blob: 0a5808e15b770160ac5590d3790f6ad0c1ff6900 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cdk.h>
37#include <linux/comstats.h>
38#include <linux/istallion.h>
39#include <linux/ioport.h>
40#include <linux/delay.h>
41#include <linux/init.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/device.h>
44#include <linux/wait.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62#define BRD_UNKNOWN 0
63#define BRD_STALLION 1
64#define BRD_BRUMBY4 2
65#define BRD_ONBOARD2 3
66#define BRD_ONBOARD 4
67#define BRD_BRUMBY8 5
68#define BRD_BRUMBY16 6
69#define BRD_ONBOARDE 7
70#define BRD_ONBOARD32 9
71#define BRD_ONBOARD2_32 10
72#define BRD_ONBOARDRS 11
73#define BRD_EASYIO 20
74#define BRD_ECH 21
75#define BRD_ECHMC 22
76#define BRD_ECP 23
77#define BRD_ECPE 24
78#define BRD_ECPMC 25
79#define BRD_ECHPCI 26
80#define BRD_ECH64PCI 27
81#define BRD_EASYIOPCI 28
82#define BRD_ECPPCI 29
83
84#define BRD_BRUMBY BRD_BRUMBY4
85
86/*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132} stlconf_t;
133
134static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136};
137
Tobias Klauserfe971072006-01-09 20:54:02 -0800138static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139
140/*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145#define STLI_EISAPROBE 0
146
147/*****************************************************************************/
148
149/*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153#ifndef STL_SIOMEMMAJOR
154#define STL_SIOMEMMAJOR 28
155#endif
156#ifndef STL_SERIALMAJOR
157#define STL_SERIALMAJOR 24
158#endif
159#ifndef STL_CALLOUTMAJOR
160#define STL_CALLOUTMAJOR 25
161#endif
162
163/*****************************************************************************/
164
165/*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170static char *stli_drvname = "istallion";
171static char *stli_drvversion = "5.6.0";
172static char *stli_serialname = "ttyE";
173
174static struct tty_driver *stli_serial;
175
176/*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183static char *stli_tmpwritebuf;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184
185#define STLI_TXBUFSIZE 4096
186
187/*
188 * Use a fast local buffer for cooked characters. Typically a whole
189 * bunch of cooked characters come in for a port, 1 at a time. So we
190 * save those up into a local buffer, then write out the whole lot
191 * with a large memcpy. Just use 1 buffer for all ports, since its
192 * use it is only need for short periods of time by each port.
193 */
194static char *stli_txcookbuf;
195static int stli_txcooksize;
196static int stli_txcookrealsize;
197static struct tty_struct *stli_txcooktty;
198
199/*
200 * Define a local default termios struct. All ports will be created
201 * with this termios initially. Basically all it defines is a raw port
202 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
203 */
204static struct termios stli_deftermios = {
205 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
206 .c_cc = INIT_C_CC,
207};
208
209/*
210 * Define global stats structures. Not used often, and can be
211 * re-used for each stats call.
212 */
213static comstats_t stli_comstats;
214static combrd_t stli_brdstats;
215static asystats_t stli_cdkstats;
216static stlibrd_t stli_dummybrd;
217static stliport_t stli_dummyport;
218
219/*****************************************************************************/
220
221static stlibrd_t *stli_brds[STL_MAXBRDS];
222
223static int stli_shared;
224
225/*
226 * Per board state flags. Used with the state field of the board struct.
227 * Not really much here... All we need to do is keep track of whether
228 * the board has been detected, and whether it is actually running a slave
229 * or not.
230 */
231#define BST_FOUND 0x1
232#define BST_STARTED 0x2
233
234/*
235 * Define the set of port state flags. These are marked for internal
236 * state purposes only, usually to do with the state of communications
237 * with the slave. Most of them need to be updated atomically, so always
238 * use the bit setting operations (unless protected by cli/sti).
239 */
240#define ST_INITIALIZING 1
241#define ST_OPENING 2
242#define ST_CLOSING 3
243#define ST_CMDING 4
244#define ST_TXBUSY 5
245#define ST_RXING 6
246#define ST_DOFLUSHRX 7
247#define ST_DOFLUSHTX 8
248#define ST_DOSIGS 9
249#define ST_RXSTOP 10
250#define ST_GETSIGS 11
251
252/*
253 * Define an array of board names as printable strings. Handy for
254 * referencing boards when printing trace and stuff.
255 */
256static char *stli_brdnames[] = {
257 "Unknown",
258 "Stallion",
259 "Brumby",
260 "ONboard-MC",
261 "ONboard",
262 "Brumby",
263 "Brumby",
264 "ONboard-EI",
265 (char *) NULL,
266 "ONboard",
267 "ONboard-MC",
268 "ONboard-MC",
269 (char *) NULL,
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 "EasyIO",
278 "EC8/32-AT",
279 "EC8/32-MC",
280 "EC8/64-AT",
281 "EC8/64-EI",
282 "EC8/64-MC",
283 "EC8/32-PCI",
284 "EC8/64-PCI",
285 "EasyIO-PCI",
286 "EC/RA-PCI",
287};
288
289/*****************************************************************************/
290
291#ifdef MODULE
292/*
293 * Define some string labels for arguments passed from the module
294 * load line. These allow for easy board definitions, and easy
295 * modification of the io, memory and irq resoucres.
296 */
297
298static char *board0[8];
299static char *board1[8];
300static char *board2[8];
301static char *board3[8];
302
303static char **stli_brdsp[] = {
304 (char **) &board0,
305 (char **) &board1,
306 (char **) &board2,
307 (char **) &board3
308};
309
310/*
311 * Define a set of common board names, and types. This is used to
312 * parse any module arguments.
