Ben Hutchings | 86094f7 | 2013-08-21 19:51:04 +0100 | [diff] [blame^] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2006-2011 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/bitops.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/pci.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/seq_file.h> |
| 17 | #include "net_driver.h" |
| 18 | #include "bitfield.h" |
| 19 | #include "efx.h" |
| 20 | #include "nic.h" |
| 21 | #include "farch_regs.h" |
| 22 | #include "io.h" |
| 23 | #include "workarounds.h" |
| 24 | |
| 25 | /* Falcon-architecture (SFC4000 and SFC9000-family) support */ |
| 26 | |
| 27 | /************************************************************************** |
| 28 | * |
| 29 | * Configurable values |
| 30 | * |
| 31 | ************************************************************************** |
| 32 | */ |
| 33 | |
| 34 | /* This is set to 16 for a good reason. In summary, if larger than |
| 35 | * 16, the descriptor cache holds more than a default socket |
| 36 | * buffer's worth of packets (for UDP we can only have at most one |
| 37 | * socket buffer's worth outstanding). This combined with the fact |
| 38 | * that we only get 1 TX event per descriptor cache means the NIC |
| 39 | * goes idle. |
| 40 | */ |
| 41 | #define TX_DC_ENTRIES 16 |
| 42 | #define TX_DC_ENTRIES_ORDER 1 |
| 43 | |
| 44 | #define RX_DC_ENTRIES 64 |
| 45 | #define RX_DC_ENTRIES_ORDER 3 |
| 46 | |
| 47 | /* If EFX_MAX_INT_ERRORS internal errors occur within |
| 48 | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and |
| 49 | * disable it. |
| 50 | */ |
| 51 | #define EFX_INT_ERROR_EXPIRE 3600 |
| 52 | #define EFX_MAX_INT_ERRORS 5 |
| 53 | |
| 54 | /* Depth of RX flush request fifo */ |
| 55 | #define EFX_RX_FLUSH_COUNT 4 |
| 56 | |
| 57 | /* Driver generated events */ |
| 58 | #define _EFX_CHANNEL_MAGIC_TEST 0x000101 |
| 59 | #define _EFX_CHANNEL_MAGIC_FILL 0x000102 |
| 60 | #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103 |
| 61 | #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104 |
| 62 | |
| 63 | #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) |
| 64 | #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) |
| 65 | |
| 66 | #define EFX_CHANNEL_MAGIC_TEST(_channel) \ |
| 67 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel) |
| 68 | #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \ |
| 69 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \ |
| 70 | efx_rx_queue_index(_rx_queue)) |
| 71 | #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ |
| 72 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \ |
| 73 | efx_rx_queue_index(_rx_queue)) |
| 74 | #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ |
| 75 | _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \ |
| 76 | (_tx_queue)->queue) |
| 77 | |
| 78 | static void efx_farch_magic_event(struct efx_channel *channel, u32 magic); |
| 79 | |
| 80 | /************************************************************************** |
| 81 | * |
| 82 | * Hardware access |
| 83 | * |
| 84 | **************************************************************************/ |
| 85 | |
| 86 | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, |
| 87 | unsigned int index) |
| 88 | { |
| 89 | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, |
| 90 | value, index); |
| 91 | } |
| 92 | |
| 93 | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, |
| 94 | const efx_oword_t *mask) |
| 95 | { |
| 96 | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || |
| 97 | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); |
| 98 | } |
| 99 | |
| 100 | int efx_farch_test_registers(struct efx_nic *efx, |
| 101 | const struct efx_farch_register_test *regs, |
| 102 | size_t n_regs) |
| 103 | { |
| 104 | unsigned address = 0, i, j; |
| 105 | efx_oword_t mask, imask, original, reg, buf; |
| 106 | |
| 107 | for (i = 0; i < n_regs; ++i) { |
| 108 | address = regs[i].address; |
| 109 | mask = imask = regs[i].mask; |
| 110 | EFX_INVERT_OWORD(imask); |
| 111 | |
| 112 | efx_reado(efx, &original, address); |
| 113 | |
| 114 | /* bit sweep on and off */ |
| 115 | for (j = 0; j < 128; j++) { |
| 116 | if (!EFX_EXTRACT_OWORD32(mask, j, j)) |
| 117 | continue; |
| 118 | |
| 119 | /* Test this testable bit can be set in isolation */ |
| 120 | EFX_AND_OWORD(reg, original, mask); |
| 121 | EFX_SET_OWORD32(reg, j, j, 1); |
| 122 | |
| 123 | efx_writeo(efx, ®, address); |
| 124 | efx_reado(efx, &buf, address); |
| 125 | |
| 126 | if (efx_masked_compare_oword(®, &buf, &mask)) |
| 127 | goto fail; |
| 128 | |
| 129 | /* Test this testable bit can be cleared in isolation */ |
| 130 | EFX_OR_OWORD(reg, original, mask); |
| 131 | EFX_SET_OWORD32(reg, j, j, 0); |
| 132 | |
| 133 | efx_writeo(efx, ®, address); |
| 134 | efx_reado(efx, &buf, address); |
| 135 | |
| 136 | if (efx_masked_compare_oword(®, &buf, &mask)) |
| 137 | goto fail; |
| 138 | } |
| 139 | |
| 140 | efx_writeo(efx, &original, address); |
| 141 | } |
| 142 | |
| 143 | return 0; |
| 144 | |
| 145 | fail: |
| 146 | netif_err(efx, hw, efx->net_dev, |
| 147 | "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT |
| 148 | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), |
| 149 | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); |
| 150 | return -EIO; |
| 151 | } |
| 152 | |
| 153 | /************************************************************************** |
| 154 | * |
| 155 | * Special buffer handling |
| 156 | * Special buffers are used for event queues and the TX and RX |
| 157 | * descriptor rings. |
| 158 | * |
| 159 | *************************************************************************/ |
| 160 | |
| 161 | /* |
| 162 | * Initialise a special buffer |
| 163 | * |
| 164 | * This will define a buffer (previously allocated via |
| 165 | * efx_alloc_special_buffer()) in the buffer table, allowing |
| 166 | * it to be used for event queues, descriptor rings etc. |
| 167 | */ |
| 168 | static void |
| 169 | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 170 | { |
| 171 | efx_qword_t buf_desc; |
| 172 | unsigned int index; |
| 173 | dma_addr_t dma_addr; |
| 174 | int i; |
| 175 | |
| 176 | EFX_BUG_ON_PARANOID(!buffer->buf.addr); |
| 177 | |
| 178 | /* Write buffer descriptors to NIC */ |
| 179 | for (i = 0; i < buffer->entries; i++) { |
| 180 | index = buffer->index + i; |
| 181 | dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE); |
| 182 | netif_dbg(efx, probe, efx->net_dev, |
| 183 | "mapping special buffer %d at %llx\n", |
| 184 | index, (unsigned long long)dma_addr); |
| 185 | EFX_POPULATE_QWORD_3(buf_desc, |
| 186 | FRF_AZ_BUF_ADR_REGION, 0, |
| 187 | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, |
| 188 | FRF_AZ_BUF_OWNER_ID_FBUF, 0); |
| 189 | efx_write_buf_tbl(efx, &buf_desc, index); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | /* Unmaps a buffer and clears the buffer table entries */ |
| 194 | static void |
| 195 | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 196 | { |
| 197 | efx_oword_t buf_tbl_upd; |
| 198 | unsigned int start = buffer->index; |
| 199 | unsigned int end = (buffer->index + buffer->entries - 1); |
| 200 | |
| 201 | if (!buffer->entries) |
| 202 | return; |
| 203 | |
| 204 | netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", |
| 205 | buffer->index, buffer->index + buffer->entries - 1); |
| 206 | |
| 207 | EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| 208 | FRF_AZ_BUF_UPD_CMD, 0, |
| 209 | FRF_AZ_BUF_CLR_CMD, 1, |
| 210 | FRF_AZ_BUF_CLR_END_ID, end, |
| 211 | FRF_AZ_BUF_CLR_START_ID, start); |
| 212 | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Allocate a new special buffer |
| 217 | * |
| 218 | * This allocates memory for a new buffer, clears it and allocates a |
| 219 | * new buffer ID range. It does not write into the buffer table. |
| 220 | * |
| 221 | * This call will allocate 4KB buffers, since 8KB buffers can't be |
| 222 | * used for event queues and descriptor rings. |
| 223 | */ |
| 224 | static int efx_alloc_special_buffer(struct efx_nic *efx, |
| 225 | struct efx_special_buffer *buffer, |
| 226 | unsigned int len) |
| 227 | { |
| 228 | len = ALIGN(len, EFX_BUF_SIZE); |
| 229 | |
| 230 | if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) |
| 231 | return -ENOMEM; |
| 232 | buffer->entries = len / EFX_BUF_SIZE; |
| 233 | BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1)); |
| 234 | |
| 235 | /* Select new buffer ID */ |
| 236 | buffer->index = efx->next_buffer_table; |
| 237 | efx->next_buffer_table += buffer->entries; |
| 238 | #ifdef CONFIG_SFC_SRIOV |
| 239 | BUG_ON(efx_sriov_enabled(efx) && |
