blob: 1c3937a3f9dcd5356c0c99080e279d7c70ba5193 [file] [log] [blame]
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt61pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt61pci.h"
43
44/*
45 * Register access.
46 * BBP and RF register require indirect register access,
47 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
48 * These indirect registers work with busy bits,
49 * and we will try maximal REGISTER_BUSY_COUNT times to access
50 * the register while taking a REGISTER_BUSY_DELAY us delay
51 * between each attampt. When the busy bit is still set at that time,
52 * the access attempt is considered to have failed,
53 * and we will print an error.
54 */
55static u32 rt61pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
56{
57 u32 reg;
58 unsigned int i;
59
60 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
61 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
62 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
63 break;
64 udelay(REGISTER_BUSY_DELAY);
65 }
66
67 return reg;
68}
69
70static void rt61pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
71 const unsigned int word, const u8 value)
72{
73 u32 reg;
74
75 /*
76 * Wait until the BBP becomes ready.
77 */
78 reg = rt61pci_bbp_check(rt2x00dev);
79 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
80 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
81 return;
82 }
83
84 /*
85 * Write the data into the BBP.
86 */
87 reg = 0;
88 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
89 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
90 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
91 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
92
93 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
94}
95
96static void rt61pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
97 const unsigned int word, u8 *value)
98{
99 u32 reg;
100
101 /*
102 * Wait until the BBP becomes ready.
103 */
104 reg = rt61pci_bbp_check(rt2x00dev);
105 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
106 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
107 return;
108 }
109
110 /*
111 * Write the request into the BBP.
112 */
113 reg = 0;
114 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
115 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
116 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
117
118 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
119
120 /*
121 * Wait until the BBP becomes ready.
122 */
123 reg = rt61pci_bbp_check(rt2x00dev);
124 if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
125 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
126 *value = 0xff;
127 return;
128 }
129
130 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
131}
132
133static void rt61pci_rf_write(const struct rt2x00_dev *rt2x00dev,
134 const unsigned int word, const u32 value)
135{
136 u32 reg;
137 unsigned int i;
138
139 if (!word)
140 return;
141
142 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
143 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
144 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
145 goto rf_write;
146 udelay(REGISTER_BUSY_DELAY);
147 }
148
149 ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
150 return;
151
152rf_write:
153 reg = 0;
154 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
155 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
156 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
157 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
158
159 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
160 rt2x00_rf_write(rt2x00dev, word, value);
161}
162
163static void rt61pci_mcu_request(const struct rt2x00_dev *rt2x00dev,
164 const u8 command, const u8 token,
165 const u8 arg0, const u8 arg1)
166{
167 u32 reg;
168
169 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
170
171 if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
172 ERROR(rt2x00dev, "mcu request error. "
173 "Request 0x%02x failed for token 0x%02x.\n",
174 command, token);
175 return;
176 }
177
178 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
179 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
180 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
181 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
182 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
183
184 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
185 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
186 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
187 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
188}
189
190static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
191{
192 struct rt2x00_dev *rt2x00dev = eeprom->data;
193 u32 reg;
194
195 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
196
197 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
198 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
199 eeprom->reg_data_clock =
200 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
201 eeprom->reg_chip_select =
202 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
203}
204
205static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
206{
207 struct rt2x00_dev *rt2x00dev = eeprom->data;
208 u32 reg = 0;
209
210 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
211 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
212 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
213 !!eeprom->reg_data_clock);
214 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
215 !!eeprom->reg_chip_select);
216
217 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
218}
219
220#ifdef CONFIG_RT2X00_LIB_DEBUGFS
221#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
222
223static void rt61pci_read_csr(const struct rt2x00_dev *rt2x00dev,
224 const unsigned int word, u32 *data)
225{
226 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
227}
228
229static void rt61pci_write_csr(const struct rt2x00_dev *rt2x00dev,
230 const unsigned int word, u32 data)
231{
232 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
233}
234
235static const struct rt2x00debug rt61pci_rt2x00debug = {
236 .owner = THIS_MODULE,
237 .csr = {
238 .read = rt61pci_read_csr,
239 .write = rt61pci_write_csr,
240 .word_size = sizeof(u32),
241 .word_count = CSR_REG_SIZE / sizeof(u32),
242 },
243 .eeprom = {
244 .read = rt2x00_eeprom_read,
245 .write = rt2x00_eeprom_write,
246 .word_size = sizeof(u16),
247 .word_count = EEPROM_SIZE / sizeof(u16),
248 },
249 .bbp = {
250 .read = rt61pci_bbp_read,
251 .write = rt61pci_bbp_write,
252 .word_size = sizeof(u8),
253 .word_count = BBP_SIZE / sizeof(u8),
254 },
255 .rf = {
256 .read = rt2x00_rf_read,
257 .write = rt61pci_rf_write,
258 .word_size = sizeof(u32),
259 .word_count = RF_SIZE / sizeof(u32),
260 },
261};
262#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
263
264#ifdef CONFIG_RT61PCI_RFKILL
265static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
266{
267 u32 reg;
268
269 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
270 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);;
271}
Ivo van Doorn81873e92007-10-06 14:14:06 +0200272#else
273#define rt61pci_rfkill_poll NULL
Ivo van Doorndcf54752007-09-25 20:57:25 +0200274#endif /* CONFIG_RT61PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700275
276/*
277 * Configuration handlers.
278 */
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200279static void rt61pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, __le32 *mac)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700280{
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700281 u32 tmp;
282
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200283 tmp = le32_to_cpu(mac[1]);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700284 rt2x00_set_field32(&tmp, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200285 mac[1] = cpu_to_le32(tmp);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700286
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200287 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, mac,
288 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700289}
290
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200291static void rt61pci_config_bssid(struct rt2x00_dev *rt2x00dev, __le32 *bssid)
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700292{
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700293 u32 tmp;
294
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200295 tmp = le32_to_cpu(bssid[1]);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700296 rt2x00_set_field32(&tmp, MAC_CSR5_BSS_ID_MASK, 3);
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200297 bssid[1] = cpu_to_le32(tmp);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700298
Ivo van Doorn4abee4b2007-10-06 14:11:46 +0200299 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, bssid,
300 (2 * sizeof(__le32)));
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700301}
302
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700303static void rt61pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
304{
Johannes Berg4150c572007-09-17 01:29:23 -0400305 struct interface *intf = &rt2x00dev->interface;
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700306 u32 reg;
307
308 /*
309 * Clear current synchronisation setup.
310 * For the Beacon base registers we only need to clear
311 * the first byte since that byte contains the VALID and OWNER
312 * bits which (when set to 0) will invalidate the entire beacon.
313 */
314 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
315 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
316 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
317 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
318 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
319
320 /*
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700321 * Enable synchronisation.
322 */
323 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
Johannes Berg4150c572007-09-17 01:29:23 -0400324 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
325 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700326 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
Johannes Berg4150c572007-09-17 01:29:23 -0400327 if (is_interface_type(intf, IEEE80211_IF_TYPE_IBSS) ||
328 is_interface_type(intf, IEEE80211_IF_TYPE_AP))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700329 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 2);
Johannes Berg4150c572007-09-17 01:29:23 -0400330 else if (is_interface_type(intf, IEEE80211_IF_TYPE_STA))
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700331 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 1);
Johannes Berg4150c572007-09-17 01:29:23 -0400332 else
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700333 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
Ivo van Doorn95ea3622007-09-25 17:57:13 -0700334 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
335}
336
337static void rt61pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
338{
339 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
340 u32 reg;
341 u32 value;
342 u32 preamble;
343
344 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
345 preamble = SHORT_PREAMBLE;
346 else
347 preamble = PREAMBLE;
348
349 /*
350 * Extract the allowed ratemask from the device specific rate value,
351 * We need to set TXRX_CSR5 to the basic rate mask so we need to mask
352 * off the non-basic rates.
