MAC. This will reset the chip's
452 * transmit, receive, DMA, and link units. It will not effect
453 * the current PCI configuration. The global reset bit is self-
454 * clearing, and should clear within a microsecond.
455 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000456 e_dbg("Issuing a global reset to MAC\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700458 switch (hw->mac_type) {
459 case e1000_82544:
460 case e1000_82540:
461 case e1000_82545:
462 case e1000_82546:
463 case e1000_82541:
464 case e1000_82541_rev_2:
465 /* These controllers can't ack the 64-bit write when issuing the
466 * reset, so use IO-mapping as a workaround to issue the reset */
467 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
468 break;
469 case e1000_82545_rev_3:
470 case e1000_82546_rev_3:
471 /* Reset is performed on a shadow of the control register */
472 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
473 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +0000474 case e1000_ce4100:
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700475 default:
476 ew32(CTRL, (ctrl | E1000_CTRL_RST));
477 break;
478 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700479
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700480 /* After MAC reset, force reload of EEPROM to restore power-on settings to
481 * device. Later controllers reload the EEPROM automatically, so just wait
482 * for reload to complete.
483 */
484 switch (hw->mac_type) {
485 case e1000_82542_rev2_0:
486 case e1000_82542_rev2_1:
487 case e1000_82543:
488 case e1000_82544:
489 /* Wait for reset to complete */
490 udelay(10);
491 ctrl_ext = er32(CTRL_EXT);
492 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
493 ew32(CTRL_EXT, ctrl_ext);
494 E1000_WRITE_FLUSH();
495 /* Wait for EEPROM reload */
496 msleep(2);
497 break;
498 case e1000_82541:
499 case e1000_82541_rev_2:
500 case e1000_82547:
501 case e1000_82547_rev_2:
502 /* Wait for EEPROM reload */
503 msleep(20);
504 break;
505 default:
506 /* Auto read done will delay 5ms or poll based on mac type */
507 ret_val = e1000_get_auto_rd_done(hw);
508 if (ret_val)
509 return ret_val;
510 break;
511 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700513 /* Disable HW ARPs on ASF enabled adapters */
514 if (hw->mac_type >= e1000_82540) {
515 manc = er32(MANC);
516 manc &= ~(E1000_MANC_ARP_EN);
517 ew32(MANC, manc);
518 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700520 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
521 e1000_phy_init_script(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700522
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700523 /* Configure activity LED after PHY reset */
524 led_ctrl = er32(LEDCTL);
525 led_ctrl &= IGP_ACTIVITY_LED_MASK;
526 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
527 ew32(LEDCTL, led_ctrl);
528 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700530 /* Clear interrupt mask to stop board from generating interrupts */
Emil Tantilov675ad472010-04-27 14:02:58 +0000531 e_dbg("Masking off all interrupts\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700532 ew32(IMC, 0xffffffff);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700534 /* Clear any pending interrupt events. */
535 icr = er32(ICR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700537 /* If MWI was previously enabled, reenable it. */
538 if (hw->mac_type == e1000_82542_rev2_0) {
539 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
540 e1000_pci_set_mwi(hw);
541 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700543 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544}
545
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700546/**
547 * e1000_init_hw: Performs basic configuration of the adapter.
548 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549 *
550 * Assumes that the controller has previously been reset and is in a
551 * post-reset uninitialized state. Initializes the receive address registers,
552 * multicast table, and VLAN filter table. Calls routines to setup link
553 * configuration and flow control settings. Clears all on-chip counters. Leaves
554 * the transmit and receive units disabled and uninitialized.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700555 */
Joe Perches64798842008-07-11 15:17:02 -0700556s32 e1000_init_hw(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700558 u32 ctrl;
559 u32 i;
560 s32 ret_val;
561 u32 mta_size;
562 u32 ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700563
Emil Tantilov675ad472010-04-27 14:02:58 +0000564 e_dbg("e1000_init_hw");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700566 /* Initialize Identification LED */
567 ret_val = e1000_id_led_init(hw);
568 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000569 e_dbg("Error Initializing Identification LED\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700570 return ret_val;
571 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700572
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700573 /* Set the media type and TBI compatibility */
574 e1000_set_media_type(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700575
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700576 /* Disabling VLAN filtering. */
Emil Tantilov675ad472010-04-27 14:02:58 +0000577 e_dbg("Initializing the IEEE VLAN\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700578 if (hw->mac_type < e1000_82545_rev_3)
579 ew32(VET, 0);
580 e1000_clear_vfta(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700582 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
583 if (hw->mac_type == e1000_82542_rev2_0) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000584 e_dbg("Disabling MWI on 82542 rev 2.0\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700585 e1000_pci_clear_mwi(hw);
586 ew32(RCTL, E1000_RCTL_RST);
587 E1000_WRITE_FLUSH();
588 msleep(5);
589 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700590
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700591 /* Setup the receive address. This involves initializing all of the Receive
592 * Address Registers (RARs 0 - 15).
593 */
594 e1000_init_rx_addrs(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700595
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700596 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
597 if (hw->mac_type == e1000_82542_rev2_0) {
598 ew32(RCTL, 0);
599 E1000_WRITE_FLUSH();
600 msleep(1);
601 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
602 e1000_pci_set_mwi(hw);
603 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700604
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700605 /* Zero out the Multicast HASH table */
Emil Tantilov675ad472010-04-27 14:02:58 +0000606 e_dbg("Zeroing the MTA\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700607 mta_size = E1000_MC_TBL_SIZE;
608 for (i = 0; i < mta_size; i++) {
609 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
610 /* use write flush to prevent Memory Write Block (MWB) from
611 * occurring when accessing our register space */
612 E1000_WRITE_FLUSH();
613 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700614
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700615 /* Set the PCI priority bit correctly in the CTRL register. This
616 * determines if the adapter gives priority to receives, or if it
617 * gives equal priority to transmits and receives. Valid only on
618 * 82542 and 82543 silicon.
619 */
620 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
621 ctrl = er32(CTRL);
622 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
623 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700625 switch (hw->mac_type) {
626 case e1000_82545_rev_3:
627 case e1000_82546_rev_3:
628 break;
629 default:
630 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
631 if (hw->bus_type == e1000_bus_type_pcix
632 && e1000_pcix_get_mmrbc(hw) > 2048)
633 e1000_pcix_set_mmrbc(hw, 2048);
634 break;
635 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700637 /* Call a subroutine to configure the link and setup flow control. */
638 ret_val = e1000_setup_link(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700640 /* Set the transmit descriptor write-back policy */
641 if (hw->mac_type > e1000_82544) {
642 ctrl = er32(TXDCTL);
643 ctrl =
644 (ctrl & ~E1000_TXDCTL_WTHRESH) |
645 E1000_TXDCTL_FULL_TX_DESC_WB;
646 ew32(TXDCTL, ctrl);
647 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700649 /* Clear all of the statistics registers (clear on read). It is
650 * important that we do this after we have tried to establish link
651 * because the symbol error count will increment wildly if there
652 * is no link.
653 */
654 e1000_clear_hw_cntrs(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700656 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
657 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
658 ctrl_ext = er32(CTRL_EXT);
659 /* Relaxed ordering must be disabled to avoid a parity
660 * error crash in a PCI slot. */
661 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
662 ew32(CTRL_EXT, ctrl_ext);
663 }
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800664
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700665 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666}
667
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700668/**
669 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
670 * @hw: Struct containing variables accessed by shared code.
671 */
Joe Perches64798842008-07-11 15:17:02 -0700672static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700674 u16 eeprom_data;
675 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676
Emil Tantilov675ad472010-04-27 14:02:58 +0000677 e_dbg("e1000_adjust_serdes_amplitude");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700679 if (hw->media_type != e1000_media_type_internal_serdes)
680 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700682 switch (hw->mac_type) {
683 case e1000_82545_rev_3:
684 case e1000_82546_rev_3:
685 break;
686 default:
687 return E1000_SUCCESS;
688 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700690 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
691 &eeprom_data);
692 if (ret_val) {
693 return ret_val;
694 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700696 if (eeprom_data != EEPROM_RESERVED_WORD) {
697 /* Adjust SERDES output amplitude only. */
698 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
699 ret_val =
700 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
701 if (ret_val)
702 return ret_val;
703 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700704
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700705 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706}
707
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700708/**
709 * e1000_setup_link - Configures flow control and link settings.
710 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700711 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700712 * Determines which flow control settings to use. Calls the appropriate media-
Linus Torvalds1da177e2005-04-16 15:20:36 -0700713 * specific link configuration function. Configures the flow control settings.
714 * Assuming the adapter has a valid link partner, a valid link should be
715 * established. Assumes the hardware has previously been reset and the
716 * transmitter and receiver are not enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700717 */
Joe Perches64798842008-07-11 15:17:02 -0700718s32 e1000_setup_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700720 u32 ctrl_ext;
721 s32 ret_val;
722 u16 eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700723
Emil Tantilov675ad472010-04-27 14:02:58 +0000724 e_dbg("e1000_setup_link");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700725
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700726 /* Read and store word 0x0F of the EEPROM. This word contains bits
727 * that determine the hardware's default PAUSE (flow control) mode,
728 * a bit that determines whether the HW defaults to enabling or
729 * disabling auto-negotiation, and the direction of the
730 * SW defined pins. If there is no SW over-ride of the flow
731 * control setting, then the variable hw->fc will
732 * be initialized based on a value in the EEPROM.
733 */
734 if (hw->fc == E1000_FC_DEFAULT) {
735 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
736 1, &eeprom_data);
737 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000738 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700739 return -E1000_ERR_EEPROM;
740 }
741 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
742 hw->fc = E1000_FC_NONE;
743 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
744 EEPROM_WORD0F_ASM_DIR)
745 hw->fc = E1000_FC_TX_PAUSE;
746 else
747 hw->fc = E1000_FC_FULL;
748 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700749
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700750 /* We want to save off the original Flow Control configuration just
751 * in case we get disconnected and then reconnected into a different
752 * hub or switch with different Flow Control capabilities.
753 */
754 if (hw->mac_type == e1000_82542_rev2_0)
755 hw->fc &= (~E1000_FC_TX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700756
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700757 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
758 hw->fc &= (~E1000_FC_RX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700759
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700760 hw->original_fc = hw->fc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700761
Emil Tantilov675ad472010-04-27 14:02:58 +0000762 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700763
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700764 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
765 * polarity value for the SW controlled pins, and setup the
766 * Extended Device Control reg with that info.
767 * This is needed because one of the SW controlled pins is used for
768 * signal detection. So this should be done before e1000_setup_pcs_link()
769 * or e1000_phy_setup() is called.
770 */
771 if (hw->mac_type == e1000_82543) {
772 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
773 1, &eeprom_data);
774 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000775 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700776 return -E1000_ERR_EEPROM;
777 }
778 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
779 SWDPIO__EXT_SHIFT);
780 ew32(CTRL_EXT, ctrl_ext);
781 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700783 /* Call the necessary subroutine to configure the link. */
784 ret_val = (hw->media_type == e1000_media_type_copper) ?
785 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700787 /* Initialize the flow control address, type, and PAUSE timer
788 * registers to their default values. This is done even if flow
789 * control is disabled, because it does not hurt anything to
790 * initialize these registers.
791 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000792 e_dbg("Initializing the Flow Control address, type and timer regs\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700793
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700794 ew32(FCT, FLOW_CONTROL_TYPE);
795 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
796 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700797
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700798 ew32(FCTTV, hw->fc_pause_time);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700800 /* Set the flow control receive threshold registers. Normally,
801 * these registers will be set to a default threshold that may be
802 * adjusted later by the driver's runtime code. However, if the
803 * ability to transmit pause frames in not enabled, then these
804 * registers will be set to 0.
805 */
806 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
807 ew32(FCRTL, 0);
808 ew32(FCRTH, 0);
809 } else {
810 /* We need to set up the Receive Threshold high and low water marks
811 * as well as (optionally) enabling the transmission of XON frames.
812 */
813 if (hw->fc_send_xon) {
814 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
815 ew32(FCRTH, hw->fc_high_water);
816 } else {
817 ew32(FCRTL, hw->fc_low_water);
818 ew32(FCRTH, hw->fc_high_water);
819 }
820 }
821 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700822}
823
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700824/**
825 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
826 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827 *
828 * Manipulates Physical Coding Sublayer functions in order to configure
829 * link. Assumes the hardware has been previously reset and the transmitter
830 * and receiver are not enabled.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700831 */
Joe Perches64798842008-07-11 15:17:02 -0700832static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700833{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700834 u32 ctrl;
835 u32 status;
836 u32 txcw = 0;
837 u32 i;
838 u32 signal = 0;
839 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700840
Emil Tantilov675ad472010-04-27 14:02:58 +0000841 e_dbg("e1000_setup_fiber_serdes_link");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700843 /* On adapters with a MAC newer than 82544, SWDP 1 will be
844 * set when the optics detect a signal. On older adapters, it will be
845 * cleared when there is a signal. This applies to fiber media only.
846 * If we're on serdes media, adjust the output amplitude to value
847 * set in the EEPROM.
848 */
849 ctrl = er32(CTRL);
850 if (hw->media_type == e1000_media_type_fiber)
851 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700852
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700853 ret_val = e1000_adjust_serdes_amplitude(hw);
854 if (ret_val)
855 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700856
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700857 /* Take the link out of reset */
858 ctrl &= ~(E1000_CTRL_LRST);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700860 /* Adjust VCO speed to improve BER performance */
861 ret_val = e1000_set_vco_speed(hw);
862 if (ret_val)
863 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700865 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700867 /* Check for a software override of the flow control settings, and setup
868 * the device accordingly. If auto-negotiation is enabled, then software
869 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
870 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
871 * auto-negotiation is disabled, then software will have to manually
872 * configure the two flow control enable bits in the CTRL register.
873 *
874 * The possible values of the "fc" parameter are:
875 * 0: Flow control is completely disabled
876 * 1: Rx flow control is enabled (we can receive pause frames, but
877 * not send pause frames).
878 * 2: Tx flow control is enabled (we can send pause frames but we do
879 * not support receiving pause frames).
880 * 3: Both Rx and TX flow control (symmetric) are enabled.
881 */
882 switch (hw->fc) {
883 case E1000_FC_NONE:
884 /* Flow control is completely disabled by a software over-ride. */
885 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
886 break;
887 case E1000_FC_RX_PAUSE:
888 /* RX Flow control is enabled and TX Flow control is disabled by a
889 * software over-ride. Since there really isn't a way to advertise
890 * that we are capable of RX Pause ONLY, we will advertise that we
891 * support both symmetric and asymmetric RX PAUSE. Later, we will
892 * disable the adapter's ability to send PAUSE frames.
893 */
894 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
895 break;
896 case E1000_FC_TX_PAUSE:
897 /* TX Flow control is enabled, and RX Flow control is disabled, by a
898 * software over-ride.
899 */
900 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
901 break;
902 case E1000_FC_FULL:
903 /* Flow control (both RX and TX) is enabled by a software over-ride. */
904 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
905 break;
906 default:
Emil Tantilov675ad472010-04-27 14:02:58 +0000907 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700908 return -E1000_ERR_CONFIG;
909 break;
910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700912 /* Since auto-negotiation is enabled, take the link out of reset (the link
913 * will be in reset, because we previously reset the chip). This will
914 * restart auto-negotiation. If auto-negotiation is successful then the
915 * link-up status bit will be set and the flow control enable bits (RFCE
916 * and TFCE) will be set according to their negotiated value.
917 */
Emil Tantilov675ad472010-04-27 14:02:58 +0000918 e_dbg("Auto-negotiation enabled\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700920 ew32(TXCW, txcw);
921 ew32(CTRL, ctrl);
922 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700923
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700924 hw->txcw = txcw;
925 msleep(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700927 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
928 * indication in the Device Status Register. Time-out if a link isn't
929 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
930 * less than 500 milliseconds even if the other end is doing it in SW).
931 * For internal serdes, we just assume a signal is present, then poll.
932 */
933 if (hw->media_type == e1000_media_type_internal_serdes ||
934 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000935 e_dbg("Looking for Link\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700936 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
937 msleep(10);
938 status = er32(STATUS);
939 if (status & E1000_STATUS_LU)
940 break;
941 }
942 if (i == (LINK_UP_TIMEOUT / 10)) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000943 e_dbg("Never got a valid link from auto-neg!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700944 hw->autoneg_failed = 1;
945 /* AutoNeg failed to achieve a link, so we'll call
946 * e1000_check_for_link. This routine will force the link up if
947 * we detect a signal. This will allow us to communicate with
948 * non-autonegotiating link partners.
949 */
950 ret_val = e1000_check_for_link(hw);
951 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +0000952 e_dbg("Error while checking for link\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700953 return ret_val;
954 }
955 hw->autoneg_failed = 0;
956 } else {
957 hw->autoneg_failed = 0;
Emil Tantilov675ad472010-04-27 14:02:58 +0000958 e_dbg("Valid Link Found\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700959 }
960 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +0000961 e_dbg("No Signal Detected\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700962 }
963 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964}
965
Jesse Brandeburg120a5d02009-09-25 15:19:46 -0700966/**
Dirk Brandewie5377a412011-01-06 14:29:54 +0000967 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
968 * @hw: Struct containing variables accessed by shared code
969 *
970 * Commits changes to PHY configuration by calling e1000_phy_reset().
971 */
972static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
973{
974 s32 ret_val;
975
976 /* SW reset the PHY so all changes take effect */
977 ret_val = e1000_phy_reset(hw);
978 if (ret_val) {
979 e_dbg("Error Resetting the PHY\n");
980 return ret_val;
981 }
982
983 return E1000_SUCCESS;
984}
985
986static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
987{
988 s32 ret_val;
989 u32 ctrl_aux;
990
991 switch (hw->phy_type) {
992 case e1000_phy_8211:
993 ret_val = e1000_copper_link_rtl_setup(hw);
994 if (ret_val) {
995 e_dbg("e1000_copper_link_rtl_setup failed!\n");
996 return ret_val;
997 }
998 break;
999 case e1000_phy_8201:
1000 /* Set RMII mode */
1001 ctrl_aux = er32(CTL_AUX);
1002 ctrl_aux |= E1000_CTL_AUX_RMII;
1003 ew32(CTL_AUX, ctrl_aux);
1004 E1000_WRITE_FLUSH();
1005
1006 /* Disable the J/K bits required for receive */
1007 ctrl_aux = er32(CTL_AUX);
1008 ctrl_aux |= 0x4;
1009 ctrl_aux &= ~0x2;
1010 ew32(CTL_AUX, ctrl_aux);
1011 E1000_WRITE_FLUSH();
1012 ret_val = e1000_copper_link_rtl_setup(hw);
1013
1014 if (ret_val) {
1015 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1016 return ret_val;
1017 }
1018 break;
1019 default:
1020 e_dbg("Error Resetting the PHY\n");
1021 return E1000_ERR_PHY_TYPE;
1022 }
1023
1024 return E1000_SUCCESS;
1025}
1026
1027/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001028 * e1000_copper_link_preconfig - early configuration for copper
1029 * @hw: Struct containing variables accessed by shared code
1030 *
1031 * Make sure we have a valid PHY and change PHY mode before link setup.
1032 */
Joe Perches64798842008-07-11 15:17:02 -07001033static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001035 u32 ctrl;
1036 s32 ret_val;
1037 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001038
Emil Tantilov675ad472010-04-27 14:02:58 +00001039 e_dbg("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001041 ctrl = er32(CTRL);
1042 /* With 82543, we need to force speed and duplex on the MAC equal to what
1043 * the PHY speed and duplex configuration is. In addition, we need to
1044 * perform a hardware reset on the PHY to take it out of reset.
