blob: 88d1b376f67cb2ee03d15ebfce7654de8a2d0b32 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/config.h>
6
7#ifdef CONFIG_USB_DEBUG
8 #define DEBUG
9#else
10 #undef DEBUG
11#endif
12
13#include <linux/pci.h> /* for scatterlist macros */
14#include <linux/usb.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/init.h>
18#include <linux/mm.h>
19#include <linux/timer.h>
20#include <linux/ctype.h>
21#include <linux/device.h>
22#include <asm/byteorder.h>
23
24#include "hcd.h" /* for usbcore internals */
25#include "usb.h"
26
27static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
28{
29 complete((struct completion *)urb->context);
30}
31
32
33static void timeout_kill(unsigned long data)
34{
35 struct urb *urb = (struct urb *) data;
36
37 usb_unlink_urb(urb);
38}
39
40// Starts urb and waits for completion or timeout
41// note that this call is NOT interruptible, while
42// many device driver i/o requests should be interruptible
43static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
44{
45 struct completion done;
46 struct timer_list timer;
47 int status;
48
49 init_completion(&done);
50 urb->context = &done;
51 urb->transfer_flags |= URB_ASYNC_UNLINK;
52 urb->actual_length = 0;
53 status = usb_submit_urb(urb, GFP_NOIO);
54
55 if (status == 0) {
56 if (timeout > 0) {
57 init_timer(&timer);
58 timer.expires = jiffies + msecs_to_jiffies(timeout);
59 timer.data = (unsigned long)urb;
60 timer.function = timeout_kill;
61 /* grr. timeout _should_ include submit delays. */
62 add_timer(&timer);
63 }
64 wait_for_completion(&done);
65 status = urb->status;
66 /* note: HCDs return ETIMEDOUT for other reasons too */
67 if (status == -ECONNRESET) {
68 dev_dbg(&urb->dev->dev,
69 "%s timed out on ep%d%s len=%d/%d\n",
70 current->comm,
71 usb_pipeendpoint(urb->pipe),
72 usb_pipein(urb->pipe) ? "in" : "out",
73 urb->actual_length,
74 urb->transfer_buffer_length
75 );
76 if (urb->actual_length > 0)
77 status = 0;
78 else
79 status = -ETIMEDOUT;
80 }
81 if (timeout > 0)
82 del_timer_sync(&timer);
83 }
84
85 if (actual_length)
86 *actual_length = urb->actual_length;
87 usb_free_urb(urb);
88 return status;
89}
90
91/*-------------------------------------------------------------------*/
92// returns status (negative) or length (positive)
93static int usb_internal_control_msg(struct usb_device *usb_dev,
94 unsigned int pipe,
95 struct usb_ctrlrequest *cmd,
96 void *data, int len, int timeout)
97{
98 struct urb *urb;
99 int retv;
100 int length;
101
102 urb = usb_alloc_urb(0, GFP_NOIO);
103 if (!urb)
104 return -ENOMEM;
105
106 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
107 len, usb_api_blocking_completion, NULL);
108
109 retv = usb_start_wait_urb(urb, timeout, &length);
110 if (retv < 0)
111 return retv;
112 else
113 return length;
114}
115
116/**
117 * usb_control_msg - Builds a control urb, sends it off and waits for completion
118 * @dev: pointer to the usb device to send the message to
119 * @pipe: endpoint "pipe" to send the message to
120 * @request: USB message request value
121 * @requesttype: USB message request type value
122 * @value: USB message value
123 * @index: USB message index value
124 * @data: pointer to the data to send
125 * @size: length in bytes of the data to send
126 * @timeout: time in msecs to wait for the message to complete before
127 * timing out (if 0 the wait is forever)
128 * Context: !in_interrupt ()
129 *
130 * This function sends a simple control message to a specified endpoint
131 * and waits for the message to complete, or timeout.
132 *
133 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
134 *
135 * Don't use this function from within an interrupt context, like a
136 * bottom half handler. If you need an asynchronous message, or need to send
137 * a message from within interrupt context, use usb_submit_urb()
138 * If a thread in your driver uses this call, make sure your disconnect()
139 * method can wait for it to complete. Since you don't have a handle on
140 * the URB used, you can't cancel the request.
141 */
142int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
143 __u16 value, __u16 index, void *data, __u16 size, int timeout)
144{
145 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
146 int ret;
147
148 if (!dr)
149 return -ENOMEM;
150
151 dr->bRequestType= requesttype;
152 dr->bRequest = request;
153 dr->wValue = cpu_to_le16p(&value);
154 dr->wIndex = cpu_to_le16p(&index);
155 dr->wLength = cpu_to_le16p(&size);
156
157 //dbg("usb_control_msg");
158
159 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
160
161 kfree(dr);
162
163 return ret;
164}
165
166
167/**
168 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
169 * @usb_dev: pointer to the usb device to send the message to
170 * @pipe: endpoint "pipe" to send the message to
171 * @data: pointer to the data to send
172 * @len: length in bytes of the data to send
173 * @actual_length: pointer to a location to put the actual length transferred in bytes
174 * @timeout: time in msecs to wait for the message to complete before
175 * timing out (if 0 the wait is forever)
176 * Context: !in_interrupt ()
177 *
178 * This function sends a simple bulk message to a specified endpoint
179 * and waits for the message to complete, or timeout.
180 *
181 * If successful, it returns 0, otherwise a negative error number.
182 * The number of actual bytes transferred will be stored in the
183 * actual_length paramater.
184 *
185 * Don't use this function from within an interrupt context, like a
186 * bottom half handler. If you need an asynchronous message, or need to
187 * send a message from within interrupt context, use usb_submit_urb()
188 * If a thread in your driver uses this call, make sure your disconnect()
189 * method can wait for it to complete. Since you don't have a handle on
190 * the URB used, you can't cancel the request.