353 */
354 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
355
356 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, reg);
357
358 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
359 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
360 SHORT_DIFS : DIFS) +
361 PLCP + preamble + get_duration(ACK_SIZE, 10);
362 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, value);
363 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
364
365 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
366 if (preamble == SHORT_PREAMBLE)
367 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE, 1);
368 else
369 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE, 0);
370 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
371}
372
373static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
374 const int phymode)
375{
376 struct ieee80211_hw_mode *mode;
377 struct ieee80211_rate *rate;
378
379 if (phymode == MODE_IEEE80211A)
380 rt2x00dev->curr_hwmode = HWMODE_A;
381 else if (phymode == MODE_IEEE80211B)
382 rt2x00dev->curr_hwmode = HWMODE_B;
383 else
384 rt2x00dev->curr_hwmode = HWMODE_G;
385
386 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
387 rate = &mode->rates[mode->num_rates - 1];
388
389 rt61pci_config_rate(rt2x00dev, rate->val2);
390}
391
392static void rt61pci_config_lock_channel(struct rt2x00_dev *rt2x00dev,
393 struct rf_channel *rf,
394 const int txpower)
395{
396 u8 r3;
397 u8 r94;
398 u8 smart;
399
400 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
401 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
402
403 smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
404 rt2x00_rf(&rt2x00dev->chip, RF2527));
405
406 rt61pci_bbp_read(rt2x00dev, 3, &r3);
407 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
408 rt61pci_bbp_write(rt2x00dev, 3, r3);
409
410 r94 = 6;
411 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
412 r94 += txpower - MAX_TXPOWER;
413 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
414 r94 += txpower;
415 rt61pci_bbp_write(rt2x00dev, 94, r94);
416
417 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
418 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
419 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
420 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
421
422 udelay(200);
423
424 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
425 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
426 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
427 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
428
429 udelay(200);
430
431 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
432 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
433 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
434 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
435
436 msleep(1);
437}
438
439static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
440 const int index, const int channel,
441 const int txpower)
442{
443 struct rf_channel rf;
444
445 /*
446 * Fill rf_reg structure.
447 */
448 memcpy(&rf, &rt2x00dev->spec.channels[index], sizeof(rf));
449
450 rt61pci_config_lock_channel(rt2x00dev, &rf, txpower);
451}
452
453static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
454 const int txpower)
455{
456 struct rf_channel rf;
457
458 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
459 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
460 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
461 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
462
463 rt61pci_config_lock_channel(rt2x00dev, &rf, txpower);
464}
465
466static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
467 const int antenna_tx,
468 const int antenna_rx)
469{
470 u8 r3;
471 u8 r4;
472 u8 r77;
473
474 rt61pci_bbp_read(rt2x00dev, 3, &r3);
475 rt61pci_bbp_read(rt2x00dev, 4, &r4);
476 rt61pci_bbp_read(rt2x00dev, 77, &r77);
477
478 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
479 !rt2x00_rf(&rt2x00dev->chip, RF5225));
480
481 switch (antenna_rx) {
482 case ANTENNA_SW_DIVERSITY:
483 case ANTENNA_HW_DIVERSITY:
484 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
485 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
486 !!(rt2x00dev->curr_hwmode != HWMODE_A));
487 break;
488 case ANTENNA_A:
489 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
490 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
491
492 if (rt2x00dev->curr_hwmode == HWMODE_A)
493 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
494 else
495 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
496 break;
497 case ANTENNA_B:
498 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
499 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
500
501 if (rt2x00dev->curr_hwmode == HWMODE_A)
502 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
503 else
504 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
505 break;
506 }
507
508 rt61pci_bbp_write(rt2x00dev, 77, r77);
509 rt61pci_bbp_write(rt2x00dev, 3, r3);
510 rt61pci_bbp_write(rt2x00dev, 4, r4);
511}
512
513static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
514 const int antenna_tx,
515 const int antenna_rx)
516{
517 u8 r3;
518 u8 r4;
519 u8 r77;
520
521 rt61pci_bbp_read(rt2x00dev, 3, &r3);
522 rt61pci_bbp_read(rt2x00dev, 4, &r4);
523 rt61pci_bbp_read(rt2x00dev, 77, &r77);
524
525 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
526 !rt2x00_rf(&rt2x00dev->chip, RF2527));
527 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
528 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
529
530 switch (antenna_rx) {
531 case ANTENNA_SW_DIVERSITY:
532 case ANTENNA_HW_DIVERSITY:
533 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
534 break;
535 case ANTENNA_A:
536 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
537 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
538 break;
539 case ANTENNA_B:
540 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
541 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
542 break;
543 }
544
545 rt61pci_bbp_write(rt2x00dev, 77, r77);
546 rt61pci_bbp_write(rt2x00dev, 3, r3);
547 rt61pci_bbp_write(rt2x00dev, 4, r4);
548}
549
550static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
551 const int p1, const int p2)
552{
553 u32 reg;
554
555 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
556
557 if (p1 != 0xff) {
558 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, !!p1);
559 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
560 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
561 }
562 if (p2 != 0xff) {
563 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
564 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
565 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
566 }
567}
568
569static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
570 const int antenna_tx,
571 const int antenna_rx)
572{
573 u16 eeprom;
574 u8 r3;
575 u8 r4;
576 u8 r77;
577
578 rt61pci_bbp_read(rt2x00dev, 3, &r3);
579 rt61pci_bbp_read(rt2x00dev, 4, &r4);
580 rt61pci_bbp_read(rt2x00dev, 77, &r77);
581 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
582
583 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
584
585 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
586 rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
587 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
588 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 1);
589 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
590 } else if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) {
591 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED) >= 2) {
592 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
593 rt61pci_bbp_write(rt2x00dev, 77, r77);
594 }
595 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
596 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
597 } else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
598 rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
599 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
600 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
601
602 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
603 case 0:
604 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
605 break;
606 case 1:
607 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
608 break;
609 case 2:
610 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
611 break;
612 case 3:
613 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
614 break;
615 }
616 } else if (!rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY) &&
617 !rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) {
618 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
619 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
620
621 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
622 case 0:
623 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
624 rt61pci_bbp_write(rt2x00dev, 77, r77);
625 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 1);
626 break;
627 case 1:
628 rt2x00_set_field8(&r77, BBP_R77_PAIR, 0);
629 rt61pci_bbp_write(rt2x00dev, 77, r77);
630 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 0);
631 break;
632 case 2:
633 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
634 rt61pci_bbp_write(rt2x00dev, 77, r77);
635 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
636 break;
637 case 3:
638 rt2x00_set_field8(&r77, BBP_R77_PAIR, 3);
639 rt61pci_bbp_write(rt2x00dev, 77, r77);
