Boris Brezillon | c36ff26 | 2018-04-26 18:18:14 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Copyright (C) 2018 Exceet Electronics GmbH |
| 4 | * Copyright (C) 2018 Bootlin |
| 5 | * |
| 6 | * Author: Boris Brezillon <boris.brezillon@bootlin.com> |
| 7 | */ |
| 8 | #include <linux/dmaengine.h> |
| 9 | #include <linux/pm_runtime.h> |
| 10 | #include <linux/spi/spi.h> |
| 11 | #include <linux/spi/spi-mem.h> |
| 12 | |
| 13 | #include "internals.h" |
| 14 | |
| 15 | /** |
| 16 | * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a |
| 17 | * memory operation |
| 18 | * @ctlr: the SPI controller requesting this dma_map() |
| 19 | * @op: the memory operation containing the buffer to map |
| 20 | * @sgt: a pointer to a non-initialized sg_table that will be filled by this |
| 21 | * function |
| 22 | * |
| 23 | * Some controllers might want to do DMA on the data buffer embedded in @op. |
| 24 | * This helper prepares everything for you and provides a ready-to-use |
| 25 | * sg_table. This function is not intended to be called from spi drivers. |
| 26 | * Only SPI controller drivers should use it. |
| 27 | * Note that the caller must ensure the memory region pointed by |
| 28 | * op->data.buf.{in,out} is DMA-able before calling this function. |
| 29 | * |
| 30 | * Return: 0 in case of success, a negative error code otherwise. |
| 31 | */ |
| 32 | int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, |
| 33 | const struct spi_mem_op *op, |
| 34 | struct sg_table *sgt) |
| 35 | { |
| 36 | struct device *dmadev; |
| 37 | |
| 38 | if (!op->data.nbytes) |
| 39 | return -EINVAL; |
| 40 | |
| 41 | if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
| 42 | dmadev = ctlr->dma_tx->device->dev; |
| 43 | else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
| 44 | dmadev = ctlr->dma_rx->device->dev; |
| 45 | else |
| 46 | dmadev = ctlr->dev.parent; |
| 47 | |
| 48 | if (!dmadev) |
| 49 | return -EINVAL; |
| 50 | |
| 51 | return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, |
| 52 | op->data.dir == SPI_MEM_DATA_IN ? |
| 53 | DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| 54 | } |
| 55 | EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); |
| 56 | |
| 57 | /** |
| 58 | * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a |
| 59 | * memory operation |
| 60 | * @ctlr: the SPI controller requesting this dma_unmap() |
| 61 | * @op: the memory operation containing the buffer to unmap |
| 62 | * @sgt: a pointer to an sg_table previously initialized by |
| 63 | * spi_controller_dma_map_mem_op_data() |
| 64 | * |
| 65 | * Some controllers might want to do DMA on the data buffer embedded in @op. |
| 66 | * This helper prepares things so that the CPU can access the |
| 67 | * op->data.buf.{in,out} buffer again. |
| 68 | * |
| 69 | * This function is not intended to be called from SPI drivers. Only SPI |
| 70 | * controller drivers should use it. |
| 71 | * |
| 72 | * This function should be called after the DMA operation has finished and is |
| 73 | * only valid if the previous spi_controller_dma_map_mem_op_data() call |
| 74 | * returned 0. |
| 75 | * |
| 76 | * Return: 0 in case of success, a negative error code otherwise. |
| 77 | */ |
| 78 | void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, |
| 79 | const struct spi_mem_op *op, |
| 80 | struct sg_table *sgt) |
| 81 | { |
| 82 | struct device *dmadev; |
| 83 | |
| 84 | if (!op->data.nbytes) |
| 85 | return; |
| 86 | |
| 87 | if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) |
| 88 | dmadev = ctlr->dma_tx->device->dev; |
| 89 | else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) |