| 240 | efx->vf_buftbl_base < efx->next_buffer_table); |
| 241 | #endif |
| 242 | |
| 243 | netif_dbg(efx, probe, efx->net_dev, |
| 244 | "allocating special buffers %d-%d at %llx+%x " |
| 245 | "(virt %p phys %llx)\n", buffer->index, |
| 246 | buffer->index + buffer->entries - 1, |
| 247 | (u64)buffer->buf.dma_addr, len, |
| 248 | buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); |
| 249 | |
| 250 | return 0; |
| 251 | } |
| 252 | |
| 253 | static void |
| 254 | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 255 | { |
| 256 | if (!buffer->buf.addr) |
| 257 | return; |
| 258 | |
| 259 | netif_dbg(efx, hw, efx->net_dev, |
| 260 | "deallocating special buffers %d-%d at %llx+%x " |
| 261 | "(virt %p phys %llx)\n", buffer->index, |
| 262 | buffer->index + buffer->entries - 1, |
| 263 | (u64)buffer->buf.dma_addr, buffer->buf.len, |
| 264 | buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); |
| 265 | |
| 266 | efx_nic_free_buffer(efx, &buffer->buf); |
| 267 | buffer->entries = 0; |
| 268 | } |
| 269 | |
| 270 | /************************************************************************** |
| 271 | * |
| 272 | * TX path |
| 273 | * |
| 274 | **************************************************************************/ |
| 275 | |
| 276 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| 277 | static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| 278 | { |
| 279 | unsigned write_ptr; |
| 280 | efx_dword_t reg; |
| 281 | |
| 282 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| 283 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); |
| 284 | efx_writed_page(tx_queue->efx, ®, |
| 285 | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); |
| 286 | } |
| 287 | |
| 288 | /* Write pointer and first descriptor for TX descriptor ring */ |
| 289 | static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue, |
| 290 | const efx_qword_t *txd) |
| 291 | { |
| 292 | unsigned write_ptr; |
| 293 | efx_oword_t reg; |
| 294 | |
| 295 | BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); |
| 296 | BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); |
| 297 | |
| 298 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| 299 | EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, |
| 300 | FRF_AZ_TX_DESC_WPTR, write_ptr); |
| 301 | reg.qword[0] = *txd; |
| 302 | efx_writeo_page(tx_queue->efx, ®, |
| 303 | FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); |
| 304 | } |
| 305 | |
| 306 | |
| 307 | /* For each entry inserted into the software descriptor ring, create a |
| 308 | * descriptor in the hardware TX descriptor ring (in host memory), and |
| 309 | * write a doorbell. |
| 310 | */ |
| 311 | void efx_farch_tx_write(struct efx_tx_queue *tx_queue) |
| 312 | { |
| 313 | |
| 314 | struct efx_tx_buffer *buffer; |
| 315 | efx_qword_t *txd; |
| 316 | unsigned write_ptr; |
| 317 | unsigned old_write_count = tx_queue->write_count; |
| 318 | |
| 319 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); |
| 320 | |
| 321 | do { |
| 322 | write_ptr = tx_queue->write_count & tx_queue->ptr_mask; |
| 323 | buffer = &tx_queue->buffer[write_ptr]; |
| 324 | txd = efx_tx_desc(tx_queue, write_ptr); |
| 325 | ++tx_queue->write_count; |
| 326 | |
| 327 | /* Create TX descriptor ring entry */ |
| 328 | BUILD_BUG_ON(EFX_TX_BUF_CONT != 1); |
| 329 | EFX_POPULATE_QWORD_4(*txd, |
| 330 | FSF_AZ_TX_KER_CONT, |
| 331 | buffer->flags & EFX_TX_BUF_CONT, |
| 332 | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, |
| 333 | FSF_AZ_TX_KER_BUF_REGION, 0, |
| 334 | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); |
| 335 | } while (tx_queue->write_count != tx_queue->insert_count); |
| 336 | |
| 337 | wmb(); /* Ensure descriptors are written before they are fetched */ |
| 338 | |
| 339 | if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) { |
| 340 | txd = efx_tx_desc(tx_queue, |
| 341 | old_write_count & tx_queue->ptr_mask); |
| 342 | efx_farch_push_tx_desc(tx_queue, txd); |
| 343 | ++tx_queue->pushes; |
| 344 | } else { |
| 345 | efx_farch_notify_tx_desc(tx_queue); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | /* Allocate hardware resources for a TX queue */ |
| 350 | int efx_farch_tx_probe(struct efx_tx_queue *tx_queue) |
| 351 | { |
| 352 | struct efx_nic *efx = tx_queue->efx; |
| 353 | unsigned entries; |
| 354 | |
| 355 | entries = tx_queue->ptr_mask + 1; |
| 356 | return efx_alloc_special_buffer(efx, &tx_queue->txd, |
| 357 | entries * sizeof(efx_qword_t)); |
| 358 | } |
| 359 | |
| 360 | void efx_farch_tx_init(struct efx_tx_queue *tx_queue) |
| 361 | { |
| 362 | struct efx_nic *efx = tx_queue->efx; |
| 363 | efx_oword_t reg; |
| 364 | |
| 365 | /* Pin TX descriptor ring */ |
| 366 | efx_init_special_buffer(efx, &tx_queue->txd); |
| 367 | |
| 368 | /* Push TX descriptor ring to card */ |
| 369 | EFX_POPULATE_OWORD_10(reg, |
| 370 | FRF_AZ_TX_DESCQ_EN, 1, |
| 371 | FRF_AZ_TX_ISCSI_DDIG_EN, 0, |
| 372 | FRF_AZ_TX_ISCSI_HDIG_EN, 0, |
| 373 | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| 374 | FRF_AZ_TX_DESCQ_EVQ_ID, |
| 375 | tx_queue->channel->channel, |
| 376 | FRF_AZ_TX_DESCQ_OWNER_ID, 0, |
| 377 | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, |
| 378 | FRF_AZ_TX_DESCQ_SIZE, |
| 379 | __ffs(tx_queue->txd.entries), |
| 380 | FRF_AZ_TX_DESCQ_TYPE, 0, |
| 381 | FRF_BZ_TX_NON_IP_DROP_DIS, 1); |
| 382 | |
| 383 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 384 | int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; |
| 385 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); |
| 386 | EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, |
| 387 | !csum); |
| 388 | } |
| 389 | |
| 390 | efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, |
| 391 | tx_queue->queue); |
| 392 | |
| 393 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { |
| 394 | /* Only 128 bits in this register */ |
| 395 | BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); |
| 396 | |
| 397 | efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); |
| 398 | if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) |
| 399 | __clear_bit_le(tx_queue->queue, ®); |
| 400 | else |
| 401 | __set_bit_le(tx_queue->queue, ®); |
| 402 | efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); |
| 403 | } |
| 404 | |
| 405 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 406 | EFX_POPULATE_OWORD_1(reg, |
| 407 | FRF_BZ_TX_PACE, |
| 408 | (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? |
| 409 | FFE_BZ_TX_PACE_OFF : |
| 410 | FFE_BZ_TX_PACE_RESERVED); |
| 411 | efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, |
| 412 | tx_queue->queue); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| 417 | { |
| 418 | struct efx_nic *efx = tx_queue->efx; |
| 419 | efx_oword_t tx_flush_descq; |
| 420 | |
| 421 | WARN_ON(atomic_read(&tx_queue->flush_outstanding)); |
| 422 | atomic_set(&tx_queue->flush_outstanding, 1); |
| 423 | |
| 424 | EFX_POPULATE_OWORD_2(tx_flush_descq, |
| 425 | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, |
| 426 | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); |
| 427 | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); |
| 428 | } |
| 429 | |
| 430 | void efx_farch_tx_fini(struct efx_tx_queue *tx_queue) |
| 431 | { |
| 432 | struct efx_nic *efx = tx_queue->efx; |
| 433 | efx_oword_t tx_desc_ptr; |
| 434 | |
| 435 | /* Remove TX descriptor ring from card */ |
| 436 | EFX_ZERO_OWORD(tx_desc_ptr); |
| 437 | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| 438 | tx_queue->queue); |
| 439 | |
| 440 | /* Unpin TX descriptor ring */ |
| 441 | efx_fini_special_buffer(efx, &tx_queue->txd); |
| 442 | } |
| 443 | |
| 444 | /* Free buffers backing TX queue */ |
| 445 | void efx_farch_tx_remove(struct efx_tx_queue *tx_queue) |
| 446 | { |
| 447 | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| 448 | } |
| 449 | |
| 450 | /************************************************************************** |
| 451 | * |
| 452 | * RX path |
| 453 | * |
| 454 | **************************************************************************/ |
| 455 | |
| 456 | /* This creates an entry in the RX descriptor queue */ |
| 457 | static inline void |
| 458 | efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) |
| 459 | { |
| 460 | struct efx_rx_buffer *rx_buf; |
| 461 | efx_qword_t *rxd; |
| 462 | |
| 463 | rxd = efx_rx_desc(rx_queue, index); |
| 464 | rx_buf = efx_rx_buffer(rx_queue, index); |
| 465 | EFX_POPULATE_QWORD_3(*rxd, |
| 466 | FSF_AZ_RX_KER_BUF_SIZE, |
| 467 | rx_buf->len - |
| 468 | rx_queue->efx->type->rx_buffer_padding, |
| 469 | FSF_AZ_RX_KER_BUF_REGION, 0, |