640 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
641 break;
642 }
643 }
644
645 rt61pci_bbp_write(rt2x00dev, 3, r3);
646 rt61pci_bbp_write(rt2x00dev, 4, r4);
647}
648
649struct antenna_sel {
650 u8 word;
651 /*
652 * value[0] -> non-LNA
653 * value[1] -> LNA
654 */
655 u8 value[2];
656};
657
658static const struct antenna_sel antenna_sel_a[] = {
659 { 96, { 0x58, 0x78 } },
660 { 104, { 0x38, 0x48 } },
661 { 75, { 0xfe, 0x80 } },
662 { 86, { 0xfe, 0x80 } },
663 { 88, { 0xfe, 0x80 } },
664 { 35, { 0x60, 0x60 } },
665 { 97, { 0x58, 0x58 } },
666 { 98, { 0x58, 0x58 } },
667};
668
669static const struct antenna_sel antenna_sel_bg[] = {
670 { 96, { 0x48, 0x68 } },
671 { 104, { 0x2c, 0x3c } },
672 { 75, { 0xfe, 0x80 } },
673 { 86, { 0xfe, 0x80 } },
674 { 88, { 0xfe, 0x80 } },
675 { 35, { 0x50, 0x50 } },
676 { 97, { 0x48, 0x48 } },
677 { 98, { 0x48, 0x48 } },
678};
679
680static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
681 const int antenna_tx, const int antenna_rx)
682{
683 const struct antenna_sel *sel;
684 unsigned int lna;
685 unsigned int i;
686 u32 reg;
687
688 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
689
690 if (rt2x00dev->curr_hwmode == HWMODE_A) {
691 sel = antenna_sel_a;
692 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
693
694 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG, 0);
695 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A, 1);
696 } else {
697 sel = antenna_sel_bg;
698 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
699
700 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG, 1);
701 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A, 0);
702 }
703
704 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
705 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
706
707 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
708
709 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
710 rt2x00_rf(&rt2x00dev->chip, RF5325))
711 rt61pci_config_antenna_5x(rt2x00dev, antenna_tx, antenna_rx);
712 else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
713 rt61pci_config_antenna_2x(rt2x00dev, antenna_tx, antenna_rx);
714 else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
715 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
716 rt61pci_config_antenna_2x(rt2x00dev, antenna_tx,
717 antenna_rx);
718 else
719 rt61pci_config_antenna_2529(rt2x00dev, antenna_tx,
720 antenna_rx);
721 }
722}
723
724static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
725 const int short_slot_time,
726 const int beacon_int)
727{
728 u32 reg;
729
730 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
731 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME,
732 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
733 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
734
735 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
736 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, SIFS);
737 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
738 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, EIFS);
739 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
740
741 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
742 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
743 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
744
745 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
746 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
747 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
748
749 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
750 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, beacon_int * 16);
751 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
752}
753
754static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
755 const unsigned int flags,
756 struct ieee80211_conf *conf)
757{
758 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
759
760 if (flags & CONFIG_UPDATE_PHYMODE)
761 rt61pci_config_phymode(rt2x00dev, conf->phymode);
762 if (flags & CONFIG_UPDATE_CHANNEL)
763 rt61pci_config_channel(rt2x00dev, conf->channel_val,
764 conf->channel, conf->power_level);
765 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
766 rt61pci_config_txpower(rt2x00dev, conf->power_level);
767 if (flags & CONFIG_UPDATE_ANTENNA)
768 rt61pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
769 conf->antenna_sel_rx);
770 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
771 rt61pci_config_duration(rt2x00dev, short_slot_time,
772 conf->beacon_int);
773}
774
775/*
776 * LED functions.
777 */
778static void rt61pci_enable_led(struct rt2x00_dev *rt2x00dev)
779{
780 u32 reg;
781 u16 led_reg;
782 u8 arg0;
783 u8 arg1;
784
785 rt2x00pci_register_read(rt2x00dev, MAC_CSR14, &reg);
786 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, 70);
787 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, 30);
788 rt2x00pci_register_write(rt2x00dev, MAC_CSR14, reg);
789
790 led_reg = rt2x00dev->led_reg;
791 rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 1);
792 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A)
793 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 1);
794 else
795 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 1);
796
797 arg0 = led_reg & 0xff;
798 arg1 = (led_reg >> 8) & 0xff;
799
800 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
801}
802
803static void rt61pci_disable_led(struct rt2x00_dev *rt2x00dev)
804{
805 u16 led_reg;
806 u8 arg0;
807 u8 arg1;
808
809 led_reg = rt2x00dev->led_reg;
810 rt2x00_set_field16(&led_reg, MCU_LEDCS_RADIO_STATUS, 0);
811 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_BG_STATUS, 0);
812 rt2x00_set_field16(&led_reg, MCU_LEDCS_LINK_A_STATUS, 0);
813
814 arg0 = led_reg & 0xff;
815 arg1 = (led_reg >> 8) & 0xff;
816
817 rt61pci_mcu_request(rt2x00dev, MCU_LED, 0xff, arg0, arg1);
818}
819
820static void rt61pci_activity_led(struct rt2x00_dev *rt2x00dev, int rssi)
821{
822 u8 led;
823
824 if (rt2x00dev->led_mode != LED_MODE_SIGNAL_STRENGTH)
825 return;
826
827 /*
828 * Led handling requires a positive value for the rssi,
829 * to do that correctly we need to add the correction.
830 */
831 rssi += rt2x00dev->rssi_offset;
832
833 if (rssi <= 30)
834 led = 0;
835 else if (rssi <= 39)
836 led = 1;
837 else if (rssi <= 49)
838 led = 2;
839 else if (rssi <= 53)
840 led = 3;
841 else if (rssi <= 63)
842 led = 4;
843 else
844 led = 5;
845
846 rt61pci_mcu_request(rt2x00dev, MCU_LED_STRENGTH, 0xff, led, 0);
847}
848
849/*
850 * Link tuning
851 */
852static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev)
853{
854 u32 reg;
855
856 /*
857 * Update FCS error count from register.
858 */
859 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
860 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
861
862 /*
863 * Update False CCA count from register.
864 */
865 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
866 rt2x00dev->link.false_cca =
867 rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
868}
869
870static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
871{
872 rt61pci_bbp_write(rt2x00dev, 17, 0x20);
873 rt2x00dev->link.vgc_level = 0x20;
874}
875
876static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
877{
878 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
879 u8 r17;
880 u8 up_bound;
881 u8 low_bound;
882
883 /*
884 * Update Led strength
885 */
886 rt61pci_activity_led(rt2x00dev, rssi);
887
888 rt61pci_bbp_read(rt2x00dev, 17, &r17);
889
890 /*
891 * Determine r17 bounds.
892 */
893 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
894 low_bound = 0x28;
895 up_bound = 0x48;
896 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
897 low_bound += 0x10;
898 up_bound += 0x10;
899 }
900 } else {
901 low_bound = 0x20;
902 up_bound = 0x40;
903 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
904 low_bound += 0x10;
905 up_bound += 0x10;
906 }
907 }
908
909 /*
910 * Special big-R17 for very short distance
911 */
912 if (rssi >= -35) {
913 if (r17 != 0x60)
914 rt61pci_bbp_write(rt2x00dev, 17, 0x60);
915 return;
916 }
917
918 /*
919 * Special big-R17 for short distance
920 */
921 if (rssi >= -58) {
922 if (r17 != up_bound)
923 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
924 return;
925 }
926
927 /*
928 * Special big-R17 for middle-short distance
929 */
930 if (rssi >= -66) {
931 low_bound += 0x10;
932 if (r17 != low_bound)
933 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
934 return;
935 }
936
937 /*
938 * Special mid-R17 for middle distance
939 */
940 if (rssi >= -74) {
941 low_bound += 0x08;
942 if (r17 != low_bound)
943 rt61pci_bbp_write(rt2x00dev, 17, low_bound);
944 return;
945 }
946
947 /*
948 * Special case: Change up_bound based on the rssi.
949 * Lower up_bound when rssi is weaker then -74 dBm.
950 */
951 up_bound -= 2 * (-74 - rssi);
952 if (low_bound > up_bound)
953 up_bound = low_bound;
954
955 if (r17 > up_bound) {
956 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
957 return;
958 }
959
960 /*
961 * r17 does not yet exceed upper limit, continue and base
962 * the r17 tuning on the false CCA count.
963 */
964 if (rt2x00dev->link.false_cca > 512 && r17 < up_bound) {
965 if (++r17 > up_bound)
966 r17 = up_bound;
967 rt61pci_bbp_write(rt2x00dev, 17, r17);
968 } else if (rt2x00dev->link.false_cca < 100 && r17 > low_bound) {
969 if (--r17 < low_bound)
970 r17 = low_bound;
971 rt61pci_bbp_write(rt2x00dev, 17, r17);
972 }
973}
974
975/*
976 * Firmware name function.