| 90 | dmadev = ctlr->dma_rx->device->dev; |
| 91 | else |
| 92 | dmadev = ctlr->dev.parent; |
| 93 | |
| 94 | spi_unmap_buf(ctlr, dmadev, sgt, |
| 95 | op->data.dir == SPI_MEM_DATA_IN ? |
| 96 | DMA_FROM_DEVICE : DMA_TO_DEVICE); |
| 97 | } |
| 98 | EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); |
| 99 | |
| 100 | static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) |
| 101 | { |
| 102 | u32 mode = mem->spi->mode; |
| 103 | |
| 104 | switch (buswidth) { |
| 105 | case 1: |
| 106 | return 0; |
| 107 | |
| 108 | case 2: |
| 109 | if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) || |
| 110 | (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD)))) |
| 111 | return 0; |
| 112 | |
| 113 | break; |
| 114 | |
| 115 | case 4: |
| 116 | if ((tx && (mode & SPI_TX_QUAD)) || |
| 117 | (!tx && (mode & SPI_RX_QUAD))) |
| 118 | return 0; |
| 119 | |
| 120 | break; |
| 121 | |
| 122 | default: |
| 123 | break; |
| 124 | } |
| 125 | |
| 126 | return -ENOTSUPP; |
| 127 | } |
| 128 | |
| 129 | static bool spi_mem_default_supports_op(struct spi_mem *mem, |
| 130 | const struct spi_mem_op *op) |
| 131 | { |
| 132 | if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) |
| 133 | return false; |
| 134 | |
| 135 | if (op->addr.nbytes && |
| 136 | spi_check_buswidth_req(mem, op->addr.buswidth, true)) |
| 137 | return false; |
| 138 | |
| 139 | if (op->dummy.nbytes && |
| 140 | spi_check_buswidth_req(mem, op->dummy.buswidth, true)) |
| 141 | return false; |
| 142 | |
| 143 | if (op->data.nbytes && |
| 144 | spi_check_buswidth_req(mem, op->data.buswidth, |
| 145 | op->data.dir == SPI_MEM_DATA_OUT)) |
| 146 | return false; |
| 147 | |
| 148 | return true; |
| 149 | } |
| 150 | EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); |
| 151 | |
| 152 | /** |
| 153 | * spi_mem_supports_op() - Check if a memory device and the controller it is |
| 154 | * connected to support a specific memory operation |
| 155 | * @mem: the SPI memory |
| 156 | * @op: the memory operation to check |
| 157 | * |
| 158 | * Some controllers are only supporting Single or Dual IOs, others might only |
| 159 | * support specific opcodes, or it can even be that the controller and device |
| 160 | * both support Quad IOs but the hardware prevents you from using it because |
| 161 | * only 2 IO lines are connected. |
| 162 | * |
| 163 | * This function checks whether a specific operation is supported. |
| 164 | * |
| 165 | * Return: true if @op is supported, false otherwise. |
| 166 | */ |
| 167 | bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 168 | { |
| 169 | struct spi_controller *ctlr = mem->spi->controller; |
| 170 | |
| 171 | if (ctlr->mem_ops && ctlr->mem_ops->supports_op) |
| 172 | return ctlr->mem_ops->supports_op(mem, op); |
| 173 | |
| 174 | return spi_mem_default_supports_op(mem, op); |
| 175 | } |
| 176 | EXPORT_SYMBOL_GPL(spi_mem_supports_op); |
| 177 | |
| 178 | /** |
| 179 | * spi_mem_exec_op() - Execute a memory operation |
| 180 | * @mem: the SPI memory |
| 181 | * @op: the memory operation to execute |
| 182 | * |
| 183 | * Executes a memory operation. |
| 184 | * |
| 185 | * This function first checks that @op is supported and then tries to execute |
| 186 | * it. |
| 187 | * |
| 188 | * Return: 0 in case of success, a negative error code otherwise. |
| 189 | */ |
| 190 | int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 191 | { |
| 192 | unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; |
| 193 | struct spi_controller *ctlr = mem->spi->controller; |
| 194 | struct spi_transfer xfers[4] = { }; |
| 195 | struct spi_message msg; |
| 196 | u8 *tmpbuf; |
| 197 | int ret; |
| 198 | |