313 */
314
315typedef struct stlibrdtype {
316 char *name;
317 int type;
318} stlibrdtype_t;
319
320static stlibrdtype_t stli_brdstr[] = {
321 { "stallion", BRD_STALLION },
322 { "1", BRD_STALLION },
323 { "brumby", BRD_BRUMBY },
324 { "brumby4", BRD_BRUMBY },
325 { "brumby/4", BRD_BRUMBY },
326 { "brumby-4", BRD_BRUMBY },
327 { "brumby8", BRD_BRUMBY },
328 { "brumby/8", BRD_BRUMBY },
329 { "brumby-8", BRD_BRUMBY },
330 { "brumby16", BRD_BRUMBY },
331 { "brumby/16", BRD_BRUMBY },
332 { "brumby-16", BRD_BRUMBY },
333 { "2", BRD_BRUMBY },
334 { "onboard2", BRD_ONBOARD2 },
335 { "onboard-2", BRD_ONBOARD2 },
336 { "onboard/2", BRD_ONBOARD2 },
337 { "onboard-mc", BRD_ONBOARD2 },
338 { "onboard/mc", BRD_ONBOARD2 },
339 { "onboard-mca", BRD_ONBOARD2 },
340 { "onboard/mca", BRD_ONBOARD2 },
341 { "3", BRD_ONBOARD2 },
342 { "onboard", BRD_ONBOARD },
343 { "onboardat", BRD_ONBOARD },
344 { "4", BRD_ONBOARD },
345 { "onboarde", BRD_ONBOARDE },
346 { "onboard-e", BRD_ONBOARDE },
347 { "onboard/e", BRD_ONBOARDE },
348 { "onboard-ei", BRD_ONBOARDE },
349 { "onboard/ei", BRD_ONBOARDE },
350 { "7", BRD_ONBOARDE },
351 { "ecp", BRD_ECP },
352 { "ecpat", BRD_ECP },
353 { "ec8/64", BRD_ECP },
354 { "ec8/64-at", BRD_ECP },
355 { "ec8/64-isa", BRD_ECP },
356 { "23", BRD_ECP },
357 { "ecpe", BRD_ECPE },
358 { "ecpei", BRD_ECPE },
359 { "ec8/64-e", BRD_ECPE },
360 { "ec8/64-ei", BRD_ECPE },
361 { "24", BRD_ECPE },
362 { "ecpmc", BRD_ECPMC },
363 { "ec8/64-mc", BRD_ECPMC },
364 { "ec8/64-mca", BRD_ECPMC },
365 { "25", BRD_ECPMC },
366 { "ecppci", BRD_ECPPCI },
367 { "ec/ra", BRD_ECPPCI },
368 { "ec/ra-pc", BRD_ECPPCI },
369 { "ec/ra-pci", BRD_ECPPCI },
370 { "29", BRD_ECPPCI },
371};
372
373/*
374 * Define the module agruments.
375 */
376MODULE_AUTHOR("Greg Ungerer");
377MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
378MODULE_LICENSE("GPL");
379
380
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800381module_param_array(board0, charp, NULL, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800383module_param_array(board1, charp, NULL, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800385module_param_array(board2, charp, NULL, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
Rusty Russell8d3b33f2006-03-25 03:07:05 -0800387module_param_array(board3, charp, NULL, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
389
390#endif
391
392/*
393 * Set up a default memory address table for EISA board probing.
394 * The default addresses are all bellow 1Mbyte, which has to be the
395 * case anyway. They should be safe, since we only read values from
396 * them, and interrupts are disabled while we do it. If the higher
397 * memory support is compiled in then we also try probing around
398 * the 1Gb, 2Gb and 3Gb areas as well...
399 */
400static unsigned long stli_eisamemprobeaddrs[] = {
401 0xc0000, 0xd0000, 0xe0000, 0xf0000,
402 0x80000000, 0x80010000, 0x80020000, 0x80030000,
403 0x40000000, 0x40010000, 0x40020000, 0x40030000,
404 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
405 0xff000000, 0xff010000, 0xff020000, 0xff030000,
406};
407
Tobias Klauserfe971072006-01-09 20:54:02 -0800408static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
410/*
411 * Define the Stallion PCI vendor and device IDs.
412 */
413#ifdef CONFIG_PCI
414#ifndef PCI_VENDOR_ID_STALLION
415#define PCI_VENDOR_ID_STALLION 0x124d
416#endif
417#ifndef PCI_DEVICE_ID_ECRA
418#define PCI_DEVICE_ID_ECRA 0x0004
419#endif
420
421static struct pci_device_id istallion_pci_tbl[] = {
422 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
423 { 0 }
424};
425MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
426
427#endif /* CONFIG_PCI */
428
429/*****************************************************************************/
430
431/*
432 * Hardware configuration info for ECP boards. These defines apply
433 * to the directly accessible io ports of the ECP. There is a set of
434 * defines for each ECP board type, ISA, EISA, MCA and PCI.
435 */
436#define ECP_IOSIZE 4
437
438#define ECP_MEMSIZE (128 * 1024)
439#define ECP_PCIMEMSIZE (256 * 1024)
440
441#define ECP_ATPAGESIZE (4 * 1024)
442#define ECP_MCPAGESIZE (4 * 1024)
443#define ECP_EIPAGESIZE (64 * 1024)
444#define ECP_PCIPAGESIZE (64 * 1024)
445
446#define STL_EISAID 0x8c4e
447
448/*
449 * Important defines for the ISA class of ECP board.
450 */
451#define ECP_ATIREG 0
452#define ECP_ATCONFR 1
453#define ECP_ATMEMAR 2
454#define ECP_ATMEMPR 3
455#define ECP_ATSTOP 0x1
456#define ECP_ATINTENAB 0x10
457#define ECP_ATENABLE 0x20
458#define ECP_ATDISABLE 0x00
459#define ECP_ATADDRMASK 0x3f000
460#define ECP_ATADDRSHFT 12
461
462/*
463 * Important defines for the EISA class of ECP board.
464 */
465#define ECP_EIIREG 0
466#define ECP_EIMEMARL 1
467#define ECP_EICONFR 2
468#define ECP_EIMEMARH 3
469#define ECP_EIENABLE 0x1
470#define ECP_EIDISABLE 0x0
471#define ECP_EISTOP 0x4
472#define ECP_EIEDGE 0x00
473#define ECP_EILEVEL 0x80
474#define ECP_EIADDRMASKL 0x00ff0000
475#define ECP_EIADDRSHFTL 16
476#define ECP_EIADDRMASKH 0xff000000
477#define ECP_EIADDRSHFTH 24
478#define ECP_EIBRDENAB 0xc84
479
480#define ECP_EISAID 0x4
481
482/*
483 * Important defines for the Micro-channel class of ECP board.