977 */
978static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
979{
980 char *fw_name;
981
982 switch (rt2x00dev->chip.rt) {
983 case RT2561:
984 fw_name = FIRMWARE_RT2561;
985 break;
986 case RT2561s:
987 fw_name = FIRMWARE_RT2561s;
988 break;
989 case RT2661:
990 fw_name = FIRMWARE_RT2661;
991 break;
992 default:
993 fw_name = NULL;
994 break;
995 }
996
997 return fw_name;
998}
999
1000/*
1001 * Initialization functions.
1002 */
1003static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, void *data,
1004 const size_t len)
1005{
1006 int i;
1007 u32 reg;
1008
1009 /*
1010 * Wait for stable hardware.
1011 */
1012 for (i = 0; i < 100; i++) {
1013 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1014 if (reg)
1015 break;
1016 msleep(1);
1017 }
1018
1019 if (!reg) {
1020 ERROR(rt2x00dev, "Unstable hardware.\n");
1021 return -EBUSY;
1022 }
1023
1024 /*
1025 * Prepare MCU and mailbox for firmware loading.
1026 */
1027 reg = 0;
1028 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1029 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1030 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1031 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1032 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1033
1034 /*
1035 * Write firmware to device.
1036 */
1037 reg = 0;
1038 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1039 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1040 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1041
1042 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1043 data, len);
1044
1045 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1046 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1047
1048 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1049 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1050
1051 for (i = 0; i < 100; i++) {
1052 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1053 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1054 break;
1055 msleep(1);
1056 }
1057
1058 if (i == 100) {
1059 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1060 return -EBUSY;
1061 }
1062
1063 /*
1064 * Reset MAC and BBP registers.
1065 */
1066 reg = 0;
1067 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1068 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1069 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1070
1071 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1072 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1073 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1074 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1075
1076 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1077 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1078 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1079
1080 return 0;
1081}
1082
1083static void rt61pci_init_rxring(struct rt2x00_dev *rt2x00dev)
1084{
1085 struct data_ring *ring = rt2x00dev->rx;
1086 struct data_desc *rxd;
1087 unsigned int i;
1088 u32 word;
1089
1090 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1091
1092 for (i = 0; i < ring->stats.limit; i++) {
1093 rxd = ring->entry[i].priv;
1094
1095 rt2x00_desc_read(rxd, 5, &word);
1096 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1097 ring->entry[i].data_dma);
1098 rt2x00_desc_write(rxd, 5, word);
1099
1100 rt2x00_desc_read(rxd, 0, &word);
1101 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1102 rt2x00_desc_write(rxd, 0, word);
1103 }
1104
1105 rt2x00_ring_index_clear(rt2x00dev->rx);
1106}
1107
1108static void rt61pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
1109{
1110 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1111 struct data_desc *txd;
1112 unsigned int i;
1113 u32 word;
1114
1115 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
1116
1117 for (i = 0; i < ring->stats.limit; i++) {
1118 txd = ring->entry[i].priv;
1119
1120 rt2x00_desc_read(txd, 1, &word);
1121 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1122 rt2x00_desc_write(txd, 1, word);
1123
1124 rt2x00_desc_read(txd, 5, &word);
1125 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, queue);
1126 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, i);
1127 rt2x00_desc_write(txd, 5, word);
1128
1129 rt2x00_desc_read(txd, 6, &word);
1130 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1131 ring->entry[i].data_dma);
1132 rt2x00_desc_write(txd, 6, word);
1133
1134 rt2x00_desc_read(txd, 0, &word);
1135 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1136 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1137 rt2x00_desc_write(txd, 0, word);
1138 }
1139
1140 rt2x00_ring_index_clear(ring);
1141}
1142
1143static int rt61pci_init_rings(struct rt2x00_dev *rt2x00dev)
1144{
1145 u32 reg;
1146
1147 /*
1148 * Initialize rings.
1149 */
1150 rt61pci_init_rxring(rt2x00dev);
1151 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1152 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1153 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA2);
1154 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA3);
1155 rt61pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA4);
1156
1157 /*
1158 * Initialize registers.
1159 */
1160 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1161 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1162 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
1163 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1164 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
1165 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1166 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].stats.limit);
1167 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1168 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].stats.limit);
1169 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1170
1171 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1172 rt2x00_set_field32(&reg, TX_RING_CSR1_MGMT_RING_SIZE,
1173 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].stats.limit);
1174 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1175 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size /
1176 4);
1177 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1178
1179 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1180 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1181 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
1182 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1183
1184 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1185 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1186 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
1187 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1188
1189 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1190 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1191 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA2].data_dma);
1192 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1193
1194 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1195 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1196 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA3].data_dma);
1197 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1198
1199 rt2x00pci_register_read(rt2x00dev, MGMT_BASE_CSR, &reg);
1200 rt2x00_set_field32(&reg, MGMT_BASE_CSR_RING_REGISTER,
1201 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA4].data_dma);
1202 rt2x00pci_register_write(rt2x00dev, MGMT_BASE_CSR, reg);
1203
1204 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1205 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE,
1206 rt2x00dev->rx->stats.limit);
1207 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1208 rt2x00dev->rx->desc_size / 4);
1209 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1210 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1211
1212 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1213 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1214 rt2x00dev->rx->data_dma);
1215 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1216
1217 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1218 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1219 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1220 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1221 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1222 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_MGMT, 0);
1223 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1224
1225 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1226 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1227 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1228 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1229 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1230 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_MGMT, 1);
1231 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1232
1233 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1234 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1235 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1236
1237 return 0;
1238}
1239
1240static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1241{
1242 u32 reg;
1243
1244 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1245 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1246 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1247 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1248 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1249
1250 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1251 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1252 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1253 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1254 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1255 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1256 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1257 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1258 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1259 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1260
1261 /*
1262 * CCK TXD BBP registers
1263 */
1264 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1265 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1266 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1267 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1268 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1269 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1270 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1271 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1272 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1273 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1274
1275 /*
1276 * OFDM TXD BBP registers
1277 */
1278 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1279 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1280 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1281 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1282 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1283 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1284 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1285 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1286
1287 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1288 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1289 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1290 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1291 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1292 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1293
1294 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1295 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1296 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1297 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1298 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1299 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1300
1301 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1302
1303 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1304
1305 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1306 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1307 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1308
1309 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1310
1311 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1312 return -EBUSY;
1313
1314 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1315
1316 /*
1317 * Invalidate all Shared Keys (SEC_CSR0),
1318 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1319 */
1320 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1321 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1322 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1323
1324 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1325 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1326 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1327 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1328
1329 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1330
1331 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1332
1333 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1334
1335 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1336 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1337 rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1338 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1339
1340 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1341 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1342 rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1343 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1344
1345 /*
1346 * We must clear the error counters.
1347 * These registers are cleared on read,
1348 * so we may pass a useless variable to store the value.
1349 */
1350 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1351 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1352 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1353
1354 /*
1355 * Reset MAC and BBP registers.
1356 */
1357 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1358 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1359 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1360 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1361
1362 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1363 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1364 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1365 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1366
1367 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1368 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1369 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1370
1371 return 0;
1372}
1373
1374static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1375{
1376 unsigned int i;
1377 u16 eeprom;
1378 u8 reg_id;
1379 u8 value;
1380
1381 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1382 rt61pci_bbp_read(rt2x00dev, 0, &value);
1383 if ((value != 0xff) && (value != 0x00))
1384 goto continue_csr_init;
1385 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1386 udelay(REGISTER_BUSY_DELAY);
1387 }
1388
1389 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1390 return -EACCES;
1391
1392continue_csr_init:
1393 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1394 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1395 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1396 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1397 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1398 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1399 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1400 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1401 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1402 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1403 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1404 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1405 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1406 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1407 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1408 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1409 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1410 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1411 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1412 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1413 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1414 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1415 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1416 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1417
1418 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1419 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1420 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1421
1422 if (eeprom != 0xffff && eeprom != 0x0000) {
1423 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1424 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1425 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1426 reg_id, value);
1427 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1428 }
1429 }
1430 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1431
1432 return 0;
1433}
1434
1435/*
1436 * Device state switch handlers.