1045 */
1046 if (hw->mac_type > e1000_82543) {
1047 ctrl |= E1000_CTRL_SLU;
1048 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1049 ew32(CTRL, ctrl);
1050 } else {
1051 ctrl |=
1052 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1053 ew32(CTRL, ctrl);
1054 ret_val = e1000_phy_hw_reset(hw);
1055 if (ret_val)
1056 return ret_val;
1057 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001058
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001059 /* Make sure we have a valid PHY */
1060 ret_val = e1000_detect_gig_phy(hw);
1061 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001062 e_dbg("Error, did not detect valid phy.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001063 return ret_val;
1064 }
Emil Tantilov675ad472010-04-27 14:02:58 +00001065 e_dbg("Phy ID = %x\n", hw->phy_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001066
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001067 /* Set PHY to class A mode (if necessary) */
1068 ret_val = e1000_set_phy_mode(hw);
1069 if (ret_val)
1070 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001071
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001072 if ((hw->mac_type == e1000_82545_rev_3) ||
1073 (hw->mac_type == e1000_82546_rev_3)) {
1074 ret_val =
1075 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1076 phy_data |= 0x00000008;
1077 ret_val =
1078 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1079 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001081 if (hw->mac_type <= e1000_82543 ||
1082 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1083 hw->mac_type == e1000_82541_rev_2
1084 || hw->mac_type == e1000_82547_rev_2)
1085 hw->phy_reset_disable = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001087 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001088}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001090/**
1091 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1092 * @hw: Struct containing variables accessed by shared code
1093 */
Joe Perches64798842008-07-11 15:17:02 -07001094static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001095{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001096 u32 led_ctrl;
1097 s32 ret_val;
1098 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099
Emil Tantilov675ad472010-04-27 14:02:58 +00001100 e_dbg("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001102 if (hw->phy_reset_disable)
1103 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001104
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001105 ret_val = e1000_phy_reset(hw);
1106 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001107 e_dbg("Error Resetting the PHY\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001108 return ret_val;
1109 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001110
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001111 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1112 msleep(15);
1113 /* Configure activity LED after PHY reset */
1114 led_ctrl = er32(LEDCTL);
1115 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1116 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1117 ew32(LEDCTL, led_ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001118
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001119 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1120 if (hw->phy_type == e1000_phy_igp) {
1121 /* disable lplu d3 during driver init */
1122 ret_val = e1000_set_d3_lplu_state(hw, false);
1123 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001124 e_dbg("Error Disabling LPLU D3\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001125 return ret_val;
1126 }
1127 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001128
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001129 /* Configure mdi-mdix settings */
1130 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1131 if (ret_val)
1132 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001133
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001134 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1135 hw->dsp_config_state = e1000_dsp_config_disabled;
1136 /* Force MDI for earlier revs of the IGP PHY */
1137 phy_data &=
1138 ~(IGP01E1000_PSCR_AUTO_MDIX |
1139 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1140 hw->mdix = 1;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001141
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001142 } else {
1143 hw->dsp_config_state = e1000_dsp_config_enabled;
1144 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001145
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001146 switch (hw->mdix) {
1147 case 1:
1148 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1149 break;
1150 case 2:
1151 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1152 break;
1153 case 0:
1154 default:
1155 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1156 break;
1157 }
1158 }
1159 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160 if (ret_val)
1161 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001162
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001163 /* set auto-master slave resolution settings */
1164 if (hw->autoneg) {
1165 e1000_ms_type phy_ms_setting = hw->master_slave;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001166
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001167 if (hw->ffe_config_state == e1000_ffe_config_active)
1168 hw->ffe_config_state = e1000_ffe_config_enabled;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001169
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001170 if (hw->dsp_config_state == e1000_dsp_config_activated)
1171 hw->dsp_config_state = e1000_dsp_config_enabled;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001172
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001173 /* when autonegotiation advertisement is only 1000Mbps then we
1174 * should disable SmartSpeed and enable Auto MasterSlave
1175 * resolution as hardware default. */
1176 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1177 /* Disable SmartSpeed */
1178 ret_val =
1179 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1180 &phy_data);
1181 if (ret_val)
1182 return ret_val;
1183 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1184 ret_val =
1185 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1186 phy_data);
1187 if (ret_val)
1188 return ret_val;
1189 /* Set auto Master/Slave resolution process */
1190 ret_val =
1191 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1192 if (ret_val)
1193 return ret_val;
1194 phy_data &= ~CR_1000T_MS_ENABLE;
1195 ret_val =
1196 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1197 if (ret_val)
1198 return ret_val;
1199 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001201 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1202 if (ret_val)
1203 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001205 /* load defaults for future use */
1206 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1207 ((phy_data & CR_1000T_MS_VALUE) ?
1208 e1000_ms_force_master :
1209 e1000_ms_force_slave) : e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001211 switch (phy_ms_setting) {
1212 case e1000_ms_force_master:
1213 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1214 break;
1215 case e1000_ms_force_slave:
1216 phy_data |= CR_1000T_MS_ENABLE;
1217 phy_data &= ~(CR_1000T_MS_VALUE);
1218 break;
1219 case e1000_ms_auto:
1220 phy_data &= ~CR_1000T_MS_ENABLE;
1221 default:
1222 break;
1223 }
1224 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1225 if (ret_val)
1226 return ret_val;
1227 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001229 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001230}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001232/**
1233 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1234 * @hw: Struct containing variables accessed by shared code
1235 */
Joe Perches64798842008-07-11 15:17:02 -07001236static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001237{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001238 s32 ret_val;
1239 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001240
Emil Tantilov675ad472010-04-27 14:02:58 +00001241 e_dbg("e1000_copper_link_mgp_setup");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001242
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001243 if (hw->phy_reset_disable)
1244 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001245
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001246 /* Enable CRS on TX. This must be set for half-duplex operation. */
1247 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1248 if (ret_val)
1249 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001250
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001251 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001252
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001253 /* Options:
1254 * MDI/MDI-X = 0 (default)
1255 * 0 - Auto for all speeds
1256 * 1 - MDI mode
1257 * 2 - MDI-X mode
1258 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1259 */
1260 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001261
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001262 switch (hw->mdix) {
1263 case 1:
1264 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1265 break;
1266 case 2:
1267 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1268 break;
1269 case 3:
1270 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1271 break;
1272 case 0:
1273 default:
1274 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1275 break;
1276 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001277
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001278 /* Options:
1279 * disable_polarity_correction = 0 (default)
1280 * Automatic Correction for Reversed Cable Polarity
1281 * 0 - Disabled
1282 * 1 - Enabled
1283 */
1284 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1285 if (hw->disable_polarity_correction == 1)
1286 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1287 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1288 if (ret_val)
1289 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001290
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001291 if (hw->phy_revision < M88E1011_I_REV_4) {
1292 /* Force TX_CLK in the Extended PHY Specific Control Register
1293 * to 25MHz clock.
1294 */
1295 ret_val =
1296 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1297 &phy_data);
1298 if (ret_val)
1299 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001300
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001301 phy_data |= M88E1000_EPSCR_TX_CLK_25;
Auke Kokee040222006-06-27 09:08:03 -07001302
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001303 if ((hw->phy_revision == E1000_REVISION_2) &&
1304 (hw->phy_id == M88E1111_I_PHY_ID)) {
1305 /* Vidalia Phy, set the downshift counter to 5x */
1306 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1307 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1308 ret_val = e1000_write_phy_reg(hw,
1309 M88E1000_EXT_PHY_SPEC_CTRL,
1310 phy_data);
1311 if (ret_val)
1312 return ret_val;
1313 } else {
1314 /* Configure Master and Slave downshift values */
1315 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1316 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1317 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1318 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1319 ret_val = e1000_write_phy_reg(hw,
1320 M88E1000_EXT_PHY_SPEC_CTRL,
1321 phy_data);
1322 if (ret_val)
1323 return ret_val;
1324 }
1325 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001326
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001327 /* SW Reset the PHY so all changes take effect */
1328 ret_val = e1000_phy_reset(hw);
1329 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001330 e_dbg("Error Resetting the PHY\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001331 return ret_val;
1332 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001333
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001334 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001335}
1336
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001337/**
1338 * e1000_copper_link_autoneg - setup auto-neg
1339 * @hw: Struct containing variables accessed by shared code
1340 *
1341 * Setup auto-negotiation and flow control advertisements,
1342 * and then perform auto-negotiation.
1343 */
Joe Perches64798842008-07-11 15:17:02 -07001344static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001345{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001346 s32 ret_val;
1347 u16 phy_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001348
Emil Tantilov675ad472010-04-27 14:02:58 +00001349 e_dbg("e1000_copper_link_autoneg");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001350
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001351 /* Perform some bounds checking on the hw->autoneg_advertised
1352 * parameter. If this variable is zero, then set it to the default.
1353 */
1354 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001355
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001356 /* If autoneg_advertised is zero, we assume it was not defaulted
1357 * by the calling code so we set to advertise full capability.
1358 */
1359 if (hw->autoneg_advertised == 0)
1360 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001361
Dirk Brandewie5377a412011-01-06 14:29:54 +00001362 /* IFE/RTL8201N PHY only supports 10/100 */
1363 if (hw->phy_type == e1000_phy_8201)
1364 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1365
Emil Tantilov675ad472010-04-27 14:02:58 +00001366 e_dbg("Reconfiguring auto-neg advertisement params\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001367 ret_val = e1000_phy_setup_autoneg(hw);
1368 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001369 e_dbg("Error Setting up Auto-Negotiation\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001370 return ret_val;
1371 }
Emil Tantilov675ad472010-04-27 14:02:58 +00001372 e_dbg("Restarting Auto-Neg\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001373
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001374 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1375 * the Auto Neg Restart bit in the PHY control register.
1376 */
1377 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1378 if (ret_val)
1379 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001380
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001381 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1382 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1383 if (ret_val)
1384 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001385
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001386 /* Does the user want to wait for Auto-Neg to complete here, or
1387 * check at a later time (for example, callback routine).
1388 */
1389 if (hw->wait_autoneg_complete) {
1390 ret_val = e1000_wait_autoneg(hw);
1391 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001392 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001393 ("Error while waiting for autoneg to complete\n");
1394 return ret_val;
1395 }
1396 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001397
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001398 hw->get_link_status = true;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001399
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001400 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001401}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001403/**
1404 * e1000_copper_link_postconfig - post link setup
1405 * @hw: Struct containing variables accessed by shared code
1406 *
1407 * Config the MAC and the PHY after link is up.
1408 * 1) Set up the MAC to the current PHY speed/duplex
1409 * if we are on 82543. If we
1410 * are on newer silicon, we only need to configure
1411 * collision distance in the Transmit Control Register.
1412 * 2) Set up flow control on the MAC to that established with
1413 * the link partner.
1414 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1415 */
Joe Perches64798842008-07-11 15:17:02 -07001416static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001417{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001418 s32 ret_val;
Emil Tantilov675ad472010-04-27 14:02:58 +00001419 e_dbg("e1000_copper_link_postconfig");
Auke Kok76c224b2006-05-23 13:36:06 -07001420
Dirk Brandewie5377a412011-01-06 14:29:54 +00001421 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001422 e1000_config_collision_dist(hw);
1423 } else {
1424 ret_val = e1000_config_mac_to_phy(hw);
1425 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001426 e_dbg("Error configuring MAC to PHY settings\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001427 return ret_val;
1428 }
1429 }
1430 ret_val = e1000_config_fc_after_link_up(hw);
1431 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001432 e_dbg("Error Configuring Flow Control\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001433 return ret_val;
1434 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001435
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001436 /* Config DSP to improve Giga link quality */
1437 if (hw->phy_type == e1000_phy_igp) {
1438 ret_val = e1000_config_dsp_after_link_change(hw, true);
1439 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001440 e_dbg("Error Configuring DSP after link up\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001441 return ret_val;
1442 }
1443 }
Auke Kok76c224b2006-05-23 13:36:06 -07001444
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001445 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001446}
1447
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001448/**
1449 * e1000_setup_copper_link - phy/speed/duplex setting
1450 * @hw: Struct containing variables accessed by shared code
1451 *
1452 * Detects which PHY is present and sets up the speed and duplex
1453 */
Joe Perches64798842008-07-11 15:17:02 -07001454static s32 e1000_setup_copper_link(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001455{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001456 s32 ret_val;
1457 u16 i;
1458 u16 phy_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001459
Emil Tantilov675ad472010-04-27 14:02:58 +00001460 e_dbg("e1000_setup_copper_link");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001461
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001462 /* Check if it is a valid PHY and set PHY mode if necessary. */
1463 ret_val = e1000_copper_link_preconfig(hw);
1464 if (ret_val)
1465 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001466
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001467 if (hw->phy_type == e1000_phy_igp) {
1468 ret_val = e1000_copper_link_igp_setup(hw);
1469 if (ret_val)
1470 return ret_val;
1471 } else if (hw->phy_type == e1000_phy_m88) {
1472 ret_val = e1000_copper_link_mgp_setup(hw);
1473 if (ret_val)
1474 return ret_val;
Dirk Brandewie5377a412011-01-06 14:29:54 +00001475 } else {
1476 ret_val = gbe_dhg_phy_setup(hw);
1477 if (ret_val) {
1478 e_dbg("gbe_dhg_phy_setup failed!\n");
1479 return ret_val;
1480 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001481 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001482
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001483 if (hw->autoneg) {
1484 /* Setup autoneg and flow control advertisement
1485 * and perform autonegotiation */
1486 ret_val = e1000_copper_link_autoneg(hw);
1487 if (ret_val)
1488 return ret_val;
1489 } else {
1490 /* PHY will be set to 10H, 10F, 100H,or 100F
1491 * depending on value from forced_speed_duplex. */
Emil Tantilov675ad472010-04-27 14:02:58 +00001492 e_dbg("Forcing speed and duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001493 ret_val = e1000_phy_force_speed_duplex(hw);
1494 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001495 e_dbg("Error Forcing Speed and Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001496 return ret_val;
1497 }
1498 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001499
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001500 /* Check link status. Wait up to 100 microseconds for link to become
1501 * valid.
1502 */
1503 for (i = 0; i < 10; i++) {
1504 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1505 if (ret_val)
1506 return ret_val;
1507 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1508 if (ret_val)
1509 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001511 if (phy_data & MII_SR_LINK_STATUS) {
1512 /* Config the MAC and PHY after link is up */
1513 ret_val = e1000_copper_link_postconfig(hw);
1514 if (ret_val)
1515 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07001516
Emil Tantilov675ad472010-04-27 14:02:58 +00001517 e_dbg("Valid link established!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001518 return E1000_SUCCESS;
1519 }
1520 udelay(10);
1521 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001522
Emil Tantilov675ad472010-04-27 14:02:58 +00001523 e_dbg("Unable to establish link!!!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001524 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525}
1526
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001527/**
1528 * e1000_phy_setup_autoneg - phy settings
1529 * @hw: Struct containing variables accessed by shared code
1530 *
1531 * Configures PHY autoneg and flow control advertisement settings
1532 */
Joe Perches64798842008-07-11 15:17:02 -07001533s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001535 s32 ret_val;
1536 u16 mii_autoneg_adv_reg;
1537 u16 mii_1000t_ctrl_reg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001538
Emil Tantilov675ad472010-04-27 14:02:58 +00001539 e_dbg("e1000_phy_setup_autoneg");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001541 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1542 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1543 if (ret_val)
1544 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001546 /* Read the MII 1000Base-T Control Register (Address 9). */
Dirk Brandewie5377a412011-01-06 14:29:54 +00001547 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001548 if (ret_val)
1549 return ret_val;
Dirk Brandewie5377a412011-01-06 14:29:54 +00001550 else if (hw->phy_type == e1000_phy_8201)
1551 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001552
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001553 /* Need to parse both autoneg_advertised and fc and set up
1554 * the appropriate PHY registers. First we will parse for
1555 * autoneg_advertised software override. Since we can advertise
1556 * a plethora of combinations, we need to check each bit
1557 * individually.
1558 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001559
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001560 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1561 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1562 * the 1000Base-T Control Register (Address 9).
1563 */
1564 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1565 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566
Emil Tantilov675ad472010-04-27 14:02:58 +00001567 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001568
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001569 /* Do we want to advertise 10 Mb Half Duplex? */
1570 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001571 e_dbg("Advertise 10mb Half duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001572 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1573 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001575 /* Do we want to advertise 10 Mb Full Duplex? */
1576 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001577 e_dbg("Advertise 10mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001578 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1579 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001581 /* Do we want to advertise 100 Mb Half Duplex? */
1582 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001583 e_dbg("Advertise 100mb Half duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001584 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1585 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001587 /* Do we want to advertise 100 Mb Full Duplex? */
1588 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001589 e_dbg("Advertise 100mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001590 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1591 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001592
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001593 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1594 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001595 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001596 ("Advertise 1000mb Half duplex requested, request denied!\n");
1597 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001599 /* Do we want to advertise 1000 Mb Full Duplex? */
1600 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001601 e_dbg("Advertise 1000mb Full duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001602 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1603 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001604
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001605 /* Check for a software override of the flow control settings, and
1606 * setup the PHY advertisement registers accordingly. If
1607 * auto-negotiation is enabled, then software will have to set the
1608 * "PAUSE" bits to the correct value in the Auto-Negotiation
1609 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1610 *
1611 * The possible values of the "fc" parameter are:
1612 * 0: Flow control is completely disabled
1613 * 1: Rx flow control is enabled (we can receive pause frames
1614 * but not send pause frames).
1615 * 2: Tx flow control is enabled (we can send pause frames
1616 * but we do not support receiving pause frames).
1617 * 3: Both Rx and TX flow control (symmetric) are enabled.
1618 * other: No software override. The flow control configuration
1619 * in the EEPROM is used.
1620 */
1621 switch (hw->fc) {
1622 case E1000_FC_NONE: /* 0 */
1623 /* Flow control (RX & TX) is completely disabled by a
1624 * software over-ride.
1625 */
1626 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1627 break;
1628 case E1000_FC_RX_PAUSE: /* 1 */
1629 /* RX Flow control is enabled, and TX Flow control is
1630 * disabled, by a software over-ride.
1631 */
1632 /* Since there really isn't a way to advertise that we are
1633 * capable of RX Pause ONLY, we will advertise that we
1634 * support both symmetric and asymmetric RX PAUSE. Later
1635 * (in e1000_config_fc_after_link_up) we will disable the
1636 *hw's ability to send PAUSE frames.
1637 */
1638 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639 break;
1640 case E1000_FC_TX_PAUSE: /* 2 */
1641 /* TX Flow control is enabled, and RX Flow control is
1642 * disabled, by a software over-ride.
1643 */
1644 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1645 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1646 break;
1647 case E1000_FC_FULL: /* 3 */
1648 /* Flow control (both RX and TX) is enabled by a software
1649 * over-ride.
1650 */
1651 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1652 break;
1653 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00001654 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001655 return -E1000_ERR_CONFIG;
1656 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001657
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001658 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1659 if (ret_val)
1660 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661
Emil Tantilov675ad472010-04-27 14:02:58 +00001662 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001663
Dirk Brandewie5377a412011-01-06 14:29:54 +00001664 if (hw->phy_type == e1000_phy_8201) {
1665 mii_1000t_ctrl_reg = 0;
1666 } else {
1667 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1668 mii_1000t_ctrl_reg);
1669 if (ret_val)
1670 return ret_val;
1671 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001672
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001673 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001674}
1675
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001676/**
1677 * e1000_phy_force_speed_duplex - force link settings
1678 * @hw: Struct containing variables accessed by shared code
1679 *
1680 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1681 */
Joe Perches64798842008-07-11 15:17:02 -07001682static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001684 u32 ctrl;
1685 s32 ret_val;
1686 u16 mii_ctrl_reg;
1687 u16 mii_status_reg;
1688 u16 phy_data;
1689 u16 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001690
Emil Tantilov675ad472010-04-27 14:02:58 +00001691 e_dbg("e1000_phy_force_speed_duplex");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001693 /* Turn off Flow control if we are forcing speed and duplex. */
1694 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695
Emil Tantilov675ad472010-04-27 14:02:58 +00001696 e_dbg("hw->fc = %d\n", hw->fc);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001697
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001698 /* Read the Device Control Register. */
1699 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001701 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1702 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1703 ctrl &= ~(DEVICE_SPEED_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001704
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001705 /* Clear the Auto Speed Detect Enable bit. */
1706 ctrl &= ~E1000_CTRL_ASDE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001708 /* Read the MII Control Register. */
1709 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1710 if (ret_val)
1711 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001713 /* We need to disable autoneg in order to force link and duplex. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001714
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001715 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001717 /* Are we forcing Full or Half Duplex? */
1718 if (hw->forced_speed_duplex == e1000_100_full ||
1719 hw->forced_speed_duplex == e1000_10_full) {
1720 /* We want to force full duplex so we SET the full duplex bits in the
1721 * Device and MII Control Registers.
1722 */
1723 ctrl |= E1000_CTRL_FD;
1724 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00001725 e_dbg("Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001726 } else {
1727 /* We want to force half duplex so we CLEAR the full duplex bits in
1728 * the Device and MII Control Registers.
1729 */
1730 ctrl &= ~E1000_CTRL_FD;
1731 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00001732 e_dbg("Half Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001733 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001734
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001735 /* Are we forcing 100Mbps??? */
1736 if (hw->forced_speed_duplex == e1000_100_full ||
1737 hw->forced_speed_duplex == e1000_100_half) {
1738 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1739 ctrl |= E1000_CTRL_SPD_100;
1740 mii_ctrl_reg |= MII_CR_SPEED_100;
1741 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
Emil Tantilov675ad472010-04-27 14:02:58 +00001742 e_dbg("Forcing 100mb ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001743 } else {
1744 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1745 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1746 mii_ctrl_reg |= MII_CR_SPEED_10;
1747 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
Emil Tantilov675ad472010-04-27 14:02:58 +00001748 e_dbg("Forcing 10mb ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001749 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001751 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001752
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001753 /* Write the configured values back to the Device Control Reg. */
1754 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001756 if (hw->phy_type == e1000_phy_m88) {
1757 ret_val =
1758 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1759 if (ret_val)
1760 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001762 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1763 * forced whenever speed are duplex are forced.
1764 */
1765 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1766 ret_val =
1767 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1768 if (ret_val)
1769 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
Emil Tantilov675ad472010-04-27 14:02:58 +00001771 e_dbg("M88E1000 PSCR: %x\n", phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001773 /* Need to reset the PHY or these changes will be ignored */
1774 mii_ctrl_reg |= MII_CR_RESET;
Auke Kok90fb5132006-11-01 08:47:30 -08001775
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001776 /* Disable MDI-X support for 10/100 */
1777 } else {
1778 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1779 * forced whenever speed or duplex are forced.