| 199 | if (!spi_mem_supports_op(mem, op)) |
| 200 | return -ENOTSUPP; |
| 201 | |
| 202 | if (ctlr->mem_ops) { |
| 203 | /* |
| 204 | * Flush the message queue before executing our SPI memory |
| 205 | * operation to prevent preemption of regular SPI transfers. |
| 206 | */ |
| 207 | spi_flush_queue(ctlr); |
| 208 | |
| 209 | if (ctlr->auto_runtime_pm) { |
| 210 | ret = pm_runtime_get_sync(ctlr->dev.parent); |
| 211 | if (ret < 0) { |
| 212 | dev_err(&ctlr->dev, |
| 213 | "Failed to power device: %d\n", |
| 214 | ret); |
| 215 | return ret; |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | mutex_lock(&ctlr->bus_lock_mutex); |
| 220 | mutex_lock(&ctlr->io_mutex); |
| 221 | ret = ctlr->mem_ops->exec_op(mem, op); |
| 222 | mutex_unlock(&ctlr->io_mutex); |
| 223 | mutex_unlock(&ctlr->bus_lock_mutex); |
| 224 | |
| 225 | if (ctlr->auto_runtime_pm) |
| 226 | pm_runtime_put(ctlr->dev.parent); |
| 227 | |
| 228 | /* |
| 229 | * Some controllers only optimize specific paths (typically the |
| 230 | * read path) and expect the core to use the regular SPI |
| 231 | * interface in other cases. |
| 232 | */ |
| 233 | if (!ret || ret != -ENOTSUPP) |
| 234 | return ret; |
| 235 | } |
| 236 | |
| 237 | tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes + |
| 238 | op->dummy.nbytes; |
| 239 | |
| 240 | /* |
| 241 | * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so |
| 242 | * we're guaranteed that this buffer is DMA-able, as required by the |
| 243 | * SPI layer. |
| 244 | */ |
| 245 | tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); |
| 246 | if (!tmpbuf) |
| 247 | return -ENOMEM; |
| 248 | |
| 249 | spi_message_init(&msg); |
| 250 | |
| 251 | tmpbuf[0] = op->cmd.opcode; |
| 252 | xfers[xferpos].tx_buf = tmpbuf; |
| 253 | xfers[xferpos].len = sizeof(op->cmd.opcode); |
| 254 | xfers[xferpos].tx_nbits = op->cmd.buswidth; |
| 255 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 256 | xferpos++; |
| 257 | totalxferlen++; |
| 258 | |
| 259 | if (op->addr.nbytes) { |
| 260 | int i; |
| 261 | |
| 262 | for (i = 0; i < op->addr.nbytes; i++) |
| 263 | tmpbuf[i + 1] = op->addr.val >> |
| 264 | (8 * (op->addr.nbytes - i - 1)); |
| 265 | |
| 266 | xfers[xferpos].tx_buf = tmpbuf + 1; |
| 267 | xfers[xferpos].len = op->addr.nbytes; |
| 268 | xfers[xferpos].tx_nbits = op->addr.buswidth; |
| 269 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 270 | xferpos++; |
| 271 | totalxferlen += op->addr.nbytes; |
| 272 | } |
| 273 | |
| 274 | if (op->dummy.nbytes) { |
| 275 | memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); |
| 276 | xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; |
| 277 | xfers[xferpos].len = op->dummy.nbytes; |
| 278 | xfers[xferpos].tx_nbits = op->dummy.buswidth; |
| 279 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 280 | xferpos++; |
| 281 | totalxferlen += op->dummy.nbytes; |
| 282 | } |
| 283 | |
| 284 | if (op->data.nbytes) { |
| 285 | if (op->data.dir == SPI_MEM_DATA_IN) { |
| 286 | xfers[xferpos].rx_buf = op->data.buf.in; |
| 287 | xfers[xferpos].rx_nbits = op->data.buswidth; |
| 288 | } else { |
| 289 | xfers[xferpos].tx_buf = op->data.buf.out; |
| 290 | xfers[xferpos].tx_nbits = op->data.buswidth; |
| 291 | } |
| 292 | |
| 293 | xfers[xferpos].len = op->data.nbytes; |
| 294 | spi_message_add_tail(&xfers[xferpos], &msg); |
| 295 | xferpos++; |
| 296 | totalxferlen += op->data.nbytes; |
| 297 | } |
| 298 | |
| 299 | ret = spi_sync(mem->spi, &msg); |
| 300 | |
| 301 | kfree(tmpbuf); |
| 302 | |
| 303 | if (ret) |
| 304 | return ret; |
| 305 | |
| 306 | if (msg.actual_length != totalxferlen) |
| 307 | return -EIO; |
| 308 | |
| 309 | return 0; |