| 470 | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); |
| 471 | } |
| 472 | |
| 473 | /* This writes to the RX_DESC_WPTR register for the specified receive |
| 474 | * descriptor ring. |
| 475 | */ |
| 476 | void efx_farch_rx_write(struct efx_rx_queue *rx_queue) |
| 477 | { |
| 478 | struct efx_nic *efx = rx_queue->efx; |
| 479 | efx_dword_t reg; |
| 480 | unsigned write_ptr; |
| 481 | |
| 482 | while (rx_queue->notified_count != rx_queue->added_count) { |
| 483 | efx_farch_build_rx_desc( |
| 484 | rx_queue, |
| 485 | rx_queue->notified_count & rx_queue->ptr_mask); |
| 486 | ++rx_queue->notified_count; |
| 487 | } |
| 488 | |
| 489 | wmb(); |
| 490 | write_ptr = rx_queue->added_count & rx_queue->ptr_mask; |
| 491 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); |
| 492 | efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, |
| 493 | efx_rx_queue_index(rx_queue)); |
| 494 | } |
| 495 | |
| 496 | int efx_farch_rx_probe(struct efx_rx_queue *rx_queue) |
| 497 | { |
| 498 | struct efx_nic *efx = rx_queue->efx; |
| 499 | unsigned entries; |
| 500 | |
| 501 | entries = rx_queue->ptr_mask + 1; |
| 502 | return efx_alloc_special_buffer(efx, &rx_queue->rxd, |
| 503 | entries * sizeof(efx_qword_t)); |
| 504 | } |
| 505 | |
| 506 | void efx_farch_rx_init(struct efx_rx_queue *rx_queue) |
| 507 | { |
| 508 | efx_oword_t rx_desc_ptr; |
| 509 | struct efx_nic *efx = rx_queue->efx; |
| 510 | bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; |
| 511 | bool iscsi_digest_en = is_b0; |
| 512 | bool jumbo_en; |
| 513 | |
| 514 | /* For kernel-mode queues in Falcon A1, the JUMBO flag enables |
| 515 | * DMA to continue after a PCIe page boundary (and scattering |
| 516 | * is not possible). In Falcon B0 and Siena, it enables |
| 517 | * scatter. |
| 518 | */ |
| 519 | jumbo_en = !is_b0 || efx->rx_scatter; |
| 520 | |
| 521 | netif_dbg(efx, hw, efx->net_dev, |
| 522 | "RX queue %d ring in special buffers %d-%d\n", |
| 523 | efx_rx_queue_index(rx_queue), rx_queue->rxd.index, |
| 524 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| 525 | |
| 526 | rx_queue->scatter_n = 0; |
| 527 | |
| 528 | /* Pin RX descriptor ring */ |
| 529 | efx_init_special_buffer(efx, &rx_queue->rxd); |
| 530 | |
| 531 | /* Push RX descriptor ring to card */ |
| 532 | EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| 533 | FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, |
| 534 | FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, |
| 535 | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| 536 | FRF_AZ_RX_DESCQ_EVQ_ID, |
| 537 | efx_rx_queue_channel(rx_queue)->channel, |
| 538 | FRF_AZ_RX_DESCQ_OWNER_ID, 0, |
| 539 | FRF_AZ_RX_DESCQ_LABEL, |
| 540 | efx_rx_queue_index(rx_queue), |
| 541 | FRF_AZ_RX_DESCQ_SIZE, |
| 542 | __ffs(rx_queue->rxd.entries), |
| 543 | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| 544 | FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, |
| 545 | FRF_AZ_RX_DESCQ_EN, 1); |
| 546 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 547 | efx_rx_queue_index(rx_queue)); |
| 548 | } |
| 549 | |
| 550 | static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| 551 | { |
| 552 | struct efx_nic *efx = rx_queue->efx; |
| 553 | efx_oword_t rx_flush_descq; |
| 554 | |
| 555 | EFX_POPULATE_OWORD_2(rx_flush_descq, |
| 556 | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, |
| 557 | FRF_AZ_RX_FLUSH_DESCQ, |
| 558 | efx_rx_queue_index(rx_queue)); |
| 559 | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); |
| 560 | } |
| 561 | |
| 562 | void efx_farch_rx_fini(struct efx_rx_queue *rx_queue) |
| 563 | { |
| 564 | efx_oword_t rx_desc_ptr; |
| 565 | struct efx_nic *efx = rx_queue->efx; |
| 566 | |
| 567 | /* Remove RX descriptor ring from card */ |
| 568 | EFX_ZERO_OWORD(rx_desc_ptr); |
| 569 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 570 | efx_rx_queue_index(rx_queue)); |
| 571 | |
| 572 | /* Unpin RX descriptor ring */ |
| 573 | efx_fini_special_buffer(efx, &rx_queue->rxd); |
| 574 | } |
| 575 | |
| 576 | /* Free buffers backing RX queue */ |
| 577 | void efx_farch_rx_remove(struct efx_rx_queue *rx_queue) |
| 578 | { |
| 579 | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| 580 | } |
| 581 | |
| 582 | /************************************************************************** |
| 583 | * |
| 584 | * Flush handling |
| 585 | * |
| 586 | **************************************************************************/ |
| 587 | |
| 588 | /* efx_farch_flush_queues() must be woken up when all flushes are completed, |
| 589 | * or more RX flushes can be kicked off. |
| 590 | */ |
| 591 | static bool efx_farch_flush_wake(struct efx_nic *efx) |
| 592 | { |
| 593 | /* Ensure that all updates are visible to efx_farch_flush_queues() */ |
| 594 | smp_mb(); |
| 595 | |
| 596 | return (atomic_read(&efx->drain_pending) == 0 || |
| 597 | (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT |
| 598 | && atomic_read(&efx->rxq_flush_pending) > 0)); |
| 599 | } |
| 600 | |
| 601 | static bool efx_check_tx_flush_complete(struct efx_nic *efx) |
| 602 | { |
| 603 | bool i = true; |
| 604 | efx_oword_t txd_ptr_tbl; |
| 605 | struct efx_channel *channel; |
| 606 | struct efx_tx_queue *tx_queue; |
| 607 | |
| 608 | efx_for_each_channel(channel, efx) { |
| 609 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 610 | efx_reado_table(efx, &txd_ptr_tbl, |
| 611 | FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); |
| 612 | if (EFX_OWORD_FIELD(txd_ptr_tbl, |
| 613 | FRF_AZ_TX_DESCQ_FLUSH) || |
| 614 | EFX_OWORD_FIELD(txd_ptr_tbl, |
| 615 | FRF_AZ_TX_DESCQ_EN)) { |
| 616 | netif_dbg(efx, hw, efx->net_dev, |
| 617 | "flush did not complete on TXQ %d\n", |
| 618 | tx_queue->queue); |
| 619 | i = false; |
| 620 | } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, |
| 621 | 1, 0)) { |
| 622 | /* The flush is complete, but we didn't |
| 623 | * receive a flush completion event |
| 624 | */ |
| 625 | netif_dbg(efx, hw, efx->net_dev, |
| 626 | "flush complete on TXQ %d, so drain " |
| 627 | "the queue\n", tx_queue->queue); |
| 628 | /* Don't need to increment drain_pending as it |
| 629 | * has already been incremented for the queues |
| 630 | * which did not drain |
| 631 | */ |
| 632 | efx_farch_magic_event(channel, |
| 633 | EFX_CHANNEL_MAGIC_TX_DRAIN( |
| 634 | tx_queue)); |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | return i; |
| 640 | } |
| 641 | |
| 642 | /* Flush all the transmit queues, and continue flushing receive queues until |
| 643 | * they're all flushed. Wait for the DRAIN events to be recieved so that there |
| 644 | * are no more RX and TX events left on any channel. */ |
| 645 | static int efx_farch_do_flush(struct efx_nic *efx) |
| 646 | { |
| 647 | unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ |
| 648 | struct efx_channel *channel; |
| 649 | struct efx_rx_queue *rx_queue; |
| 650 | struct efx_tx_queue *tx_queue; |
| 651 | int rc = 0; |
| 652 | |
| 653 | efx_for_each_channel(channel, efx) { |
| 654 | efx_for_each_channel_tx_queue(tx_queue, channel) { |
| 655 | atomic_inc(&efx->drain_pending); |
| 656 | efx_farch_flush_tx_queue(tx_queue); |
| 657 | } |
| 658 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 659 | atomic_inc(&efx->drain_pending); |
| 660 | rx_queue->flush_pending = true; |
| 661 | atomic_inc(&efx->rxq_flush_pending); |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | while (timeout && atomic_read(&efx->drain_pending) > 0) { |
| 666 | /* If SRIOV is enabled, then offload receive queue flushing to |
| 667 | * the firmware (though we will still have to poll for |
| 668 | * completion). If that fails, fall back to the old scheme. |
| 669 | */ |
| 670 | if (efx_sriov_enabled(efx)) { |
| 671 | rc = efx_mcdi_flush_rxqs(efx); |
| 672 | if (!rc) |
| 673 | goto wait; |
| 674 | } |
| 675 | |
| 676 | /* The hardware supports four concurrent rx flushes, each of |
| 677 | * which may need to be retried if there is an outstanding |
| 678 | * descriptor fetch |
| 679 | */ |
| 680 | efx_for_each_channel(channel, efx) { |
| 681 | efx_for_each_channel_rx_queue(rx_queue, channel) { |
| 682 | if (atomic_read(&efx->rxq_flush_outstanding) >= |
| 683 | EFX_RX_FLUSH_COUNT) |
| 684 | break; |
| 685 | |
| 686 | if (rx_queue->flush_pending) { |
| 687 | rx_queue->flush_pending = false; |
| 688 | atomic_dec(&efx->rxq_flush_pending); |
| 689 | atomic_inc(&efx->rxq_flush_outstanding); |
| 690 | efx_farch_flush_rx_queue(rx_queue); |
| 691 | } |
| 692 | } |
| 693 | } |
| 694 | |
| 695 | wait: |
| 696 | timeout = wait_event_timeout(efx->flush_wq, |
| 697 | efx_farch_flush_wake(efx), |