1780 */
1781 ret_val =
1782 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1783 if (ret_val)
1784 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001786 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1787 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001788
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001789 ret_val =
1790 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1791 if (ret_val)
1792 return ret_val;
1793 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001794
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001795 /* Write back the modified PHY MII control register. */
1796 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1797 if (ret_val)
1798 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001799
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001800 udelay(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001802 /* The wait_autoneg_complete flag may be a little misleading here.
1803 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1804 * But we do want to delay for a period while forcing only so we
1805 * don't generate false No Link messages. So we will wait here
1806 * only if the user has set wait_autoneg_complete to 1, which is
1807 * the default.
1808 */
1809 if (hw->wait_autoneg_complete) {
1810 /* We will wait for autoneg to complete. */
Emil Tantilov675ad472010-04-27 14:02:58 +00001811 e_dbg("Waiting for forced speed/duplex link.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001812 mii_status_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001814 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1815 for (i = PHY_FORCE_TIME; i > 0; i--) {
1816 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1817 * to be set.
1818 */
1819 ret_val =
1820 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1821 if (ret_val)
1822 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001824 ret_val =
1825 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1826 if (ret_val)
1827 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001829 if (mii_status_reg & MII_SR_LINK_STATUS)
1830 break;
1831 msleep(100);
1832 }
1833 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1834 /* We didn't get link. Reset the DSP and wait again for link. */
1835 ret_val = e1000_phy_reset_dsp(hw);
1836 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00001837 e_dbg("Error Resetting PHY DSP\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001838 return ret_val;
1839 }
1840 }
1841 /* This loop will early-out if the link condition has been met. */
1842 for (i = PHY_FORCE_TIME; i > 0; i--) {
1843 if (mii_status_reg & MII_SR_LINK_STATUS)
1844 break;
1845 msleep(100);
1846 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1847 * to be set.
1848 */
1849 ret_val =
1850 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1851 if (ret_val)
1852 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001853
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001854 ret_val =
1855 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1856 if (ret_val)
1857 return ret_val;
1858 }
1859 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001860
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001861 if (hw->phy_type == e1000_phy_m88) {
1862 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1863 * Extended PHY Specific Control Register to 25MHz clock. This value
1864 * defaults back to a 2.5MHz clock when the PHY is reset.
1865 */
1866 ret_val =
1867 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1868 &phy_data);
1869 if (ret_val)
1870 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001872 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1873 ret_val =
1874 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1875 phy_data);
1876 if (ret_val)
1877 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001878
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001879 /* In addition, because of the s/w reset above, we need to enable CRS on
1880 * TX. This must be set for both full and half duplex operation.
1881 */
1882 ret_val =
1883 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1884 if (ret_val)
1885 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001887 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1888 ret_val =
1889 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1890 if (ret_val)
1891 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001892
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001893 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1894 && (!hw->autoneg)
1895 && (hw->forced_speed_duplex == e1000_10_full
1896 || hw->forced_speed_duplex == e1000_10_half)) {
1897 ret_val = e1000_polarity_reversal_workaround(hw);
1898 if (ret_val)
1899 return ret_val;
1900 }
1901 }
1902 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903}
1904
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001905/**
1906 * e1000_config_collision_dist - set collision distance register
1907 * @hw: Struct containing variables accessed by shared code
1908 *
1909 * Sets the collision distance in the Transmit Control register.
1910 * Link should have been established previously. Reads the speed and duplex
1911 * information from the Device Status register.
1912 */
Joe Perches64798842008-07-11 15:17:02 -07001913void e1000_config_collision_dist(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001915 u32 tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916
Emil Tantilov675ad472010-04-27 14:02:58 +00001917 e_dbg("e1000_config_collision_dist");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001919 if (hw->mac_type < e1000_82543)
1920 coll_dist = E1000_COLLISION_DISTANCE_82542;
1921 else
1922 coll_dist = E1000_COLLISION_DISTANCE;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08001923
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001924 tctl = er32(TCTL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001925
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001926 tctl &= ~E1000_TCTL_COLD;
1927 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001929 ew32(TCTL, tctl);
1930 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001931}
1932
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001933/**
1934 * e1000_config_mac_to_phy - sync phy and mac settings
1935 * @hw: Struct containing variables accessed by shared code
1936 * @mii_reg: data to write to the MII control register
1937 *
1938 * Sets MAC speed and duplex settings to reflect the those in the PHY
1939 * The contents of the PHY register containing the needed information need to
1940 * be passed in.
1941 */
Joe Perches64798842008-07-11 15:17:02 -07001942static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001944 u32 ctrl;
1945 s32 ret_val;
1946 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001947
Emil Tantilov675ad472010-04-27 14:02:58 +00001948 e_dbg("e1000_config_mac_to_phy");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001949
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001950 /* 82544 or newer MAC, Auto Speed Detection takes care of
1951 * MAC speed/duplex configuration.*/
Dirk Brandewie5377a412011-01-06 14:29:54 +00001952 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001953 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001954
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07001955 /* Read the Device Control Register and set the bits to Force Speed
1956 * and Duplex.
1957 */
1958 ctrl = er32(CTRL);
1959 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1960 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001961
Dirk Brandewie5377a412011-01-06 14:29:54 +00001962 switch (hw->phy_type) {
1963 case e1000_phy_8201:
1964 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1965 if (ret_val)
1966 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001967
Dirk Brandewie5377a412011-01-06 14:29:54 +00001968 if (phy_data & RTL_PHY_CTRL_FD)
1969 ctrl |= E1000_CTRL_FD;
1970 else
1971 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001972
Dirk Brandewie5377a412011-01-06 14:29:54 +00001973 if (phy_data & RTL_PHY_CTRL_SPD_100)
1974 ctrl |= E1000_CTRL_SPD_100;
1975 else
1976 ctrl |= E1000_CTRL_SPD_10;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977
Dirk Brandewie5377a412011-01-06 14:29:54 +00001978 e1000_config_collision_dist(hw);
1979 break;
1980 default:
1981 /* Set up duplex in the Device Control and Transmit Control
1982 * registers depending on negotiated values.
1983 */
1984 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1985 &phy_data);
1986 if (ret_val)
1987 return ret_val;
1988
1989 if (phy_data & M88E1000_PSSR_DPLX)
1990 ctrl |= E1000_CTRL_FD;
1991 else
1992 ctrl &= ~E1000_CTRL_FD;
1993
1994 e1000_config_collision_dist(hw);
1995
1996 /* Set up speed in the Device Control register depending on
1997 * negotiated values.
1998 */
1999 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2000 ctrl |= E1000_CTRL_SPD_1000;
2001 else if ((phy_data & M88E1000_PSSR_SPEED) ==
2002 M88E1000_PSSR_100MBS)
2003 ctrl |= E1000_CTRL_SPD_100;
2004 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002005
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002006 /* Write the configured values back to the Device Control Reg. */
2007 ew32(CTRL, ctrl);
2008 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002009}
2010
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002011/**
2012 * e1000_force_mac_fc - force flow control settings
2013 * @hw: Struct containing variables accessed by shared code
2014 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002015 * Forces the MAC's flow control settings.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 * Sets the TFCE and RFCE bits in the device control register to reflect
2017 * the adapter settings. TFCE and RFCE need to be explicitly set by
2018 * software when a Copper PHY is used because autonegotiation is managed
2019 * by the PHY rather than the MAC. Software must also configure these
2020 * bits when link is forced on a fiber connection.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002021 */
Joe Perches64798842008-07-11 15:17:02 -07002022s32 e1000_force_mac_fc(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002023{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002024 u32 ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002025
Emil Tantilov675ad472010-04-27 14:02:58 +00002026 e_dbg("e1000_force_mac_fc");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002028 /* Get the current configuration of the Device Control Register */
2029 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002030
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002031 /* Because we didn't get link via the internal auto-negotiation
2032 * mechanism (we either forced link or we got link via PHY
2033 * auto-neg), we have to manually enable/disable transmit an
2034 * receive flow control.
2035 *
2036 * The "Case" statement below enables/disable flow control
2037 * according to the "hw->fc" parameter.
2038 *
2039 * The possible values of the "fc" parameter are:
2040 * 0: Flow control is completely disabled
2041 * 1: Rx flow control is enabled (we can receive pause
2042 * frames but not send pause frames).
2043 * 2: Tx flow control is enabled (we can send pause frames
2044 * frames but we do not receive pause frames).
2045 * 3: Both Rx and TX flow control (symmetric) is enabled.
2046 * other: No other values should be possible at this point.
2047 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002049 switch (hw->fc) {
2050 case E1000_FC_NONE:
2051 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2052 break;
2053 case E1000_FC_RX_PAUSE:
2054 ctrl &= (~E1000_CTRL_TFCE);
2055 ctrl |= E1000_CTRL_RFCE;
2056 break;
2057 case E1000_FC_TX_PAUSE:
2058 ctrl &= (~E1000_CTRL_RFCE);
2059 ctrl |= E1000_CTRL_TFCE;
2060 break;
2061 case E1000_FC_FULL:
2062 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2063 break;
2064 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00002065 e_dbg("Flow control param set incorrectly\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002066 return -E1000_ERR_CONFIG;
2067 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002069 /* Disable TX Flow Control for 82542 (rev 2.0) */
2070 if (hw->mac_type == e1000_82542_rev2_0)
2071 ctrl &= (~E1000_CTRL_TFCE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002073 ew32(CTRL, ctrl);
2074 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002075}
2076
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002077/**
2078 * e1000_config_fc_after_link_up - configure flow control after autoneg
2079 * @hw: Struct containing variables accessed by shared code
2080 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081 * Configures flow control settings after link is established
Linus Torvalds1da177e2005-04-16 15:20:36 -07002082 * Should be called immediately after a valid link has been established.
2083 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2084 * and autonegotiation is enabled, the MAC flow control settings will be set
2085 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002086 * and RFCE bits will be automatically set to the negotiated flow control mode.
2087 */
Joe Perches64798842008-07-11 15:17:02 -07002088static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002089{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002090 s32 ret_val;
2091 u16 mii_status_reg;
2092 u16 mii_nway_adv_reg;
2093 u16 mii_nway_lp_ability_reg;
2094 u16 speed;
2095 u16 duplex;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096
Emil Tantilov675ad472010-04-27 14:02:58 +00002097 e_dbg("e1000_config_fc_after_link_up");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002098
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002099 /* Check for the case where we have fiber media and auto-neg failed
2100 * so we had to force link. In this case, we need to force the
2101 * configuration of the MAC to match the "fc" parameter.
2102 */
2103 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2104 || ((hw->media_type == e1000_media_type_internal_serdes)
2105 && (hw->autoneg_failed))
2106 || ((hw->media_type == e1000_media_type_copper)
2107 && (!hw->autoneg))) {
2108 ret_val = e1000_force_mac_fc(hw);
2109 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002110 e_dbg("Error forcing flow control settings\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002111 return ret_val;
2112 }
2113 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002114
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002115 /* Check for the case where we have copper media and auto-neg is
2116 * enabled. In this case, we need to check and see if Auto-Neg
2117 * has completed, and if so, how the PHY and link partner has
2118 * flow control configured.
2119 */
2120 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2121 /* Read the MII Status Register and check to see if AutoNeg
2122 * has completed. We read this twice because this reg has
2123 * some "sticky" (latched) bits.
2124 */
2125 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2126 if (ret_val)
2127 return ret_val;
2128 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2129 if (ret_val)
2130 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002131
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002132 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2133 /* The AutoNeg process has completed, so we now need to
2134 * read both the Auto Negotiation Advertisement Register
2135 * (Address 4) and the Auto_Negotiation Base Page Ability
2136 * Register (Address 5) to determine how flow control was
2137 * negotiated.
2138 */
2139 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2140 &mii_nway_adv_reg);
2141 if (ret_val)
2142 return ret_val;
2143 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2144 &mii_nway_lp_ability_reg);
2145 if (ret_val)
2146 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002148 /* Two bits in the Auto Negotiation Advertisement Register
2149 * (Address 4) and two bits in the Auto Negotiation Base
2150 * Page Ability Register (Address 5) determine flow control
2151 * for both the PHY and the link partner. The following
2152 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2153 * 1999, describes these PAUSE resolution bits and how flow
2154 * control is determined based upon these settings.
2155 * NOTE: DC = Don't Care
2156 *
2157 * LOCAL DEVICE | LINK PARTNER
2158 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2159 *-------|---------|-------|---------|--------------------
2160 * 0 | 0 | DC | DC | E1000_FC_NONE
2161 * 0 | 1 | 0 | DC | E1000_FC_NONE
2162 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2163 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2164 * 1 | 0 | 0 | DC | E1000_FC_NONE
2165 * 1 | DC | 1 | DC | E1000_FC_FULL
2166 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2167 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2168 *
2169 */
2170 /* Are both PAUSE bits set to 1? If so, this implies
2171 * Symmetric Flow Control is enabled at both ends. The
2172 * ASM_DIR bits are irrelevant per the spec.
2173 *
2174 * For Symmetric Flow Control:
2175 *
2176 * LOCAL DEVICE | LINK PARTNER
2177 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2178 *-------|---------|-------|---------|--------------------
2179 * 1 | DC | 1 | DC | E1000_FC_FULL
2180 *
2181 */
2182 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2183 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2184 /* Now we need to check if the user selected RX ONLY
2185 * of pause frames. In this case, we had to advertise
2186 * FULL flow control because we could not advertise RX
2187 * ONLY. Hence, we must now check to see if we need to
2188 * turn OFF the TRANSMISSION of PAUSE frames.
2189 */
2190 if (hw->original_fc == E1000_FC_FULL) {
2191 hw->fc = E1000_FC_FULL;
Emil Tantilov675ad472010-04-27 14:02:58 +00002192 e_dbg("Flow Control = FULL.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002193 } else {
2194 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002195 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002196 ("Flow Control = RX PAUSE frames only.\n");
2197 }
2198 }
2199 /* For receiving PAUSE frames ONLY.
2200 *
2201 * LOCAL DEVICE | LINK PARTNER
2202 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2203 *-------|---------|-------|---------|--------------------
2204 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2205 *
2206 */
2207 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2208 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2209 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2210 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2211 {
2212 hw->fc = E1000_FC_TX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002213 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002214 ("Flow Control = TX PAUSE frames only.\n");
2215 }
2216 /* For transmitting PAUSE frames ONLY.
2217 *
2218 * LOCAL DEVICE | LINK PARTNER
2219 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2220 *-------|---------|-------|---------|--------------------
2221 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2222 *
2223 */
2224 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2225 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2226 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2227 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2228 {
2229 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002230 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002231 ("Flow Control = RX PAUSE frames only.\n");
2232 }
2233 /* Per the IEEE spec, at this point flow control should be
2234 * disabled. However, we want to consider that we could
2235 * be connected to a legacy switch that doesn't advertise
2236 * desired flow control, but can be forced on the link
2237 * partner. So if we advertised no flow control, that is
2238 * what we will resolve to. If we advertised some kind of
2239 * receive capability (Rx Pause Only or Full Flow Control)
2240 * and the link partner advertised none, we will configure
2241 * ourselves to enable Rx Flow Control only. We can do
2242 * this safely for two reasons: If the link partner really
2243 * didn't want flow control enabled, and we enable Rx, no
2244 * harm done since we won't be receiving any PAUSE frames
2245 * anyway. If the intent on the link partner was to have
2246 * flow control enabled, then by us enabling RX only, we
2247 * can at least receive pause frames and process them.
2248 * This is a good idea because in most cases, since we are
2249 * predominantly a server NIC, more times than not we will
2250 * be asked to delay transmission of packets than asking
2251 * our link partner to pause transmission of frames.
2252 */
2253 else if ((hw->original_fc == E1000_FC_NONE ||
2254 hw->original_fc == E1000_FC_TX_PAUSE) ||
2255 hw->fc_strict_ieee) {
2256 hw->fc = E1000_FC_NONE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002257 e_dbg("Flow Control = NONE.\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002258 } else {
2259 hw->fc = E1000_FC_RX_PAUSE;
Emil Tantilov675ad472010-04-27 14:02:58 +00002260 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002261 ("Flow Control = RX PAUSE frames only.\n");
2262 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002264 /* Now we need to do one last check... If we auto-
2265 * negotiated to HALF DUPLEX, flow control should not be
2266 * enabled per IEEE 802.3 spec.
2267 */
2268 ret_val =
2269 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2270 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002271 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002272 ("Error getting link speed and duplex\n");
2273 return ret_val;
2274 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002275
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002276 if (duplex == HALF_DUPLEX)
2277 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002279 /* Now we call a subroutine to actually force the MAC
2280 * controller to use the correct flow control settings.
2281 */
2282 ret_val = e1000_force_mac_fc(hw);
2283 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002284 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002285 ("Error forcing flow control settings\n");
2286 return ret_val;
2287 }
2288 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00002289 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002290 ("Copper PHY and Auto Neg has not completed.\n");
2291 }
2292 }
2293 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002294}
2295
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002296/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002297 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2298 * @hw: pointer to the HW structure
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002299 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002300 * Checks for link up on the hardware. If link is not up and we have
2301 * a signal, then we need to force link up.
2302 */
Jesse Brandeburg11b7f7b2009-09-25 12:20:33 +00002303static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002304{
2305 u32 rxcw;
2306 u32 ctrl;
2307 u32 status;
2308 s32 ret_val = E1000_SUCCESS;
2309
Emil Tantilov675ad472010-04-27 14:02:58 +00002310 e_dbg("e1000_check_for_serdes_link_generic");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002311
2312 ctrl = er32(CTRL);
2313 status = er32(STATUS);
2314 rxcw = er32(RXCW);
2315
2316 /*
2317 * If we don't have link (auto-negotiation failed or link partner
2318 * cannot auto-negotiate), and our link partner is not trying to
2319 * auto-negotiate with us (we are receiving idles or data),
2320 * we need to force link up. We also need to give auto-negotiation
2321 * time to complete.
2322 */
2323 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2324 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2325 if (hw->autoneg_failed == 0) {
2326 hw->autoneg_failed = 1;
2327 goto out;
2328 }
Emil Tantilov675ad472010-04-27 14:02:58 +00002329 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002330
2331 /* Disable auto-negotiation in the TXCW register */
2332 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2333
2334 /* Force link-up and also force full-duplex. */
2335 ctrl = er32(CTRL);
2336 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2337 ew32(CTRL, ctrl);
2338
2339 /* Configure Flow Control after forcing link up. */
2340 ret_val = e1000_config_fc_after_link_up(hw);
2341 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002342 e_dbg("Error configuring flow control\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002343 goto out;
2344 }
2345 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2346 /*
2347 * If we are forcing link and we are receiving /C/ ordered
2348 * sets, re-enable auto-negotiation in the TXCW register
2349 * and disable forced link in the Device Control register
2350 * in an attempt to auto-negotiate with our link partner.
2351 */
Emil Tantilov675ad472010-04-27 14:02:58 +00002352 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002353 ew32(TXCW, hw->txcw);
2354 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2355
2356 hw->serdes_has_link = true;
2357 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2358 /*
2359 * If we force link for non-auto-negotiation switch, check
2360 * link status based on MAC synchronization for internal
2361 * serdes media type.
2362 */
2363 /* SYNCH bit and IV bit are sticky. */
2364 udelay(10);
2365 rxcw = er32(RXCW);
2366 if (rxcw & E1000_RXCW_SYNCH) {
2367 if (!(rxcw & E1000_RXCW_IV)) {
2368 hw->serdes_has_link = true;
Emil Tantilov675ad472010-04-27 14:02:58 +00002369 e_dbg("SERDES: Link up - forced.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002370 }
2371 } else {
2372 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002373 e_dbg("SERDES: Link down - force failed.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002374 }
2375 }
2376
2377 if (E1000_TXCW_ANE & er32(TXCW)) {
2378 status = er32(STATUS);
2379 if (status & E1000_STATUS_LU) {
2380 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2381 udelay(10);
2382 rxcw = er32(RXCW);
2383 if (rxcw & E1000_RXCW_SYNCH) {
2384 if (!(rxcw & E1000_RXCW_IV)) {
2385 hw->serdes_has_link = true;
Emil Tantilov675ad472010-04-27 14:02:58 +00002386 e_dbg("SERDES: Link up - autoneg "
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002387 "completed successfully.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002388 } else {
2389 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002390 e_dbg("SERDES: Link down - invalid"
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002391 "codewords detected in autoneg.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002392 }
2393 } else {
2394 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002395 e_dbg("SERDES: Link down - no sync.\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002396 }
2397 } else {
2398 hw->serdes_has_link = false;
Emil Tantilov675ad472010-04-27 14:02:58 +00002399 e_dbg("SERDES: Link down - autoneg failed\n");
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002400 }
2401 }
2402
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002403 out:
Jesse Brandeburgbe0f0712009-09-25 12:17:44 +00002404 return ret_val;
2405}
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002406
2407/**
2408 * e1000_check_for_link
2409 * @hw: Struct containing variables accessed by shared code
2410 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411 * Checks to see if the link status of the hardware has changed.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002412 * Called by any function that needs to check the link status of the adapter.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002413 */
Joe Perches64798842008-07-11 15:17:02 -07002414s32 e1000_check_for_link(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002415{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002416 u32 rxcw = 0;
2417 u32 ctrl;
2418 u32 status;
2419 u32 rctl;
2420 u32 icr;
2421 u32 signal = 0;
2422 s32 ret_val;
2423 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002424
Emil Tantilov675ad472010-04-27 14:02:58 +00002425 e_dbg("e1000_check_for_link");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002427 ctrl = er32(CTRL);
2428 status = er32(STATUS);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002429
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002430 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2431 * set when the optics detect a signal. On older adapters, it will be
2432 * cleared when there is a signal. This applies to fiber media only.