1437 */
1438static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1439 enum dev_state state)
1440{
1441 u32 reg;
1442
1443 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1444 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1445 state == STATE_RADIO_RX_OFF);
1446 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1447}
1448
1449static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1450 enum dev_state state)
1451{
1452 int mask = (state == STATE_RADIO_IRQ_OFF);
1453 u32 reg;
1454
1455 /*
1456 * When interrupts are being enabled, the interrupt registers
1457 * should clear the register to assure a clean state.
1458 */
1459 if (state == STATE_RADIO_IRQ_ON) {
1460 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1461 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1462
1463 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1464 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1465 }
1466
1467 /*
1468 * Only toggle the interrupts bits we are going to use.
1469 * Non-checked interrupt bits are disabled by default.
1470 */
1471 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1472 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1473 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1474 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1475 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1476 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1477
1478 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1479 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1480 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1481 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1482 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1483 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1484 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1485 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1486 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1487 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1488}
1489
1490static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1491{
1492 u32 reg;
1493
1494 /*
1495 * Initialize all registers.
1496 */
1497 if (rt61pci_init_rings(rt2x00dev) ||
1498 rt61pci_init_registers(rt2x00dev) ||
1499 rt61pci_init_bbp(rt2x00dev)) {
1500 ERROR(rt2x00dev, "Register initialization failed.\n");
1501 return -EIO;
1502 }
1503
1504 /*
1505 * Enable interrupts.
1506 */
1507 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1508
1509 /*
1510 * Enable RX.
1511 */
1512 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1513 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1514 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1515
1516 /*
1517 * Enable LED
1518 */
1519 rt61pci_enable_led(rt2x00dev);
1520
1521 return 0;
1522}
1523
1524static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1525{
1526 u32 reg;
1527
1528 /*
1529 * Disable LED
1530 */
1531 rt61pci_disable_led(rt2x00dev);
1532
1533 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1534
1535 /*
1536 * Disable synchronisation.
1537 */
1538 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1539
1540 /*
1541 * Cancel RX and TX.
1542 */
1543 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1544 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1545 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1546 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1547 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1548 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_MGMT, 1);
1549 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1550
1551 /*
1552 * Disable interrupts.
1553 */
1554 rt61pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1555}
1556
1557static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1558{
1559 u32 reg;
1560 unsigned int i;
1561 char put_to_sleep;
1562 char current_state;
1563
1564 put_to_sleep = (state != STATE_AWAKE);
1565
1566 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1567 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1568 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1569 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1570
1571 /*
1572 * Device is not guaranteed to be in the requested state yet.
1573 * We must wait until the register indicates that the
1574 * device has entered the correct state.
1575 */
1576 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1577 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1578 current_state =
1579 rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1580 if (current_state == !put_to_sleep)
1581 return 0;
1582 msleep(10);
1583 }
1584
1585 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1586 "current device state %d.\n", !put_to_sleep, current_state);
1587
1588 return -EBUSY;
1589}
1590
1591static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1592 enum dev_state state)
1593{
1594 int retval = 0;
1595
1596 switch (state) {
1597 case STATE_RADIO_ON:
1598 retval = rt61pci_enable_radio(rt2x00dev);
1599 break;
1600 case STATE_RADIO_OFF:
1601 rt61pci_disable_radio(rt2x00dev);
1602 break;
1603 case STATE_RADIO_RX_ON:
1604 case STATE_RADIO_RX_OFF:
1605 rt61pci_toggle_rx(rt2x00dev, state);
1606 break;
1607 case STATE_DEEP_SLEEP:
1608 case STATE_SLEEP:
1609 case STATE_STANDBY:
1610 case STATE_AWAKE:
1611 retval = rt61pci_set_state(rt2x00dev, state);
1612 break;
1613 default:
1614 retval = -ENOTSUPP;
1615 break;
1616 }
1617
1618 return retval;
1619}
1620
1621/*
1622 * TX descriptor initialization
1623 */
1624static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1625 struct data_desc *txd,
Johannes Berg4150c572007-09-17 01:29:23 -04001626 struct txdata_entry_desc *desc,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001627 struct ieee80211_hdr *ieee80211hdr,
1628 unsigned int length,
1629 struct ieee80211_tx_control *control)
1630{
1631 u32 word;
1632
1633 /*
1634 * Start writing the descriptor words.
1635 */
1636 rt2x00_desc_read(txd, 1, &word);
1637 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, desc->queue);
1638 rt2x00_set_field32(&word, TXD_W1_AIFSN, desc->aifs);
1639 rt2x00_set_field32(&word, TXD_W1_CWMIN, desc->cw_min);
1640 rt2x00_set_field32(&word, TXD_W1_CWMAX, desc->cw_max);
1641 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1642 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1);
1643 rt2x00_desc_write(txd, 1, word);
1644
1645 rt2x00_desc_read(txd, 2, &word);
1646 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, desc->signal);
1647 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, desc->service);
1648 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, desc->length_low);
1649 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, desc->length_high);
1650 rt2x00_desc_write(txd, 2, word);
1651
1652 rt2x00_desc_read(txd, 5, &word);
1653 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1654 TXPOWER_TO_DEV(control->power_level));
1655 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1656 rt2x00_desc_write(txd, 5, word);
1657
1658 rt2x00_desc_read(txd, 11, &word);
1659 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, length);
1660 rt2x00_desc_write(txd, 11, word);
1661
1662 rt2x00_desc_read(txd, 0, &word);
1663 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1664 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1665 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1666 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1667 rt2x00_set_field32(&word, TXD_W0_ACK,
1668 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1669 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1670 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1671 rt2x00_set_field32(&word, TXD_W0_OFDM,
1672 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1673 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1674 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1675 !!(control->flags &
1676 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1677 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1678 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1679 rt2x00_set_field32(&word, TXD_W0_BURST,
1680 test_bit(ENTRY_TXD_BURST, &desc->flags));
1681 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1682 rt2x00_desc_write(txd, 0, word);
1683}
1684
1685/*
1686 * TX data initialization
1687 */
1688static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1689 unsigned int queue)
1690{
1691 u32 reg;
1692
1693 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1694 /*
1695 * For Wi-Fi faily generated beacons between participating
1696 * stations. Set TBTT phase adaptive adjustment step to 8us.
1697 */
1698 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1699
1700 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1701 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1702 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1703 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1704 }
1705 return;
1706 }
1707
1708 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1709 if (queue == IEEE80211_TX_QUEUE_DATA0)
1710 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1711 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1712 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1713 else if (queue == IEEE80211_TX_QUEUE_DATA2)
1714 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1715 else if (queue == IEEE80211_TX_QUEUE_DATA3)
1716 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1717 else if (queue == IEEE80211_TX_QUEUE_DATA4)
1718 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_MGMT, 1);
1719 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1720}
1721
1722/*
1723 * RX control handlers
1724 */
1725static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1726{
1727 u16 eeprom;
1728 u8 offset;
1729 u8 lna;
1730
1731 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1732 switch (lna) {
1733 case 3:
1734 offset = 90;
1735 break;
1736 case 2:
1737 offset = 74;
1738 break;
1739 case 1:
1740 offset = 64;
1741 break;
1742 default:
1743 return 0;
1744 }
1745
1746 if (rt2x00dev->rx_status.phymode == MODE_IEEE80211A) {
1747 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1748 offset += 14;
1749
1750 if (lna == 3 || lna == 2)
1751 offset += 10;
1752
1753 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1754 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1755 } else {
1756 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1757 offset += 14;
1758
1759 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1760 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1761 }
1762
1763 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1764}
1765
Johannes Berg4150c572007-09-17 01:29:23 -04001766static void rt61pci_fill_rxdone(struct data_entry *entry,
1767 struct rxdata_entry_desc *desc)
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001768{
1769 struct data_desc *rxd = entry->priv;
1770 u32 word0;
1771 u32 word1;
1772
1773 rt2x00_desc_read(rxd, 0, &word0);
1774 rt2x00_desc_read(rxd, 1, &word1);
1775
Johannes Berg4150c572007-09-17 01:29:23 -04001776 desc->flags = 0;
1777 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1778 desc->flags |= RX_FLAG_FAILED_FCS_CRC;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001779
1780 /*
1781 * Obtain the status about this packet.