| 698 | timeout); |
| 699 | } |
| 700 | |
| 701 | if (atomic_read(&efx->drain_pending) && |
| 702 | !efx_check_tx_flush_complete(efx)) { |
| 703 | netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " |
| 704 | "(rx %d+%d)\n", atomic_read(&efx->drain_pending), |
| 705 | atomic_read(&efx->rxq_flush_outstanding), |
| 706 | atomic_read(&efx->rxq_flush_pending)); |
| 707 | rc = -ETIMEDOUT; |
| 708 | |
| 709 | atomic_set(&efx->drain_pending, 0); |
| 710 | atomic_set(&efx->rxq_flush_pending, 0); |
| 711 | atomic_set(&efx->rxq_flush_outstanding, 0); |
| 712 | } |
| 713 | |
| 714 | return rc; |
| 715 | } |
| 716 | |
| 717 | int efx_farch_fini_dmaq(struct efx_nic *efx) |
| 718 | { |
| 719 | struct efx_channel *channel; |
| 720 | struct efx_tx_queue *tx_queue; |
| 721 | struct efx_rx_queue *rx_queue; |
| 722 | int rc = 0; |
| 723 | |
| 724 | /* Do not attempt to write to the NIC during EEH recovery */ |
| 725 | if (efx->state != STATE_RECOVERY) { |
| 726 | /* Only perform flush if DMA is enabled */ |
| 727 | if (efx->pci_dev->is_busmaster) { |
| 728 | efx->type->prepare_flush(efx); |
| 729 | rc = efx_farch_do_flush(efx); |
| 730 | efx->type->finish_flush(efx); |
| 731 | } |
| 732 | |
| 733 | efx_for_each_channel(channel, efx) { |
| 734 | efx_for_each_channel_rx_queue(rx_queue, channel) |
| 735 | efx_farch_rx_fini(rx_queue); |
| 736 | efx_for_each_channel_tx_queue(tx_queue, channel) |
| 737 | efx_farch_tx_fini(tx_queue); |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | return rc; |
| 742 | } |
| 743 | |
| 744 | /************************************************************************** |
| 745 | * |
| 746 | * Event queue processing |
| 747 | * Event queues are processed by per-channel tasklets. |
| 748 | * |
| 749 | **************************************************************************/ |
| 750 | |
| 751 | /* Update a channel's event queue's read pointer (RPTR) register |
| 752 | * |
| 753 | * This writes the EVQ_RPTR_REG register for the specified channel's |
| 754 | * event queue. |
| 755 | */ |
| 756 | void efx_farch_ev_read_ack(struct efx_channel *channel) |
| 757 | { |
| 758 | efx_dword_t reg; |
| 759 | struct efx_nic *efx = channel->efx; |
| 760 | |
| 761 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, |
| 762 | channel->eventq_read_ptr & channel->eventq_mask); |
| 763 | |
| 764 | /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size |
| 765 | * of 4 bytes, but it is really 16 bytes just like later revisions. |
| 766 | */ |
| 767 | efx_writed(efx, ®, |
| 768 | efx->type->evq_rptr_tbl_base + |
| 769 | FR_BZ_EVQ_RPTR_STEP * channel->channel); |
| 770 | } |
| 771 | |
| 772 | /* Use HW to insert a SW defined event */ |
| 773 | void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, |
| 774 | efx_qword_t *event) |
| 775 | { |
| 776 | efx_oword_t drv_ev_reg; |
| 777 | |
| 778 | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || |
| 779 | FRF_AZ_DRV_EV_DATA_WIDTH != 64); |
| 780 | drv_ev_reg.u32[0] = event->u32[0]; |
| 781 | drv_ev_reg.u32[1] = event->u32[1]; |
| 782 | drv_ev_reg.u32[2] = 0; |
| 783 | drv_ev_reg.u32[3] = 0; |
| 784 | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); |
| 785 | efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); |
| 786 | } |
| 787 | |
| 788 | static void efx_farch_magic_event(struct efx_channel *channel, u32 magic) |
| 789 | { |
| 790 | efx_qword_t event; |
| 791 | |
| 792 | EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, |
| 793 | FSE_AZ_EV_CODE_DRV_GEN_EV, |
| 794 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); |
| 795 | efx_farch_generate_event(channel->efx, channel->channel, &event); |
| 796 | } |
| 797 | |
| 798 | /* Handle a transmit completion event |
| 799 | * |
| 800 | * The NIC batches TX completion events; the message we receive is of |
| 801 | * the form "complete all TX events up to this index". |
| 802 | */ |
| 803 | static int |
| 804 | efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) |
| 805 | { |
| 806 | unsigned int tx_ev_desc_ptr; |
| 807 | unsigned int tx_ev_q_label; |
| 808 | struct efx_tx_queue *tx_queue; |
| 809 | struct efx_nic *efx = channel->efx; |
| 810 | int tx_packets = 0; |
| 811 | |
| 812 | if (unlikely(ACCESS_ONCE(efx->reset_pending))) |
| 813 | return 0; |
| 814 | |
| 815 | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { |
| 816 | /* Transmit completion */ |
| 817 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); |
| 818 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| 819 | tx_queue = efx_channel_get_tx_queue( |
| 820 | channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| 821 | tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & |
| 822 | tx_queue->ptr_mask); |
| 823 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| 824 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { |
| 825 | /* Rewrite the FIFO write pointer */ |
| 826 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| 827 | tx_queue = efx_channel_get_tx_queue( |
| 828 | channel, tx_ev_q_label % EFX_TXQ_TYPES); |
| 829 | |
| 830 | netif_tx_lock(efx->net_dev); |
| 831 | efx_farch_notify_tx_desc(tx_queue); |
| 832 | netif_tx_unlock(efx->net_dev); |
| 833 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && |
| 834 | EFX_WORKAROUND_10727(efx)) { |
| 835 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| 836 | } else { |
| 837 | netif_err(efx, tx_err, efx->net_dev, |
| 838 | "channel %d unexpected TX event " |
| 839 | EFX_QWORD_FMT"\n", channel->channel, |
| 840 | EFX_QWORD_VAL(*event)); |
| 841 | } |
| 842 | |
| 843 | return tx_packets; |
| 844 | } |
| 845 | |
| 846 | /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| 847 | static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| 848 | const efx_qword_t *event) |
| 849 | { |
| 850 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| 851 | struct efx_nic *efx = rx_queue->efx; |
| 852 | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| 853 | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| 854 | bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; |
| 855 | bool rx_ev_other_err, rx_ev_pause_frm; |
| 856 | bool rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 857 | unsigned rx_ev_pkt_type; |
| 858 | |
| 859 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| 860 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| 861 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); |
| 862 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); |
| 863 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| 864 | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); |
| 865 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| 866 | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); |
| 867 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| 868 | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); |
| 869 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); |
| 870 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); |
| 871 | rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? |
| 872 | 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); |
| 873 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); |
| 874 | |
| 875 | /* Every error apart from tobe_disc and pause_frm */ |
| 876 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | |
| 877 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| 878 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| 879 | |
| 880 | /* Count errors that are not in MAC stats. Ignore expected |
| 881 | * checksum errors during self-test. */ |
| 882 | if (rx_ev_frm_trunc) |
| 883 | ++channel->n_rx_frm_trunc; |
| 884 | else if (rx_ev_tobe_disc) |
| 885 | ++channel->n_rx_tobe_disc; |
| 886 | else if (!efx->loopback_selftest) { |
| 887 | if (rx_ev_ip_hdr_chksum_err) |
| 888 | ++channel->n_rx_ip_hdr_chksum_err; |
| 889 | else if (rx_ev_tcp_udp_chksum_err) |
| 890 | ++channel->n_rx_tcp_udp_chksum_err; |
| 891 | } |
| 892 | |
| 893 | /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| 894 | * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| 895 | * to a FIFO overflow. |
| 896 | */ |
| 897 | #ifdef DEBUG |
| 898 | if (rx_ev_other_err && net_ratelimit()) { |
| 899 | netif_dbg(efx, rx_err, efx->net_dev, |
| 900 | " RX queue %d unexpected RX event " |
| 901 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", |
| 902 | efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), |
| 903 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| 904 | rx_ev_ip_hdr_chksum_err ? |
| 905 | " [IP_HDR_CHKSUM_ERR]" : "", |
| 906 | rx_ev_tcp_udp_chksum_err ? |
| 907 | " [TCP_UDP_CHKSUM_ERR]" : "", |