2433 */
2434 if ((hw->media_type == e1000_media_type_fiber) ||
2435 (hw->media_type == e1000_media_type_internal_serdes)) {
2436 rxcw = er32(RXCW);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002438 if (hw->media_type == e1000_media_type_fiber) {
2439 signal =
2440 (hw->mac_type >
2441 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2442 if (status & E1000_STATUS_LU)
2443 hw->get_link_status = false;
2444 }
2445 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002446
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002447 /* If we have a copper PHY then we only want to go out to the PHY
2448 * registers to see if Auto-Neg has completed and/or if our link
2449 * status has changed. The get_link_status flag will be set if we
2450 * receive a Link Status Change interrupt or we have Rx Sequence
2451 * Errors.
2452 */
2453 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2454 /* First we want to see if the MII Status Register reports
2455 * link. If so, then we want to get the current speed/duplex
2456 * of the PHY.
2457 * Read the register twice since the link bit is sticky.
2458 */
2459 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2460 if (ret_val)
2461 return ret_val;
2462 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2463 if (ret_val)
2464 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002465
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002466 if (phy_data & MII_SR_LINK_STATUS) {
2467 hw->get_link_status = false;
2468 /* Check if there was DownShift, must be checked immediately after
2469 * link-up */
2470 e1000_check_downshift(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002471
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002472 /* If we are on 82544 or 82543 silicon and speed/duplex
2473 * are forced to 10H or 10F, then we will implement the polarity
2474 * reversal workaround. We disable interrupts first, and upon
2475 * returning, place the devices interrupt state to its previous
2476 * value except for the link status change interrupt which will
2477 * happen due to the execution of this workaround.
2478 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002480 if ((hw->mac_type == e1000_82544
2481 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2482 && (hw->forced_speed_duplex == e1000_10_full
2483 || hw->forced_speed_duplex == e1000_10_half)) {
2484 ew32(IMC, 0xffffffff);
2485 ret_val =
2486 e1000_polarity_reversal_workaround(hw);
2487 icr = er32(ICR);
2488 ew32(ICS, (icr & ~E1000_ICS_LSC));
2489 ew32(IMS, IMS_ENABLE_MASK);
2490 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002492 } else {
2493 /* No link detected */
2494 e1000_config_dsp_after_link_change(hw, false);
2495 return 0;
2496 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002498 /* If we are forcing speed/duplex, then we simply return since
2499 * we have already determined whether we have link or not.
2500 */
2501 if (!hw->autoneg)
2502 return -E1000_ERR_CONFIG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002504 /* optimize the dsp settings for the igp phy */
2505 e1000_config_dsp_after_link_change(hw, true);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002507 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2508 * have Si on board that is 82544 or newer, Auto
2509 * Speed Detection takes care of MAC speed/duplex
2510 * configuration. So we only need to configure Collision
2511 * Distance in the MAC. Otherwise, we need to force
2512 * speed/duplex on the MAC to the current PHY speed/duplex
2513 * settings.
2514 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002515 if ((hw->mac_type >= e1000_82544) &&
2516 (hw->mac_type != e1000_ce4100))
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002517 e1000_config_collision_dist(hw);
2518 else {
2519 ret_val = e1000_config_mac_to_phy(hw);
2520 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002521 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002522 ("Error configuring MAC to PHY settings\n");
2523 return ret_val;
2524 }
2525 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002527 /* Configure Flow Control now that Auto-Neg has completed. First, we
2528 * need to restore the desired flow control settings because we may
2529 * have had to re-autoneg with a different link partner.
2530 */
2531 ret_val = e1000_config_fc_after_link_up(hw);
2532 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002533 e_dbg("Error configuring flow control\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002534 return ret_val;
2535 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002536
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002537 /* At this point we know that we are on copper and we have
2538 * auto-negotiated link. These are conditions for checking the link
2539 * partner capability register. We use the link speed to determine if
2540 * TBI compatibility needs to be turned on or off. If the link is not
2541 * at gigabit speed, then TBI compatibility is not needed. If we are
2542 * at gigabit speed, we turn on TBI compatibility.
2543 */
2544 if (hw->tbi_compatibility_en) {
2545 u16 speed, duplex;
2546 ret_val =
2547 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2548 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002549 e_dbg
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002550 ("Error getting link speed and duplex\n");
2551 return ret_val;
2552 }
2553 if (speed != SPEED_1000) {
2554 /* If link speed is not set to gigabit speed, we do not need
2555 * to enable TBI compatibility.
2556 */
2557 if (hw->tbi_compatibility_on) {
2558 /* If we previously were in the mode, turn it off. */
2559 rctl = er32(RCTL);
2560 rctl &= ~E1000_RCTL_SBP;
2561 ew32(RCTL, rctl);
2562 hw->tbi_compatibility_on = false;
2563 }
2564 } else {
2565 /* If TBI compatibility is was previously off, turn it on. For
2566 * compatibility with a TBI link partner, we will store bad
2567 * packets. Some frames have an additional byte on the end and
2568 * will look like CRC errors to to the hardware.
2569 */
2570 if (!hw->tbi_compatibility_on) {
2571 hw->tbi_compatibility_on = true;
2572 rctl = er32(RCTL);
2573 rctl |= E1000_RCTL_SBP;
2574 ew32(RCTL, rctl);
2575 }
2576 }
2577 }
2578 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002580 if ((hw->media_type == e1000_media_type_fiber) ||
2581 (hw->media_type == e1000_media_type_internal_serdes))
2582 e1000_check_for_serdes_link_generic(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002583
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002584 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585}
2586
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002587/**
2588 * e1000_get_speed_and_duplex
2589 * @hw: Struct containing variables accessed by shared code
2590 * @speed: Speed of the connection
2591 * @duplex: Duplex setting of the connection
2592
Linus Torvalds1da177e2005-04-16 15:20:36 -07002593 * Detects the current speed and duplex settings of the hardware.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002594 */
Joe Perches64798842008-07-11 15:17:02 -07002595s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002596{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002597 u32 status;
2598 s32 ret_val;
2599 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600
Emil Tantilov675ad472010-04-27 14:02:58 +00002601 e_dbg("e1000_get_speed_and_duplex");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002602
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002603 if (hw->mac_type >= e1000_82543) {
2604 status = er32(STATUS);
2605 if (status & E1000_STATUS_SPEED_1000) {
2606 *speed = SPEED_1000;
Emil Tantilov675ad472010-04-27 14:02:58 +00002607 e_dbg("1000 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002608 } else if (status & E1000_STATUS_SPEED_100) {
2609 *speed = SPEED_100;
Emil Tantilov675ad472010-04-27 14:02:58 +00002610 e_dbg("100 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002611 } else {
2612 *speed = SPEED_10;
Emil Tantilov675ad472010-04-27 14:02:58 +00002613 e_dbg("10 Mbs, ");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002614 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002615
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002616 if (status & E1000_STATUS_FD) {
2617 *duplex = FULL_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00002618 e_dbg("Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002619 } else {
2620 *duplex = HALF_DUPLEX;
Emil Tantilov675ad472010-04-27 14:02:58 +00002621 e_dbg(" Half Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002622 }
2623 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00002624 e_dbg("1000 Mbs, Full Duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002625 *speed = SPEED_1000;
2626 *duplex = FULL_DUPLEX;
2627 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002629 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2630 * if it is operating at half duplex. Here we set the duplex settings to
2631 * match the duplex in the link partner's capabilities.
2632 */
2633 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2634 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2635 if (ret_val)
2636 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002638 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2639 *duplex = HALF_DUPLEX;
2640 else {
2641 ret_val =
2642 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2643 if (ret_val)
2644 return ret_val;
2645 if ((*speed == SPEED_100
2646 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2647 || (*speed == SPEED_10
2648 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2649 *duplex = HALF_DUPLEX;
2650 }
2651 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002653 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654}
2655
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002656/**
2657 * e1000_wait_autoneg
2658 * @hw: Struct containing variables accessed by shared code
2659 *
2660 * Blocks until autoneg completes or times out (~4.5 seconds)
2661 */
Joe Perches64798842008-07-11 15:17:02 -07002662static s32 e1000_wait_autoneg(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002663{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002664 s32 ret_val;
2665 u16 i;
2666 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667
Emil Tantilov675ad472010-04-27 14:02:58 +00002668 e_dbg("e1000_wait_autoneg");
2669 e_dbg("Waiting for Auto-Neg to complete.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002670
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002671 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2672 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2673 /* Read the MII Status Register and wait for Auto-Neg
2674 * Complete bit to be set.
2675 */
2676 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2677 if (ret_val)
2678 return ret_val;
2679 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2680 if (ret_val)
2681 return ret_val;
2682 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2683 return E1000_SUCCESS;
2684 }
2685 msleep(100);
2686 }
2687 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002688}
2689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002690/**
2691 * e1000_raise_mdi_clk - Raises the Management Data Clock
2692 * @hw: Struct containing variables accessed by shared code
2693 * @ctrl: Device control register's current value
2694 */
Joe Perches64798842008-07-11 15:17:02 -07002695static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002696{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002697 /* Raise the clock input to the Management Data Clock (by setting the MDC
2698 * bit), and then delay 10 microseconds.
2699 */
2700 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2701 E1000_WRITE_FLUSH();
2702 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703}
2704
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002705/**
2706 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2707 * @hw: Struct containing variables accessed by shared code
2708 * @ctrl: Device control register's current value
2709 */
Joe Perches64798842008-07-11 15:17:02 -07002710static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002711{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002712 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2713 * bit), and then delay 10 microseconds.
2714 */
2715 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2716 E1000_WRITE_FLUSH();
2717 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718}
2719
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002720/**
2721 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2722 * @hw: Struct containing variables accessed by shared code
2723 * @data: Data to send out to the PHY
2724 * @count: Number of bits to shift out
2725 *
2726 * Bits are shifted out in MSB to LSB order.
2727 */
Joe Perches64798842008-07-11 15:17:02 -07002728static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002730 u32 ctrl;
2731 u32 mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002732
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002733 /* We need to shift "count" number of bits out to the PHY. So, the value
2734 * in the "data" parameter will be shifted out to the PHY one bit at a
2735 * time. In order to do this, "data" must be broken down into bits.
2736 */
2737 mask = 0x01;
2738 mask <<= (count - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002739
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002740 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002742 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2743 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002744
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002745 while (mask) {
2746 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2747 * then raising and lowering the Management Data Clock. A "0" is
2748 * shifted out to the PHY by setting the MDIO bit to "0" and then
2749 * raising and lowering the clock.
2750 */
2751 if (data & mask)
2752 ctrl |= E1000_CTRL_MDIO;
2753 else
2754 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002756 ew32(CTRL, ctrl);
2757 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002759 udelay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002760
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002761 e1000_raise_mdi_clk(hw, &ctrl);
2762 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002764 mask = mask >> 1;
2765 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766}
2767
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002768/**
2769 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2770 * @hw: Struct containing variables accessed by shared code
2771 *
2772 * Bits are shifted in in MSB to LSB order.
2773 */
Joe Perches64798842008-07-11 15:17:02 -07002774static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002776 u32 ctrl;
2777 u16 data = 0;
2778 u8 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002780 /* In order to read a register from the PHY, we need to shift in a total
2781 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2782 * to avoid contention on the MDIO pin when a read operation is performed.
2783 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2784 * by raising the input to the Management Data Clock (setting the MDC bit),
2785 * and then reading the value of the MDIO bit.
2786 */
2787 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002789 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2790 ctrl &= ~E1000_CTRL_MDIO_DIR;
2791 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002792
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002793 ew32(CTRL, ctrl);
2794 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002795
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002796 /* Raise and Lower the clock before reading in the data. This accounts for
2797 * the turnaround bits. The first clock occurred when we clocked out the
2798 * last bit of the Register Address.
2799 */
2800 e1000_raise_mdi_clk(hw, &ctrl);
2801 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002802
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002803 for (data = 0, i = 0; i < 16; i++) {
2804 data = data << 1;
2805 e1000_raise_mdi_clk(hw, &ctrl);
2806 ctrl = er32(CTRL);
2807 /* Check to see if we shifted in a "1". */
2808 if (ctrl & E1000_CTRL_MDIO)
2809 data |= 1;
2810 e1000_lower_mdi_clk(hw, &ctrl);
2811 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002813 e1000_raise_mdi_clk(hw, &ctrl);
2814 e1000_lower_mdi_clk(hw, &ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002816 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002817}
2818
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002819
2820/**
2821 * e1000_read_phy_reg - read a phy register
2822 * @hw: Struct containing variables accessed by shared code
2823 * @reg_addr: address of the PHY register to read
2824 *
2825 * Reads the value from a PHY register, if the value is on a specific non zero
2826 * page, sets the page first.
2827 */
Joe Perches64798842008-07-11 15:17:02 -07002828s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002829{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002830 u32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831
Emil Tantilov675ad472010-04-27 14:02:58 +00002832 e_dbg("e1000_read_phy_reg");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002833
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002834 if ((hw->phy_type == e1000_phy_igp) &&
2835 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2836 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2837 (u16) reg_addr);
2838 if (ret_val)
2839 return ret_val;
2840 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002842 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2843 phy_data);
2844
2845 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846}
2847
Joe Perches64798842008-07-11 15:17:02 -07002848static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2849 u16 *phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002851 u32 i;
2852 u32 mdic = 0;
Dirk Brandewie5377a412011-01-06 14:29:54 +00002853 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854
Emil Tantilov675ad472010-04-27 14:02:58 +00002855 e_dbg("e1000_read_phy_reg_ex");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002857 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002858 e_dbg("PHY Address %d is out of range\n", reg_addr);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002859 return -E1000_ERR_PARAM;
2860 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002861
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002862 if (hw->mac_type > e1000_82543) {
2863 /* Set up Op-code, Phy Address, and register address in the MDI
2864 * Control register. The MAC will take care of interfacing with the
2865 * PHY to retrieve the desired data.
2866 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00002867 if (hw->mac_type == e1000_ce4100) {
2868 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2869 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2870 (INTEL_CE_GBE_MDIC_OP_READ) |
2871 (INTEL_CE_GBE_MDIC_GO));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872
Dirk Brandewie5377a412011-01-06 14:29:54 +00002873 writel(mdic, E1000_MDIO_CMD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002874
Dirk Brandewie5377a412011-01-06 14:29:54 +00002875 /* Poll the ready bit to see if the MDI read
2876 * completed
2877 */
2878 for (i = 0; i < 64; i++) {
2879 udelay(50);
2880 mdic = readl(E1000_MDIO_CMD);
2881 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2882 break;
2883 }
2884
2885 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2886 e_dbg("MDI Read did not complete\n");
2887 return -E1000_ERR_PHY;
2888 }
2889
2890 mdic = readl(E1000_MDIO_STS);
2891 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2892 e_dbg("MDI Read Error\n");
2893 return -E1000_ERR_PHY;
2894 }
2895 *phy_data = (u16) mdic;
2896 } else {
2897 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2898 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2899 (E1000_MDIC_OP_READ));
2900
2901 ew32(MDIC, mdic);
2902
2903 /* Poll the ready bit to see if the MDI read
2904 * completed
2905 */
2906 for (i = 0; i < 64; i++) {
2907 udelay(50);
2908 mdic = er32(MDIC);
2909 if (mdic & E1000_MDIC_READY)
2910 break;
2911 }
2912 if (!(mdic & E1000_MDIC_READY)) {
2913 e_dbg("MDI Read did not complete\n");
2914 return -E1000_ERR_PHY;
2915 }
2916 if (mdic & E1000_MDIC_ERROR) {
2917 e_dbg("MDI Error\n");
2918 return -E1000_ERR_PHY;
2919 }
2920 *phy_data = (u16) mdic;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002921 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002922 } else {
2923 /* We must first send a preamble through the MDIO pin to signal the
2924 * beginning of an MII instruction. This is done by sending 32
2925 * consecutive "1" bits.
2926 */
2927 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002928
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002929 /* Now combine the next few fields that are required for a read
2930 * operation. We use this method instead of calling the
2931 * e1000_shift_out_mdi_bits routine five different times. The format of
2932 * a MII read instruction consists of a shift out of 14 bits and is
2933 * defined as follows:
2934 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2935 * followed by a shift in of 18 bits. This first two bits shifted in
2936 * are TurnAround bits used to avoid contention on the MDIO pin when a
2937 * READ operation is performed. These two bits are thrown away
2938 * followed by a shift in of 16 bits which contains the desired data.
2939 */
2940 mdic = ((reg_addr) | (phy_addr << 5) |
2941 (PHY_OP_READ << 10) | (PHY_SOF << 12));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002943 e1000_shift_out_mdi_bits(hw, mdic, 14);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002944
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002945 /* Now that we've shifted out the read command to the MII, we need to
2946 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2947 * register address.
2948 */
2949 *phy_data = e1000_shift_in_mdi_bits(hw);
2950 }
2951 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952}
2953
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002954/**
2955 * e1000_write_phy_reg - write a phy register
2956 *
2957 * @hw: Struct containing variables accessed by shared code
2958 * @reg_addr: address of the PHY register to write
2959 * @data: data to write to the PHY
2960
2961 * Writes a value to a PHY register
2962 */
Joe Perches64798842008-07-11 15:17:02 -07002963s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002965 u32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002966
Emil Tantilov675ad472010-04-27 14:02:58 +00002967 e_dbg("e1000_write_phy_reg");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002968
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002969 if ((hw->phy_type == e1000_phy_igp) &&
2970 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2971 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2972 (u16) reg_addr);
2973 if (ret_val)
2974 return ret_val;
2975 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002976
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002977 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2978 phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002980 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002981}
2982
Joe Perches64798842008-07-11 15:17:02 -07002983static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2984 u16 phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002985{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002986 u32 i;
2987 u32 mdic = 0;
Dirk Brandewie5377a412011-01-06 14:29:54 +00002988 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002989
Emil Tantilov675ad472010-04-27 14:02:58 +00002990 e_dbg("e1000_write_phy_reg_ex");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002991
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002992 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00002993 e_dbg("PHY Address %d is out of range\n", reg_addr);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002994 return -E1000_ERR_PARAM;
2995 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002996
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07002997 if (hw->mac_type > e1000_82543) {
Dirk Brandewie5377a412011-01-06 14:29:54 +00002998 /* Set up Op-code, Phy Address, register address, and data
2999 * intended for the PHY register in the MDI Control register.
3000 * The MAC will take care of interfacing with the PHY to send
3001 * the desired data.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003002 */
Dirk Brandewie5377a412011-01-06 14:29:54 +00003003 if (hw->mac_type == e1000_ce4100) {
3004 mdic = (((u32) phy_data) |
3005 (reg_addr << E1000_MDIC_REG_SHIFT) |
3006 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3007 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3008 (INTEL_CE_GBE_MDIC_GO));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003009
Dirk Brandewie5377a412011-01-06 14:29:54 +00003010 writel(mdic, E1000_MDIO_CMD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003011
Dirk Brandewie5377a412011-01-06 14:29:54 +00003012 /* Poll the ready bit to see if the MDI read
3013 * completed
3014 */
3015 for (i = 0; i < 640; i++) {
3016 udelay(5);
3017 mdic = readl(E1000_MDIO_CMD);
3018 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3019 break;
3020 }
3021 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3022 e_dbg("MDI Write did not complete\n");
3023 return -E1000_ERR_PHY;
3024 }
3025 } else {
3026 mdic = (((u32) phy_data) |
3027 (reg_addr << E1000_MDIC_REG_SHIFT) |
3028 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3029 (E1000_MDIC_OP_WRITE));
3030
3031 ew32(MDIC, mdic);
3032
3033 /* Poll the ready bit to see if the MDI read
3034 * completed
3035 */
3036 for (i = 0; i < 641; i++) {
3037 udelay(5);
3038 mdic = er32(MDIC);
3039 if (mdic & E1000_MDIC_READY)
3040 break;
3041 }
3042 if (!(mdic & E1000_MDIC_READY)) {
3043 e_dbg("MDI Write did not complete\n");
3044 return -E1000_ERR_PHY;
3045 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003046 }
3047 } else {
3048 /* We'll need to use the SW defined pins to shift the write command
3049 * out to the PHY. We first send a preamble to the PHY to signal the
3050 * beginning of the MII instruction. This is done by sending 32
3051 * consecutive "1" bits.