191 */
192int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
193 void *data, int len, int *actual_length, int timeout)
194{
195 struct urb *urb;
196
197 if (len < 0)
198 return -EINVAL;
199
200 urb=usb_alloc_urb(0, GFP_KERNEL);
201 if (!urb)
202 return -ENOMEM;
203
204 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
205 usb_api_blocking_completion, NULL);
206
207 return usb_start_wait_urb(urb, timeout, actual_length);
208}
209
210/*-------------------------------------------------------------------*/
211
212static void sg_clean (struct usb_sg_request *io)
213{
214 if (io->urbs) {
215 while (io->entries--)
216 usb_free_urb (io->urbs [io->entries]);
217 kfree (io->urbs);
218 io->urbs = NULL;
219 }
220 if (io->dev->dev.dma_mask != NULL)
221 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
222 io->dev = NULL;
223}
224
225static void sg_complete (struct urb *urb, struct pt_regs *regs)
226{
227 struct usb_sg_request *io = (struct usb_sg_request *) urb->context;
228
229 spin_lock (&io->lock);
230
231 /* In 2.5 we require hcds' endpoint queues not to progress after fault
232 * reports, until the completion callback (this!) returns. That lets
233 * device driver code (like this routine) unlink queued urbs first,
234 * if it needs to, since the HC won't work on them at all. So it's
235 * not possible for page N+1 to overwrite page N, and so on.
236 *
237 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
238 * complete before the HCD can get requests away from hardware,
239 * though never during cleanup after a hard fault.
240 */
241 if (io->status
242 && (io->status != -ECONNRESET
243 || urb->status != -ECONNRESET)
244 && urb->actual_length) {
245 dev_err (io->dev->bus->controller,
246 "dev %s ep%d%s scatterlist error %d/%d\n",
247 io->dev->devpath,
248 usb_pipeendpoint (urb->pipe),
249 usb_pipein (urb->pipe) ? "in" : "out",
250 urb->status, io->status);
251 // BUG ();
252 }
253
254 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
255 int i, found, status;
256
257 io->status = urb->status;
258
259 /* the previous urbs, and this one, completed already.
260 * unlink pending urbs so they won't rx/tx bad data.
261 * careful: unlink can sometimes be synchronous...
262 */
263 spin_unlock (&io->lock);
264 for (i = 0, found = 0; i < io->entries; i++) {
265 if (!io->urbs [i] || !io->urbs [i]->dev)
266 continue;
267 if (found) {
268 status = usb_unlink_urb (io->urbs [i]);
269 if (status != -EINPROGRESS && status != -EBUSY)
270 dev_err (&io->dev->dev,
271 "%s, unlink --> %d\n",
272 __FUNCTION__, status);
273 } else if (urb == io->urbs [i])
274 found = 1;
275 }
276 spin_lock (&io->lock);
277 }
278 urb->dev = NULL;
279
280 /* on the last completion, signal usb_sg_wait() */
281 io->bytes += urb->actual_length;
282 io->count--;
283 if (!io->count)
284 complete (&io->complete);
285
286 spin_unlock (&io->lock);
287}
288
289
290/**
291 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
292 * @io: request block being initialized. until usb_sg_wait() returns,
293 * treat this as a pointer to an opaque block of memory,
294 * @dev: the usb device that will send or receive the data
295 * @pipe: endpoint "pipe" used to transfer the data
296 * @period: polling rate for interrupt endpoints, in frames or
297 * (for high speed endpoints) microframes; ignored for bulk
298 * @sg: scatterlist entries
299 * @nents: how many entries in the scatterlist
300 * @length: how many bytes to send from the scatterlist, or zero to
301 * send every byte identified in the list.
302 * @mem_flags: SLAB_* flags affecting memory allocations in this call
303 *
304 * Returns zero for success, else a negative errno value. This initializes a
305 * scatter/gather request, allocating resources such as I/O mappings and urb
306 * memory (except maybe memory used by USB controller drivers).
307 *
308 * The request must be issued using usb_sg_wait(), which waits for the I/O to
309 * complete (or to be canceled) and then cleans up all resources allocated by
310 * usb_sg_init().
311 *
312 * The request may be canceled with usb_sg_cancel(), either before or after
313 * usb_sg_wait() is called.
314 */
315int usb_sg_init (
316 struct usb_sg_request *io,
317 struct usb_device *dev,
318 unsigned pipe,
319 unsigned period,
320 struct scatterlist *sg,
321 int nents,
322 size_t length,
Olav Kongas5db539e2005-06-23 20:25:36 +0300323 unsigned mem_flags
Linus Torvalds1da177e2005-04-16 15:20:36 -0700324)
325{
326 int i;
327 int urb_flags;
328 int dma;
329
330 if (!io || !dev || !sg
331 || usb_pipecontrol (pipe)
332 || usb_pipeisoc (pipe)
333 || nents <= 0)
334 return -EINVAL;
335
336 spin_lock_init (&io->lock);
337 io->dev = dev;
338 io->pipe = pipe;
339 io->sg = sg;
340 io->nents = nents;
341
342 /* not all host controllers use DMA (like the mainstream pci ones);
343 * they can use PIO (sl811) or be software over another transport.
344 */
345 dma = (dev->dev.dma_mask != NULL);
346 if (dma)
347 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
348 else
349 io->entries = nents;
350
351 /* initialize all the urbs we'll use */
352 if (io->entries <= 0)
353 return io->entries;
354
355 io->count = io->entries;
356 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
357 if (!io->urbs)
358 goto nomem;
359
360 urb_flags = URB_ASYNC_UNLINK | URB_NO_TRANSFER_DMA_MAP
361 | URB_NO_INTERRUPT;
362 if (usb_pipein (pipe))
363 urb_flags |= URB_SHORT_NOT_OK;
364
365 for (i = 0; i < io->entries; i++) {
366 unsigned len;
367
368 io->urbs [i] = usb_alloc_urb (0, mem_flags);
369 if (!io->urbs [i]) {
370 io->entries = i;
371 goto nomem;
372 }
373
374 io->urbs [i]->dev = NULL;
375 io->urbs [i]->pipe = pipe;
376 io->urbs [i]->interval = period;
377 io->urbs [i]->transfer_flags = urb_flags;
378
379 io->urbs [i]->complete = sg_complete;
380 io->urbs [i]->context = io;
381 io->urbs [i]->status = -EINPROGRESS;
382 io->urbs [i]->actual_length = 0;
383
384 if (dma) {
385 /* hc may use _only_ transfer_dma */
386 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
387 len = sg_dma_len (sg + i);
388 } else {
389 /* hc may use _only_ transfer_buffer */
390 io->urbs [i]->transfer_buffer =
391 page_address (sg [i].page) + sg [i].offset;
392 len = sg [i].length;
393 }
394
395 if (length) {
396 len = min_t (unsigned, len, length);
397 length -= len;
398 if (length == 0)
399 io->entries = i + 1;
400 }
401 io->urbs [i]->transfer_buffer_length = len;
402 }
403 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
404
405 /* transaction state */
406 io->status = 0;
407 io->bytes = 0;
408 init_completion (&io->complete);
409 return 0;
410
411nomem:
412 sg_clean (io);
413 return -ENOMEM;
414}
415
416
417/**
418 * usb_sg_wait - synchronously execute scatter/gather request
419 * @io: request block handle, as initialized with usb_sg_init().