484 * (It has a lot in common with the ISA boards.)
485 */
486#define ECP_MCIREG 0
487#define ECP_MCCONFR 1
488#define ECP_MCSTOP 0x20
489#define ECP_MCENABLE 0x80
490#define ECP_MCDISABLE 0x00
491
492/*
493 * Important defines for the PCI class of ECP board.
494 * (It has a lot in common with the other ECP boards.)
495 */
496#define ECP_PCIIREG 0
497#define ECP_PCICONFR 1
498#define ECP_PCISTOP 0x01
499
500/*
501 * Hardware configuration info for ONboard and Brumby boards. These
502 * defines apply to the directly accessible io ports of these boards.
503 */
504#define ONB_IOSIZE 16
505#define ONB_MEMSIZE (64 * 1024)
506#define ONB_ATPAGESIZE (64 * 1024)
507#define ONB_MCPAGESIZE (64 * 1024)
508#define ONB_EIMEMSIZE (128 * 1024)
509#define ONB_EIPAGESIZE (64 * 1024)
510
511/*
512 * Important defines for the ISA class of ONboard board.
513 */
514#define ONB_ATIREG 0
515#define ONB_ATMEMAR 1
516#define ONB_ATCONFR 2
517#define ONB_ATSTOP 0x4
518#define ONB_ATENABLE 0x01
519#define ONB_ATDISABLE 0x00
520#define ONB_ATADDRMASK 0xff0000
521#define ONB_ATADDRSHFT 16
522
523#define ONB_MEMENABLO 0
524#define ONB_MEMENABHI 0x02
525
526/*
527 * Important defines for the EISA class of ONboard board.
528 */
529#define ONB_EIIREG 0
530#define ONB_EIMEMARL 1
531#define ONB_EICONFR 2
532#define ONB_EIMEMARH 3
533#define ONB_EIENABLE 0x1
534#define ONB_EIDISABLE 0x0
535#define ONB_EISTOP 0x4
536#define ONB_EIEDGE 0x00
537#define ONB_EILEVEL 0x80
538#define ONB_EIADDRMASKL 0x00ff0000
539#define ONB_EIADDRSHFTL 16
540#define ONB_EIADDRMASKH 0xff000000
541#define ONB_EIADDRSHFTH 24
542#define ONB_EIBRDENAB 0xc84
543
544#define ONB_EISAID 0x1
545
546/*
547 * Important defines for the Brumby boards. They are pretty simple,
548 * there is not much that is programmably configurable.
549 */
550#define BBY_IOSIZE 16
551#define BBY_MEMSIZE (64 * 1024)
552#define BBY_PAGESIZE (16 * 1024)
553
554#define BBY_ATIREG 0
555#define BBY_ATCONFR 1
556#define BBY_ATSTOP 0x4
557
558/*
559 * Important defines for the Stallion boards. They are pretty simple,
560 * there is not much that is programmably configurable.
561 */
562#define STAL_IOSIZE 16
563#define STAL_MEMSIZE (64 * 1024)
564#define STAL_PAGESIZE (64 * 1024)
565
566/*
567 * Define the set of status register values for EasyConnection panels.
568 * The signature will return with the status value for each panel. From
569 * this we can determine what is attached to the board - before we have
570 * actually down loaded any code to it.
571 */
572#define ECH_PNLSTATUS 2
573#define ECH_PNL16PORT 0x20
574#define ECH_PNLIDMASK 0x07
575#define ECH_PNLXPID 0x40
576#define ECH_PNLINTRPEND 0x80
577
578/*
579 * Define some macros to do things to the board. Even those these boards
580 * are somewhat related there is often significantly different ways of
581 * doing some operation on it (like enable, paging, reset, etc). So each
582 * board class has a set of functions which do the commonly required
583 * operations. The macros below basically just call these functions,
584 * generally checking for a NULL function - which means that the board
585 * needs nothing done to it to achieve this operation!
586 */
587#define EBRDINIT(brdp) \
588 if (brdp->init != NULL) \
589 (* brdp->init)(brdp)
590
591#define EBRDENABLE(brdp) \
592 if (brdp->enable != NULL) \
593 (* brdp->enable)(brdp);
594
595#define EBRDDISABLE(brdp) \
596 if (brdp->disable != NULL) \
597 (* brdp->disable)(brdp);
598
599#define EBRDINTR(brdp) \
600 if (brdp->intr != NULL) \
601 (* brdp->intr)(brdp);
602
603#define EBRDRESET(brdp) \
604 if (brdp->reset != NULL) \
605 (* brdp->reset)(brdp);
606
607#define EBRDGETMEMPTR(brdp,offset) \
608 (* brdp->getmemptr)(brdp, offset, __LINE__)
609
610/*
611 * Define the maximal baud rate, and the default baud base for ports.
612 */
613#define STL_MAXBAUD 460800
614#define STL_BAUDBASE 115200
615#define STL_CLOSEDELAY (5 * HZ / 10)
616
617/*****************************************************************************/
618
619/*
620 * Define macros to extract a brd or port number from a minor number.
621 */
622#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
623#define MINOR2PORT(min) ((min) & 0x3f)
624
625/*
626 * Define a baud rate table that converts termios baud rate selector
627 * into the actual baud rate value. All baud rate calculations are based
628 * on the actual baud rate required.
629 */
630static unsigned int stli_baudrates[] = {
631 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
632 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
633};
634
635/*****************************************************************************/
636
637/*
638 * Define some handy local macros...
639 */
640#undef MIN
641#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
642
643#undef TOLOWER
644#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
645
646/*****************************************************************************/
647
648/*
649 * Prototype all functions in this driver!