3052 */
3053 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003054
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003055 /* Now combine the remaining required fields that will indicate a
3056 * write operation. We use this method instead of calling the
3057 * e1000_shift_out_mdi_bits routine for each field in the command. The
3058 * format of a MII write instruction is as follows:
3059 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3060 */
3061 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3062 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3063 mdic <<= 16;
3064 mdic |= (u32) phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003066 e1000_shift_out_mdi_bits(hw, mdic, 32);
3067 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003069 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070}
3071
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003072/**
3073 * e1000_phy_hw_reset - reset the phy, hardware style
3074 * @hw: Struct containing variables accessed by shared code
3075 *
3076 * Returns the PHY to the power-on reset state
3077 */
Joe Perches64798842008-07-11 15:17:02 -07003078s32 e1000_phy_hw_reset(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003079{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003080 u32 ctrl, ctrl_ext;
3081 u32 led_ctrl;
3082 s32 ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003083
Emil Tantilov675ad472010-04-27 14:02:58 +00003084 e_dbg("e1000_phy_hw_reset");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003085
Emil Tantilov675ad472010-04-27 14:02:58 +00003086 e_dbg("Resetting Phy...\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003087
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003088 if (hw->mac_type > e1000_82543) {
3089 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3090 * bit. Then, take it out of reset.
3091 * For e1000 hardware, we delay for 10ms between the assert
3092 * and deassert.
3093 */
3094 ctrl = er32(CTRL);
3095 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3096 E1000_WRITE_FLUSH();
Auke Kok76c224b2006-05-23 13:36:06 -07003097
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003098 msleep(10);
Auke Kok76c224b2006-05-23 13:36:06 -07003099
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003100 ew32(CTRL, ctrl);
3101 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003102
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003103 } else {
3104 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3105 * bit to put the PHY into reset. Then, take it out of reset.
3106 */
3107 ctrl_ext = er32(CTRL_EXT);
3108 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3109 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3110 ew32(CTRL_EXT, ctrl_ext);
3111 E1000_WRITE_FLUSH();
3112 msleep(10);
3113 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3114 ew32(CTRL_EXT, ctrl_ext);
3115 E1000_WRITE_FLUSH();
3116 }
3117 udelay(150);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003118
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003119 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3120 /* Configure activity LED after PHY reset */
3121 led_ctrl = er32(LEDCTL);
3122 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3123 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3124 ew32(LEDCTL, led_ctrl);
3125 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003126
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003127 /* Wait for FW to finish PHY configuration. */
3128 ret_val = e1000_get_phy_cfg_done(hw);
3129 if (ret_val != E1000_SUCCESS)
3130 return ret_val;
3131
3132 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003133}
3134
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003135/**
3136 * e1000_phy_reset - reset the phy to commit settings
3137 * @hw: Struct containing variables accessed by shared code
3138 *
3139 * Resets the PHY
3140 * Sets bit 15 of the MII Control register
3141 */
Joe Perches64798842008-07-11 15:17:02 -07003142s32 e1000_phy_reset(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003143{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003144 s32 ret_val;
3145 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003146
Emil Tantilov675ad472010-04-27 14:02:58 +00003147 e_dbg("e1000_phy_reset");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003148
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003149 switch (hw->phy_type) {
3150 case e1000_phy_igp:
3151 ret_val = e1000_phy_hw_reset(hw);
3152 if (ret_val)
3153 return ret_val;
3154 break;
3155 default:
3156 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3157 if (ret_val)
3158 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003159
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003160 phy_data |= MII_CR_RESET;
3161 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3162 if (ret_val)
3163 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003164
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003165 udelay(1);
3166 break;
3167 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003168
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003169 if (hw->phy_type == e1000_phy_igp)
3170 e1000_phy_init_script(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003171
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003172 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003173}
3174
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003175/**
3176 * e1000_detect_gig_phy - check the phy type
3177 * @hw: Struct containing variables accessed by shared code
3178 *
3179 * Probes the expected PHY address for known PHY IDs
3180 */
Joe Perches64798842008-07-11 15:17:02 -07003181static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003182{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003183 s32 phy_init_status, ret_val;
3184 u16 phy_id_high, phy_id_low;
3185 bool match = false;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003186
Emil Tantilov675ad472010-04-27 14:02:58 +00003187 e_dbg("e1000_detect_gig_phy");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003189 if (hw->phy_id != 0)
3190 return E1000_SUCCESS;
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003191
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003192 /* Read the PHY ID Registers to identify which PHY is onboard. */
3193 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3194 if (ret_val)
3195 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003196
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003197 hw->phy_id = (u32) (phy_id_high << 16);
3198 udelay(20);
3199 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3200 if (ret_val)
3201 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003203 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3204 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003205
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003206 switch (hw->mac_type) {
3207 case e1000_82543:
3208 if (hw->phy_id == M88E1000_E_PHY_ID)
3209 match = true;
3210 break;
3211 case e1000_82544:
3212 if (hw->phy_id == M88E1000_I_PHY_ID)
3213 match = true;
3214 break;
3215 case e1000_82540:
3216 case e1000_82545:
3217 case e1000_82545_rev_3:
3218 case e1000_82546:
3219 case e1000_82546_rev_3:
3220 if (hw->phy_id == M88E1011_I_PHY_ID)
3221 match = true;
3222 break;
Dirk Brandewie5377a412011-01-06 14:29:54 +00003223 case e1000_ce4100:
3224 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3225 (hw->phy_id == RTL8201N_PHY_ID))
3226 match = true;
3227 break;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003228 case e1000_82541:
3229 case e1000_82541_rev_2:
3230 case e1000_82547:
3231 case e1000_82547_rev_2:
3232 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3233 match = true;
3234 break;
3235 default:
Emil Tantilov675ad472010-04-27 14:02:58 +00003236 e_dbg("Invalid MAC type %d\n", hw->mac_type);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003237 return -E1000_ERR_CONFIG;
3238 }
3239 phy_init_status = e1000_set_phy_type(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003240
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003241 if ((match) && (phy_init_status == E1000_SUCCESS)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003242 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003243 return E1000_SUCCESS;
3244 }
Emil Tantilov675ad472010-04-27 14:02:58 +00003245 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003246 return -E1000_ERR_PHY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003247}
3248
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003249/**
3250 * e1000_phy_reset_dsp - reset DSP
3251 * @hw: Struct containing variables accessed by shared code
3252 *
3253 * Resets the PHY's DSP
3254 */
Joe Perches64798842008-07-11 15:17:02 -07003255static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003256{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003257 s32 ret_val;
Emil Tantilov675ad472010-04-27 14:02:58 +00003258 e_dbg("e1000_phy_reset_dsp");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003259
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003260 do {
3261 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3262 if (ret_val)
3263 break;
3264 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3265 if (ret_val)
3266 break;
3267 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3268 if (ret_val)
3269 break;
3270 ret_val = E1000_SUCCESS;
3271 } while (0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003272
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003273 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003274}
3275
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003276/**
3277 * e1000_phy_igp_get_info - get igp specific registers
3278 * @hw: Struct containing variables accessed by shared code
3279 * @phy_info: PHY information structure
3280 *
3281 * Get PHY information from various PHY registers for igp PHY only.
3282 */
Joe Perches64798842008-07-11 15:17:02 -07003283static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3284 struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003285{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003286 s32 ret_val;
3287 u16 phy_data, min_length, max_length, average;
3288 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003289
Emil Tantilov675ad472010-04-27 14:02:58 +00003290 e_dbg("e1000_phy_igp_get_info");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003291
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003292 /* The downshift status is checked only once, after link is established,
3293 * and it stored in the hw->speed_downgraded parameter. */
3294 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003295
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003296 /* IGP01E1000 does not need to support it. */
3297 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003298
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003299 /* IGP01E1000 always correct polarity reversal */
3300 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003301
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003302 /* Check polarity status */
3303 ret_val = e1000_check_polarity(hw, &polarity);
3304 if (ret_val)
3305 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003306
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003307 phy_info->cable_polarity = polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003308
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003309 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3310 if (ret_val)
3311 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003313 phy_info->mdix_mode =
3314 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3315 IGP01E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003317 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3318 IGP01E1000_PSSR_SPEED_1000MBPS) {
3319 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3320 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3321 if (ret_val)
3322 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003324 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3325 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3326 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3327 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3328 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3329 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003330
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003331 /* Get cable length */
3332 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3333 if (ret_val)
3334 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003335
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003336 /* Translate to old method */
3337 average = (max_length + min_length) / 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003339 if (average <= e1000_igp_cable_length_50)
3340 phy_info->cable_length = e1000_cable_length_50;
3341 else if (average <= e1000_igp_cable_length_80)
3342 phy_info->cable_length = e1000_cable_length_50_80;
3343 else if (average <= e1000_igp_cable_length_110)
3344 phy_info->cable_length = e1000_cable_length_80_110;
3345 else if (average <= e1000_igp_cable_length_140)
3346 phy_info->cable_length = e1000_cable_length_110_140;
3347 else
3348 phy_info->cable_length = e1000_cable_length_140;
3349 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003350
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003351 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003352}
3353
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003354/**
3355 * e1000_phy_m88_get_info - get m88 specific registers
3356 * @hw: Struct containing variables accessed by shared code
3357 * @phy_info: PHY information structure
3358 *
3359 * Get PHY information from various PHY registers for m88 PHY only.
3360 */
Joe Perches64798842008-07-11 15:17:02 -07003361static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3362 struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003363{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003364 s32 ret_val;
3365 u16 phy_data;
3366 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367
Emil Tantilov675ad472010-04-27 14:02:58 +00003368 e_dbg("e1000_phy_m88_get_info");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003369
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003370 /* The downshift status is checked only once, after link is established,
3371 * and it stored in the hw->speed_downgraded parameter. */
3372 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003373
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003374 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3375 if (ret_val)
3376 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003378 phy_info->extended_10bt_distance =
3379 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3380 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3381 e1000_10bt_ext_dist_enable_lower :
3382 e1000_10bt_ext_dist_enable_normal;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07003383
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003384 phy_info->polarity_correction =
3385 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3386 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3387 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003388
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003389 /* Check polarity status */
3390 ret_val = e1000_check_polarity(hw, &polarity);
3391 if (ret_val)
3392 return ret_val;
3393 phy_info->cable_polarity = polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003394
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003395 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3396 if (ret_val)
3397 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003398
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003399 phy_info->mdix_mode =
3400 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3401 M88E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003402
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003403 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3404 /* Cable Length Estimation and Local/Remote Receiver Information
3405 * are only valid at 1000 Mbps.
3406 */
3407 phy_info->cable_length =
3408 (e1000_cable_length) ((phy_data &
3409 M88E1000_PSSR_CABLE_LENGTH) >>
3410 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003411
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003412 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3413 if (ret_val)
3414 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003415
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003416 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3417 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3418 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3419 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3420 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3421 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003422
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003423 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003424
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003425 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003426}
3427
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003428/**
3429 * e1000_phy_get_info - request phy info
3430 * @hw: Struct containing variables accessed by shared code
3431 * @phy_info: PHY information structure
3432 *
3433 * Get PHY information from various PHY registers
3434 */
Joe Perches64798842008-07-11 15:17:02 -07003435s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003436{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003437 s32 ret_val;
3438 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003439
Emil Tantilov675ad472010-04-27 14:02:58 +00003440 e_dbg("e1000_phy_get_info");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003441
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003442 phy_info->cable_length = e1000_cable_length_undefined;
3443 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3444 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3445 phy_info->downshift = e1000_downshift_undefined;
3446 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3447 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3448 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3449 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003450
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003451 if (hw->media_type != e1000_media_type_copper) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003452 e_dbg("PHY info is only valid for copper media\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003453 return -E1000_ERR_CONFIG;
3454 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003455
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003456 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3457 if (ret_val)
3458 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003459
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003460 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3461 if (ret_val)
3462 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003463
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003464 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003465 e_dbg("PHY info is only valid if link is up\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003466 return -E1000_ERR_CONFIG;
3467 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003468
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003469 if (hw->phy_type == e1000_phy_igp)
3470 return e1000_phy_igp_get_info(hw, phy_info);
Dirk Brandewie5377a412011-01-06 14:29:54 +00003471 else if ((hw->phy_type == e1000_phy_8211) ||
3472 (hw->phy_type == e1000_phy_8201))
3473 return E1000_SUCCESS;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003474 else
3475 return e1000_phy_m88_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476}
3477
Joe Perches64798842008-07-11 15:17:02 -07003478s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479{
Emil Tantilov675ad472010-04-27 14:02:58 +00003480 e_dbg("e1000_validate_mdi_settings");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003481
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003482 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003483 e_dbg("Invalid MDI setting detected\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003484 hw->mdix = 1;
3485 return -E1000_ERR_CONFIG;
3486 }
3487 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003488}
3489
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003490/**
3491 * e1000_init_eeprom_params - initialize sw eeprom vars
3492 * @hw: Struct containing variables accessed by shared code
3493 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003494 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jesse Brandeburg1532ece2009-09-25 12:16:14 +00003495 * is configured.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003496 */
Joe Perches64798842008-07-11 15:17:02 -07003497s32 e1000_init_eeprom_params(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003498{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003499 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3500 u32 eecd = er32(EECD);
3501 s32 ret_val = E1000_SUCCESS;
3502 u16 eeprom_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003503
Emil Tantilov675ad472010-04-27 14:02:58 +00003504 e_dbg("e1000_init_eeprom_params");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003505
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003506 switch (hw->mac_type) {
3507 case e1000_82542_rev2_0:
3508 case e1000_82542_rev2_1:
3509 case e1000_82543:
3510 case e1000_82544:
3511 eeprom->type = e1000_eeprom_microwire;
3512 eeprom->word_size = 64;
3513 eeprom->opcode_bits = 3;
3514 eeprom->address_bits = 6;
3515 eeprom->delay_usec = 50;
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003516 break;
3517 case e1000_82540:
3518 case e1000_82545:
3519 case e1000_82545_rev_3:
3520 case e1000_82546:
3521 case e1000_82546_rev_3:
3522 eeprom->type = e1000_eeprom_microwire;
3523 eeprom->opcode_bits = 3;
3524 eeprom->delay_usec = 50;
3525 if (eecd & E1000_EECD_SIZE) {
3526 eeprom->word_size = 256;
3527 eeprom->address_bits = 8;
3528 } else {
3529 eeprom->word_size = 64;
3530 eeprom->address_bits = 6;
3531 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003532 break;
3533 case e1000_82541:
3534 case e1000_82541_rev_2:
3535 case e1000_82547:
3536 case e1000_82547_rev_2:
3537 if (eecd & E1000_EECD_TYPE) {
3538 eeprom->type = e1000_eeprom_spi;
3539 eeprom->opcode_bits = 8;
3540 eeprom->delay_usec = 1;
3541 if (eecd & E1000_EECD_ADDR_BITS) {
3542 eeprom->page_size = 32;
3543 eeprom->address_bits = 16;
3544 } else {
3545 eeprom->page_size = 8;
3546 eeprom->address_bits = 8;
3547 }
3548 } else {
3549 eeprom->type = e1000_eeprom_microwire;
3550 eeprom->opcode_bits = 3;
3551 eeprom->delay_usec = 50;
3552 if (eecd & E1000_EECD_ADDR_BITS) {
3553 eeprom->word_size = 256;
3554 eeprom->address_bits = 8;
3555 } else {
3556 eeprom->word_size = 64;
3557 eeprom->address_bits = 6;
3558 }
3559 }
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003560 break;
3561 default:
3562 break;
3563 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003564
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003565 if (eeprom->type == e1000_eeprom_spi) {
3566 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3567 * 32KB (incremented by powers of 2).
3568 */
3569 /* Set to default value for initial eeprom read. */
3570 eeprom->word_size = 64;
3571 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3572 if (ret_val)
3573 return ret_val;
3574 eeprom_size =
3575 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3576 /* 256B eeprom size was not supported in earlier hardware, so we
3577 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3578 * is never the result used in the shifting logic below. */
3579 if (eeprom_size)
3580 eeprom_size++;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003581
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003582 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3583 }
3584 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003585}
3586
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003587/**
3588 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3589 * @hw: Struct containing variables accessed by shared code
3590 * @eecd: EECD's current value
3591 */
Joe Perches64798842008-07-11 15:17:02 -07003592static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003594 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3595 * wait <delay> microseconds.
3596 */
3597 *eecd = *eecd | E1000_EECD_SK;
3598 ew32(EECD, *eecd);
3599 E1000_WRITE_FLUSH();
3600 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003601}
3602
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003603/**
3604 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3605 * @hw: Struct containing variables accessed by shared code
3606 * @eecd: EECD's current value
3607 */
Joe Perches64798842008-07-11 15:17:02 -07003608static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003609{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003610 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3611 * wait 50 microseconds.
3612 */
3613 *eecd = *eecd & ~E1000_EECD_SK;
3614 ew32(EECD, *eecd);
3615 E1000_WRITE_FLUSH();
3616 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617}
3618
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003619/**
3620 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3621 * @hw: Struct containing variables accessed by shared code
3622 * @data: data to send to the EEPROM
3623 * @count: number of bits to shift out
3624 */
Joe Perches64798842008-07-11 15:17:02 -07003625static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003626{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003627 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3628 u32 eecd;
3629 u32 mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003630
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003631 /* We need to shift "count" bits out to the EEPROM. So, value in the
3632 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3633 * In order to do this, "data" must be broken down into bits.
3634 */
3635 mask = 0x01 << (count - 1);
3636 eecd = er32(EECD);
3637 if (eeprom->type == e1000_eeprom_microwire) {
3638 eecd &= ~E1000_EECD_DO;
3639 } else if (eeprom->type == e1000_eeprom_spi) {
3640 eecd |= E1000_EECD_DO;
3641 }
3642 do {
3643 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3644 * and then raising and then lowering the clock (the SK bit controls
3645 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3646 * by setting "DI" to "0" and then raising and then lowering the clock.
3647 */
3648 eecd &= ~E1000_EECD_DI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003649
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003650 if (data & mask)
3651 eecd |= E1000_EECD_DI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003652
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003653 ew32(EECD, eecd);
3654 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003655
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003656 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003657
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003658 e1000_raise_ee_clk(hw, &eecd);
3659 e1000_lower_ee_clk(hw, &eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003660
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003661 mask = mask >> 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003662
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003663 } while (mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003664
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003665 /* We leave the "DI" bit set to "0" when we leave this routine. */
3666 eecd &= ~E1000_EECD_DI;
3667 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668}
3669
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003670/**
3671 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3672 * @hw: Struct containing variables accessed by shared code
3673 * @count: number of bits to shift in
3674 */
Joe Perches64798842008-07-11 15:17:02 -07003675static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003676{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003677 u32 eecd;
3678 u32 i;
3679 u16 data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003680
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003681 /* In order to read a register from the EEPROM, we need to shift 'count'
3682 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3683 * input to the EEPROM (setting the SK bit), and then reading the value of
3684 * the "DO" bit. During this "shifting in" process the "DI" bit should
3685 * always be clear.