420 * some fields become accessible when this call returns.
421 * Context: !in_interrupt ()
422 *
423 * This function blocks until the specified I/O operation completes. It
424 * leverages the grouping of the related I/O requests to get good transfer
425 * rates, by queueing the requests. At higher speeds, such queuing can
426 * significantly improve USB throughput.
427 *
428 * There are three kinds of completion for this function.
429 * (1) success, where io->status is zero. The number of io->bytes
430 * transferred is as requested.
431 * (2) error, where io->status is a negative errno value. The number
432 * of io->bytes transferred before the error is usually less
433 * than requested, and can be nonzero.
Steven Cole093cf722005-05-03 19:07:24 -0600434 * (3) cancellation, a type of error with status -ECONNRESET that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435 * is initiated by usb_sg_cancel().
436 *
437 * When this function returns, all memory allocated through usb_sg_init() or
438 * this call will have been freed. The request block parameter may still be
439 * passed to usb_sg_cancel(), or it may be freed. It could also be
440 * reinitialized and then reused.
441 *
442 * Data Transfer Rates:
443 *
444 * Bulk transfers are valid for full or high speed endpoints.
445 * The best full speed data rate is 19 packets of 64 bytes each
446 * per frame, or 1216 bytes per millisecond.
447 * The best high speed data rate is 13 packets of 512 bytes each
448 * per microframe, or 52 KBytes per millisecond.
449 *
450 * The reason to use interrupt transfers through this API would most likely
451 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
452 * could be transferred. That capability is less useful for low or full
453 * speed interrupt endpoints, which allow at most one packet per millisecond,
454 * of at most 8 or 64 bytes (respectively).
455 */
456void usb_sg_wait (struct usb_sg_request *io)
457{
458 int i, entries = io->entries;
459
460 /* queue the urbs. */
461 spin_lock_irq (&io->lock);
462 for (i = 0; i < entries && !io->status; i++) {
463 int retval;
464
465 io->urbs [i]->dev = io->dev;
466 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
467
468 /* after we submit, let completions or cancelations fire;
469 * we handshake using io->status.
470 */
471 spin_unlock_irq (&io->lock);
472 switch (retval) {
473 /* maybe we retrying will recover */
474 case -ENXIO: // hc didn't queue this one
475 case -EAGAIN:
476 case -ENOMEM:
477 io->urbs[i]->dev = NULL;
478 retval = 0;
479 i--;
480 yield ();
481 break;
482
483 /* no error? continue immediately.
484 *
485 * NOTE: to work better with UHCI (4K I/O buffer may
486 * need 3K of TDs) it may be good to limit how many
487 * URBs are queued at once; N milliseconds?
488 */
489 case 0:
490 cpu_relax ();
491 break;
492
493 /* fail any uncompleted urbs */
494 default:
495 io->urbs [i]->dev = NULL;
496 io->urbs [i]->status = retval;
497 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
498 __FUNCTION__, retval);
499 usb_sg_cancel (io);
500 }
501 spin_lock_irq (&io->lock);
502 if (retval && (io->status == 0 || io->status == -ECONNRESET))
503 io->status = retval;
504 }
505 io->count -= entries - i;
506 if (io->count == 0)
507 complete (&io->complete);
508 spin_unlock_irq (&io->lock);
509
510 /* OK, yes, this could be packaged as non-blocking.
511 * So could the submit loop above ... but it's easier to
512 * solve neither problem than to solve both!
513 */
514 wait_for_completion (&io->complete);
515
516 sg_clean (io);
517}
518
519/**
520 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
521 * @io: request block, initialized with usb_sg_init()
522 *
523 * This stops a request after it has been started by usb_sg_wait().
524 * It can also prevents one initialized by usb_sg_init() from starting,
525 * so that call just frees resources allocated to the request.
526 */
527void usb_sg_cancel (struct usb_sg_request *io)
528{
529 unsigned long flags;
530
531 spin_lock_irqsave (&io->lock, flags);
532
533 /* shut everything down, if it didn't already */
534 if (!io->status) {
535 int i;
536
537 io->status = -ECONNRESET;
538 spin_unlock (&io->lock);
539 for (i = 0; i < io->entries; i++) {
540 int retval;
541
542 if (!io->urbs [i]->dev)
543 continue;
544 retval = usb_unlink_urb (io->urbs [i]);
545 if (retval != -EINPROGRESS && retval != -EBUSY)
546 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
547 __FUNCTION__, retval);
548 }
549 spin_lock (&io->lock);
550 }
551 spin_unlock_irqrestore (&io->lock, flags);
552}
553
554/*-------------------------------------------------------------------*/
555
556/**
557 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
558 * @dev: the device whose descriptor is being retrieved
559 * @type: the descriptor type (USB_DT_*)
560 * @index: the number of the descriptor
561 * @buf: where to put the descriptor
562 * @size: how big is "buf"?
563 * Context: !in_interrupt ()
564 *
565 * Gets a USB descriptor. Convenience functions exist to simplify
566 * getting some types of descriptors. Use
567 * usb_get_string() or usb_string() for USB_DT_STRING.
568 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
569 * are part of the device structure.
570 * In addition to a number of USB-standard descriptors, some
571 * devices also use class-specific or vendor-specific descriptors.
572 *
573 * This call is synchronous, and may not be used in an interrupt context.
574 *
575 * Returns the number of bytes received on success, or else the status code
576 * returned by the underlying usb_control_msg() call.