| 908 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| 909 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| 910 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", |
| 911 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| 912 | rx_ev_pause_frm ? " [PAUSE]" : ""); |
| 913 | } |
| 914 | #endif |
| 915 | |
| 916 | /* The frame must be discarded if any of these are true. */ |
| 917 | return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | |
| 918 | rx_ev_tobe_disc | rx_ev_pause_frm) ? |
| 919 | EFX_RX_PKT_DISCARD : 0; |
| 920 | } |
| 921 | |
| 922 | /* Handle receive events that are not in-order. Return true if this |
| 923 | * can be handled as a partial packet discard, false if it's more |
| 924 | * serious. |
| 925 | */ |
| 926 | static bool |
| 927 | efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) |
| 928 | { |
| 929 | struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| 930 | struct efx_nic *efx = rx_queue->efx; |
| 931 | unsigned expected, dropped; |
| 932 | |
| 933 | if (rx_queue->scatter_n && |
| 934 | index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & |
| 935 | rx_queue->ptr_mask)) { |
| 936 | ++channel->n_rx_nodesc_trunc; |
| 937 | return true; |
| 938 | } |
| 939 | |
| 940 | expected = rx_queue->removed_count & rx_queue->ptr_mask; |
| 941 | dropped = (index - expected) & rx_queue->ptr_mask; |
| 942 | netif_info(efx, rx_err, efx->net_dev, |
| 943 | "dropped %d events (index=%d expected=%d)\n", |
| 944 | dropped, index, expected); |
| 945 | |
| 946 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? |
| 947 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| 948 | return false; |
| 949 | } |
| 950 | |
| 951 | /* Handle a packet received event |
| 952 | * |
| 953 | * The NIC gives a "discard" flag if it's a unicast packet with the |
| 954 | * wrong destination address |
| 955 | * Also "is multicast" and "matches multicast filter" flags can be used to |
| 956 | * discard non-matching multicast packets. |
| 957 | */ |
| 958 | static void |
| 959 | efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) |
| 960 | { |
| 961 | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; |
| 962 | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 963 | unsigned expected_ptr; |
| 964 | bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; |
| 965 | u16 flags; |
| 966 | struct efx_rx_queue *rx_queue; |
| 967 | struct efx_nic *efx = channel->efx; |
| 968 | |
| 969 | if (unlikely(ACCESS_ONCE(efx->reset_pending))) |
| 970 | return; |
| 971 | |
| 972 | rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); |
| 973 | rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); |
| 974 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != |
| 975 | channel->channel); |
| 976 | |
| 977 | rx_queue = efx_channel_get_rx_queue(channel); |
| 978 | |
| 979 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); |
| 980 | expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & |
| 981 | rx_queue->ptr_mask); |
| 982 | |
| 983 | /* Check for partial drops and other errors */ |
| 984 | if (unlikely(rx_ev_desc_ptr != expected_ptr) || |
| 985 | unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { |
| 986 | if (rx_ev_desc_ptr != expected_ptr && |
| 987 | !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) |
| 988 | return; |
| 989 | |
| 990 | /* Discard all pending fragments */ |
| 991 | if (rx_queue->scatter_n) { |
| 992 | efx_rx_packet( |
| 993 | rx_queue, |
| 994 | rx_queue->removed_count & rx_queue->ptr_mask, |
| 995 | rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD); |
| 996 | rx_queue->removed_count += rx_queue->scatter_n; |
| 997 | rx_queue->scatter_n = 0; |
| 998 | } |
| 999 | |
| 1000 | /* Return if there is no new fragment */ |
| 1001 | if (rx_ev_desc_ptr != expected_ptr) |
| 1002 | return; |
| 1003 | |
| 1004 | /* Discard new fragment if not SOP */ |
| 1005 | if (!rx_ev_sop) { |
| 1006 | efx_rx_packet( |
| 1007 | rx_queue, |
| 1008 | rx_queue->removed_count & rx_queue->ptr_mask, |
| 1009 | 1, 0, EFX_RX_PKT_DISCARD); |
| 1010 | ++rx_queue->removed_count; |
| 1011 | return; |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | ++rx_queue->scatter_n; |
| 1016 | if (rx_ev_cont) |
| 1017 | return; |
| 1018 | |
| 1019 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); |
| 1020 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); |
| 1021 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| 1022 | |
| 1023 | if (likely(rx_ev_pkt_ok)) { |
| 1024 | /* If packet is marked as OK then we can rely on the |
| 1025 | * hardware checksum and classification. |
| 1026 | */ |
| 1027 | flags = 0; |
| 1028 | switch (rx_ev_hdr_type) { |
| 1029 | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: |
| 1030 | flags |= EFX_RX_PKT_TCP; |
| 1031 | /* fall through */ |
| 1032 | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: |
| 1033 | flags |= EFX_RX_PKT_CSUMMED; |
| 1034 | /* fall through */ |
| 1035 | case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: |
| 1036 | case FSE_AZ_RX_EV_HDR_TYPE_OTHER: |
| 1037 | break; |
| 1038 | } |
| 1039 | } else { |
| 1040 | flags = efx_farch_handle_rx_not_ok(rx_queue, event); |
| 1041 | } |
| 1042 | |
| 1043 | /* Detect multicast packets that didn't match the filter */ |
| 1044 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| 1045 | if (rx_ev_mcast_pkt) { |
| 1046 | unsigned int rx_ev_mcast_hash_match = |
| 1047 | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); |
| 1048 | |
| 1049 | if (unlikely(!rx_ev_mcast_hash_match)) { |
| 1050 | ++channel->n_rx_mcast_mismatch; |
| 1051 | flags |= EFX_RX_PKT_DISCARD; |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | channel->irq_mod_score += 2; |
| 1056 | |
| 1057 | /* Handle received packet */ |
| 1058 | efx_rx_packet(rx_queue, |
| 1059 | rx_queue->removed_count & rx_queue->ptr_mask, |
| 1060 | rx_queue->scatter_n, rx_ev_byte_cnt, flags); |
| 1061 | rx_queue->removed_count += rx_queue->scatter_n; |
| 1062 | rx_queue->scatter_n = 0; |
| 1063 | } |
| 1064 | |
| 1065 | /* If this flush done event corresponds to a &struct efx_tx_queue, then |
| 1066 | * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue |
| 1067 | * of all transmit completions. |
| 1068 | */ |
| 1069 | static void |
| 1070 | efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| 1071 | { |
| 1072 | struct efx_tx_queue *tx_queue; |
| 1073 | int qid; |
| 1074 | |
| 1075 | qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| 1076 | if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) { |
| 1077 | tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES, |
| 1078 | qid % EFX_TXQ_TYPES); |
| 1079 | if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { |
| 1080 | efx_farch_magic_event(tx_queue->channel, |
| 1081 | EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush |
| 1087 | * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add |
| 1088 | * the RX queue back to the mask of RX queues in need of flushing. |
| 1089 | */ |
| 1090 | static void |
| 1091 | efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) |
| 1092 | { |
| 1093 | struct efx_channel *channel; |
| 1094 | struct efx_rx_queue *rx_queue; |
| 1095 | int qid; |
| 1096 | bool failed; |
| 1097 | |
| 1098 | qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); |
| 1099 | failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); |
| 1100 | if (qid >= efx->n_channels) |
| 1101 | return; |
| 1102 | channel = efx_get_channel(efx, qid); |
| 1103 | if (!efx_channel_has_rx_queue(channel)) |
| 1104 | return; |
| 1105 | rx_queue = efx_channel_get_rx_queue(channel); |
| 1106 | |
| 1107 | if (failed) { |
| 1108 | netif_info(efx, hw, efx->net_dev, |
| 1109 | "RXQ %d flush retry\n", qid); |
| 1110 | rx_queue->flush_pending = true; |
| 1111 | atomic_inc(&efx->rxq_flush_pending); |
| 1112 | } else { |
| 1113 | efx_farch_magic_event(efx_rx_queue_channel(rx_queue), |
| 1114 | EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); |
| 1115 | } |
| 1116 | atomic_dec(&efx->rxq_flush_outstanding); |
| 1117 | if (efx_farch_flush_wake(efx)) |
| 1118 | wake_up(&efx->flush_wq); |
| 1119 | } |
| 1120 | |
| 1121 | static void |
| 1122 | efx_farch_handle_drain_event(struct efx_channel *channel) |
| 1123 | { |
| 1124 | struct efx_nic *efx = channel->efx; |
| 1125 | |
| 1126 | WARN_ON(atomic_read(&efx->drain_pending) == 0); |
| 1127 | atomic_dec(&efx->drain_pending); |
| 1128 | if (efx_farch_flush_wake(efx)) |
| 1129 | wake_up(&efx->flush_wq); |
| 1130 | } |
| 1131 | |
| 1132 | static void efx_farch_handle_generated_event(struct efx_channel *channel, |