1782 */
Johannes Berg4150c572007-09-17 01:29:23 -04001783 desc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1784 desc->rssi = rt61pci_agc_to_rssi(entry->ring->rt2x00dev, word1);
1785 desc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1786 desc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001787
Johannes Berg4150c572007-09-17 01:29:23 -04001788 return;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001789}
1790
1791/*
1792 * Interrupt functions.
1793 */
1794static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1795{
1796 struct data_ring *ring;
1797 struct data_entry *entry;
1798 struct data_desc *txd;
1799 u32 word;
1800 u32 reg;
1801 u32 old_reg;
1802 int type;
1803 int index;
1804 int tx_status;
1805 int retry;
1806
1807 /*
1808 * During each loop we will compare the freshly read
1809 * STA_CSR4 register value with the value read from
1810 * the previous loop. If the 2 values are equal then
1811 * we should stop processing because the chance it
1812 * quite big that the device has been unplugged and
1813 * we risk going into an endless loop.
1814 */
1815 old_reg = 0;
1816
1817 while (1) {
1818 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1819 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1820 break;
1821
1822 if (old_reg == reg)
1823 break;
1824 old_reg = reg;
1825
1826 /*
1827 * Skip this entry when it contains an invalid
1828 * ring identication number.
1829 */
1830 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1831 ring = rt2x00lib_get_ring(rt2x00dev, type);
1832 if (unlikely(!ring))
1833 continue;
1834
1835 /*
1836 * Skip this entry when it contains an invalid
1837 * index number.
1838 */
1839 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1840 if (unlikely(index >= ring->stats.limit))
1841 continue;
1842
1843 entry = &ring->entry[index];
1844 txd = entry->priv;
1845 rt2x00_desc_read(txd, 0, &word);
1846
1847 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1848 !rt2x00_get_field32(word, TXD_W0_VALID))
1849 return;
1850
1851 /*
1852 * Obtain the status about this packet.
1853 */
1854 tx_status = rt2x00_get_field32(reg, STA_CSR4_TX_RESULT);
1855 retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1856
1857 rt2x00lib_txdone(entry, tx_status, retry);
1858
1859 /*
1860 * Make this entry available for reuse.
1861 */
1862 entry->flags = 0;
1863 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1864 rt2x00_desc_write(txd, 0, word);
1865 rt2x00_ring_index_done_inc(entry->ring);
1866
1867 /*
1868 * If the data ring was full before the txdone handler
1869 * we must make sure the packet queue in the mac80211 stack
1870 * is reenabled when the txdone handler has finished.
1871 */
1872 if (!rt2x00_ring_full(ring))
1873 ieee80211_wake_queue(rt2x00dev->hw,
1874 entry->tx_status.control.queue);
1875 }
1876}
1877
1878static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1879{
1880 struct rt2x00_dev *rt2x00dev = dev_instance;
1881 u32 reg_mcu;
1882 u32 reg;
1883
1884 /*
1885 * Get the interrupt sources & saved to local variable.
1886 * Write register value back to clear pending interrupts.
1887 */
1888 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1889 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1890
1891 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1892 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1893
1894 if (!reg && !reg_mcu)
1895 return IRQ_NONE;
1896
1897 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1898 return IRQ_HANDLED;
1899
1900 /*
1901 * Handle interrupts, walk through all bits
1902 * and run the tasks, the bits are checked in order of
1903 * priority.
1904 */
1905
1906 /*
1907 * 1 - Rx ring done interrupt.
1908 */
1909 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1910 rt2x00pci_rxdone(rt2x00dev);
1911
1912 /*
1913 * 2 - Tx ring done interrupt.
1914 */
1915 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1916 rt61pci_txdone(rt2x00dev);
1917
1918 /*
1919 * 3 - Handle MCU command done.
1920 */
1921 if (reg_mcu)
1922 rt2x00pci_register_write(rt2x00dev,
1923 M2H_CMD_DONE_CSR, 0xffffffff);
1924
1925 return IRQ_HANDLED;
1926}
1927
1928/*
1929 * Device probe functions.
1930 */
1931static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1932{
1933 struct eeprom_93cx6 eeprom;
1934 u32 reg;
1935 u16 word;
1936 u8 *mac;
1937 s8 value;
1938
1939 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
1940
1941 eeprom.data = rt2x00dev;
1942 eeprom.register_read = rt61pci_eepromregister_read;
1943 eeprom.register_write = rt61pci_eepromregister_write;
1944 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1945 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1946 eeprom.reg_data_in = 0;
1947 eeprom.reg_data_out = 0;
1948 eeprom.reg_data_clock = 0;
1949 eeprom.reg_chip_select = 0;
1950
1951 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1952 EEPROM_SIZE / sizeof(u16));
1953
1954 /*
1955 * Start validation of the data that has been read.
1956 */
1957 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1958 if (!is_valid_ether_addr(mac)) {
Joe Perches0795af52007-10-03 17:59:30 -07001959 DECLARE_MAC_BUF(macbuf);
1960
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001961 random_ether_addr(mac);
Joe Perches0795af52007-10-03 17:59:30 -07001962 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
Ivo van Doorn95ea3622007-09-25 17:57:13 -07001963 }
1964
1965 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1966 if (word == 0xffff) {
1967 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1968 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 2);
1969 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 2);
1970 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1971 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1972 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1973 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1974 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1975 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1976 }
1977
1978 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1979 if (word == 0xffff) {
1980 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1981 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1982 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1983 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1984 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1985 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1986 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1987 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1988 }
1989
1990 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1991 if (word == 0xffff) {
1992 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1993 LED_MODE_DEFAULT);
1994 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1995 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1996 }
1997
1998 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1999 if (word == 0xffff) {
2000 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2001 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2002 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2003 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2004 }
2005
2006 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2007 if (word == 0xffff) {
2008 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2009 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2010 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2011 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2012 } else {
2013 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2014 if (value < -10 || value > 10)
2015 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2016 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2017 if (value < -10 || value > 10)
2018 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2019 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2020 }
2021
2022 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2023 if (word == 0xffff) {
2024 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2025 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2026 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2027 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2028 } else {
2029 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2030 if (value < -10 || value > 10)
2031 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2032 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2033 if (value < -10 || value > 10)
2034 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2035 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2036 }
2037
2038 return 0;
2039}
2040
2041static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2042{
2043 u32 reg;
2044 u16 value;
2045 u16 eeprom;
2046 u16 device;
2047
2048 /*
2049 * Read EEPROM word for configuration.
2050 */
2051 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2052
2053 /*
2054 * Identify RF chipset.
2055 * To determine the RT chip we have to read the
2056 * PCI header of the device.
2057 */
2058 pci_read_config_word(rt2x00dev_pci(rt2x00dev),
2059 PCI_CONFIG_HEADER_DEVICE, &device);
2060 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2061 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2062 rt2x00_set_chip(rt2x00dev, device, value, reg);
2063
2064 if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2065 !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2066 !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2067 !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2068 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2069 return -ENODEV;
2070 }
2071
2072 /*
2073 * Identify default antenna configuration.
2074 */
2075 rt2x00dev->hw->conf.antenna_sel_tx =
2076 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2077 rt2x00dev->hw->conf.antenna_sel_rx =
2078 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2079
2080 /*
2081 * Read the Frame type.