577 */
578int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
579{
580 int i;
581 int result;
582
583 memset(buf,0,size); // Make sure we parse really received data
584
585 for (i = 0; i < 3; ++i) {
586 /* retry on length 0 or stall; some devices are flakey */
587 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
588 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
589 (type << 8) + index, 0, buf, size,
590 USB_CTRL_GET_TIMEOUT);
591 if (result == 0 || result == -EPIPE)
592 continue;
593 if (result > 1 && ((u8 *)buf)[1] != type) {
594 result = -EPROTO;
595 continue;
596 }
597 break;
598 }
599 return result;
600}
601
602/**
603 * usb_get_string - gets a string descriptor
604 * @dev: the device whose string descriptor is being retrieved
605 * @langid: code for language chosen (from string descriptor zero)
606 * @index: the number of the descriptor
607 * @buf: where to put the string
608 * @size: how big is "buf"?
609 * Context: !in_interrupt ()
610 *
611 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
612 * in little-endian byte order).
613 * The usb_string() function will often be a convenient way to turn
614 * these strings into kernel-printable form.
615 *
616 * Strings may be referenced in device, configuration, interface, or other
617 * descriptors, and could also be used in vendor-specific ways.
618 *
619 * This call is synchronous, and may not be used in an interrupt context.
620 *
621 * Returns the number of bytes received on success, or else the status code
622 * returned by the underlying usb_control_msg() call.
623 */
624int usb_get_string(struct usb_device *dev, unsigned short langid,
625 unsigned char index, void *buf, int size)
626{
627 int i;
628 int result;
629
630 for (i = 0; i < 3; ++i) {
631 /* retry on length 0 or stall; some devices are flakey */
632 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
633 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
634 (USB_DT_STRING << 8) + index, langid, buf, size,
635 USB_CTRL_GET_TIMEOUT);
636 if (!(result == 0 || result == -EPIPE))
637 break;
638 }
639 return result;
640}
641
642static void usb_try_string_workarounds(unsigned char *buf, int *length)
643{
644 int newlength, oldlength = *length;
645
646 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
647 if (!isprint(buf[newlength]) || buf[newlength + 1])
648 break;
649
650 if (newlength > 2) {
651 buf[0] = newlength;
652 *length = newlength;
653 }
654}
655
656static int usb_string_sub(struct usb_device *dev, unsigned int langid,
657 unsigned int index, unsigned char *buf)
658{
659 int rc;
660
661 /* Try to read the string descriptor by asking for the maximum
662 * possible number of bytes */
663 rc = usb_get_string(dev, langid, index, buf, 255);
664
665 /* If that failed try to read the descriptor length, then
666 * ask for just that many bytes */
667 if (rc < 2) {
668 rc = usb_get_string(dev, langid, index, buf, 2);
669 if (rc == 2)
670 rc = usb_get_string(dev, langid, index, buf, buf[0]);
671 }
672
673 if (rc >= 2) {
674 if (!buf[0] && !buf[1])
675 usb_try_string_workarounds(buf, &rc);
676
677 /* There might be extra junk at the end of the descriptor */
678 if (buf[0] < rc)
679 rc = buf[0];
680
681 rc = rc - (rc & 1); /* force a multiple of two */
682 }
683
684 if (rc < 2)
685 rc = (rc < 0 ? rc : -EINVAL);
686
687 return rc;
688}
689
690/**
691 * usb_string - returns ISO 8859-1 version of a string descriptor
692 * @dev: the device whose string descriptor is being retrieved
693 * @index: the number of the descriptor
694 * @buf: where to put the string
695 * @size: how big is "buf"?
696 * Context: !in_interrupt ()
697 *
698 * This converts the UTF-16LE encoded strings returned by devices, from
699 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
700 * that are more usable in most kernel contexts. Note that all characters
701 * in the chosen descriptor that can't be encoded using ISO-8859-1
702 * are converted to the question mark ("?") character, and this function
703 * chooses strings in the first language supported by the device.
704 *
705 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
706 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
707 * and is appropriate for use many uses of English and several other
708 * Western European languages. (But it doesn't include the "Euro" symbol.)
709 *
710 * This call is synchronous, and may not be used in an interrupt context.
711 *
712 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
713 */
714int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
715{
716 unsigned char *tbuf;
717 int err;
718 unsigned int u, idx;
719
720 if (dev->state == USB_STATE_SUSPENDED)
721 return -EHOSTUNREACH;
722 if (size <= 0 || !buf || !index)
723 return -EINVAL;
724 buf[0] = 0;
725 tbuf = kmalloc(256, GFP_KERNEL);
726 if (!tbuf)
727 return -ENOMEM;
728
729 /* get langid for strings if it's not yet known */
730 if (!dev->have_langid) {
731 err = usb_string_sub(dev, 0, 0, tbuf);
732 if (err < 0) {
733 dev_err (&dev->dev,
734 "string descriptor 0 read error: %d\n",
735 err);
736 goto errout;
737 } else if (err < 4) {
738 dev_err (&dev->dev, "string descriptor 0 too short\n");
739 err = -EINVAL;
740 goto errout;
741 } else {
742 dev->have_langid = -1;
743 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
744 /* always use the first langid listed */
745 dev_dbg (&dev->dev, "default language 0x%04x\n",
746 dev->string_langid);
747 }
748 }
749
750 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
751 if (err < 0)
752 goto errout;
753
754 size--; /* leave room for trailing NULL char in output buffer */
755 for (idx = 0, u = 2; u < err; u += 2) {
756 if (idx >= size)
757 break;
758 if (tbuf[u+1]) /* high byte */
759 buf[idx++] = '?'; /* non ISO-8859-1 character */
760 else
761 buf[idx++] = tbuf[u];
762 }
763 buf[idx] = 0;
764 err = idx;
765
766 if (tbuf[1] != USB_DT_STRING)
767 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
768
769 errout:
770 kfree(tbuf);
771 return err;
772}
773
774/*
775 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
776 * @dev: the device whose device descriptor is being updated
777 * @size: how much of the descriptor to read
778 * Context: !in_interrupt ()
779 *
780 * Updates the copy of the device descriptor stored in the device structure,
781 * which dedicates space for this purpose. Note that several fields are
782 * converted to the host CPU's byte order: the USB version (bcdUSB), and
783 * vendors product and version fields (idVendor, idProduct, and bcdDevice).