| 310 | } |
| 311 | EXPORT_SYMBOL_GPL(spi_mem_exec_op); |
| 312 | |
| 313 | /** |
| 314 | * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to |
| 315 | * match controller limitations |
| 316 | * @mem: the SPI memory |
| 317 | * @op: the operation to adjust |
| 318 | * |
| 319 | * Some controllers have FIFO limitations and must split a data transfer |
| 320 | * operation into multiple ones, others require a specific alignment for |
| 321 | * optimized accesses. This function allows SPI mem drivers to split a single |
| 322 | * operation into multiple sub-operations when required. |
| 323 | * |
| 324 | * Return: a negative error code if the controller can't properly adjust @op, |
| 325 | * 0 otherwise. Note that @op->data.nbytes will be updated if @op |
| 326 | * can't be handled in a single step. |
| 327 | */ |
| 328 | int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| 329 | { |
| 330 | struct spi_controller *ctlr = mem->spi->controller; |
| 331 | |
| 332 | if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) |
| 333 | return ctlr->mem_ops->adjust_op_size(mem, op); |
| 334 | |
| 335 | return 0; |
| 336 | } |
| 337 | EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); |
| 338 | |
| 339 | static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) |
| 340 | { |
| 341 | return container_of(drv, struct spi_mem_driver, spidrv.driver); |
| 342 | } |
| 343 | |
| 344 | static int spi_mem_probe(struct spi_device *spi) |
| 345 | { |
| 346 | struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| 347 | struct spi_mem *mem; |
| 348 | |
| 349 | mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); |
| 350 | if (!mem) |
| 351 | return -ENOMEM; |
| 352 | |
| 353 | mem->spi = spi; |
| 354 | spi_set_drvdata(spi, mem); |
| 355 | |
| 356 | return memdrv->probe(mem); |
| 357 | } |
| 358 | |
| 359 | static int spi_mem_remove(struct spi_device *spi) |
| 360 | { |
| 361 | struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| 362 | struct spi_mem *mem = spi_get_drvdata(spi); |
| 363 | |
| 364 | if (memdrv->remove) |
| 365 | return memdrv->remove(mem); |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | static void spi_mem_shutdown(struct spi_device *spi) |
| 371 | { |
| 372 | struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); |
| 373 | struct spi_mem *mem = spi_get_drvdata(spi); |
| 374 | |
| 375 | if (memdrv->shutdown) |
| 376 | memdrv->shutdown(mem); |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * spi_mem_driver_register_with_owner() - Register a SPI memory driver |
| 381 | * @memdrv: the SPI memory driver to register |
| 382 | * @owner: the owner of this driver |
| 383 | * |
| 384 | * Registers a SPI memory driver. |
| 385 | * |
| 386 | * Return: 0 in case of success, a negative error core otherwise. |
| 387 | */ |
| 388 | |
| 389 | int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, |
| 390 | struct module *owner) |
| 391 | { |
| 392 | memdrv->spidrv.probe = spi_mem_probe; |
| 393 | memdrv->spidrv.remove = spi_mem_remove; |
| 394 | memdrv->spidrv.shutdown = spi_mem_shutdown; |
| 395 | |
| 396 | return __spi_register_driver(owner, &memdrv->spidrv); |
| 397 | } |
| 398 | EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); |
| 399 | |
| 400 | /** |
| 401 | * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver |
| 402 | * @memdrv: the SPI memory driver to unregister |
| 403 | * |
| 404 | * Unregisters a SPI memory driver. |
| 405 | */ |
| 406 | void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) |
| 407 | { |
| 408 | spi_unregister_driver(&memdrv->spidrv); |
| 409 | } |
| 410 | EXPORT_SYMBOL_GPL(spi_mem_driver_unregister); |