650 */
651
652#ifdef MODULE
653static void stli_argbrds(void);
654static int stli_parsebrd(stlconf_t *confp, char **argp);
655
656static unsigned long stli_atol(char *str);
657#endif
658
659int stli_init(void);
660static int stli_open(struct tty_struct *tty, struct file *filp);
661static void stli_close(struct tty_struct *tty, struct file *filp);
662static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
663static void stli_putchar(struct tty_struct *tty, unsigned char ch);
664static void stli_flushchars(struct tty_struct *tty);
665static int stli_writeroom(struct tty_struct *tty);
666static int stli_charsinbuffer(struct tty_struct *tty);
667static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
668static void stli_settermios(struct tty_struct *tty, struct termios *old);
669static void stli_throttle(struct tty_struct *tty);
670static void stli_unthrottle(struct tty_struct *tty);
671static void stli_stop(struct tty_struct *tty);
672static void stli_start(struct tty_struct *tty);
673static void stli_flushbuffer(struct tty_struct *tty);
674static void stli_breakctl(struct tty_struct *tty, int state);
675static void stli_waituntilsent(struct tty_struct *tty, int timeout);
676static void stli_sendxchar(struct tty_struct *tty, char ch);
677static void stli_hangup(struct tty_struct *tty);
678static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
679
680static int stli_brdinit(stlibrd_t *brdp);
681static int stli_startbrd(stlibrd_t *brdp);
682static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
683static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
684static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
685static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
686static void stli_poll(unsigned long arg);
687static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
688static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
689static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
690static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
692static void stli_dohangup(void *arg);
693static int stli_setport(stliport_t *portp);
694static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
695static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
697static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
698static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
699static long stli_mktiocm(unsigned long sigvalue);
700static void stli_read(stlibrd_t *brdp, stliport_t *portp);
701static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
702static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
703static int stli_getbrdstats(combrd_t __user *bp);
704static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
705static int stli_portcmdstats(stliport_t *portp);
706static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
707static int stli_getportstruct(stliport_t __user *arg);
708static int stli_getbrdstruct(stlibrd_t __user *arg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709static stlibrd_t *stli_allocbrd(void);
710
711static void stli_ecpinit(stlibrd_t *brdp);
712static void stli_ecpenable(stlibrd_t *brdp);
713static void stli_ecpdisable(stlibrd_t *brdp);
714static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
715static void stli_ecpreset(stlibrd_t *brdp);
716static void stli_ecpintr(stlibrd_t *brdp);
717static void stli_ecpeiinit(stlibrd_t *brdp);
718static void stli_ecpeienable(stlibrd_t *brdp);
719static void stli_ecpeidisable(stlibrd_t *brdp);
720static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
721static void stli_ecpeireset(stlibrd_t *brdp);
722static void stli_ecpmcenable(stlibrd_t *brdp);
723static void stli_ecpmcdisable(stlibrd_t *brdp);
724static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
725static void stli_ecpmcreset(stlibrd_t *brdp);
726static void stli_ecppciinit(stlibrd_t *brdp);
727static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
728static void stli_ecppcireset(stlibrd_t *brdp);
729
730static void stli_onbinit(stlibrd_t *brdp);
731static void stli_onbenable(stlibrd_t *brdp);
732static void stli_onbdisable(stlibrd_t *brdp);
733static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
734static void stli_onbreset(stlibrd_t *brdp);
735static void stli_onbeinit(stlibrd_t *brdp);
736static void stli_onbeenable(stlibrd_t *brdp);
737static void stli_onbedisable(stlibrd_t *brdp);
738static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
739static void stli_onbereset(stlibrd_t *brdp);
740static void stli_bbyinit(stlibrd_t *brdp);
741static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
742static void stli_bbyreset(stlibrd_t *brdp);
743static void stli_stalinit(stlibrd_t *brdp);
744static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
745static void stli_stalreset(stlibrd_t *brdp);
746
747static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
748
749static int stli_initecp(stlibrd_t *brdp);
750static int stli_initonb(stlibrd_t *brdp);
751static int stli_eisamemprobe(stlibrd_t *brdp);
752static int stli_initports(stlibrd_t *brdp);
753
754#ifdef CONFIG_PCI
755static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
756#endif
757
758/*****************************************************************************/
759
760/*
761 * Define the driver info for a user level shared memory device. This
762 * device will work sort of like the /dev/kmem device - except that it
763 * will give access to the shared memory on the Stallion intelligent
764 * board. This is also a very useful debugging tool.
765 */
766static struct file_operations stli_fsiomem = {
767 .owner = THIS_MODULE,
768 .read = stli_memread,
769 .write = stli_memwrite,
770 .ioctl = stli_memioctl,
771};
772
773/*****************************************************************************/
774
775/*
776 * Define a timer_list entry for our poll routine. The slave board
777 * is polled every so often to see if anything needs doing. This is
778 * much cheaper on host cpu than using interrupts. It turns out to
779 * not increase character latency by much either...
780 */
Ingo Molnar8d06afa2005-09-09 13:10:40 -0700781static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700782
783static int stli_timeron;
784
785/*
786 * Define the calculation for the timeout routine.
787 */
788#define STLI_TIMEOUT (jiffies + 1)
789
790/*****************************************************************************/
791
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800792static struct class *istallion_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700793
794#ifdef MODULE
795
796/*
797 * Loadable module initialization stuff.
798 */
799
800static int __init istallion_module_init(void)
801{
802 unsigned long flags;
803
804#ifdef DEBUG
805 printk("init_module()\n");
806#endif
807
808 save_flags(flags);
809 cli();
810 stli_init();
811 restore_flags(flags);
812
813 return(0);
814}
815
816/*****************************************************************************/
817
818static void __exit istallion_module_exit(void)
819{
820 stlibrd_t *brdp;
821 stliport_t *portp;
822 unsigned long flags;
823 int i, j;
824
825#ifdef DEBUG
826 printk("cleanup_module()\n");
827#endif
828
829 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
830 stli_drvversion);
831
832 save_flags(flags);
833 cli();
834
835/*
836 * Free up all allocated resources used by the ports. This includes
837 * memory and interrupts.