784 * That lets device drivers compare against non-byteswapped constants.
785 *
786 * Not exported, only for use by the core. If drivers really want to read
787 * the device descriptor directly, they can call usb_get_descriptor() with
788 * type = USB_DT_DEVICE and index = 0.
789 *
790 * This call is synchronous, and may not be used in an interrupt context.
791 *
792 * Returns the number of bytes received on success, or else the status code
793 * returned by the underlying usb_control_msg() call.
794 */
795int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
796{
797 struct usb_device_descriptor *desc;
798 int ret;
799
800 if (size > sizeof(*desc))
801 return -EINVAL;
802 desc = kmalloc(sizeof(*desc), GFP_NOIO);
803 if (!desc)
804 return -ENOMEM;
805
806 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
807 if (ret >= 0)
808 memcpy(&dev->descriptor, desc, size);
809 kfree(desc);
810 return ret;
811}
812
813/**
814 * usb_get_status - issues a GET_STATUS call
815 * @dev: the device whose status is being checked
816 * @type: USB_RECIP_*; for device, interface, or endpoint
817 * @target: zero (for device), else interface or endpoint number
818 * @data: pointer to two bytes of bitmap data
819 * Context: !in_interrupt ()
820 *
821 * Returns device, interface, or endpoint status. Normally only of
822 * interest to see if the device is self powered, or has enabled the
823 * remote wakeup facility; or whether a bulk or interrupt endpoint
824 * is halted ("stalled").
825 *
826 * Bits in these status bitmaps are set using the SET_FEATURE request,
827 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
828 * function should be used to clear halt ("stall") status.
829 *
830 * This call is synchronous, and may not be used in an interrupt context.
831 *
832 * Returns the number of bytes received on success, or else the status code
833 * returned by the underlying usb_control_msg() call.
834 */
835int usb_get_status(struct usb_device *dev, int type, int target, void *data)
836{
837 int ret;
838 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
839
840 if (!status)
841 return -ENOMEM;
842
843 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
844 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
845 sizeof(*status), USB_CTRL_GET_TIMEOUT);
846
847 *(u16 *)data = *status;
848 kfree(status);
849 return ret;
850}
851
852/**
853 * usb_clear_halt - tells device to clear endpoint halt/stall condition
854 * @dev: device whose endpoint is halted
855 * @pipe: endpoint "pipe" being cleared
856 * Context: !in_interrupt ()
857 *
858 * This is used to clear halt conditions for bulk and interrupt endpoints,
859 * as reported by URB completion status. Endpoints that are halted are
860 * sometimes referred to as being "stalled". Such endpoints are unable
861 * to transmit or receive data until the halt status is cleared. Any URBs
862 * queued for such an endpoint should normally be unlinked by the driver
863 * before clearing the halt condition, as described in sections 5.7.5
864 * and 5.8.5 of the USB 2.0 spec.
865 *
866 * Note that control and isochronous endpoints don't halt, although control
867 * endpoints report "protocol stall" (for unsupported requests) using the
868 * same status code used to report a true stall.
869 *
870 * This call is synchronous, and may not be used in an interrupt context.
871 *
872 * Returns zero on success, or else the status code returned by the
873 * underlying usb_control_msg() call.
874 */
875int usb_clear_halt(struct usb_device *dev, int pipe)
876{
877 int result;
878 int endp = usb_pipeendpoint(pipe);
879
880 if (usb_pipein (pipe))
881 endp |= USB_DIR_IN;
882
883 /* we don't care if it wasn't halted first. in fact some devices
884 * (like some ibmcam model 1 units) seem to expect hosts to make
885 * this request for iso endpoints, which can't halt!
886 */
887 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
888 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
889 USB_ENDPOINT_HALT, endp, NULL, 0,
890 USB_CTRL_SET_TIMEOUT);
891
892 /* don't un-halt or force to DATA0 except on success */
893 if (result < 0)
894 return result;
895
896 /* NOTE: seems like Microsoft and Apple don't bother verifying
897 * the clear "took", so some devices could lock up if you check...
898 * such as the Hagiwara FlashGate DUAL. So we won't bother.
899 *
900 * NOTE: make sure the logic here doesn't diverge much from
901 * the copy in usb-storage, for as long as we need two copies.
902 */
903
904 /* toggle was reset by the clear */
905 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
906
907 return 0;
908}
909
910/**
911 * usb_disable_endpoint -- Disable an endpoint by address
912 * @dev: the device whose endpoint is being disabled
913 * @epaddr: the endpoint's address. Endpoint number for output,
914 * endpoint number + USB_DIR_IN for input
915 *
916 * Deallocates hcd/hardware state for this endpoint ... and nukes all
917 * pending urbs.
918 *
919 * If the HCD hasn't registered a disable() function, this sets the
920 * endpoint's maxpacket size to 0 to prevent further submissions.
921 */
922void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
923{
924 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
925 struct usb_host_endpoint *ep;
926
927 if (!dev)
928 return;
929
930 if (usb_endpoint_out(epaddr)) {
931 ep = dev->ep_out[epnum];
932 dev->ep_out[epnum] = NULL;
933 } else {
934 ep = dev->ep_in[epnum];
935 dev->ep_in[epnum] = NULL;
936 }
937 if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
938 dev->bus->op->disable(dev, ep);
939}
940
941/**
942 * usb_disable_interface -- Disable all endpoints for an interface
943 * @dev: the device whose interface is being disabled
944 * @intf: pointer to the interface descriptor
945 *
946 * Disables all the endpoints for the interface's current altsetting.
947 */
948void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
949{
950 struct usb_host_interface *alt = intf->cur_altsetting;
951 int i;
952
953 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
954 usb_disable_endpoint(dev,
955 alt->endpoint[i].desc.bEndpointAddress);
956 }
957}
958
959/*
960 * usb_disable_device - Disable all the endpoints for a USB device
961 * @dev: the device whose endpoints are being disabled
962 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
963 *
964 * Disables all the device's endpoints, potentially including endpoint 0.
965 * Deallocates hcd/hardware state for the endpoints (nuking all or most
966 * pending urbs) and usbcore state for the interfaces, so that usbcore
967 * must usb_set_configuration() before any interfaces could be used.