2082 */
2083 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2084 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2085
2086 /*
2087 * Determine number of antenna's.
2088 */
2089 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2090 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2091
2092 /*
2093 * Detect if this device has an hardware controlled radio.
2094 */
Ivo van Doorn81873e92007-10-06 14:14:06 +02002095#ifdef CONFIG_RT61PCI_RFKILL
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002096 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
Ivo van Doorn066cb632007-09-25 20:55:39 +02002097 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
Ivo van Doorn81873e92007-10-06 14:14:06 +02002098#endif /* CONFIG_RT61PCI_RFKILL */
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002099
2100 /*
2101 * Read frequency offset and RF programming sequence.
2102 */
2103 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2104 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2105 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2106
2107 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2108
2109 /*
2110 * Read external LNA informations.
2111 */
2112 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2113
2114 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2115 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2116 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2117 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2118
2119 /*
2120 * Store led settings, for correct led behaviour.
2121 * If the eeprom value is invalid,
2122 * switch to default led mode.
2123 */
2124 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2125
2126 rt2x00dev->led_mode = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2127
2128 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_LED_MODE,
2129 rt2x00dev->led_mode);
2130 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_0,
2131 rt2x00_get_field16(eeprom,
2132 EEPROM_LED_POLARITY_GPIO_0));
2133 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_1,
2134 rt2x00_get_field16(eeprom,
2135 EEPROM_LED_POLARITY_GPIO_1));
2136 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_2,
2137 rt2x00_get_field16(eeprom,
2138 EEPROM_LED_POLARITY_GPIO_2));
2139 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_3,
2140 rt2x00_get_field16(eeprom,
2141 EEPROM_LED_POLARITY_GPIO_3));
2142 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_GPIO_4,
2143 rt2x00_get_field16(eeprom,
2144 EEPROM_LED_POLARITY_GPIO_4));
2145 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_ACT,
2146 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2147 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_BG,
2148 rt2x00_get_field16(eeprom,
2149 EEPROM_LED_POLARITY_RDY_G));
2150 rt2x00_set_field16(&rt2x00dev->led_reg, MCU_LEDCS_POLARITY_READY_A,
2151 rt2x00_get_field16(eeprom,
2152 EEPROM_LED_POLARITY_RDY_A));
2153
2154 return 0;
2155}
2156
2157/*
2158 * RF value list for RF5225 & RF5325
2159 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2160 */
2161static const struct rf_channel rf_vals_noseq[] = {
2162 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2163 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2164 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2165 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2166 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2167 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2168 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2169 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2170 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2171 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2172 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2173 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2174 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2175 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2176
2177 /* 802.11 UNI / HyperLan 2 */
2178 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2179 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2180 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2181 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2182 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2183 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2184 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2185 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2186
2187 /* 802.11 HyperLan 2 */
2188 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2189 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2190 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2191 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2192 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2193 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2194 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2195 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2196 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2197 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2198
2199 /* 802.11 UNII */
2200 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2201 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2202 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2203 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2204 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2205 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2206
2207 /* MMAC(Japan)J52 ch 34,38,42,46 */
2208 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2209 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2210 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2211 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2212};
2213
2214/*
2215 * RF value list for RF5225 & RF5325
2216 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2217 */
2218static const struct rf_channel rf_vals_seq[] = {
2219 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2220 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2221 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2222 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2223 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2224 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2225 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2226 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2227 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2228 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2229 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2230 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2231 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2232 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2233
2234 /* 802.11 UNI / HyperLan 2 */
2235 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2236 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2237 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2238 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2239 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2240 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2241 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2242 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2243
2244 /* 802.11 HyperLan 2 */
2245 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2246 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2247 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2248 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2249 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2250 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2251 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2252 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2253 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2254 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2255
2256 /* 802.11 UNII */
2257 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2258 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2259 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2260 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2261 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2262 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2263
2264 /* MMAC(Japan)J52 ch 34,38,42,46 */
2265 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2266 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2267 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2268 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2269};
2270
2271static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2272{
2273 struct hw_mode_spec *spec = &rt2x00dev->spec;
2274 u8 *txpower;
2275 unsigned int i;
2276
2277 /*
2278 * Initialize all hw fields.
2279 */
2280 rt2x00dev->hw->flags =
2281 IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
Johannes Berg4150c572007-09-17 01:29:23 -04002282 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002283 rt2x00dev->hw->extra_tx_headroom = 0;
2284 rt2x00dev->hw->max_signal = MAX_SIGNAL;
2285 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
2286 rt2x00dev->hw->queues = 5;
2287
2288 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
2289 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2290 rt2x00_eeprom_addr(rt2x00dev,
2291 EEPROM_MAC_ADDR_0));
2292
2293 /*
2294 * Convert tx_power array in eeprom.
2295 */
2296 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2297 for (i = 0; i < 14; i++)
2298 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2299
2300 /*
2301 * Initialize hw_mode information.
2302 */
2303 spec->num_modes = 2;
2304 spec->num_rates = 12;
2305 spec->tx_power_a = NULL;
2306 spec->tx_power_bg = txpower;
2307 spec->tx_power_default = DEFAULT_TXPOWER;
2308
2309 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2310 spec->num_channels = 14;
2311 spec->channels = rf_vals_noseq;
2312 } else {
2313 spec->num_channels = 14;
2314 spec->channels = rf_vals_seq;
2315 }
2316
2317 if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2318 rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2319 spec->num_modes = 3;
2320 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2321
2322 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2323 for (i = 0; i < 14; i++)
2324 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2325
2326 spec->tx_power_a = txpower;
2327 }
2328}
2329
2330static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2331{
2332 int retval;
2333
2334 /*
2335 * Allocate eeprom data.
2336 */
2337 retval = rt61pci_validate_eeprom(rt2x00dev);
2338 if (retval)
2339 return retval;
2340
2341 retval = rt61pci_init_eeprom(rt2x00dev);
2342 if (retval)
2343 return retval;
2344
2345 /*
2346 * Initialize hw specifications.
2347 */
2348 rt61pci_probe_hw_mode(rt2x00dev);
2349
2350 /*
2351 * This device requires firmware
2352 */
Ivo van Doorn066cb632007-09-25 20:55:39 +02002353 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002354
2355 /*
2356 * Set the rssi offset.
2357 */
2358 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2359
2360 return 0;
2361}
2362
2363/*
2364 * IEEE80211 stack callback functions.
2365 */
Johannes Berg4150c572007-09-17 01:29:23 -04002366static void rt61pci_configure_filter(struct ieee80211_hw *hw,
2367 unsigned int changed_flags,
2368 unsigned int *total_flags,
2369 int mc_count,
2370 struct dev_addr_list *mc_list)
2371{
2372 struct rt2x00_dev *rt2x00dev = hw->priv;
2373 struct interface *intf = &rt2x00dev->interface;
2374 u32 reg;
2375
2376 /*
2377 * Mask off any flags we are going to ignore from
2378 * the total_flags field.
2379 */
2380 *total_flags &=
2381 FIF_ALLMULTI |
2382 FIF_FCSFAIL |
2383 FIF_PLCPFAIL |
2384 FIF_CONTROL |
2385 FIF_OTHER_BSS |
2386 FIF_PROMISC_IN_BSS;
2387
2388 /*
2389 * Apply some rules to the filters:
2390 * - Some filters imply different filters to be set.
2391 * - Some things we can't filter out at all.
2392 * - Some filters are set based on interface type.
2393 */
2394 if (mc_count)
2395 *total_flags |= FIF_ALLMULTI;
Ivo van Doorn5886d0d2007-10-06 14:13:38 +02002396 if (*total_flags & FIF_OTHER_BSS ||
2397 *total_flags & FIF_PROMISC_IN_BSS)
Johannes Berg4150c572007-09-17 01:29:23 -04002398 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
2399 if (is_interface_type(intf, IEEE80211_IF_TYPE_AP))
2400 *total_flags |= FIF_PROMISC_IN_BSS;
2401
2402 /*
2403 * Check if there is any work left for us.