| 1133 | efx_qword_t *event) |
| 1134 | { |
| 1135 | struct efx_nic *efx = channel->efx; |
| 1136 | struct efx_rx_queue *rx_queue = |
| 1137 | efx_channel_has_rx_queue(channel) ? |
| 1138 | efx_channel_get_rx_queue(channel) : NULL; |
| 1139 | unsigned magic, code; |
| 1140 | |
| 1141 | magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); |
| 1142 | code = _EFX_CHANNEL_MAGIC_CODE(magic); |
| 1143 | |
| 1144 | if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { |
| 1145 | channel->event_test_cpu = raw_smp_processor_id(); |
| 1146 | } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { |
| 1147 | /* The queue must be empty, so we won't receive any rx |
| 1148 | * events, so efx_process_channel() won't refill the |
| 1149 | * queue. Refill it here */ |
| 1150 | efx_fast_push_rx_descriptors(rx_queue); |
| 1151 | } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { |
| 1152 | efx_farch_handle_drain_event(channel); |
| 1153 | } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) { |
| 1154 | efx_farch_handle_drain_event(channel); |
| 1155 | } else { |
| 1156 | netif_dbg(efx, hw, efx->net_dev, "channel %d received " |
| 1157 | "generated event "EFX_QWORD_FMT"\n", |
| 1158 | channel->channel, EFX_QWORD_VAL(*event)); |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | static void |
| 1163 | efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) |
| 1164 | { |
| 1165 | struct efx_nic *efx = channel->efx; |
| 1166 | unsigned int ev_sub_code; |
| 1167 | unsigned int ev_sub_data; |
| 1168 | |
| 1169 | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); |
| 1170 | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| 1171 | |
| 1172 | switch (ev_sub_code) { |
| 1173 | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: |
| 1174 | netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", |
| 1175 | channel->channel, ev_sub_data); |
| 1176 | efx_farch_handle_tx_flush_done(efx, event); |
| 1177 | efx_sriov_tx_flush_done(efx, event); |
| 1178 | break; |
| 1179 | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: |
| 1180 | netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", |
| 1181 | channel->channel, ev_sub_data); |
| 1182 | efx_farch_handle_rx_flush_done(efx, event); |
| 1183 | efx_sriov_rx_flush_done(efx, event); |
| 1184 | break; |
| 1185 | case FSE_AZ_EVQ_INIT_DONE_EV: |
| 1186 | netif_dbg(efx, hw, efx->net_dev, |
| 1187 | "channel %d EVQ %d initialised\n", |
| 1188 | channel->channel, ev_sub_data); |
| 1189 | break; |
| 1190 | case FSE_AZ_SRM_UPD_DONE_EV: |
| 1191 | netif_vdbg(efx, hw, efx->net_dev, |
| 1192 | "channel %d SRAM update done\n", channel->channel); |
| 1193 | break; |
| 1194 | case FSE_AZ_WAKE_UP_EV: |
| 1195 | netif_vdbg(efx, hw, efx->net_dev, |
| 1196 | "channel %d RXQ %d wakeup event\n", |
| 1197 | channel->channel, ev_sub_data); |
| 1198 | break; |
| 1199 | case FSE_AZ_TIMER_EV: |
| 1200 | netif_vdbg(efx, hw, efx->net_dev, |
| 1201 | "channel %d RX queue %d timer expired\n", |
| 1202 | channel->channel, ev_sub_data); |
| 1203 | break; |
| 1204 | case FSE_AA_RX_RECOVER_EV: |
| 1205 | netif_err(efx, rx_err, efx->net_dev, |
| 1206 | "channel %d seen DRIVER RX_RESET event. " |
| 1207 | "Resetting.\n", channel->channel); |
| 1208 | atomic_inc(&efx->rx_reset); |
| 1209 | efx_schedule_reset(efx, |
| 1210 | EFX_WORKAROUND_6555(efx) ? |
| 1211 | RESET_TYPE_RX_RECOVERY : |
| 1212 | RESET_TYPE_DISABLE); |
| 1213 | break; |
| 1214 | case FSE_BZ_RX_DSC_ERROR_EV: |
| 1215 | if (ev_sub_data < EFX_VI_BASE) { |
| 1216 | netif_err(efx, rx_err, efx->net_dev, |
| 1217 | "RX DMA Q %d reports descriptor fetch error." |
| 1218 | " RX Q %d is disabled.\n", ev_sub_data, |
| 1219 | ev_sub_data); |
| 1220 | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); |
| 1221 | } else |
| 1222 | efx_sriov_desc_fetch_err(efx, ev_sub_data); |
| 1223 | break; |
| 1224 | case FSE_BZ_TX_DSC_ERROR_EV: |
| 1225 | if (ev_sub_data < EFX_VI_BASE) { |
| 1226 | netif_err(efx, tx_err, efx->net_dev, |
| 1227 | "TX DMA Q %d reports descriptor fetch error." |
| 1228 | " TX Q %d is disabled.\n", ev_sub_data, |
| 1229 | ev_sub_data); |
| 1230 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| 1231 | } else |
| 1232 | efx_sriov_desc_fetch_err(efx, ev_sub_data); |
| 1233 | break; |
| 1234 | default: |
| 1235 | netif_vdbg(efx, hw, efx->net_dev, |
| 1236 | "channel %d unknown driver event code %d " |
| 1237 | "data %04x\n", channel->channel, ev_sub_code, |
| 1238 | ev_sub_data); |
| 1239 | break; |
| 1240 | } |
| 1241 | } |
| 1242 | |
| 1243 | int efx_farch_ev_process(struct efx_channel *channel, int budget) |
| 1244 | { |
| 1245 | struct efx_nic *efx = channel->efx; |
| 1246 | unsigned int read_ptr; |
| 1247 | efx_qword_t event, *p_event; |
| 1248 | int ev_code; |
| 1249 | int tx_packets = 0; |
| 1250 | int spent = 0; |
| 1251 | |
| 1252 | read_ptr = channel->eventq_read_ptr; |
| 1253 | |
| 1254 | for (;;) { |
| 1255 | p_event = efx_event(channel, read_ptr); |
| 1256 | event = *p_event; |
| 1257 | |
| 1258 | if (!efx_event_present(&event)) |
| 1259 | /* End of events */ |
| 1260 | break; |
| 1261 | |
| 1262 | netif_vdbg(channel->efx, intr, channel->efx->net_dev, |
| 1263 | "channel %d event is "EFX_QWORD_FMT"\n", |
| 1264 | channel->channel, EFX_QWORD_VAL(event)); |
| 1265 | |
| 1266 | /* Clear this event by marking it all ones */ |
| 1267 | EFX_SET_QWORD(*p_event); |
| 1268 | |
| 1269 | ++read_ptr; |
| 1270 | |
| 1271 | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); |
| 1272 | |
| 1273 | switch (ev_code) { |
| 1274 | case FSE_AZ_EV_CODE_RX_EV: |
| 1275 | efx_farch_handle_rx_event(channel, &event); |
| 1276 | if (++spent == budget) |
| 1277 | goto out; |
| 1278 | break; |
| 1279 | case FSE_AZ_EV_CODE_TX_EV: |
| 1280 | tx_packets += efx_farch_handle_tx_event(channel, |
| 1281 | &event); |
| 1282 | if (tx_packets > efx->txq_entries) { |
| 1283 | spent = budget; |
| 1284 | goto out; |
| 1285 | } |
| 1286 | break; |
| 1287 | case FSE_AZ_EV_CODE_DRV_GEN_EV: |
| 1288 | efx_farch_handle_generated_event(channel, &event); |
| 1289 | break; |
| 1290 | case FSE_AZ_EV_CODE_DRIVER_EV: |
| 1291 | efx_farch_handle_driver_event(channel, &event); |
| 1292 | break; |
| 1293 | case FSE_CZ_EV_CODE_USER_EV: |
| 1294 | efx_sriov_event(channel, &event); |
| 1295 | break; |
| 1296 | case FSE_CZ_EV_CODE_MCDI_EV: |
| 1297 | efx_mcdi_process_event(channel, &event); |
| 1298 | break; |
| 1299 | case FSE_AZ_EV_CODE_GLOBAL_EV: |
| 1300 | if (efx->type->handle_global_event && |
| 1301 | efx->type->handle_global_event(channel, &event)) |
| 1302 | break; |
| 1303 | /* else fall through */ |
| 1304 | default: |
| 1305 | netif_err(channel->efx, hw, channel->efx->net_dev, |
| 1306 | "channel %d unknown event type %d (data " |
| 1307 | EFX_QWORD_FMT ")\n", channel->channel, |
| 1308 | ev_code, EFX_QWORD_VAL(event)); |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | out: |
| 1313 | channel->eventq_read_ptr = read_ptr; |
| 1314 | return spent; |
| 1315 | } |
| 1316 | |
| 1317 | /* Allocate buffer table entries for event queue */ |
| 1318 | int efx_farch_ev_probe(struct efx_channel *channel) |
| 1319 | { |
| 1320 | struct efx_nic *efx = channel->efx; |
| 1321 | unsigned entries; |
| 1322 | |
| 1323 | entries = channel->eventq_mask + 1; |
| 1324 | return efx_alloc_special_buffer(efx, &channel->eventq, |
| 1325 | entries * sizeof(efx_qword_t)); |
| 1326 | } |
| 1327 | |
| 1328 | void efx_farch_ev_init(struct efx_channel *channel) |
| 1329 | { |
| 1330 | efx_oword_t reg; |
| 1331 | struct efx_nic *efx = channel->efx; |
| 1332 | |
| 1333 | netif_dbg(efx, hw, efx->net_dev, |
| 1334 | "channel %d event queue in special buffers %d-%d\n", |
| 1335 | channel->channel, channel->eventq.index, |
| 1336 | channel->eventq.index + channel->eventq.entries - 1); |
| 1337 | |
| 1338 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { |
| 1339 | EFX_POPULATE_OWORD_3(reg, |
| 1340 | FRF_CZ_TIMER_Q_EN, 1, |
| 1341 | FRF_CZ_HOST_NOTIFY_MODE, 0, |
| 1342 | FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); |
| 1343 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| 1344 | } |
| 1345 | |
| 1346 | /* Pin event queue buffer */ |
| 1347 | efx_init_special_buffer(efx, &channel->eventq); |
| 1348 | |
| 1349 | /* Fill event queue with all ones (i.e. empty events) */ |
| 1350 | memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); |
| 1351 | |
| 1352 | /* Push event queue to card */ |
| 1353 | EFX_POPULATE_OWORD_3(reg, |
| 1354 | FRF_AZ_EVQ_EN, 1, |
| 1355 | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), |
| 1356 | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); |