968 */
969void usb_disable_device(struct usb_device *dev, int skip_ep0)
970{
971 int i;
972
973 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
974 skip_ep0 ? "non-ep0" : "all");
975 for (i = skip_ep0; i < 16; ++i) {
976 usb_disable_endpoint(dev, i);
977 usb_disable_endpoint(dev, i + USB_DIR_IN);
978 }
979 dev->toggle[0] = dev->toggle[1] = 0;
980
981 /* getting rid of interfaces will disconnect
982 * any drivers bound to them (a key side effect)
983 */
984 if (dev->actconfig) {
985 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
986 struct usb_interface *interface;
987
Alan Stern86d30742005-07-29 12:17:16 -0700988 /* remove this interface if it has been registered */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989 interface = dev->actconfig->interface[i];
Alan Stern86d30742005-07-29 12:17:16 -0700990 if (!klist_node_attached(&interface->dev.knode_bus))
991 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992 dev_dbg (&dev->dev, "unregistering interface %s\n",
993 interface->dev.bus_id);
994 usb_remove_sysfs_intf_files(interface);
995 kfree(interface->cur_altsetting->string);
996 interface->cur_altsetting->string = NULL;
997 device_del (&interface->dev);
998 }
999
1000 /* Now that the interfaces are unbound, nobody should
1001 * try to access them.
1002 */
1003 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1004 put_device (&dev->actconfig->interface[i]->dev);
1005 dev->actconfig->interface[i] = NULL;
1006 }
1007 dev->actconfig = NULL;
1008 if (dev->state == USB_STATE_CONFIGURED)
1009 usb_set_device_state(dev, USB_STATE_ADDRESS);
1010 }
1011}
1012
1013
1014/*
1015 * usb_enable_endpoint - Enable an endpoint for USB communications
1016 * @dev: the device whose interface is being enabled
1017 * @ep: the endpoint
1018 *
1019 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1020 * For control endpoints, both the input and output sides are handled.
1021 */
1022static void
1023usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1024{
1025 unsigned int epaddr = ep->desc.bEndpointAddress;
1026 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1027 int is_control;
1028
1029 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1030 == USB_ENDPOINT_XFER_CONTROL);
1031 if (usb_endpoint_out(epaddr) || is_control) {
1032 usb_settoggle(dev, epnum, 1, 0);
1033 dev->ep_out[epnum] = ep;
1034 }
1035 if (!usb_endpoint_out(epaddr) || is_control) {
1036 usb_settoggle(dev, epnum, 0, 0);
1037 dev->ep_in[epnum] = ep;
1038 }
1039}
1040
1041/*
1042 * usb_enable_interface - Enable all the endpoints for an interface
1043 * @dev: the device whose interface is being enabled
1044 * @intf: pointer to the interface descriptor
1045 *
1046 * Enables all the endpoints for the interface's current altsetting.
1047 */
1048static void usb_enable_interface(struct usb_device *dev,
1049 struct usb_interface *intf)
1050{
1051 struct usb_host_interface *alt = intf->cur_altsetting;
1052 int i;
1053
1054 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1055 usb_enable_endpoint(dev, &alt->endpoint[i]);
1056}
1057
1058/**
1059 * usb_set_interface - Makes a particular alternate setting be current
1060 * @dev: the device whose interface is being updated
1061 * @interface: the interface being updated
1062 * @alternate: the setting being chosen.
1063 * Context: !in_interrupt ()
1064 *
1065 * This is used to enable data transfers on interfaces that may not
1066 * be enabled by default. Not all devices support such configurability.
1067 * Only the driver bound to an interface may change its setting.
1068 *
1069 * Within any given configuration, each interface may have several
1070 * alternative settings. These are often used to control levels of
1071 * bandwidth consumption. For example, the default setting for a high
1072 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1073 * while interrupt transfers of up to 3KBytes per microframe are legal.
1074 * Also, isochronous endpoints may never be part of an
1075 * interface's default setting. To access such bandwidth, alternate
1076 * interface settings must be made current.
1077 *
1078 * Note that in the Linux USB subsystem, bandwidth associated with
1079 * an endpoint in a given alternate setting is not reserved until an URB
1080 * is submitted that needs that bandwidth. Some other operating systems
1081 * allocate bandwidth early, when a configuration is chosen.
1082 *
1083 * This call is synchronous, and may not be used in an interrupt context.
1084 * Also, drivers must not change altsettings while urbs are scheduled for
1085 * endpoints in that interface; all such urbs must first be completed
1086 * (perhaps forced by unlinking).
1087 *
1088 * Returns zero on success, or else the status code returned by the
1089 * underlying usb_control_msg() call.
1090 */
1091int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1092{
1093 struct usb_interface *iface;
1094 struct usb_host_interface *alt;
1095 int ret;
1096 int manual = 0;
1097
1098 if (dev->state == USB_STATE_SUSPENDED)
1099 return -EHOSTUNREACH;
1100
1101 iface = usb_ifnum_to_if(dev, interface);
1102 if (!iface) {
1103 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1104 interface);
1105 return -EINVAL;
1106 }
1107
1108 alt = usb_altnum_to_altsetting(iface, alternate);
1109 if (!alt) {
1110 warn("selecting invalid altsetting %d", alternate);
1111 return -EINVAL;
1112 }
1113
1114 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1115 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1116 alternate, interface, NULL, 0, 5000);
1117
1118 /* 9.4.10 says devices don't need this and are free to STALL the
1119 * request if the interface only has one alternate setting.
1120 */
1121 if (ret == -EPIPE && iface->num_altsetting == 1) {
1122 dev_dbg(&dev->dev,
1123 "manual set_interface for iface %d, alt %d\n",
1124 interface, alternate);
1125 manual = 1;
1126 } else if (ret < 0)
1127 return ret;
1128
1129 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1130 * when they implement async or easily-killable versions of this or
1131 * other "should-be-internal" functions (like clear_halt).
1132 * should hcd+usbcore postprocess control requests?
1133 */
1134
1135 /* prevent submissions using previous endpoint settings */
1136 usb_disable_interface(dev, iface);
1137
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138 iface->cur_altsetting = alt;
1139
1140 /* If the interface only has one altsetting and the device didn't
David Brownella81e7ec2005-04-18 17:39:25 -07001141 * accept the request, we attempt to carry out the equivalent action
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142 * by manually clearing the HALT feature for each endpoint in the
1143 * new altsetting.