3686 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003687
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003688 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003689
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003690 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3691 data = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003692
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003693 for (i = 0; i < count; i++) {
3694 data = data << 1;
3695 e1000_raise_ee_clk(hw, &eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003696
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003697 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003698
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003699 eecd &= ~(E1000_EECD_DI);
3700 if (eecd & E1000_EECD_DO)
3701 data |= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003702
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003703 e1000_lower_ee_clk(hw, &eecd);
3704 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003705
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003706 return data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003707}
3708
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003709/**
3710 * e1000_acquire_eeprom - Prepares EEPROM for access
3711 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003712 *
3713 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3714 * function should be called before issuing a command to the EEPROM.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003715 */
Joe Perches64798842008-07-11 15:17:02 -07003716static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003717{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003718 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3719 u32 eecd, i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720
Emil Tantilov675ad472010-04-27 14:02:58 +00003721 e_dbg("e1000_acquire_eeprom");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003722
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003723 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003724
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003725 /* Request EEPROM Access */
3726 if (hw->mac_type > e1000_82544) {
3727 eecd |= E1000_EECD_REQ;
3728 ew32(EECD, eecd);
3729 eecd = er32(EECD);
3730 while ((!(eecd & E1000_EECD_GNT)) &&
3731 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3732 i++;
3733 udelay(5);
3734 eecd = er32(EECD);
3735 }
3736 if (!(eecd & E1000_EECD_GNT)) {
3737 eecd &= ~E1000_EECD_REQ;
3738 ew32(EECD, eecd);
Emil Tantilov675ad472010-04-27 14:02:58 +00003739 e_dbg("Could not acquire EEPROM grant\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003740 return -E1000_ERR_EEPROM;
3741 }
3742 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003744 /* Setup EEPROM for Read/Write */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003745
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003746 if (eeprom->type == e1000_eeprom_microwire) {
3747 /* Clear SK and DI */
3748 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3749 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003751 /* Set CS */
3752 eecd |= E1000_EECD_CS;
3753 ew32(EECD, eecd);
3754 } else if (eeprom->type == e1000_eeprom_spi) {
3755 /* Clear SK and CS */
3756 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3757 ew32(EECD, eecd);
3758 udelay(1);
3759 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003761 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003762}
3763
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003764/**
3765 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3766 * @hw: Struct containing variables accessed by shared code
3767 */
Joe Perches64798842008-07-11 15:17:02 -07003768static void e1000_standby_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003769{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003770 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3771 u32 eecd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003772
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003773 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003774
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003775 if (eeprom->type == e1000_eeprom_microwire) {
3776 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3777 ew32(EECD, eecd);
3778 E1000_WRITE_FLUSH();
3779 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003780
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003781 /* Clock high */
3782 eecd |= E1000_EECD_SK;
3783 ew32(EECD, eecd);
3784 E1000_WRITE_FLUSH();
3785 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003787 /* Select EEPROM */
3788 eecd |= E1000_EECD_CS;
3789 ew32(EECD, eecd);
3790 E1000_WRITE_FLUSH();
3791 udelay(eeprom->delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003792
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003793 /* Clock low */
3794 eecd &= ~E1000_EECD_SK;
3795 ew32(EECD, eecd);
3796 E1000_WRITE_FLUSH();
3797 udelay(eeprom->delay_usec);
3798 } else if (eeprom->type == e1000_eeprom_spi) {
3799 /* Toggle CS to flush commands */
3800 eecd |= E1000_EECD_CS;
3801 ew32(EECD, eecd);
3802 E1000_WRITE_FLUSH();
3803 udelay(eeprom->delay_usec);
3804 eecd &= ~E1000_EECD_CS;
3805 ew32(EECD, eecd);
3806 E1000_WRITE_FLUSH();
3807 udelay(eeprom->delay_usec);
3808 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003809}
3810
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003811/**
3812 * e1000_release_eeprom - drop chip select
3813 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07003814 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003815 * Terminates a command by inverting the EEPROM's chip select pin
3816 */
Joe Perches64798842008-07-11 15:17:02 -07003817static void e1000_release_eeprom(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003818{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003819 u32 eecd;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820
Emil Tantilov675ad472010-04-27 14:02:58 +00003821 e_dbg("e1000_release_eeprom");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003822
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003823 eecd = er32(EECD);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003824
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003825 if (hw->eeprom.type == e1000_eeprom_spi) {
3826 eecd |= E1000_EECD_CS; /* Pull CS high */
3827 eecd &= ~E1000_EECD_SK; /* Lower SCK */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003829 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003831 udelay(hw->eeprom.delay_usec);
3832 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3833 /* cleanup eeprom */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003834
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003835 /* CS on Microwire is active-high */
3836 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003837
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003838 ew32(EECD, eecd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003839
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003840 /* Rising edge of clock */
3841 eecd |= E1000_EECD_SK;
3842 ew32(EECD, eecd);
3843 E1000_WRITE_FLUSH();
3844 udelay(hw->eeprom.delay_usec);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003845
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003846 /* Falling edge of clock */
3847 eecd &= ~E1000_EECD_SK;
3848 ew32(EECD, eecd);
3849 E1000_WRITE_FLUSH();
3850 udelay(hw->eeprom.delay_usec);
3851 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003852
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003853 /* Stop requesting EEPROM access */
3854 if (hw->mac_type > e1000_82544) {
3855 eecd &= ~E1000_EECD_REQ;
3856 ew32(EECD, eecd);
3857 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003858}
3859
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003860/**
3861 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3862 * @hw: Struct containing variables accessed by shared code
3863 */
Joe Perches64798842008-07-11 15:17:02 -07003864static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003865{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003866 u16 retry_count = 0;
3867 u8 spi_stat_reg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003868
Emil Tantilov675ad472010-04-27 14:02:58 +00003869 e_dbg("e1000_spi_eeprom_ready");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003870
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003871 /* Read "Status Register" repeatedly until the LSB is cleared. The
3872 * EEPROM will signal that the command has been completed by clearing
3873 * bit 0 of the internal status register. If it's not cleared within
3874 * 5 milliseconds, then error out.
3875 */
3876 retry_count = 0;
3877 do {
3878 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3879 hw->eeprom.opcode_bits);
3880 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3881 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3882 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003883
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003884 udelay(5);
3885 retry_count += 5;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003886
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003887 e1000_standby_eeprom(hw);
3888 } while (retry_count < EEPROM_MAX_RETRY_SPI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003889
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003890 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3891 * only 0-5mSec on 5V devices)
3892 */
3893 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003894 e_dbg("SPI EEPROM Status error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003895 return -E1000_ERR_EEPROM;
3896 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003897
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003898 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003899}
3900
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003901/**
3902 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3903 * @hw: Struct containing variables accessed by shared code
3904 * @offset: offset of word in the EEPROM to read
3905 * @data: word read from the EEPROM
3906 * @words: number of words to read
3907 */
Joe Perches64798842008-07-11 15:17:02 -07003908s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003909{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003910 s32 ret;
3911 spin_lock(&e1000_eeprom_lock);
3912 ret = e1000_do_read_eeprom(hw, offset, words, data);
3913 spin_unlock(&e1000_eeprom_lock);
3914 return ret;
Christopher Li78566fe2008-09-05 14:04:05 -07003915}
3916
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003917static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3918 u16 *data)
Christopher Li78566fe2008-09-05 14:04:05 -07003919{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003920 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3921 u32 i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003922
Emil Tantilov675ad472010-04-27 14:02:58 +00003923 e_dbg("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003924
Dirk Brandewie5377a412011-01-06 14:29:54 +00003925 if (hw->mac_type == e1000_ce4100) {
3926 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3927 data);
3928 return E1000_SUCCESS;
3929 }
3930
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003931 /* If eeprom is not yet detected, do so now */
3932 if (eeprom->word_size == 0)
3933 e1000_init_eeprom_params(hw);
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003934
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003935 /* A check for invalid values: offset too large, too many words, and not
3936 * enough words.
3937 */
3938 if ((offset >= eeprom->word_size)
3939 || (words > eeprom->word_size - offset) || (words == 0)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00003940 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3941 "size = %d\n", offset, eeprom->word_size);
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003942 return -E1000_ERR_EEPROM;
3943 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003945 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3946 * directly. In this case, we need to acquire the EEPROM so that
3947 * FW or other port software does not interrupt.
3948 */
Jesse Brandeburg8f601b22009-09-25 12:20:11 +00003949 /* Prepare the EEPROM for bit-bang reading */
3950 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3951 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003953 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
3954 * acquired the EEPROM at this point, so any returns should release it */
3955 if (eeprom->type == e1000_eeprom_spi) {
3956 u16 word_in;
3957 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003958
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003959 if (e1000_spi_eeprom_ready(hw)) {
3960 e1000_release_eeprom(hw);
3961 return -E1000_ERR_EEPROM;
3962 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003963
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003964 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003965
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003966 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3967 if ((eeprom->address_bits == 8) && (offset >= 128))
3968 read_opcode |= EEPROM_A8_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003969
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003970 /* Send the READ command (opcode + addr) */
3971 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3972 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3973 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003974
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003975 /* Read the data. The address of the eeprom internally increments with
3976 * each byte (spi) being read, saving on the overhead of eeprom setup
3977 * and tear-down. The address counter will roll over if reading beyond
3978 * the size of the eeprom, thus allowing the entire memory to be read
3979 * starting from any offset. */
3980 for (i = 0; i < words; i++) {
3981 word_in = e1000_shift_in_ee_bits(hw, 16);
3982 data[i] = (word_in >> 8) | (word_in << 8);
3983 }
3984 } else if (eeprom->type == e1000_eeprom_microwire) {
3985 for (i = 0; i < words; i++) {
3986 /* Send the READ command (opcode + addr) */
3987 e1000_shift_out_ee_bits(hw,
3988 EEPROM_READ_OPCODE_MICROWIRE,
3989 eeprom->opcode_bits);
3990 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3991 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003992
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07003993 /* Read the data. For microwire, each word requires the overhead
3994 * of eeprom setup and tear-down. */
3995 data[i] = e1000_shift_in_ee_bits(hw, 16);
3996 e1000_standby_eeprom(hw);
3997 }
3998 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003999
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004000 /* End this read operation */
4001 e1000_release_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004003 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004004}
4005
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004006/**
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004007 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4008 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004009 *
4010 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4011 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4012 * valid.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004013 */
Joe Perches64798842008-07-11 15:17:02 -07004014s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004015{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004016 u16 checksum = 0;
4017 u16 i, eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004018
Emil Tantilov675ad472010-04-27 14:02:58 +00004019 e_dbg("e1000_validate_eeprom_checksum");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004021 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4022 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004023 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004024 return -E1000_ERR_EEPROM;
4025 }
4026 checksum += eeprom_data;
4027 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004029 if (checksum == (u16) EEPROM_SUM)
4030 return E1000_SUCCESS;
4031 else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004032 e_dbg("EEPROM Checksum Invalid\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004033 return -E1000_ERR_EEPROM;
4034 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004035}
4036
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004037/**
4038 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4039 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040 *
4041 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4042 * Writes the difference to word offset 63 of the EEPROM.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004043 */
Joe Perches64798842008-07-11 15:17:02 -07004044s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004045{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004046 u16 checksum = 0;
4047 u16 i, eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004048
Emil Tantilov675ad472010-04-27 14:02:58 +00004049 e_dbg("e1000_update_eeprom_checksum");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004050
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004051 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4052 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004053 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004054 return -E1000_ERR_EEPROM;
4055 }
4056 checksum += eeprom_data;
4057 }
4058 checksum = (u16) EEPROM_SUM - checksum;
4059 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004060 e_dbg("EEPROM Write Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004061 return -E1000_ERR_EEPROM;
4062 }
4063 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004064}
4065
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004066/**
4067 * e1000_write_eeprom - write words to the different EEPROM types.
4068 * @hw: Struct containing variables accessed by shared code
4069 * @offset: offset within the EEPROM to be written to
4070 * @words: number of words to write
4071 * @data: 16 bit word to be written to the EEPROM
Linus Torvalds1da177e2005-04-16 15:20:36 -07004072 *
4073 * If e1000_update_eeprom_checksum is not called after this function, the
4074 * EEPROM will most likely contain an invalid checksum.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004075 */
Joe Perches64798842008-07-11 15:17:02 -07004076s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004077{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004078 s32 ret;
4079 spin_lock(&e1000_eeprom_lock);
4080 ret = e1000_do_write_eeprom(hw, offset, words, data);
4081 spin_unlock(&e1000_eeprom_lock);
4082 return ret;
Christopher Li78566fe2008-09-05 14:04:05 -07004083}
4084
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004085static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4086 u16 *data)
Christopher Li78566fe2008-09-05 14:04:05 -07004087{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004088 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4089 s32 status = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090
Emil Tantilov675ad472010-04-27 14:02:58 +00004091 e_dbg("e1000_write_eeprom");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092
Dirk Brandewie5377a412011-01-06 14:29:54 +00004093 if (hw->mac_type == e1000_ce4100) {
4094 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4095 data);
4096 return E1000_SUCCESS;
4097 }
4098
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004099 /* If eeprom is not yet detected, do so now */
4100 if (eeprom->word_size == 0)
4101 e1000_init_eeprom_params(hw);
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004102
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004103 /* A check for invalid values: offset too large, too many words, and not
4104 * enough words.
4105 */
4106 if ((offset >= eeprom->word_size)
4107 || (words > eeprom->word_size - offset) || (words == 0)) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004108 e_dbg("\"words\" parameter out of bounds\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004109 return -E1000_ERR_EEPROM;
4110 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004111
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004112 /* Prepare the EEPROM for writing */
4113 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4114 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004115
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004116 if (eeprom->type == e1000_eeprom_microwire) {
4117 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4118 } else {
4119 status = e1000_write_eeprom_spi(hw, offset, words, data);
4120 msleep(10);
4121 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004122
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004123 /* Done with writing */
4124 e1000_release_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004126 return status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004127}
4128
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004129/**
4130 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4131 * @hw: Struct containing variables accessed by shared code
4132 * @offset: offset within the EEPROM to be written to
4133 * @words: number of words to write
4134 * @data: pointer to array of 8 bit words to be written to the EEPROM
4135 */
Joe Perches64798842008-07-11 15:17:02 -07004136static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4137 u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004138{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004139 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4140 u16 widx = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004141
Emil Tantilov675ad472010-04-27 14:02:58 +00004142 e_dbg("e1000_write_eeprom_spi");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004143
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004144 while (widx < words) {
4145 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004146
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004147 if (e1000_spi_eeprom_ready(hw))
4148 return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004149
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004150 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004151
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004152 /* Send the WRITE ENABLE command (8 bit opcode ) */
4153 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4154 eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004155
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004156 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004157
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004158 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4159 if ((eeprom->address_bits == 8) && (offset >= 128))
4160 write_opcode |= EEPROM_A8_OPCODE_SPI;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004161
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004162 /* Send the Write command (8-bit opcode + addr) */
4163 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004164
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004165 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4166 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004167
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004168 /* Send the data */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004169
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004170 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4171 while (widx < words) {
4172 u16 word_out = data[widx];
4173 word_out = (word_out >> 8) | (word_out << 8);
4174 e1000_shift_out_ee_bits(hw, word_out, 16);
4175 widx++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004176
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004177 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4178 * operation, while the smaller eeproms are capable of an 8-byte
4179 * PAGE WRITE operation. Break the inner loop to pass new address
4180 */
4181 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4182 e1000_standby_eeprom(hw);
4183 break;
4184 }
4185 }
4186 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004187
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004188 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004189}
4190
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004191/**
4192 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4193 * @hw: Struct containing variables accessed by shared code
4194 * @offset: offset within the EEPROM to be written to
4195 * @words: number of words to write
4196 * @data: pointer to array of 8 bit words to be written to the EEPROM
4197 */
Joe Perches64798842008-07-11 15:17:02 -07004198static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4199 u16 words, u16 *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004200{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004201 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4202 u32 eecd;
4203 u16 words_written = 0;
4204 u16 i = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205
Emil Tantilov675ad472010-04-27 14:02:58 +00004206 e_dbg("e1000_write_eeprom_microwire");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004207
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004208 /* Send the write enable command to the EEPROM (3-bit opcode plus
4209 * 6/8-bit dummy address beginning with 11). It's less work to include
4210 * the 11 of the dummy address as part of the opcode than it is to shift
4211 * it over the correct number of bits for the address. This puts the
4212 * EEPROM into write/erase mode.
4213 */
4214 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4215 (u16) (eeprom->opcode_bits + 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004217 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004219 /* Prepare the EEPROM */
4220 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004221
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004222 while (words_written < words) {
4223 /* Send the Write command (3-bit opcode + addr) */
4224 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4225 eeprom->opcode_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004226
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004227 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4228 eeprom->address_bits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004229
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004230 /* Send the data */
4231 e1000_shift_out_ee_bits(hw, data[words_written], 16);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004233 /* Toggle the CS line. This in effect tells the EEPROM to execute
4234 * the previous command.
4235 */
4236 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004237
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004238 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4239 * signal that the command has been completed by raising the DO signal.
4240 * If DO does not go high in 10 milliseconds, then error out.
4241 */
4242 for (i = 0; i < 200; i++) {
4243 eecd = er32(EECD);
4244 if (eecd & E1000_EECD_DO)
4245 break;
4246 udelay(50);
4247 }
4248 if (i == 200) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004249 e_dbg("EEPROM Write did not complete\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004250 return -E1000_ERR_EEPROM;
4251 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004252
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004253 /* Recover from write */
4254 e1000_standby_eeprom(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004256 words_written++;
4257 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004258
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004259 /* Send the write disable command to the EEPROM (3-bit opcode plus
4260 * 6/8-bit dummy address beginning with 10). It's less work to include
4261 * the 10 of the dummy address as part of the opcode than it is to shift
4262 * it over the correct number of bits for the address. This takes the
4263 * EEPROM out of write/erase mode.
4264 */
4265 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4266 (u16) (eeprom->opcode_bits + 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004267
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004268 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004269
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004270 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004271}
4272
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004273/**
4274 * e1000_read_mac_addr - read the adapters MAC from eeprom
4275 * @hw: Struct containing variables accessed by shared code
4276 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4278 * second function of dual function devices
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004279 */
Joe Perches64798842008-07-11 15:17:02 -07004280s32 e1000_read_mac_addr(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004281{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004282 u16 offset;
4283 u16 eeprom_data, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284
Emil Tantilov675ad472010-04-27 14:02:58 +00004285 e_dbg("e1000_read_mac_addr");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004286
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004287 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4288 offset = i >> 1;
4289 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004290 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004291 return -E1000_ERR_EEPROM;
4292 }
4293 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4294 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4295 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08004296
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004297 switch (hw->mac_type) {
4298 default:
4299 break;
4300 case e1000_82546:
4301 case e1000_82546_rev_3:
4302 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4303 hw->perm_mac_addr[5] ^= 0x01;
4304 break;
4305 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004307 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4308 hw->mac_addr[i] = hw->perm_mac_addr[i];
4309 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004310}
4311
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004312/**
4313 * e1000_init_rx_addrs - Initializes receive address filters.
4314 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004315 *
4316 * Places the MAC address in receive address register 0 and clears the rest
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004317 * of the receive address registers. Clears the multicast table. Assumes
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318 * the receiver is in reset when the routine is called.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004319 */
Joe Perches64798842008-07-11 15:17:02 -07004320static void e1000_init_rx_addrs(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004321{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004322 u32 i;
4323 u32 rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004324
Emil Tantilov675ad472010-04-27 14:02:58 +00004325 e_dbg("e1000_init_rx_addrs");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004326
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004327 /* Setup the receive address. */
Emil Tantilov675ad472010-04-27 14:02:58 +00004328 e_dbg("Programming MAC Address into RAR[0]\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004329
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004330 e1000_rar_set(hw, hw->mac_addr, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004331
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004332 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004333
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004334 /* Zero out the other 15 receive addresses. */
Emil Tantilov675ad472010-04-27 14:02:58 +00004335 e_dbg("Clearing RAR[1-15]\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004336 for (i = 1; i < rar_num; i++) {
4337 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4338 E1000_WRITE_FLUSH();
4339 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4340 E1000_WRITE_FLUSH();
4341 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004342}
4343
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004344/**
4345 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4346 * @hw: Struct containing variables accessed by shared code
4347 * @mc_addr: the multicast address to hash
4348 */
Joe Perches64798842008-07-11 15:17:02 -07004349u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004350{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004351 u32 hash_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004352
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004353 /* The portion of the address that is used for the hash table is
4354 * determined by the mc_filter_type setting.
4355 */
4356 switch (hw->mc_filter_type) {
4357 /* [0] [1] [2] [3] [4] [5]
4358 * 01 AA 00 12 34 56
4359 * LSB MSB
4360 */
4361 case 0:
4362 /* [47:36] i.e. 0x563 for above example address */
4363 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4364 break;
4365 case 1:
4366 /* [46:35] i.e. 0xAC6 for above example address */
4367 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4368 break;
4369 case 2:
4370 /* [45:34] i.e. 0x5D8 for above example address */
4371 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4372 break;
4373 case 3:
4374 /* [43:32] i.e. 0x634 for above example address */
4375 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4376 break;
4377 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004378
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004379 hash_value &= 0xFFF;
4380 return hash_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004381}
4382
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004383/**
4384 * e1000_rar_set - Puts an ethernet address into a receive address register.
4385 * @hw: Struct containing variables accessed by shared code
4386 * @addr: Address to put into receive address register
4387 * @index: Receive address register to write
4388 */
Joe Perches64798842008-07-11 15:17:02 -07004389void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004390{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004391 u32 rar_low, rar_high;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004392
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004393 /* HW expects these in little endian so we reverse the byte order
4394 * from network order (big endian) to little endian
4395 */
4396 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4397 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4398 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004399
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004400 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4401 * unit hang.
4402 *
4403 * Description:
4404 * If there are any Rx frames queued up or otherwise present in the HW
4405 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4406 * hang. To work around this issue, we have to disable receives and
4407 * flush out all Rx frames before we enable RSS. To do so, we modify we
4408 * redirect all Rx traffic to manageability and then reset the HW.
4409 * This flushes away Rx frames, and (since the redirections to
4410 * manageability persists across resets) keeps new ones from coming in
4411 * while we work. Then, we clear the Address Valid AV bit for all MAC
4412 * addresses and undo the re-direction to manageability.
4413 * Now, frames are coming in again, but the MAC won't accept them, so
4414 * far so good. We now proceed to initialize RSS (if necessary) and
4415 * configure the Rx unit. Last, we re-enable the AV bits and continue
4416 * on our merry way.