| 1357 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| 1358 | channel->channel); |
| 1359 | |
| 1360 | efx->type->push_irq_moderation(channel); |
| 1361 | } |
| 1362 | |
| 1363 | void efx_farch_ev_fini(struct efx_channel *channel) |
| 1364 | { |
| 1365 | efx_oword_t reg; |
| 1366 | struct efx_nic *efx = channel->efx; |
| 1367 | |
| 1368 | /* Remove event queue from card */ |
| 1369 | EFX_ZERO_OWORD(reg); |
| 1370 | efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, |
| 1371 | channel->channel); |
| 1372 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) |
| 1373 | efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); |
| 1374 | |
| 1375 | /* Unpin event queue */ |
| 1376 | efx_fini_special_buffer(efx, &channel->eventq); |
| 1377 | } |
| 1378 | |
| 1379 | /* Free buffers backing event queue */ |
| 1380 | void efx_farch_ev_remove(struct efx_channel *channel) |
| 1381 | { |
| 1382 | efx_free_special_buffer(channel->efx, &channel->eventq); |
| 1383 | } |
| 1384 | |
| 1385 | |
| 1386 | void efx_farch_ev_test_generate(struct efx_channel *channel) |
| 1387 | { |
| 1388 | efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); |
| 1389 | } |
| 1390 | |
| 1391 | void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue) |
| 1392 | { |
| 1393 | efx_farch_magic_event(efx_rx_queue_channel(rx_queue), |
| 1394 | EFX_CHANNEL_MAGIC_FILL(rx_queue)); |
| 1395 | } |
| 1396 | |
| 1397 | /************************************************************************** |
| 1398 | * |
| 1399 | * Hardware interrupts |
| 1400 | * The hardware interrupt handler does very little work; all the event |
| 1401 | * queue processing is carried out by per-channel tasklets. |
| 1402 | * |
| 1403 | **************************************************************************/ |
| 1404 | |
| 1405 | /* Enable/disable/generate interrupts */ |
| 1406 | static inline void efx_farch_interrupts(struct efx_nic *efx, |
| 1407 | bool enabled, bool force) |
| 1408 | { |
| 1409 | efx_oword_t int_en_reg_ker; |
| 1410 | |
| 1411 | EFX_POPULATE_OWORD_3(int_en_reg_ker, |
| 1412 | FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, |
| 1413 | FRF_AZ_KER_INT_KER, force, |
| 1414 | FRF_AZ_DRV_INT_EN_KER, enabled); |
| 1415 | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); |
| 1416 | } |
| 1417 | |
| 1418 | void efx_farch_irq_enable_master(struct efx_nic *efx) |
| 1419 | { |
| 1420 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| 1421 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| 1422 | |
| 1423 | efx_farch_interrupts(efx, true, false); |
| 1424 | } |
| 1425 | |
| 1426 | void efx_farch_irq_disable_master(struct efx_nic *efx) |
| 1427 | { |
| 1428 | /* Disable interrupts */ |
| 1429 | efx_farch_interrupts(efx, false, false); |
| 1430 | } |
| 1431 | |
| 1432 | /* Generate a test interrupt |
| 1433 | * Interrupt must already have been enabled, otherwise nasty things |
| 1434 | * may happen. |
| 1435 | */ |
| 1436 | void efx_farch_irq_test_generate(struct efx_nic *efx) |
| 1437 | { |
| 1438 | efx_farch_interrupts(efx, true, true); |
| 1439 | } |
| 1440 | |
| 1441 | /* Process a fatal interrupt |
| 1442 | * Disable bus mastering ASAP and schedule a reset |
| 1443 | */ |
| 1444 | irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx) |
| 1445 | { |
| 1446 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 1447 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1448 | efx_oword_t fatal_intr; |
| 1449 | int error, mem_perr; |
| 1450 | |
| 1451 | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); |
| 1452 | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); |
| 1453 | |
| 1454 | netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " |
| 1455 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| 1456 | EFX_OWORD_VAL(fatal_intr), |
| 1457 | error ? "disabling bus mastering" : "no recognised error"); |
| 1458 | |
| 1459 | /* If this is a memory parity error dump which blocks are offending */ |
| 1460 | mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || |
| 1461 | EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); |
| 1462 | if (mem_perr) { |
| 1463 | efx_oword_t reg; |
| 1464 | efx_reado(efx, ®, FR_AZ_MEM_STAT); |
| 1465 | netif_err(efx, hw, efx->net_dev, |
| 1466 | "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", |
| 1467 | EFX_OWORD_VAL(reg)); |
| 1468 | } |
| 1469 | |
| 1470 | /* Disable both devices */ |
| 1471 | pci_clear_master(efx->pci_dev); |
| 1472 | if (efx_nic_is_dual_func(efx)) |
| 1473 | pci_clear_master(nic_data->pci_dev2); |
| 1474 | efx_farch_irq_disable_master(efx); |
| 1475 | |
| 1476 | /* Count errors and reset or disable the NIC accordingly */ |
| 1477 | if (efx->int_error_count == 0 || |
| 1478 | time_after(jiffies, efx->int_error_expire)) { |
| 1479 | efx->int_error_count = 0; |
| 1480 | efx->int_error_expire = |
| 1481 | jiffies + EFX_INT_ERROR_EXPIRE * HZ; |
| 1482 | } |
| 1483 | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { |
| 1484 | netif_err(efx, hw, efx->net_dev, |
| 1485 | "SYSTEM ERROR - reset scheduled\n"); |
| 1486 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| 1487 | } else { |
| 1488 | netif_err(efx, hw, efx->net_dev, |
| 1489 | "SYSTEM ERROR - max number of errors seen." |
| 1490 | "NIC will be disabled\n"); |
| 1491 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1492 | } |
| 1493 | |
| 1494 | return IRQ_HANDLED; |
| 1495 | } |
| 1496 | |
| 1497 | /* Handle a legacy interrupt |
| 1498 | * Acknowledges the interrupt and schedule event queue processing. |
| 1499 | */ |
| 1500 | irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id) |
| 1501 | { |
| 1502 | struct efx_nic *efx = dev_id; |
| 1503 | bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled); |
| 1504 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1505 | irqreturn_t result = IRQ_NONE; |
| 1506 | struct efx_channel *channel; |
| 1507 | efx_dword_t reg; |
| 1508 | u32 queues; |
| 1509 | int syserr; |
| 1510 | |
| 1511 | /* Read the ISR which also ACKs the interrupts */ |
| 1512 | efx_readd(efx, ®, FR_BZ_INT_ISR0); |
| 1513 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| 1514 | |
| 1515 | /* Legacy interrupts are disabled too late by the EEH kernel |
| 1516 | * code. Disable them earlier. |
| 1517 | * If an EEH error occurred, the read will have returned all ones. |
| 1518 | */ |
| 1519 | if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) && |
| 1520 | !efx->eeh_disabled_legacy_irq) { |
| 1521 | disable_irq_nosync(efx->legacy_irq); |
| 1522 | efx->eeh_disabled_legacy_irq = true; |
| 1523 | } |
| 1524 | |
| 1525 | /* Handle non-event-queue sources */ |
| 1526 | if (queues & (1U << efx->irq_level) && soft_enabled) { |
| 1527 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| 1528 | if (unlikely(syserr)) |
| 1529 | return efx_farch_fatal_interrupt(efx); |
| 1530 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1531 | } |
| 1532 | |
| 1533 | if (queues != 0) { |
| 1534 | if (EFX_WORKAROUND_15783(efx)) |
| 1535 | efx->irq_zero_count = 0; |
| 1536 | |
| 1537 | /* Schedule processing of any interrupting queues */ |
| 1538 | if (likely(soft_enabled)) { |
| 1539 | efx_for_each_channel(channel, efx) { |
| 1540 | if (queues & 1) |
| 1541 | efx_schedule_channel_irq(channel); |
| 1542 | queues >>= 1; |
| 1543 | } |
| 1544 | } |
| 1545 | result = IRQ_HANDLED; |
| 1546 | |
| 1547 | } else if (EFX_WORKAROUND_15783(efx)) { |
| 1548 | efx_qword_t *event; |
| 1549 | |
| 1550 | /* We can't return IRQ_HANDLED more than once on seeing ISR=0 |
| 1551 | * because this might be a shared interrupt. */ |
| 1552 | if (efx->irq_zero_count++ == 0) |
| 1553 | result = IRQ_HANDLED; |
| 1554 | |
| 1555 | /* Ensure we schedule or rearm all event queues */ |
| 1556 | if (likely(soft_enabled)) { |
| 1557 | efx_for_each_channel(channel, efx) { |
| 1558 | event = efx_event(channel, |
| 1559 | channel->eventq_read_ptr); |
| 1560 | if (efx_event_present(event)) |
| 1561 | efx_schedule_channel_irq(channel); |
| 1562 | else |
| 1563 | efx_farch_ev_read_ack(channel); |
| 1564 | } |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | if (result == IRQ_HANDLED) |
| 1569 | netif_vdbg(efx, intr, efx->net_dev, |
| 1570 | "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| 1571 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| 1572 | |
| 1573 | return result; |
| 1574 | } |
| 1575 | |
| 1576 | /* Handle an MSI interrupt |
| 1577 | * |
| 1578 | * Handle an MSI hardware interrupt. This routine schedules event |
| 1579 | * queue processing. No interrupt acknowledgement cycle is necessary. |