1144 */
1145 if (manual) {
1146 int i;
1147
1148 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1149 unsigned int epaddr =
1150 alt->endpoint[i].desc.bEndpointAddress;
1151 unsigned int pipe =
1152 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1153 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1154
1155 usb_clear_halt(dev, pipe);
1156 }
1157 }
1158
1159 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1160 *
1161 * Note:
1162 * Despite EP0 is always present in all interfaces/AS, the list of
1163 * endpoints from the descriptor does not contain EP0. Due to its
1164 * omnipresence one might expect EP0 being considered "affected" by
1165 * any SetInterface request and hence assume toggles need to be reset.
1166 * However, EP0 toggles are re-synced for every individual transfer
1167 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1168 * (Likewise, EP0 never "halts" on well designed devices.)
1169 */
1170 usb_enable_interface(dev, iface);
1171
1172 return 0;
1173}
1174
1175/**
1176 * usb_reset_configuration - lightweight device reset
1177 * @dev: the device whose configuration is being reset
1178 *
1179 * This issues a standard SET_CONFIGURATION request to the device using
1180 * the current configuration. The effect is to reset most USB-related
1181 * state in the device, including interface altsettings (reset to zero),
1182 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1183 * endpoints). Other usbcore state is unchanged, including bindings of
1184 * usb device drivers to interfaces.
1185 *
1186 * Because this affects multiple interfaces, avoid using this with composite
1187 * (multi-interface) devices. Instead, the driver for each interface may
David Brownella81e7ec2005-04-18 17:39:25 -07001188 * use usb_set_interface() on the interfaces it claims. Be careful though;
1189 * some devices don't support the SET_INTERFACE request, and others won't
1190 * reset all the interface state (notably data toggles). Resetting the whole
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191 * configuration would affect other drivers' interfaces.
1192 *
1193 * The caller must own the device lock.
1194 *
1195 * Returns zero on success, else a negative error code.
1196 */
1197int usb_reset_configuration(struct usb_device *dev)
1198{
1199 int i, retval;
1200 struct usb_host_config *config;
1201
1202 if (dev->state == USB_STATE_SUSPENDED)
1203 return -EHOSTUNREACH;
1204
1205 /* caller must have locked the device and must own
1206 * the usb bus readlock (so driver bindings are stable);
1207 * calls during probe() are fine
1208 */
1209
1210 for (i = 1; i < 16; ++i) {
1211 usb_disable_endpoint(dev, i);
1212 usb_disable_endpoint(dev, i + USB_DIR_IN);
1213 }
1214
1215 config = dev->actconfig;
1216 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1217 USB_REQ_SET_CONFIGURATION, 0,
1218 config->desc.bConfigurationValue, 0,
1219 NULL, 0, USB_CTRL_SET_TIMEOUT);
1220 if (retval < 0) {
1221 usb_set_device_state(dev, USB_STATE_ADDRESS);
1222 return retval;
1223 }
1224
1225 dev->toggle[0] = dev->toggle[1] = 0;
1226
1227 /* re-init hc/hcd interface/endpoint state */
1228 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1229 struct usb_interface *intf = config->interface[i];
1230 struct usb_host_interface *alt;
1231
1232 alt = usb_altnum_to_altsetting(intf, 0);
1233
1234 /* No altsetting 0? We'll assume the first altsetting.
1235 * We could use a GetInterface call, but if a device is
1236 * so non-compliant that it doesn't have altsetting 0
1237 * then I wouldn't trust its reply anyway.
1238 */
1239 if (!alt)
1240 alt = &intf->altsetting[0];
1241
1242 intf->cur_altsetting = alt;
1243 usb_enable_interface(dev, intf);
1244 }
1245 return 0;
1246}
1247
1248static void release_interface(struct device *dev)
1249{
1250 struct usb_interface *intf = to_usb_interface(dev);
1251 struct usb_interface_cache *intfc =
1252 altsetting_to_usb_interface_cache(intf->altsetting);
1253
1254 kref_put(&intfc->ref, usb_release_interface_cache);
1255 kfree(intf);
1256}
1257
1258/*
1259 * usb_set_configuration - Makes a particular device setting be current
1260 * @dev: the device whose configuration is being updated
1261 * @configuration: the configuration being chosen.
1262 * Context: !in_interrupt(), caller owns the device lock
1263 *
1264 * This is used to enable non-default device modes. Not all devices
1265 * use this kind of configurability; many devices only have one
1266 * configuration.
1267 *
1268 * USB device configurations may affect Linux interoperability,
1269 * power consumption and the functionality available. For example,
1270 * the default configuration is limited to using 100mA of bus power,
1271 * so that when certain device functionality requires more power,
1272 * and the device is bus powered, that functionality should be in some
1273 * non-default device configuration. Other device modes may also be
1274 * reflected as configuration options, such as whether two ISDN
1275 * channels are available independently; and choosing between open
1276 * standard device protocols (like CDC) or proprietary ones.
1277 *
1278 * Note that USB has an additional level of device configurability,
1279 * associated with interfaces. That configurability is accessed using
1280 * usb_set_interface().
1281 *
1282 * This call is synchronous. The calling context must be able to sleep,
1283 * must own the device lock, and must not hold the driver model's USB
1284 * bus rwsem; usb device driver probe() methods cannot use this routine.
1285 *
1286 * Returns zero on success, or else the status code returned by the
Steven Cole093cf722005-05-03 19:07:24 -06001287 * underlying call that failed. On successful completion, each interface
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 * in the original device configuration has been destroyed, and each one
1289 * in the new configuration has been probed by all relevant usb device
1290 * drivers currently known to the kernel.
1291 */
1292int usb_set_configuration(struct usb_device *dev, int configuration)
1293{
1294 int i, ret;
1295 struct usb_host_config *cp = NULL;
1296 struct usb_interface **new_interfaces = NULL;
1297 int n, nintf;
1298
1299 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1300 if (dev->config[i].desc.bConfigurationValue == configuration) {
1301 cp = &dev->config[i];
1302 break;
1303 }
1304 }
1305 if ((!cp && configuration != 0))
1306 return -EINVAL;
1307
1308 /* The USB spec says configuration 0 means unconfigured.