838 */
839 if (stli_timeron) {
840 stli_timeron = 0;
841 del_timer(&stli_timerlist);
842 }
843
844 i = tty_unregister_driver(stli_serial);
845 if (i) {
846 printk("STALLION: failed to un-register tty driver, "
847 "errno=%d\n", -i);
848 restore_flags(flags);
849 return;
850 }
851 put_tty_driver(stli_serial);
Greg Kroah-Hartman8ab5e4c2005-06-20 21:15:16 -0700852 for (i = 0; i < 4; i++)
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800853 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800854 class_destroy(istallion_class);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
856 printk("STALLION: failed to un-register serial memory device, "
857 "errno=%d\n", -i);
Jesper Juhl735d5662005-11-07 01:01:29 -0800858
859 kfree(stli_tmpwritebuf);
860 kfree(stli_txcookbuf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861
862 for (i = 0; (i < stli_nrbrds); i++) {
863 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
864 continue;
865 for (j = 0; (j < STL_MAXPORTS); j++) {
866 portp = brdp->ports[j];
867 if (portp != (stliport_t *) NULL) {
868 if (portp->tty != (struct tty_struct *) NULL)
869 tty_hangup(portp->tty);
870 kfree(portp);
871 }
872 }
873
874 iounmap(brdp->membase);
875 if (brdp->iosize > 0)
876 release_region(brdp->iobase, brdp->iosize);
877 kfree(brdp);
878 stli_brds[i] = (stlibrd_t *) NULL;
879 }
880
881 restore_flags(flags);
882}
883
884module_init(istallion_module_init);
885module_exit(istallion_module_exit);
886
887/*****************************************************************************/
888
889/*
890 * Check for any arguments passed in on the module load command line.
891 */
892
893static void stli_argbrds(void)
894{
895 stlconf_t conf;
896 stlibrd_t *brdp;
Tobias Klauserfe971072006-01-09 20:54:02 -0800897 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898
899#ifdef DEBUG
900 printk("stli_argbrds()\n");
901#endif
902
Tobias Klauserfe971072006-01-09 20:54:02 -0800903 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904 memset(&conf, 0, sizeof(conf));
905 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
906 continue;
907 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
908 continue;
909 stli_nrbrds = i + 1;
910 brdp->brdnr = i;
911 brdp->brdtype = conf.brdtype;
912 brdp->iobase = conf.ioaddr1;
913 brdp->memaddr = conf.memaddr;
914 stli_brdinit(brdp);
915 }
916}
917
918/*****************************************************************************/
919
920/*
921 * Convert an ascii string number into an unsigned long.
922 */
923
924static unsigned long stli_atol(char *str)
925{
926 unsigned long val;
927 int base, c;
928 char *sp;
929
930 val = 0;
931 sp = str;
932 if ((*sp == '0') && (*(sp+1) == 'x')) {
933 base = 16;
934 sp += 2;
935 } else if (*sp == '0') {
936 base = 8;
937 sp++;
938 } else {
939 base = 10;
940 }
941
942 for (; (*sp != 0); sp++) {
943 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
944 if ((c < 0) || (c >= base)) {
945 printk("STALLION: invalid argument %s\n", str);
946 val = 0;
947 break;
948 }
949 val = (val * base) + c;
950 }
951 return(val);
952}
953
954/*****************************************************************************/
955
956/*
957 * Parse the supplied argument string, into the board conf struct.
958 */
959
960static int stli_parsebrd(stlconf_t *confp, char **argp)
961{
962 char *sp;
Tobias Klauserfe971072006-01-09 20:54:02 -0800963 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964
965#ifdef DEBUG
966 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
967#endif
968
969 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
970 return(0);
971
972 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
973 *sp = TOLOWER(*sp);
974
Tobias Klauserfe971072006-01-09 20:54:02 -0800975 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
977 break;
978 }
Tobias Klauserfe971072006-01-09 20:54:02 -0800979 if (i == ARRAY_SIZE(stli_brdstr)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700980 printk("STALLION: unknown board name, %s?\n", argp[0]);
Tobias Klauserfe971072006-01-09 20:54:02 -0800981 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700982 }
983
984 confp->brdtype = stli_brdstr[i].type;
985 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
986 confp->ioaddr1 = stli_atol(argp[1]);
987 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
988 confp->memaddr = stli_atol(argp[2]);
989 return(1);
990}
991
992#endif
993
994/*****************************************************************************/
995
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996static int stli_open(struct tty_struct *tty, struct file *filp)
997{
998 stlibrd_t *brdp;
999 stliport_t *portp;
1000 unsigned int minordev;
1001 int brdnr, portnr, rc;
1002
1003#ifdef DEBUG
1004 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1005 (int) filp, tty->name);
1006#endif
1007
1008 minordev = tty->index;
1009 brdnr = MINOR2BRD(minordev);
1010 if (brdnr >= stli_nrbrds)
1011 return(-ENODEV);
1012 brdp = stli_brds[brdnr];
1013 if (brdp == (stlibrd_t *) NULL)
1014 return(-ENODEV);
1015 if ((brdp->state & BST_STARTED) == 0)
1016 return(-ENODEV);
1017 portnr = MINOR2PORT(minordev);
1018 if ((portnr < 0) || (portnr > brdp->nrports))
1019 return(-ENODEV);
1020
1021 portp = brdp->ports[portnr];
1022 if (portp == (stliport_t *) NULL)
1023 return(-ENODEV);
1024 if (portp->devnr < 1)
1025 return(-ENODEV);
1026
1027
1028/*
1029 * Check if this port is in the middle of closing. If so then wait
1030 * until it is closed then return error status based on flag settings.
1031 * The sleep here does not need interrupt protection since the wakeup
1032 * for it is done with the same context.
1033 */
1034 if (portp->flags & ASYNC_CLOSING) {
1035 interruptible_sleep_on(&portp->close_wait);
1036 if (portp->flags & ASYNC_HUP_NOTIFY)
1037 return(-EAGAIN);
1038 return(-ERESTARTSYS);
1039 }
1040
1041/*
1042 * On the first open of the device setup the port hardware, and
1043 * initialize the per port data structure. Since initializing the port
1044 * requires several commands to the board we will need to wait for any
1045 * other open that is already initializing the port.