2404 */
2405 if (intf->filter == *total_flags)
2406 return;
2407 intf->filter = *total_flags;
2408
2409 /*
2410 * Start configuration steps.
2411 * Note that the version error will always be dropped
2412 * and broadcast frames will always be accepted since
2413 * there is no filter for it at this time.
2414 */
2415 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
2416 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
2417 !(*total_flags & FIF_FCSFAIL));
2418 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
2419 !(*total_flags & FIF_PLCPFAIL));
2420 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
2421 !(*total_flags & FIF_CONTROL));
2422 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
2423 !(*total_flags & FIF_PROMISC_IN_BSS));
2424 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
2425 !(*total_flags & FIF_PROMISC_IN_BSS));
2426 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
2427 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
2428 !(*total_flags & FIF_ALLMULTI));
2429 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BORADCAST, 0);
2430 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS, 1);
2431 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
2432}
2433
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002434static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2435 u32 short_retry, u32 long_retry)
2436{
2437 struct rt2x00_dev *rt2x00dev = hw->priv;
2438 u32 reg;
2439
2440 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2441 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2442 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2443 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2444
2445 return 0;
2446}
2447
2448static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2449{
2450 struct rt2x00_dev *rt2x00dev = hw->priv;
2451 u64 tsf;
2452 u32 reg;
2453
2454 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2455 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2456 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2457 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2458
2459 return tsf;
2460}
2461
2462static void rt61pci_reset_tsf(struct ieee80211_hw *hw)
2463{
2464 struct rt2x00_dev *rt2x00dev = hw->priv;
2465
2466 rt2x00pci_register_write(rt2x00dev, TXRX_CSR12, 0);
2467 rt2x00pci_register_write(rt2x00dev, TXRX_CSR13, 0);
2468}
2469
Ivo van Doorn24845912007-09-25 20:53:43 +02002470static int rt61pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002471 struct ieee80211_tx_control *control)
2472{
2473 struct rt2x00_dev *rt2x00dev = hw->priv;
2474
2475 /*
2476 * Just in case the ieee80211 doesn't set this,
2477 * but we need this queue set for the descriptor
2478 * initialization.
2479 */
2480 control->queue = IEEE80211_TX_QUEUE_BEACON;
2481
2482 /*
2483 * We need to append the descriptor in front of the
2484 * beacon frame.
2485 */
2486 if (skb_headroom(skb) < TXD_DESC_SIZE) {
2487 if (pskb_expand_head(skb, TXD_DESC_SIZE, 0, GFP_ATOMIC)) {
2488 dev_kfree_skb(skb);
2489 return -ENOMEM;
2490 }
2491 }
2492
2493 /*
2494 * First we create the beacon.
2495 */
2496 skb_push(skb, TXD_DESC_SIZE);
2497 rt2x00lib_write_tx_desc(rt2x00dev, (struct data_desc *)skb->data,
2498 (struct ieee80211_hdr *)(skb->data +
2499 TXD_DESC_SIZE),
2500 skb->len - TXD_DESC_SIZE, control);
2501
2502 /*
2503 * Write entire beacon with descriptor to register,
2504 * and kick the beacon generator.
2505 */
2506 rt2x00pci_register_multiwrite(rt2x00dev, HW_BEACON_BASE0, skb->data, skb->len);
2507 rt61pci_kick_tx_queue(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
2508
2509 return 0;
2510}
2511
2512static const struct ieee80211_ops rt61pci_mac80211_ops = {
2513 .tx = rt2x00mac_tx,
Johannes Berg4150c572007-09-17 01:29:23 -04002514 .start = rt2x00mac_start,
2515 .stop = rt2x00mac_stop,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002516 .add_interface = rt2x00mac_add_interface,
2517 .remove_interface = rt2x00mac_remove_interface,
2518 .config = rt2x00mac_config,
2519 .config_interface = rt2x00mac_config_interface,
Johannes Berg4150c572007-09-17 01:29:23 -04002520 .configure_filter = rt61pci_configure_filter,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002521 .get_stats = rt2x00mac_get_stats,
2522 .set_retry_limit = rt61pci_set_retry_limit,
2523 .conf_tx = rt2x00mac_conf_tx,
2524 .get_tx_stats = rt2x00mac_get_tx_stats,
2525 .get_tsf = rt61pci_get_tsf,
2526 .reset_tsf = rt61pci_reset_tsf,
2527 .beacon_update = rt61pci_beacon_update,
2528};
2529
2530static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2531 .irq_handler = rt61pci_interrupt,
2532 .probe_hw = rt61pci_probe_hw,
2533 .get_firmware_name = rt61pci_get_firmware_name,
2534 .load_firmware = rt61pci_load_firmware,
2535 .initialize = rt2x00pci_initialize,
2536 .uninitialize = rt2x00pci_uninitialize,
2537 .set_device_state = rt61pci_set_device_state,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002538 .rfkill_poll = rt61pci_rfkill_poll,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002539 .link_stats = rt61pci_link_stats,
2540 .reset_tuner = rt61pci_reset_tuner,
2541 .link_tuner = rt61pci_link_tuner,
2542 .write_tx_desc = rt61pci_write_tx_desc,
2543 .write_tx_data = rt2x00pci_write_tx_data,
2544 .kick_tx_queue = rt61pci_kick_tx_queue,
2545 .fill_rxdone = rt61pci_fill_rxdone,
2546 .config_mac_addr = rt61pci_config_mac_addr,
2547 .config_bssid = rt61pci_config_bssid,
Ivo van Doorn95ea3622007-09-25 17:57:13 -07002548 .config_type = rt61pci_config_type,
2549 .config = rt61pci_config,
2550};
2551
2552static const struct rt2x00_ops rt61pci_ops = {
2553 .name = DRV_NAME,
2554 .rxd_size = RXD_DESC_SIZE,
2555 .txd_size = TXD_DESC_SIZE,
2556 .eeprom_size = EEPROM_SIZE,
2557 .rf_size = RF_SIZE,
2558 .lib = &rt61pci_rt2x00_ops,
2559 .hw = &rt61pci_mac80211_ops,
2560#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2561 .debugfs = &rt61pci_rt2x00debug,
2562#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2563};
2564
2565/*
2566 * RT61pci module information.
2567 */
2568static struct pci_device_id rt61pci_device_table[] = {
2569 /* RT2561s */
2570 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2571 /* RT2561 v2 */
2572 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2573 /* RT2661 */
2574 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2575 { 0, }
2576};
2577
2578MODULE_AUTHOR(DRV_PROJECT);
2579MODULE_VERSION(DRV_VERSION);
2580MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2581MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2582 "PCI & PCMCIA chipset based cards");
2583MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2584MODULE_FIRMWARE(FIRMWARE_RT2561);
2585MODULE_FIRMWARE(FIRMWARE_RT2561s);
2586MODULE_FIRMWARE(FIRMWARE_RT2661);
2587MODULE_LICENSE("GPL");
2588
2589static struct pci_driver rt61pci_driver = {
2590 .name = DRV_NAME,
2591 .id_table = rt61pci_device_table,
2592 .probe = rt2x00pci_probe,
2593 .remove = __devexit_p(rt2x00pci_remove),
2594 .suspend = rt2x00pci_suspend,
2595 .resume = rt2x00pci_resume,
2596};
2597
2598static int __init rt61pci_init(void)
2599{
2600 return pci_register_driver(&rt61pci_driver);
2601}
2602
2603static void __exit rt61pci_exit(void)
2604{
2605 pci_unregister_driver(&rt61pci_driver);
2606}
2607
2608module_init(rt61pci_init);
2609module_exit(rt61pci_exit);