4417 */
4418 switch (hw->mac_type) {
4419 default:
4420 /* Indicate to hardware the Address is Valid. */
4421 rar_high |= E1000_RAH_AV;
4422 break;
4423 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004424
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004425 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4426 E1000_WRITE_FLUSH();
4427 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4428 E1000_WRITE_FLUSH();
Linus Torvalds1da177e2005-04-16 15:20:36 -07004429}
4430
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004431/**
4432 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4433 * @hw: Struct containing variables accessed by shared code
4434 * @offset: Offset in VLAN filer table to write
4435 * @value: Value to write into VLAN filter table
4436 */
Joe Perches64798842008-07-11 15:17:02 -07004437void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004438{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004439 u32 temp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004440
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004441 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4442 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4443 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4444 E1000_WRITE_FLUSH();
4445 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4446 E1000_WRITE_FLUSH();
4447 } else {
4448 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4449 E1000_WRITE_FLUSH();
4450 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004451}
4452
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004453/**
4454 * e1000_clear_vfta - Clears the VLAN filer table
4455 * @hw: Struct containing variables accessed by shared code
4456 */
Joe Perches64798842008-07-11 15:17:02 -07004457static void e1000_clear_vfta(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004458{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004459 u32 offset;
4460 u32 vfta_value = 0;
4461 u32 vfta_offset = 0;
4462 u32 vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004463
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004464 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4465 /* If the offset we want to clear is the same offset of the
4466 * manageability VLAN ID, then clear all bits except that of the
4467 * manageability unit */
4468 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4469 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4470 E1000_WRITE_FLUSH();
4471 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004472}
4473
Joe Perches64798842008-07-11 15:17:02 -07004474static s32 e1000_id_led_init(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004475{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004476 u32 ledctl;
4477 const u32 ledctl_mask = 0x000000FF;
4478 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4479 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4480 u16 eeprom_data, i, temp;
4481 const u16 led_mask = 0x0F;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004482
Emil Tantilov675ad472010-04-27 14:02:58 +00004483 e_dbg("e1000_id_led_init");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004484
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004485 if (hw->mac_type < e1000_82540) {
4486 /* Nothing to do */
4487 return E1000_SUCCESS;
4488 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004489
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004490 ledctl = er32(LEDCTL);
4491 hw->ledctl_default = ledctl;
4492 hw->ledctl_mode1 = hw->ledctl_default;
4493 hw->ledctl_mode2 = hw->ledctl_default;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004494
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004495 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Emil Tantilov675ad472010-04-27 14:02:58 +00004496 e_dbg("EEPROM Read Error\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004497 return -E1000_ERR_EEPROM;
4498 }
Auke Kokcd94dd02006-06-27 09:08:22 -07004499
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004500 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4501 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4502 eeprom_data = ID_LED_DEFAULT;
4503 }
Auke Kok90fb5132006-11-01 08:47:30 -08004504
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004505 for (i = 0; i < 4; i++) {
4506 temp = (eeprom_data >> (i << 2)) & led_mask;
4507 switch (temp) {
4508 case ID_LED_ON1_DEF2:
4509 case ID_LED_ON1_ON2:
4510 case ID_LED_ON1_OFF2:
4511 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4512 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4513 break;
4514 case ID_LED_OFF1_DEF2:
4515 case ID_LED_OFF1_ON2:
4516 case ID_LED_OFF1_OFF2:
4517 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4518 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4519 break;
4520 default:
4521 /* Do nothing */
4522 break;
4523 }
4524 switch (temp) {
4525 case ID_LED_DEF1_ON2:
4526 case ID_LED_ON1_ON2:
4527 case ID_LED_OFF1_ON2:
4528 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4529 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4530 break;
4531 case ID_LED_DEF1_OFF2:
4532 case ID_LED_ON1_OFF2:
4533 case ID_LED_OFF1_OFF2:
4534 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4535 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4536 break;
4537 default:
4538 /* Do nothing */
4539 break;
4540 }
4541 }
4542 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004543}
4544
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004545/**
4546 * e1000_setup_led
4547 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004548 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004549 * Prepares SW controlable LED for use and saves the current state of the LED.
4550 */
Joe Perches64798842008-07-11 15:17:02 -07004551s32 e1000_setup_led(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004552{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004553 u32 ledctl;
4554 s32 ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004555
Emil Tantilov675ad472010-04-27 14:02:58 +00004556 e_dbg("e1000_setup_led");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004557
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004558 switch (hw->mac_type) {
4559 case e1000_82542_rev2_0:
4560 case e1000_82542_rev2_1:
4561 case e1000_82543:
4562 case e1000_82544:
4563 /* No setup necessary */
4564 break;
4565 case e1000_82541:
4566 case e1000_82547:
4567 case e1000_82541_rev_2:
4568 case e1000_82547_rev_2:
4569 /* Turn off PHY Smart Power Down (if enabled) */
4570 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4571 &hw->phy_spd_default);
4572 if (ret_val)
4573 return ret_val;
4574 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4575 (u16) (hw->phy_spd_default &
4576 ~IGP01E1000_GMII_SPD));
4577 if (ret_val)
4578 return ret_val;
4579 /* Fall Through */
4580 default:
4581 if (hw->media_type == e1000_media_type_fiber) {
4582 ledctl = er32(LEDCTL);
4583 /* Save current LEDCTL settings */
4584 hw->ledctl_default = ledctl;
4585 /* Turn off LED0 */
4586 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4587 E1000_LEDCTL_LED0_BLINK |
4588 E1000_LEDCTL_LED0_MODE_MASK);
4589 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4590 E1000_LEDCTL_LED0_MODE_SHIFT);
4591 ew32(LEDCTL, ledctl);
4592 } else if (hw->media_type == e1000_media_type_copper)
4593 ew32(LEDCTL, hw->ledctl_mode1);
4594 break;
4595 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004596
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004597 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004598}
4599
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004600/**
4601 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4602 * @hw: Struct containing variables accessed by shared code
4603 */
Joe Perches64798842008-07-11 15:17:02 -07004604s32 e1000_cleanup_led(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004605{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004606 s32 ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004607
Emil Tantilov675ad472010-04-27 14:02:58 +00004608 e_dbg("e1000_cleanup_led");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004609
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004610 switch (hw->mac_type) {
4611 case e1000_82542_rev2_0:
4612 case e1000_82542_rev2_1:
4613 case e1000_82543:
4614 case e1000_82544:
4615 /* No cleanup necessary */
4616 break;
4617 case e1000_82541:
4618 case e1000_82547:
4619 case e1000_82541_rev_2:
4620 case e1000_82547_rev_2:
4621 /* Turn on PHY Smart Power Down (if previously enabled) */
4622 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4623 hw->phy_spd_default);
4624 if (ret_val)
4625 return ret_val;
4626 /* Fall Through */
4627 default:
4628 /* Restore LEDCTL settings */
4629 ew32(LEDCTL, hw->ledctl_default);
4630 break;
4631 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004632
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004633 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004634}
4635
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004636/**
4637 * e1000_led_on - Turns on the software controllable LED
4638 * @hw: Struct containing variables accessed by shared code
4639 */
Joe Perches64798842008-07-11 15:17:02 -07004640s32 e1000_led_on(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004641{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004642 u32 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004643
Emil Tantilov675ad472010-04-27 14:02:58 +00004644 e_dbg("e1000_led_on");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004645
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004646 switch (hw->mac_type) {
4647 case e1000_82542_rev2_0:
4648 case e1000_82542_rev2_1:
4649 case e1000_82543:
4650 /* Set SW Defineable Pin 0 to turn on the LED */
4651 ctrl |= E1000_CTRL_SWDPIN0;
4652 ctrl |= E1000_CTRL_SWDPIO0;
4653 break;
4654 case e1000_82544:
4655 if (hw->media_type == e1000_media_type_fiber) {
4656 /* Set SW Defineable Pin 0 to turn on the LED */
4657 ctrl |= E1000_CTRL_SWDPIN0;
4658 ctrl |= E1000_CTRL_SWDPIO0;
4659 } else {
4660 /* Clear SW Defineable Pin 0 to turn on the LED */
4661 ctrl &= ~E1000_CTRL_SWDPIN0;
4662 ctrl |= E1000_CTRL_SWDPIO0;
4663 }
4664 break;
4665 default:
4666 if (hw->media_type == e1000_media_type_fiber) {
4667 /* Clear SW Defineable Pin 0 to turn on the LED */
4668 ctrl &= ~E1000_CTRL_SWDPIN0;
4669 ctrl |= E1000_CTRL_SWDPIO0;
4670 } else if (hw->media_type == e1000_media_type_copper) {
4671 ew32(LEDCTL, hw->ledctl_mode2);
4672 return E1000_SUCCESS;
4673 }
4674 break;
4675 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004676
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004677 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004678
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004679 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004680}
4681
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004682/**
4683 * e1000_led_off - Turns off the software controllable LED
4684 * @hw: Struct containing variables accessed by shared code
4685 */
Joe Perches64798842008-07-11 15:17:02 -07004686s32 e1000_led_off(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004687{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004688 u32 ctrl = er32(CTRL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004689
Emil Tantilov675ad472010-04-27 14:02:58 +00004690 e_dbg("e1000_led_off");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004691
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004692 switch (hw->mac_type) {
4693 case e1000_82542_rev2_0:
4694 case e1000_82542_rev2_1:
4695 case e1000_82543:
4696 /* Clear SW Defineable Pin 0 to turn off the LED */
4697 ctrl &= ~E1000_CTRL_SWDPIN0;
4698 ctrl |= E1000_CTRL_SWDPIO0;
4699 break;
4700 case e1000_82544:
4701 if (hw->media_type == e1000_media_type_fiber) {
4702 /* Clear SW Defineable Pin 0 to turn off the LED */
4703 ctrl &= ~E1000_CTRL_SWDPIN0;
4704 ctrl |= E1000_CTRL_SWDPIO0;
4705 } else {
4706 /* Set SW Defineable Pin 0 to turn off the LED */
4707 ctrl |= E1000_CTRL_SWDPIN0;
4708 ctrl |= E1000_CTRL_SWDPIO0;
4709 }
4710 break;
4711 default:
4712 if (hw->media_type == e1000_media_type_fiber) {
4713 /* Set SW Defineable Pin 0 to turn off the LED */
4714 ctrl |= E1000_CTRL_SWDPIN0;
4715 ctrl |= E1000_CTRL_SWDPIO0;
4716 } else if (hw->media_type == e1000_media_type_copper) {
4717 ew32(LEDCTL, hw->ledctl_mode1);
4718 return E1000_SUCCESS;
4719 }
4720 break;
4721 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004722
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004723 ew32(CTRL, ctrl);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004724
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004725 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004726}
4727
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004728/**
4729 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4730 * @hw: Struct containing variables accessed by shared code
4731 */
Joe Perches64798842008-07-11 15:17:02 -07004732static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004733{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004734 volatile u32 temp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004735
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004736 temp = er32(CRCERRS);
4737 temp = er32(SYMERRS);
4738 temp = er32(MPC);
4739 temp = er32(SCC);
4740 temp = er32(ECOL);
4741 temp = er32(MCC);
4742 temp = er32(LATECOL);
4743 temp = er32(COLC);
4744 temp = er32(DC);
4745 temp = er32(SEC);
4746 temp = er32(RLEC);
4747 temp = er32(XONRXC);
4748 temp = er32(XONTXC);
4749 temp = er32(XOFFRXC);
4750 temp = er32(XOFFTXC);
4751 temp = er32(FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07004752
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004753 temp = er32(PRC64);
4754 temp = er32(PRC127);
4755 temp = er32(PRC255);
4756 temp = er32(PRC511);
4757 temp = er32(PRC1023);
4758 temp = er32(PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07004759
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004760 temp = er32(GPRC);
4761 temp = er32(BPRC);
4762 temp = er32(MPRC);
4763 temp = er32(GPTC);
4764 temp = er32(GORCL);
4765 temp = er32(GORCH);
4766 temp = er32(GOTCL);
4767 temp = er32(GOTCH);
4768 temp = er32(RNBC);
4769 temp = er32(RUC);
4770 temp = er32(RFC);
4771 temp = er32(ROC);
4772 temp = er32(RJC);
4773 temp = er32(TORL);
4774 temp = er32(TORH);
4775 temp = er32(TOTL);
4776 temp = er32(TOTH);
4777 temp = er32(TPR);
4778 temp = er32(TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07004779
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004780 temp = er32(PTC64);
4781 temp = er32(PTC127);
4782 temp = er32(PTC255);
4783 temp = er32(PTC511);
4784 temp = er32(PTC1023);
4785 temp = er32(PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07004786
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004787 temp = er32(MPTC);
4788 temp = er32(BPTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004789
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004790 if (hw->mac_type < e1000_82543)
4791 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004792
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004793 temp = er32(ALGNERRC);
4794 temp = er32(RXERRC);
4795 temp = er32(TNCRS);
4796 temp = er32(CEXTERR);
4797 temp = er32(TSCTC);
4798 temp = er32(TSCTFC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004799
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004800 if (hw->mac_type <= e1000_82544)
4801 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004802
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004803 temp = er32(MGTPRC);
4804 temp = er32(MGTPDC);
4805 temp = er32(MGTPTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004806}
4807
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004808/**
4809 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4810 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004811 *
4812 * Call this after e1000_init_hw. You may override the IFS defaults by setting
Joe Perchesc3033b02008-03-21 11:06:25 -07004813 * hw->ifs_params_forced to true. However, you must initialize hw->
Linus Torvalds1da177e2005-04-16 15:20:36 -07004814 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4815 * before calling this function.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004816 */
Joe Perches64798842008-07-11 15:17:02 -07004817void e1000_reset_adaptive(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004818{
Emil Tantilov675ad472010-04-27 14:02:58 +00004819 e_dbg("e1000_reset_adaptive");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004821 if (hw->adaptive_ifs) {
4822 if (!hw->ifs_params_forced) {
4823 hw->current_ifs_val = 0;
4824 hw->ifs_min_val = IFS_MIN;
4825 hw->ifs_max_val = IFS_MAX;
4826 hw->ifs_step_size = IFS_STEP;
4827 hw->ifs_ratio = IFS_RATIO;
4828 }
4829 hw->in_ifs_mode = false;
4830 ew32(AIT, 0);
4831 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004832 e_dbg("Not in Adaptive IFS mode!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004833 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004834}
4835
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004836/**
4837 * e1000_update_adaptive - update adaptive IFS
4838 * @hw: Struct containing variables accessed by shared code
4839 * @tx_packets: Number of transmits since last callback
4840 * @total_collisions: Number of collisions since last callback
4841 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07004842 * Called during the callback/watchdog routine to update IFS value based on
4843 * the ratio of transmits to collisions.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004844 */
Joe Perches64798842008-07-11 15:17:02 -07004845void e1000_update_adaptive(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004846{
Emil Tantilov675ad472010-04-27 14:02:58 +00004847 e_dbg("e1000_update_adaptive");
Linus Torvalds1da177e2005-04-16 15:20:36 -07004848
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004849 if (hw->adaptive_ifs) {
4850 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4851 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4852 hw->in_ifs_mode = true;
4853 if (hw->current_ifs_val < hw->ifs_max_val) {
4854 if (hw->current_ifs_val == 0)
4855 hw->current_ifs_val =
4856 hw->ifs_min_val;
4857 else
4858 hw->current_ifs_val +=
4859 hw->ifs_step_size;
4860 ew32(AIT, hw->current_ifs_val);
4861 }
4862 }
4863 } else {
4864 if (hw->in_ifs_mode
4865 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4866 hw->current_ifs_val = 0;
4867 hw->in_ifs_mode = false;
4868 ew32(AIT, 0);
4869 }
4870 }
4871 } else {
Emil Tantilov675ad472010-04-27 14:02:58 +00004872 e_dbg("Not in Adaptive IFS mode!\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004873 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004874}
4875
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004876/**
4877 * e1000_tbi_adjust_stats
4878 * @hw: Struct containing variables accessed by shared code
4879 * @frame_len: The length of the frame in question
4880 * @mac_addr: The Ethernet destination address of the frame in question
Linus Torvalds1da177e2005-04-16 15:20:36 -07004881 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004882 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4883 */
Joe Perches64798842008-07-11 15:17:02 -07004884void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4885 u32 frame_len, u8 *mac_addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004886{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004887 u64 carry_bit;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004888
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004889 /* First adjust the frame length. */
4890 frame_len--;
4891 /* We need to adjust the statistics counters, since the hardware
4892 * counters overcount this packet as a CRC error and undercount
4893 * the packet as a good packet
4894 */
4895 /* This packet should not be counted as a CRC error. */
4896 stats->crcerrs--;
4897 /* This packet does count as a Good Packet Received. */
4898 stats->gprc++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004899
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004900 /* Adjust the Good Octets received counters */
4901 carry_bit = 0x80000000 & stats->gorcl;
4902 stats->gorcl += frame_len;
4903 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4904 * Received Count) was one before the addition,
4905 * AND it is zero after, then we lost the carry out,
4906 * need to add one to Gorch (Good Octets Received Count High).
4907 * This could be simplified if all environments supported
4908 * 64-bit integers.
4909 */
4910 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4911 stats->gorch++;
4912 /* Is this a broadcast or multicast? Check broadcast first,
4913 * since the test for a multicast frame will test positive on
4914 * a broadcast frame.
4915 */
4916 if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4917 /* Broadcast packet */
4918 stats->bprc++;
4919 else if (*mac_addr & 0x01)
4920 /* Multicast packet */
4921 stats->mprc++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004922
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004923 if (frame_len == hw->max_frame_size) {
4924 /* In this case, the hardware has overcounted the number of
4925 * oversize frames.
4926 */
4927 if (stats->roc > 0)
4928 stats->roc--;
4929 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004930
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004931 /* Adjust the bin counters when the extra byte put the frame in the
4932 * wrong bin. Remember that the frame_len was adjusted above.
4933 */
4934 if (frame_len == 64) {
4935 stats->prc64++;
4936 stats->prc127--;
4937 } else if (frame_len == 127) {
4938 stats->prc127++;
4939 stats->prc255--;
4940 } else if (frame_len == 255) {
4941 stats->prc255++;
4942 stats->prc511--;
4943 } else if (frame_len == 511) {
4944 stats->prc511++;
4945 stats->prc1023--;
4946 } else if (frame_len == 1023) {
4947 stats->prc1023++;
4948 stats->prc1522--;
4949 } else if (frame_len == 1522) {
4950 stats->prc1522++;
4951 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004952}
4953
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004954/**
4955 * e1000_get_bus_info
4956 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07004957 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004958 * Gets the current PCI bus type, speed, and width of the hardware
4959 */
Joe Perches64798842008-07-11 15:17:02 -07004960void e1000_get_bus_info(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004961{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004962 u32 status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004963
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004964 switch (hw->mac_type) {
4965 case e1000_82542_rev2_0:
4966 case e1000_82542_rev2_1:
4967 hw->bus_type = e1000_bus_type_pci;
4968 hw->bus_speed = e1000_bus_speed_unknown;
4969 hw->bus_width = e1000_bus_width_unknown;
4970 break;
4971 default:
4972 status = er32(STATUS);
4973 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4974 e1000_bus_type_pcix : e1000_bus_type_pci;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004975
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07004976 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4977 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4978 e1000_bus_speed_66 : e1000_bus_speed_120;
4979 } else if (hw->bus_type == e1000_bus_type_pci) {
4980 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4981 e1000_bus_speed_66 : e1000_bus_speed_33;
4982 } else {
4983 switch (status & E1000_STATUS_PCIX_SPEED) {
4984 case E1000_STATUS_PCIX_SPEED_66:
4985 hw->bus_speed = e1000_bus_speed_66;
4986 break;
4987 case E1000_STATUS_PCIX_SPEED_100:
4988 hw->bus_speed = e1000_bus_speed_100;
4989 break;
4990 case E1000_STATUS_PCIX_SPEED_133:
4991 hw->bus_speed = e1000_bus_speed_133;
4992 break;
4993 default:
4994 hw->bus_speed = e1000_bus_speed_reserved;
4995 break;
4996 }
4997 }
4998 hw->bus_width = (status & E1000_STATUS_BUS64) ?
4999 e1000_bus_width_64 : e1000_bus_width_32;
5000 break;
5001 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005002}
Linus Torvalds1da177e2005-04-16 15:20:36 -07005003
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005004/**
5005 * e1000_write_reg_io
5006 * @hw: Struct containing variables accessed by shared code
5007 * @offset: offset to write to
5008 * @value: value to write
5009 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07005010 * Writes a value to one of the devices registers using port I/O (as opposed to
5011 * memory mapped I/O). Only 82544 and newer devices support port I/O.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005012 */
Joe Perches64798842008-07-11 15:17:02 -07005013static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005014{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005015 unsigned long io_addr = hw->io_base;
5016 unsigned long io_data = hw->io_base + 4;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005017
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005018 e1000_io_write(hw, io_addr, offset);
5019 e1000_io_write(hw, io_data, value);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005020}
5021
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005022/**
5023 * e1000_get_cable_length - Estimates the cable length.
5024 * @hw: Struct containing variables accessed by shared code
5025 * @min_length: The estimated minimum length
5026 * @max_length: The estimated maximum length
Linus Torvalds1da177e2005-04-16 15:20:36 -07005027 *
5028 * returns: - E1000_ERR_XXX
5029 * E1000_SUCCESS
5030 *
5031 * This function always returns a ranged length (minimum & maximum).
5032 * So for M88 phy's, this function interprets the one value returned from the
5033 * register to the minimum and maximum range.