| 1580 | * Also, we never need to check that the interrupt is for us, since |
| 1581 | * MSI interrupts cannot be shared. |
| 1582 | */ |
| 1583 | irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id) |
| 1584 | { |
| 1585 | struct efx_msi_context *context = dev_id; |
| 1586 | struct efx_nic *efx = context->efx; |
| 1587 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1588 | int syserr; |
| 1589 | |
| 1590 | netif_vdbg(efx, intr, efx->net_dev, |
| 1591 | "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| 1592 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| 1593 | |
| 1594 | if (!likely(ACCESS_ONCE(efx->irq_soft_enabled))) |
| 1595 | return IRQ_HANDLED; |
| 1596 | |
| 1597 | /* Handle non-event-queue sources */ |
| 1598 | if (context->index == efx->irq_level) { |
| 1599 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| 1600 | if (unlikely(syserr)) |
| 1601 | return efx_farch_fatal_interrupt(efx); |
| 1602 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1603 | } |
| 1604 | |
| 1605 | /* Schedule processing of the channel */ |
| 1606 | efx_schedule_channel_irq(efx->channel[context->index]); |
| 1607 | |
| 1608 | return IRQ_HANDLED; |
| 1609 | } |
| 1610 | |
| 1611 | |
| 1612 | /* Setup RSS indirection table. |
| 1613 | * This maps from the hash value of the packet to RXQ |
| 1614 | */ |
| 1615 | void efx_farch_rx_push_indir_table(struct efx_nic *efx) |
| 1616 | { |
| 1617 | size_t i = 0; |
| 1618 | efx_dword_t dword; |
| 1619 | |
| 1620 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) |
| 1621 | return; |
| 1622 | |
| 1623 | BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != |
| 1624 | FR_BZ_RX_INDIRECTION_TBL_ROWS); |
| 1625 | |
| 1626 | for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { |
| 1627 | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, |
| 1628 | efx->rx_indir_table[i]); |
| 1629 | efx_writed(efx, &dword, |
| 1630 | FR_BZ_RX_INDIRECTION_TBL + |
| 1631 | FR_BZ_RX_INDIRECTION_TBL_STEP * i); |
| 1632 | } |
| 1633 | } |
| 1634 | |
| 1635 | /* Looks at available SRAM resources and works out how many queues we |
| 1636 | * can support, and where things like descriptor caches should live. |
| 1637 | * |
| 1638 | * SRAM is split up as follows: |
| 1639 | * 0 buftbl entries for channels |
| 1640 | * efx->vf_buftbl_base buftbl entries for SR-IOV |
| 1641 | * efx->rx_dc_base RX descriptor caches |
| 1642 | * efx->tx_dc_base TX descriptor caches |
| 1643 | */ |
| 1644 | void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw) |
| 1645 | { |
| 1646 | unsigned vi_count, buftbl_min; |
| 1647 | |
| 1648 | /* Account for the buffer table entries backing the datapath channels |
| 1649 | * and the descriptor caches for those channels. |
| 1650 | */ |
| 1651 | buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE + |
| 1652 | efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE + |
| 1653 | efx->n_channels * EFX_MAX_EVQ_SIZE) |
| 1654 | * sizeof(efx_qword_t) / EFX_BUF_SIZE); |
| 1655 | vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES); |
| 1656 | |
| 1657 | #ifdef CONFIG_SFC_SRIOV |
| 1658 | if (efx_sriov_wanted(efx)) { |
| 1659 | unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit; |
| 1660 | |
| 1661 | efx->vf_buftbl_base = buftbl_min; |
| 1662 | |
| 1663 | vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES; |
| 1664 | vi_count = max(vi_count, EFX_VI_BASE); |
| 1665 | buftbl_free = (sram_lim_qw - buftbl_min - |
| 1666 | vi_count * vi_dc_entries); |
| 1667 | |
| 1668 | entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) * |
| 1669 | efx_vf_size(efx)); |
| 1670 | vf_limit = min(buftbl_free / entries_per_vf, |
| 1671 | (1024U - EFX_VI_BASE) >> efx->vi_scale); |
| 1672 | |
| 1673 | if (efx->vf_count > vf_limit) { |
| 1674 | netif_err(efx, probe, efx->net_dev, |
| 1675 | "Reducing VF count from from %d to %d\n", |
| 1676 | efx->vf_count, vf_limit); |
| 1677 | efx->vf_count = vf_limit; |
| 1678 | } |
| 1679 | vi_count += efx->vf_count * efx_vf_size(efx); |
| 1680 | } |
| 1681 | #endif |
| 1682 | |
| 1683 | efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; |
| 1684 | efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; |
| 1685 | } |
| 1686 | |
| 1687 | u32 efx_farch_fpga_ver(struct efx_nic *efx) |
| 1688 | { |
| 1689 | efx_oword_t altera_build; |
| 1690 | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); |
| 1691 | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); |
| 1692 | } |
| 1693 | |
| 1694 | void efx_farch_init_common(struct efx_nic *efx) |
| 1695 | { |
| 1696 | efx_oword_t temp; |
| 1697 | |
| 1698 | /* Set positions of descriptor caches in SRAM. */ |
| 1699 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); |
| 1700 | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); |
| 1701 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); |
| 1702 | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); |
| 1703 | |
| 1704 | /* Set TX descriptor cache size. */ |
| 1705 | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); |
| 1706 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| 1707 | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); |
| 1708 | |
| 1709 | /* Set RX descriptor cache size. Set low watermark to size-8, as |
| 1710 | * this allows most efficient prefetching. |
| 1711 | */ |
| 1712 | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); |
| 1713 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| 1714 | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); |
| 1715 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| 1716 | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); |
| 1717 | |
| 1718 | /* Program INT_KER address */ |
| 1719 | EFX_POPULATE_OWORD_2(temp, |
| 1720 | FRF_AZ_NORM_INT_VEC_DIS_KER, |
| 1721 | EFX_INT_MODE_USE_MSI(efx), |
| 1722 | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); |
| 1723 | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); |
| 1724 | |
| 1725 | if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) |
| 1726 | /* Use an interrupt level unused by event queues */ |
| 1727 | efx->irq_level = 0x1f; |
| 1728 | else |
| 1729 | /* Use a valid MSI-X vector */ |
| 1730 | efx->irq_level = 0; |
| 1731 | |
| 1732 | /* Enable all the genuinely fatal interrupts. (They are still |
| 1733 | * masked by the overall interrupt mask, controlled by |
| 1734 | * falcon_interrupts()). |
| 1735 | * |
| 1736 | * Note: All other fatal interrupts are enabled |
| 1737 | */ |
| 1738 | EFX_POPULATE_OWORD_3(temp, |
| 1739 | FRF_AZ_ILL_ADR_INT_KER_EN, 1, |
| 1740 | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, |
| 1741 | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); |
| 1742 | if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) |
| 1743 | EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); |
| 1744 | EFX_INVERT_OWORD(temp); |
| 1745 | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); |
| 1746 | |
| 1747 | efx_farch_rx_push_indir_table(efx); |
| 1748 | |
| 1749 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| 1750 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| 1751 | */ |
| 1752 | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); |
| 1753 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); |
| 1754 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); |
| 1755 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); |
| 1756 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); |
| 1757 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); |
| 1758 | /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| 1759 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); |
| 1760 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| 1761 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); |
| 1762 | /* Disable hardware watchdog which can misfire */ |
| 1763 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); |
| 1764 | /* Squash TX of packets of 16 bytes or less */ |
| 1765 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| 1766 | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); |
| 1767 | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); |
| 1768 | |
| 1769 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 1770 | EFX_POPULATE_OWORD_4(temp, |
| 1771 | /* Default values */ |
| 1772 | FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, |
| 1773 | FRF_BZ_TX_PACE_SB_AF, 0xb, |
| 1774 | FRF_BZ_TX_PACE_FB_BASE, 0, |
| 1775 | /* Allow large pace values in the |
| 1776 | * fast bin. */ |
| 1777 | FRF_BZ_TX_PACE_BIN_TH, |
| 1778 | FFE_BZ_TX_PACE_RESERVED); |
| 1779 | efx_writeo(efx, &temp, FR_BZ_TX_PACE); |
| 1780 | } |
| 1781 | } |