1046 */
1047 portp->tty = tty;
1048 tty->driver_data = portp;
1049 portp->refcount++;
1050
1051 wait_event_interruptible(portp->raw_wait,
1052 !test_bit(ST_INITIALIZING, &portp->state));
1053 if (signal_pending(current))
1054 return(-ERESTARTSYS);
1055
1056 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1057 set_bit(ST_INITIALIZING, &portp->state);
1058 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1059 portp->flags |= ASYNC_INITIALIZED;
1060 clear_bit(TTY_IO_ERROR, &tty->flags);
1061 }
1062 clear_bit(ST_INITIALIZING, &portp->state);
1063 wake_up_interruptible(&portp->raw_wait);
1064 if (rc < 0)
1065 return(rc);
1066 }
1067
1068/*
1069 * Check if this port is in the middle of closing. If so then wait
1070 * until it is closed then return error status, based on flag settings.
1071 * The sleep here does not need interrupt protection since the wakeup
1072 * for it is done with the same context.
1073 */
1074 if (portp->flags & ASYNC_CLOSING) {
1075 interruptible_sleep_on(&portp->close_wait);
1076 if (portp->flags & ASYNC_HUP_NOTIFY)
1077 return(-EAGAIN);
1078 return(-ERESTARTSYS);
1079 }
1080
1081/*
1082 * Based on type of open being done check if it can overlap with any
1083 * previous opens still in effect. If we are a normal serial device
1084 * then also we might have to wait for carrier.
1085 */
1086 if (!(filp->f_flags & O_NONBLOCK)) {
1087 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1088 return(rc);
1089 }
1090 portp->flags |= ASYNC_NORMAL_ACTIVE;
1091 return(0);
1092}
1093
1094/*****************************************************************************/
1095
1096static void stli_close(struct tty_struct *tty, struct file *filp)
1097{
1098 stlibrd_t *brdp;
1099 stliport_t *portp;
1100 unsigned long flags;
1101
1102#ifdef DEBUG
1103 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1104#endif
1105
1106 portp = tty->driver_data;
1107 if (portp == (stliport_t *) NULL)
1108 return;
1109
1110 save_flags(flags);
1111 cli();
1112 if (tty_hung_up_p(filp)) {
1113 restore_flags(flags);
1114 return;
1115 }
1116 if ((tty->count == 1) && (portp->refcount != 1))
1117 portp->refcount = 1;
1118 if (portp->refcount-- > 1) {
1119 restore_flags(flags);
1120 return;
1121 }
1122
1123 portp->flags |= ASYNC_CLOSING;
1124
1125/*
1126 * May want to wait for data to drain before closing. The BUSY flag
1127 * keeps track of whether we are still transmitting or not. It is
1128 * updated by messages from the slave - indicating when all chars
1129 * really have drained.
1130 */
1131 if (tty == stli_txcooktty)
1132 stli_flushchars(tty);
1133 tty->closing = 1;
1134 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1135 tty_wait_until_sent(tty, portp->closing_wait);
1136
1137 portp->flags &= ~ASYNC_INITIALIZED;
1138 brdp = stli_brds[portp->brdnr];
1139 stli_rawclose(brdp, portp, 0, 0);
1140 if (tty->termios->c_cflag & HUPCL) {
1141 stli_mkasysigs(&portp->asig, 0, 0);
1142 if (test_bit(ST_CMDING, &portp->state))
1143 set_bit(ST_DOSIGS, &portp->state);
1144 else
1145 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1146 sizeof(asysigs_t), 0);
1147 }
1148 clear_bit(ST_TXBUSY, &portp->state);
1149 clear_bit(ST_RXSTOP, &portp->state);
1150 set_bit(TTY_IO_ERROR, &tty->flags);
1151 if (tty->ldisc.flush_buffer)
1152 (tty->ldisc.flush_buffer)(tty);
1153 set_bit(ST_DOFLUSHRX, &portp->state);
1154 stli_flushbuffer(tty);
1155
1156 tty->closing = 0;
1157 portp->tty = (struct tty_struct *) NULL;
1158
1159 if (portp->openwaitcnt) {
1160 if (portp->close_delay)
1161 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1162 wake_up_interruptible(&portp->open_wait);
1163 }
1164
1165 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1166 wake_up_interruptible(&portp->close_wait);
1167 restore_flags(flags);
1168}
1169
1170/*****************************************************************************/
1171
1172/*
1173 * Carry out first open operations on a port. This involves a number of
1174 * commands to be sent to the slave. We need to open the port, set the
1175 * notification events, set the initial port settings, get and set the
1176 * initial signal values. We sleep and wait in between each one. But
1177 * this still all happens pretty quickly.
1178 */
1179
1180static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1181{
1182 struct tty_struct *tty;
1183 asynotify_t nt;
1184 asyport_t aport;
1185 int rc;
1186
1187#ifdef DEBUG
1188 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1189#endif
1190
1191 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1192 return(rc);
1193
1194 memset(&nt, 0, sizeof(asynotify_t));
1195 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1196 nt.signal = SG_DCD;
1197 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1198 sizeof(asynotify_t), 0)) < 0)
1199 return(rc);
1200
1201 tty = portp->tty;
1202 if (tty == (struct tty_struct *) NULL)
1203 return(-ENODEV);
1204 stli_mkasyport(portp, &aport, tty->termios);
1205 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1206 sizeof(asyport_t), 0)) < 0)
1207 return(rc);
1208
1209 set_bit(ST_GETSIGS, &portp->state);
1210 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1211 sizeof(asysigs_t), 1)) < 0)
1212 return(rc);
1213 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1214 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1215 stli_mkasysigs(&portp->asig, 1, 1);
1216 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1217 sizeof(asysigs_t), 0)) < 0)
1218 return(rc);
1219
1220 return(0);
1221}
1222
1223/*****************************************************************************/
1224
1225/*
1226 * Send an open message to the slave. This will sleep waiting for the
1227 * acknowledgement, so must have user context. We need to co-ordinate
1228 * with close events here, since we don't want open and close events
1229 * to overlap.