5034 * For IGP phy's, the function calculates the range by the AGC registers.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005035 */
Joe Perches64798842008-07-11 15:17:02 -07005036static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5037 u16 *max_length)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005038{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005039 s32 ret_val;
5040 u16 agc_value = 0;
5041 u16 i, phy_data;
5042 u16 cable_length;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005043
Emil Tantilov675ad472010-04-27 14:02:58 +00005044 e_dbg("e1000_get_cable_length");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005045
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005046 *min_length = *max_length = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005047
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005048 /* Use old method for Phy older than IGP */
5049 if (hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005050
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005051 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5052 &phy_data);
5053 if (ret_val)
5054 return ret_val;
5055 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5056 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005057
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005058 /* Convert the enum value to ranged values */
5059 switch (cable_length) {
5060 case e1000_cable_length_50:
5061 *min_length = 0;
5062 *max_length = e1000_igp_cable_length_50;
5063 break;
5064 case e1000_cable_length_50_80:
5065 *min_length = e1000_igp_cable_length_50;
5066 *max_length = e1000_igp_cable_length_80;
5067 break;
5068 case e1000_cable_length_80_110:
5069 *min_length = e1000_igp_cable_length_80;
5070 *max_length = e1000_igp_cable_length_110;
5071 break;
5072 case e1000_cable_length_110_140:
5073 *min_length = e1000_igp_cable_length_110;
5074 *max_length = e1000_igp_cable_length_140;
5075 break;
5076 case e1000_cable_length_140:
5077 *min_length = e1000_igp_cable_length_140;
5078 *max_length = e1000_igp_cable_length_170;
5079 break;
5080 default:
5081 return -E1000_ERR_PHY;
5082 break;
5083 }
5084 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5085 u16 cur_agc_value;
5086 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Jeff Kirsher66744502010-12-01 19:59:50 +00005087 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5088 IGP01E1000_PHY_AGC_A,
5089 IGP01E1000_PHY_AGC_B,
5090 IGP01E1000_PHY_AGC_C,
5091 IGP01E1000_PHY_AGC_D
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005092 };
5093 /* Read the AGC registers for all channels */
5094 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005095
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005096 ret_val =
5097 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5098 if (ret_val)
5099 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005100
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005101 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005102
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005103 /* Value bound check. */
5104 if ((cur_agc_value >=
5105 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5106 || (cur_agc_value == 0))
5107 return -E1000_ERR_PHY;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005108
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005109 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005110
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005111 /* Update minimal AGC value. */
5112 if (min_agc_value > cur_agc_value)
5113 min_agc_value = cur_agc_value;
5114 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005115
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005116 /* Remove the minimal AGC result for length < 50m */
5117 if (agc_value <
5118 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5119 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005120
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005121 /* Get the average length of the remaining 3 channels */
5122 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5123 } else {
5124 /* Get the average length of all the 4 channels. */
5125 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5126 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005127
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005128 /* Set the range of the calculated length. */
5129 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5130 IGP01E1000_AGC_RANGE) > 0) ?
5131 (e1000_igp_cable_length_table[agc_value] -
5132 IGP01E1000_AGC_RANGE) : 0;
5133 *max_length = e1000_igp_cable_length_table[agc_value] +
5134 IGP01E1000_AGC_RANGE;
5135 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005136
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005137 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005138}
5139
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005140/**
5141 * e1000_check_polarity - Check the cable polarity
5142 * @hw: Struct containing variables accessed by shared code
5143 * @polarity: output parameter : 0 - Polarity is not reversed
Linus Torvalds1da177e2005-04-16 15:20:36 -07005144 * 1 - Polarity is reversed.
5145 *
5146 * returns: - E1000_ERR_XXX
5147 * E1000_SUCCESS
5148 *
Frederik Schwarzer025dfda2008-10-16 19:02:37 +02005149 * For phy's older than IGP, this function simply reads the polarity bit in the
Linus Torvalds1da177e2005-04-16 15:20:36 -07005150 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5151 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5152 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5153 * IGP01E1000_PHY_PCS_INIT_REG.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005154 */
Joe Perches64798842008-07-11 15:17:02 -07005155static s32 e1000_check_polarity(struct e1000_hw *hw,
5156 e1000_rev_polarity *polarity)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005157{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005158 s32 ret_val;
5159 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005160
Emil Tantilov675ad472010-04-27 14:02:58 +00005161 e_dbg("e1000_check_polarity");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005162
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005163 if (hw->phy_type == e1000_phy_m88) {
5164 /* return the Polarity bit in the Status register. */
5165 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5166 &phy_data);
5167 if (ret_val)
5168 return ret_val;
5169 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5170 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5171 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07005172
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005173 } else if (hw->phy_type == e1000_phy_igp) {
5174 /* Read the Status register to check the speed */
5175 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5176 &phy_data);
5177 if (ret_val)
5178 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005179
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005180 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5181 * find the polarity status */
5182 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5183 IGP01E1000_PSSR_SPEED_1000MBPS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005184
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005185 /* Read the GIG initialization PCS register (0x00B4) */
5186 ret_val =
5187 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5188 &phy_data);
5189 if (ret_val)
5190 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005191
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005192 /* Check the polarity bits */
5193 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5194 e1000_rev_polarity_reversed :
5195 e1000_rev_polarity_normal;
5196 } else {
5197 /* For 10 Mbps, read the polarity bit in the status register. (for
5198 * 100 Mbps this bit is always 0) */
5199 *polarity =
5200 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5201 e1000_rev_polarity_reversed :
5202 e1000_rev_polarity_normal;
5203 }
5204 }
5205 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005206}
5207
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005208/**
5209 * e1000_check_downshift - Check if Downshift occurred
5210 * @hw: Struct containing variables accessed by shared code
5211 * @downshift: output parameter : 0 - No Downshift occurred.
5212 * 1 - Downshift occurred.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005213 *
5214 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07005215 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07005216 *
Frederik Schwarzer025dfda2008-10-16 19:02:37 +02005217 * For phy's older than IGP, this function reads the Downshift bit in the Phy
Linus Torvalds1da177e2005-04-16 15:20:36 -07005218 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5219 * Link Health register. In IGP this bit is latched high, so the driver must
5220 * read it immediately after link is established.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005221 */
Joe Perches64798842008-07-11 15:17:02 -07005222static s32 e1000_check_downshift(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005223{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005224 s32 ret_val;
5225 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005226
Emil Tantilov675ad472010-04-27 14:02:58 +00005227 e_dbg("e1000_check_downshift");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005228
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005229 if (hw->phy_type == e1000_phy_igp) {
5230 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5231 &phy_data);
5232 if (ret_val)
5233 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005234
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005235 hw->speed_downgraded =
5236 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5237 } else if (hw->phy_type == e1000_phy_m88) {
5238 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5239 &phy_data);
5240 if (ret_val)
5241 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005242
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005243 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5244 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5245 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005246
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005247 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005248}
5249
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005250/**
5251 * e1000_config_dsp_after_link_change
5252 * @hw: Struct containing variables accessed by shared code
5253 * @link_up: was link up at the time this was called
5254 *
5255 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5256 * E1000_SUCCESS at any other case.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005257 *
5258 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5259 * gigabit link is achieved to improve link quality.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005260 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005261
Joe Perches64798842008-07-11 15:17:02 -07005262static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005263{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005264 s32 ret_val;
5265 u16 phy_data, phy_saved_data, speed, duplex, i;
Jeff Kirsher66744502010-12-01 19:59:50 +00005266 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5267 IGP01E1000_PHY_AGC_PARAM_A,
5268 IGP01E1000_PHY_AGC_PARAM_B,
5269 IGP01E1000_PHY_AGC_PARAM_C,
5270 IGP01E1000_PHY_AGC_PARAM_D
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005271 };
5272 u16 min_length, max_length;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005273
Emil Tantilov675ad472010-04-27 14:02:58 +00005274 e_dbg("e1000_config_dsp_after_link_change");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005275
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005276 if (hw->phy_type != e1000_phy_igp)
5277 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005279 if (link_up) {
5280 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5281 if (ret_val) {
Emil Tantilov675ad472010-04-27 14:02:58 +00005282 e_dbg("Error getting link speed and duplex\n");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005283 return ret_val;
5284 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005285
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005286 if (speed == SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005287
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005288 ret_val =
5289 e1000_get_cable_length(hw, &min_length,
5290 &max_length);
5291 if (ret_val)
5292 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005293
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005294 if ((hw->dsp_config_state == e1000_dsp_config_enabled)
5295 && min_length >= e1000_igp_cable_length_50) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005296
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005297 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5298 ret_val =
5299 e1000_read_phy_reg(hw,
5300 dsp_reg_array[i],
5301 &phy_data);
5302 if (ret_val)
5303 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005304
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005305 phy_data &=
5306 ~IGP01E1000_PHY_EDAC_MU_INDEX;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005307
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005308 ret_val =
5309 e1000_write_phy_reg(hw,
5310 dsp_reg_array
5311 [i], phy_data);
5312 if (ret_val)
5313 return ret_val;
5314 }
5315 hw->dsp_config_state =
5316 e1000_dsp_config_activated;
5317 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005318
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005319 if ((hw->ffe_config_state == e1000_ffe_config_enabled)
5320 && (min_length < e1000_igp_cable_length_50)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005321
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005322 u16 ffe_idle_err_timeout =
5323 FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5324 u32 idle_errs = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005325
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005326 /* clear previous idle error counts */
5327 ret_val =
5328 e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5329 &phy_data);
5330 if (ret_val)
5331 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005332
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005333 for (i = 0; i < ffe_idle_err_timeout; i++) {
5334 udelay(1000);
5335 ret_val =
5336 e1000_read_phy_reg(hw,
5337 PHY_1000T_STATUS,
5338 &phy_data);
5339 if (ret_val)
5340 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005341
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005342 idle_errs +=
5343 (phy_data &
5344 SR_1000T_IDLE_ERROR_CNT);
5345 if (idle_errs >
5346 SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT)
5347 {
5348 hw->ffe_config_state =
5349 e1000_ffe_config_active;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005350
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005351 ret_val =
5352 e1000_write_phy_reg(hw,
5353 IGP01E1000_PHY_DSP_FFE,
5354 IGP01E1000_PHY_DSP_FFE_CM_CP);
5355 if (ret_val)
5356 return ret_val;
5357 break;
5358 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005359
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005360 if (idle_errs)
5361 ffe_idle_err_timeout =
5362 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5363 }
5364 }
5365 }
5366 } else {
5367 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5368 /* Save off the current value of register 0x2F5B to be restored at
5369 * the end of the routines. */
5370 ret_val =
5371 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005372
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005373 if (ret_val)
5374 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005375
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005376 /* Disable the PHY transmitter */
5377 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005378
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005379 if (ret_val)
5380 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005381
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005382 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005383
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005384 ret_val = e1000_write_phy_reg(hw, 0x0000,
5385 IGP01E1000_IEEE_FORCE_GIGA);
5386 if (ret_val)
5387 return ret_val;
5388 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5389 ret_val =
5390 e1000_read_phy_reg(hw, dsp_reg_array[i],
5391 &phy_data);
5392 if (ret_val)
5393 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005394
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005395 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5396 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005397
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005398 ret_val =
5399 e1000_write_phy_reg(hw, dsp_reg_array[i],
5400 phy_data);
5401 if (ret_val)
5402 return ret_val;
5403 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005404
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005405 ret_val = e1000_write_phy_reg(hw, 0x0000,
5406 IGP01E1000_IEEE_RESTART_AUTONEG);
5407 if (ret_val)
5408 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005410 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005411
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005412 /* Now enable the transmitter */
5413 ret_val =
5414 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005415
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005416 if (ret_val)
5417 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005418
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005419 hw->dsp_config_state = e1000_dsp_config_enabled;
5420 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005421
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005422 if (hw->ffe_config_state == e1000_ffe_config_active) {
5423 /* Save off the current value of register 0x2F5B to be restored at
5424 * the end of the routines. */
5425 ret_val =
5426 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005427
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005428 if (ret_val)
5429 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005430
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005431 /* Disable the PHY transmitter */
5432 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005433
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005434 if (ret_val)
5435 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005436
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005437 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005438
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005439 ret_val = e1000_write_phy_reg(hw, 0x0000,
5440 IGP01E1000_IEEE_FORCE_GIGA);
5441 if (ret_val)
5442 return ret_val;
5443 ret_val =
5444 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5445 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5446 if (ret_val)
5447 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005448
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005449 ret_val = e1000_write_phy_reg(hw, 0x0000,
5450 IGP01E1000_IEEE_RESTART_AUTONEG);
5451 if (ret_val)
5452 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005453
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005454 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005455
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005456 /* Now enable the transmitter */
5457 ret_val =
5458 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005459
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005460 if (ret_val)
5461 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005462
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005463 hw->ffe_config_state = e1000_ffe_config_enabled;
5464 }
5465 }
5466 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005467}
5468
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005469/**
5470 * e1000_set_phy_mode - Set PHY to class A mode
5471 * @hw: Struct containing variables accessed by shared code
5472 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07005473 * Assumes the following operations will follow to enable the new class mode.
5474 * 1. Do a PHY soft reset
5475 * 2. Restart auto-negotiation or force link.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005476 */
Joe Perches64798842008-07-11 15:17:02 -07005477static s32 e1000_set_phy_mode(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005478{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005479 s32 ret_val;
5480 u16 eeprom_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005481
Emil Tantilov675ad472010-04-27 14:02:58 +00005482 e_dbg("e1000_set_phy_mode");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005483
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005484 if ((hw->mac_type == e1000_82545_rev_3) &&
5485 (hw->media_type == e1000_media_type_copper)) {
5486 ret_val =
5487 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5488 &eeprom_data);
5489 if (ret_val) {
5490 return ret_val;
5491 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005492
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005493 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5494 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5495 ret_val =
5496 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5497 0x000B);
5498 if (ret_val)
5499 return ret_val;
5500 ret_val =
5501 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5502 0x8104);
5503 if (ret_val)
5504 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005505
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005506 hw->phy_reset_disable = false;
5507 }
5508 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005509
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005510 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005511}
5512
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005513/**
5514 * e1000_set_d3_lplu_state - set d3 link power state
5515 * @hw: Struct containing variables accessed by shared code
5516 * @active: true to enable lplu false to disable lplu.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005517 *
5518 * This function sets the lplu state according to the active flag. When
5519 * activating lplu this function also disables smart speed and vise versa.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005520 * lplu will not be activated unless the device autonegotiation advertisement
Linus Torvalds1da177e2005-04-16 15:20:36 -07005521 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005522 *
5523 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5524 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005525 */
Joe Perches64798842008-07-11 15:17:02 -07005526static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005527{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005528 s32 ret_val;
5529 u16 phy_data;
Emil Tantilov675ad472010-04-27 14:02:58 +00005530 e_dbg("e1000_set_d3_lplu_state");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005532 if (hw->phy_type != e1000_phy_igp)
5533 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005534
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005535 /* During driver activity LPLU should not be used or it will attain link
5536 * from the lowest speeds starting from 10Mbps. The capability is used for
5537 * Dx transitions and states */
5538 if (hw->mac_type == e1000_82541_rev_2
5539 || hw->mac_type == e1000_82547_rev_2) {
5540 ret_val =
5541 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5542 if (ret_val)
5543 return ret_val;
5544 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005545
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005546 if (!active) {
5547 if (hw->mac_type == e1000_82541_rev_2 ||
5548 hw->mac_type == e1000_82547_rev_2) {
5549 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5550 ret_val =
5551 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5552 phy_data);
5553 if (ret_val)
5554 return ret_val;
5555 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005556
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005557 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5558 * Dx states where the power conservation is most important. During
5559 * driver activity we should enable SmartSpeed, so performance is
5560 * maintained. */
5561 if (hw->smart_speed == e1000_smart_speed_on) {
5562 ret_val =
5563 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5564 &phy_data);
5565 if (ret_val)
5566 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005567
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005568 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5569 ret_val =
5570 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5571 phy_data);
5572 if (ret_val)
5573 return ret_val;
5574 } else if (hw->smart_speed == e1000_smart_speed_off) {
5575 ret_val =
5576 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5577 &phy_data);
5578 if (ret_val)
5579 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005580
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005581 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5582 ret_val =
5583 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5584 phy_data);
5585 if (ret_val)
5586 return ret_val;
5587 }
5588 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5589 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5590 || (hw->autoneg_advertised ==
5591 AUTONEG_ADVERTISE_10_100_ALL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005592
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005593 if (hw->mac_type == e1000_82541_rev_2 ||
5594 hw->mac_type == e1000_82547_rev_2) {
5595 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5596 ret_val =
5597 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5598 phy_data);
5599 if (ret_val)
5600 return ret_val;
5601 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005602
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005603 /* When LPLU is enabled we should disable SmartSpeed */
5604 ret_val =
5605 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5606 &phy_data);
5607 if (ret_val)
5608 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005609
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005610 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5611 ret_val =
5612 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5613 phy_data);
5614 if (ret_val)
5615 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005616
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005617 }
5618 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005619}
5620
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005621/**
5622 * e1000_set_vco_speed
5623 * @hw: Struct containing variables accessed by shared code
Linus Torvalds1da177e2005-04-16 15:20:36 -07005624 *
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005625 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5626 */
Joe Perches64798842008-07-11 15:17:02 -07005627static s32 e1000_set_vco_speed(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005628{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005629 s32 ret_val;
5630 u16 default_page = 0;
5631 u16 phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005632
Emil Tantilov675ad472010-04-27 14:02:58 +00005633 e_dbg("e1000_set_vco_speed");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005634
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005635 switch (hw->mac_type) {
5636 case e1000_82545_rev_3:
5637 case e1000_82546_rev_3:
5638 break;
5639 default:
5640 return E1000_SUCCESS;
5641 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005642
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005643 /* Set PHY register 30, page 5, bit 8 to 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005644
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005645 ret_val =
5646 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5647 if (ret_val)
5648 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005649
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005650 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5651 if (ret_val)
5652 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005653
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005654 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5655 if (ret_val)
5656 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005657
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005658 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5659 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5660 if (ret_val)
5661 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005662
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005663 /* Set PHY register 30, page 4, bit 11 to 1 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005664
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005665 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5666 if (ret_val)
5667 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005668
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005669 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5670 if (ret_val)
5671 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005672
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005673 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5674 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5675 if (ret_val)
5676 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005677
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005678 ret_val =
5679 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5680 if (ret_val)
5681 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005682
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005683 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005684}
5685
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005686
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005687/**
5688 * e1000_enable_mng_pass_thru - check for bmc pass through
5689 * @hw: Struct containing variables accessed by shared code
5690 *
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005691 * Verifies the hardware needs to allow ARPs to be processed by the host
Joe Perchesc3033b02008-03-21 11:06:25 -07005692 * returns: - true/false
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005693 */
Joe Perches64798842008-07-11 15:17:02 -07005694u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005695{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005696 u32 manc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005697
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005698 if (hw->asf_firmware_present) {
5699 manc = er32(MANC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005700
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005701 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5702 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5703 return false;
5704 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5705 return true;
5706 }
5707 return false;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005708}
5709
Joe Perches64798842008-07-11 15:17:02 -07005710static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005711{
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005712 s32 ret_val;
5713 u16 mii_status_reg;
5714 u16 i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005715
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005716 /* Polarity reversal workaround for forced 10F/10H links. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005717
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005718 /* Disable the transmitter on the PHY */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005719
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005720 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5721 if (ret_val)
5722 return ret_val;
5723 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5724 if (ret_val)
5725 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005726
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005727 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5728 if (ret_val)
5729 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005730
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005731 /* This loop will early-out if the NO link condition has been met. */
5732 for (i = PHY_FORCE_TIME; i > 0; i--) {
5733 /* Read the MII Status Register and wait for Link Status bit
5734 * to be clear.
5735 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005736
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005737 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5738 if (ret_val)
5739 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005740
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005741 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5742 if (ret_val)
5743 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005744
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005745 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5746 break;
5747 mdelay(100);
5748 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005749
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005750 /* Recommended delay time after link has been lost */
5751 mdelay(1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005752
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005753 /* Now we will re-enable th transmitter on the PHY */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005754
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005755 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5756 if (ret_val)
5757 return ret_val;
5758 mdelay(50);
5759 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5760 if (ret_val)
5761 return ret_val;
5762 mdelay(50);
5763 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5764 if (ret_val)
5765 return ret_val;
5766 mdelay(50);
5767 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5768 if (ret_val)
5769 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005770
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005771 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5772 if (ret_val)
5773 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005774
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005775 /* This loop will early-out if the link condition has been met. */
5776 for (i = PHY_FORCE_TIME; i > 0; i--) {
5777 /* Read the MII Status Register and wait for Link Status bit
5778 * to be set.
5779 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005780
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005781 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5782 if (ret_val)
5783 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005784
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005785 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5786 if (ret_val)
5787 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005788
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005789 if (mii_status_reg & MII_SR_LINK_STATUS)
5790 break;
5791 mdelay(100);
5792 }
5793 return E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005794}
5795
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005796/**
5797 * e1000_get_auto_rd_done
5798 * @hw: Struct containing variables accessed by shared code
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005799 *
5800 * Check for EEPROM Auto Read bit done.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005801 * returns: - E1000_ERR_RESET if fail to reset MAC
5802 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005803 */
Joe Perches64798842008-07-11 15:17:02 -07005804static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005805{
Emil Tantilov675ad472010-04-27 14:02:58 +00005806 e_dbg("e1000_get_auto_rd_done");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005807 msleep(5);
5808 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005809}
5810
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005811/**
5812 * e1000_get_phy_cfg_done
5813 * @hw: Struct containing variables accessed by shared code
5814 *
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005815 * Checks if the PHY configuration is done
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005816 * returns: - E1000_ERR_RESET if fail to reset MAC
5817 * E1000_SUCCESS at any other case.
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005818 */
Joe Perches64798842008-07-11 15:17:02 -07005819static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005820{
Emil Tantilov675ad472010-04-27 14:02:58 +00005821 e_dbg("e1000_get_phy_cfg_done");
Jesse Brandeburg120a5d02009-09-25 15:19:46 -07005822 mdelay(10);
5823 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005824}