1309 * But if a device includes a configuration numbered 0,
1310 * we will accept it as a correctly configured state.
1311 */
1312 if (cp && configuration == 0)
1313 dev_warn(&dev->dev, "config 0 descriptor??\n");
1314
1315 if (dev->state == USB_STATE_SUSPENDED)
1316 return -EHOSTUNREACH;
1317
1318 /* Allocate memory for new interfaces before doing anything else,
1319 * so that if we run out then nothing will have changed. */
1320 n = nintf = 0;
1321 if (cp) {
1322 nintf = cp->desc.bNumInterfaces;
1323 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1324 GFP_KERNEL);
1325 if (!new_interfaces) {
1326 dev_err(&dev->dev, "Out of memory");
1327 return -ENOMEM;
1328 }
1329
1330 for (; n < nintf; ++n) {
1331 new_interfaces[n] = kmalloc(
1332 sizeof(struct usb_interface),
1333 GFP_KERNEL);
1334 if (!new_interfaces[n]) {
1335 dev_err(&dev->dev, "Out of memory");
1336 ret = -ENOMEM;
1337free_interfaces:
1338 while (--n >= 0)
1339 kfree(new_interfaces[n]);
1340 kfree(new_interfaces);
1341 return ret;
1342 }
1343 }
1344 }
1345
1346 /* if it's already configured, clear out old state first.
1347 * getting rid of old interfaces means unbinding their drivers.
1348 */
1349 if (dev->state != USB_STATE_ADDRESS)
1350 usb_disable_device (dev, 1); // Skip ep0
1351
1352 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1353 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1354 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0)
1355 goto free_interfaces;
1356
1357 dev->actconfig = cp;
1358 if (!cp)
1359 usb_set_device_state(dev, USB_STATE_ADDRESS);
1360 else {
1361 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1362
1363 /* Initialize the new interface structures and the
1364 * hc/hcd/usbcore interface/endpoint state.
1365 */
1366 for (i = 0; i < nintf; ++i) {
1367 struct usb_interface_cache *intfc;
1368 struct usb_interface *intf;
1369 struct usb_host_interface *alt;
1370
1371 cp->interface[i] = intf = new_interfaces[i];
1372 memset(intf, 0, sizeof(*intf));
1373 intfc = cp->intf_cache[i];
1374 intf->altsetting = intfc->altsetting;
1375 intf->num_altsetting = intfc->num_altsetting;
1376 kref_get(&intfc->ref);
1377
1378 alt = usb_altnum_to_altsetting(intf, 0);
1379
1380 /* No altsetting 0? We'll assume the first altsetting.
1381 * We could use a GetInterface call, but if a device is
1382 * so non-compliant that it doesn't have altsetting 0
1383 * then I wouldn't trust its reply anyway.
1384 */
1385 if (!alt)
1386 alt = &intf->altsetting[0];
1387
1388 intf->cur_altsetting = alt;
1389 usb_enable_interface(dev, intf);
1390 intf->dev.parent = &dev->dev;
1391 intf->dev.driver = NULL;
1392 intf->dev.bus = &usb_bus_type;
1393 intf->dev.dma_mask = dev->dev.dma_mask;
1394 intf->dev.release = release_interface;
1395 device_initialize (&intf->dev);
1396 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1397 dev->bus->busnum, dev->devpath,
1398 configuration,
1399 alt->desc.bInterfaceNumber);
1400 }
1401 kfree(new_interfaces);
1402
1403 if ((cp->desc.iConfiguration) &&
1404 (cp->string == NULL)) {
1405 cp->string = kmalloc(256, GFP_KERNEL);
1406 if (cp->string)
1407 usb_string(dev, cp->desc.iConfiguration, cp->string, 256);
1408 }
1409
1410 /* Now that all the interfaces are set up, register them
1411 * to trigger binding of drivers to interfaces. probe()
1412 * routines may install different altsettings and may
1413 * claim() any interfaces not yet bound. Many class drivers
1414 * need that: CDC, audio, video, etc.
1415 */
1416 for (i = 0; i < nintf; ++i) {
1417 struct usb_interface *intf = cp->interface[i];
1418 struct usb_interface_descriptor *desc;
1419
1420 desc = &intf->altsetting [0].desc;
1421 dev_dbg (&dev->dev,
1422 "adding %s (config #%d, interface %d)\n",
1423 intf->dev.bus_id, configuration,
1424 desc->bInterfaceNumber);
1425 ret = device_add (&intf->dev);
1426 if (ret != 0) {
1427 dev_err(&dev->dev,
1428 "device_add(%s) --> %d\n",
1429 intf->dev.bus_id,
1430 ret);
1431 continue;
1432 }
1433 if ((intf->cur_altsetting->desc.iInterface) &&
1434 (intf->cur_altsetting->string == NULL)) {
1435 intf->cur_altsetting->string = kmalloc(256, GFP_KERNEL);
1436 if (intf->cur_altsetting->string)
1437 usb_string(dev, intf->cur_altsetting->desc.iInterface,
1438 intf->cur_altsetting->string, 256);
1439 }
1440 usb_create_sysfs_intf_files (intf);
1441 }
1442 }
1443
Alan Stern86d30742005-07-29 12:17:16 -07001444 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445}
1446
1447// synchronous request completion model
1448EXPORT_SYMBOL(usb_control_msg);
1449EXPORT_SYMBOL(usb_bulk_msg);
1450
1451EXPORT_SYMBOL(usb_sg_init);
1452EXPORT_SYMBOL(usb_sg_cancel);
1453EXPORT_SYMBOL(usb_sg_wait);
1454
1455// synchronous control message convenience routines
1456EXPORT_SYMBOL(usb_get_descriptor);
1457EXPORT_SYMBOL(usb_get_status);
1458EXPORT_SYMBOL(usb_get_string);
1459EXPORT_SYMBOL(usb_string);
1460
1461// synchronous calls that also maintain usbcore state
1462EXPORT_SYMBOL(usb_clear_halt);
1463EXPORT_SYMBOL(usb_reset_configuration);
1464EXPORT_SYMBOL(usb_set_interface);
1465