1230 */
1231
1232static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1233{
1234 volatile cdkhdr_t *hdrp;
1235 volatile cdkctrl_t *cp;
1236 volatile unsigned char *bits;
1237 unsigned long flags;
1238 int rc;
1239
1240#ifdef DEBUG
1241 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1242 (int) brdp, (int) portp, (int) arg, wait);
1243#endif
1244
1245/*
1246 * Send a message to the slave to open this port.
1247 */
1248 save_flags(flags);
1249 cli();
1250
1251/*
1252 * Slave is already closing this port. This can happen if a hangup
1253 * occurs on this port. So we must wait until it is complete. The
1254 * order of opens and closes may not be preserved across shared
1255 * memory, so we must wait until it is complete.
1256 */
1257 wait_event_interruptible(portp->raw_wait,
1258 !test_bit(ST_CLOSING, &portp->state));
1259 if (signal_pending(current)) {
1260 restore_flags(flags);
1261 return -ERESTARTSYS;
1262 }
1263
1264/*
1265 * Everything is ready now, so write the open message into shared
1266 * memory. Once the message is in set the service bits to say that
1267 * this port wants service.
1268 */
1269 EBRDENABLE(brdp);
1270 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1271 cp->openarg = arg;
1272 cp->open = 1;
1273 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1274 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1275 portp->portidx;
1276 *bits |= portp->portbit;
1277 EBRDDISABLE(brdp);
1278
1279 if (wait == 0) {
1280 restore_flags(flags);
1281 return(0);
1282 }
1283
1284/*
1285 * Slave is in action, so now we must wait for the open acknowledgment
1286 * to come back.
1287 */
1288 rc = 0;
1289 set_bit(ST_OPENING, &portp->state);
1290 wait_event_interruptible(portp->raw_wait,
1291 !test_bit(ST_OPENING, &portp->state));
1292 if (signal_pending(current))
1293 rc = -ERESTARTSYS;
1294 restore_flags(flags);
1295
1296 if ((rc == 0) && (portp->rc != 0))
1297 rc = -EIO;
1298 return(rc);
1299}
1300
1301/*****************************************************************************/
1302
1303/*
1304 * Send a close message to the slave. Normally this will sleep waiting
1305 * for the acknowledgement, but if wait parameter is 0 it will not. If
1306 * wait is true then must have user context (to sleep).
1307 */
1308
1309static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1310{
1311 volatile cdkhdr_t *hdrp;
1312 volatile cdkctrl_t *cp;
1313 volatile unsigned char *bits;
1314 unsigned long flags;
1315 int rc;
1316
1317#ifdef DEBUG
1318 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1319 (int) brdp, (int) portp, (int) arg, wait);
1320#endif
1321
1322 save_flags(flags);
1323 cli();
1324
1325/*
1326 * Slave is already closing this port. This can happen if a hangup
1327 * occurs on this port.
1328 */
1329 if (wait) {
1330 wait_event_interruptible(portp->raw_wait,
1331 !test_bit(ST_CLOSING, &portp->state));
1332 if (signal_pending(current)) {
1333 restore_flags(flags);
1334 return -ERESTARTSYS;
1335 }
1336 }
1337
1338/*
1339 * Write the close command into shared memory.
1340 */
1341 EBRDENABLE(brdp);
1342 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1343 cp->closearg = arg;
1344 cp->close = 1;
1345 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1346 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1347 portp->portidx;
1348 *bits |= portp->portbit;
1349 EBRDDISABLE(brdp);
1350
1351 set_bit(ST_CLOSING, &portp->state);
1352 if (wait == 0) {
1353 restore_flags(flags);
1354 return(0);
1355 }
1356
1357/*
1358 * Slave is in action, so now we must wait for the open acknowledgment
1359 * to come back.
1360 */
1361 rc = 0;
1362 wait_event_interruptible(portp->raw_wait,
1363 !test_bit(ST_CLOSING, &portp->state));
1364 if (signal_pending(current))
1365 rc = -ERESTARTSYS;
1366 restore_flags(flags);
1367
1368 if ((rc == 0) && (portp->rc != 0))
1369 rc = -EIO;
1370 return(rc);
1371}
1372
1373/*****************************************************************************/
1374
1375/*
1376 * Send a command to the slave and wait for the response. This must
1377 * have user context (it sleeps). This routine is generic in that it
1378 * can send any type of command. Its purpose is to wait for that command
1379 * to complete (as opposed to initiating the command then returning).
1380 */
1381
1382static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1383{
1384 unsigned long flags;
1385
1386#ifdef DEBUG
1387 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1388 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1389 (int) arg, size, copyback);
1390#endif
1391
1392 save_flags(flags);
1393 cli();
1394 wait_event_interruptible(portp->raw_wait,
1395 !test_bit(ST_CMDING, &portp->state));
1396 if (signal_pending(current)) {
1397 restore_flags(flags);
1398 return -ERESTARTSYS;
1399 }
1400
1401 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1402
1403 wait_event_interruptible(portp->raw_wait,
1404 !test_bit(ST_CMDING, &portp->state));
1405 if (signal_pending(current)) {
1406 restore_flags(flags);
1407 return -ERESTARTSYS;
1408 }
1409 restore_flags(flags);
1410
1411 if (portp->rc != 0)
1412 return(-EIO);
1413 return(0);
1414}
1415
1416/*****************************************************************************/
1417
1418/*
1419 * Send the termios settings for this port to the slave. This sleeps
1420 * waiting for the command to complete - so must have user context.
1421 */
1422
1423static int stli_setport(stliport_t *portp)
1424{
1425 stlibrd_t *brdp;
1426 asyport_t aport;
1427
1428#ifdef DEBUG
1429 printk("stli_setport(portp=%x)\n", (int) portp);
1430#endif
1431
1432 if (portp == (stliport_t *) NULL)
1433 return(-ENODEV);
1434 if (portp->tty == (struct tty_struct *) NULL)
1435 return(-ENODEV);
1436 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1437 return(-ENODEV);
1438 brdp = stli_brds[portp->brdnr];
1439 if (brdp == (stlibrd_t *) NULL)
1440 return(-ENODEV);
1441
1442 stli_mkasyport(portp, &aport, portp->tty->termios);
1443 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1444}
1445
1446/*****************************************************************************/
1447
1448/*
1449 * Possibly need to wait for carrier (DCD signal) to come high. Say
1450 * maybe because if we are clocal then we don't need to wait...
1451 */
1452
1453static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1454{
1455 unsigned long flags;
1456 int rc, doclocal;
1457
1458#ifdef DEBUG
1459 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1460 (int) brdp, (int) portp, (int) filp);
1461#endif
1462
1463 rc = 0;
1464 doclocal = 0;
1465
1466 if (portp->tty->termios->c_cflag & CLOCAL)
1467 doclocal++;
1468
1469 save_flags(flags);
1470 cli();
1471 portp->openwaitcnt++;
1472 if (! tty_hung_up_p(filp))
1473 portp->refcount--;
1474
1475 for (;;) {
1476 stli_mkasysigs(&portp->asig, 1, 1);
1477 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1478 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1479 break;
1480 if (tty_hung_up_p(filp) ||
1481 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1482 if (portp->flags & ASYNC_HUP_NOTIFY)
1483 rc = -EBUSY;
1484 else
1485 rc = -ERESTARTSYS;
1486 break;
1487 }
1488 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1489 (doclocal || (portp->sigs & TIOCM_CD))) {
1490 break;
1491 }
1492 if (signal_pending(current)) {
1493 rc = -ERESTARTSYS;
1494 break;
1495 }
1496 interruptible_sleep_on(&portp->open_wait);
1497 }
1498
1499 if (! tty_hung_up_p(filp))
1500 portp->refcount++;
1501 portp->openwaitcnt--;
1502 restore_flags(flags);
1503
1504 return(rc);
1505}
1506
1507/*****************************************************************************/
1508
1509/*
1510 * Write routine. Take the data and put it in the shared memory ring
1511 * queue. If port is not already sending chars then need to mark the
1512 * service bits for this port.
1513 */
1514
1515static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1516{
1517 volatile cdkasy_t *ap;
1518 volatile cdkhdr_t *hdrp;
1519 volatile unsigned char *bits;
1520 unsigned char *shbuf, *chbuf;
1521 stliport_t *portp;
1522 stlibrd_t *brdp;
1523 unsigned int len, stlen, head, tail, size;
1524 unsigned long flags;
1525
1526#ifdef DEBUG
1527 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1528 (int) tty, (int) buf, count);
1529#endif
1530
1531 if ((tty == (struct tty_struct *) NULL) ||
1532 (stli_tmpwritebuf == (char *) NULL))
1533 return(0);
1534 if (tty == stli_txcooktty)
1535 stli_flushchars(tty);
1536 portp = tty->driver_data;
1537 if (portp == (stliport_t *) NULL)
1538 return(0);
1539 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1540 return(0);
1541 brdp = stli_brds[portp->brdnr];
1542 if (brdp == (stlibrd_t *) NULL)
1543 return(0);
1544 chbuf = (unsigned char *) buf;
1545
1546/*
1547 * All data is now local, shove as much as possible into shared memory.
1548 */
1549 save_flags(flags);
1550 cli();
1551 EBRDENABLE(brdp);
1552 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1553 head = (unsigned int) ap->txq.head;
1554 tail = (unsigned int) ap->txq.tail;
1555 if (tail != ((unsigned int) ap->txq.tail))
1556 tail = (unsigned int) ap->txq.tail;
1557 size = portp->txsize;
1558 if (head >= tail) {
1559 len = size - (head - tail) - 1;
1560 stlen = size - head;
1561 } else {
1562 len = tail - head - 1;
1563 stlen = len;
1564 }
1565
1566 len = MIN(len, count);
1567 count = 0;
1568 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1569
1570 while (len > 0) {
1571 stlen = MIN(len, stlen);
1572 memcpy((shbuf + head), chbuf, stlen);
1573 chbuf += stlen;
1574 len -= stlen;
1575 count += stlen;
1576 head += stlen;
1577 if (head >= size) {
1578 head = 0;
1579 stlen = tail;
1580 }
1581 }
1582
1583 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1584 ap->txq.head = head;
1585 if (test_bit(ST_TXBUSY, &portp->state)) {
1586 if (ap->changed.data & DT_TXEMPTY)
1587 ap->changed.data &= ~DT_TXEMPTY;
1588 }
1589 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1590 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1591 portp->portidx;
1592 *bits |= portp->portbit;
1593 set_bit(ST_TXBUSY, &portp->state);
1594 EBRDDISABLE(brdp);
1595
1596 restore_flags(flags);
1597
1598 return(count);
1599}
1600
1601/*****************************************************************************/
1602
1603/*
1604 * Output a single character. We put it into a temporary local buffer
1605 * (for speed) then write out that buffer when the flushchars routine
1606 * is called. There is a safety catch here so that if some other port
1607 * writes chars before the current buffer has been, then we write them
1608 * first them do the new ports.
1609 */
1610
1611static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1612{
1613#ifdef DEBUG
1614 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1615#endif
1616
1617 if (tty == (struct tty_struct *) NULL)
1618 return;
1619 if (tty != stli_txcooktty) {
1620 if (stli_txcooktty != (struct tty_struct *) NULL)
1621 stli_flushchars(stli_txcooktty);
1622 stli_txcooktty = tty;
1623 }
1624
1625 stli_txcookbuf[stli_txcooksize++] = ch;
1626}
1627
1628/*****************************************************************************/
1629
1630/*
1631 * Transfer characters from the local TX cooking buffer to the board.
1632 * We sort of ignore the tty that gets passed in here. We rely on the
1633 * info stored with the TX cook buffer to tell us which port to flush
1634 * the data on. In any case we clean out the TX cook buffer, for re-use
1635 * by someone else.
1636 */
1637
1638static void stli_flushchars(struct tty_struct *tty)
1639{
1640 volatile cdkhdr_t *hdrp;
1641 volatile unsigned char *bits;
1642 volatile cdkasy_t *ap;
1643 struct tty_struct *cooktty;
1644 stliport_t *portp;
1645 stlibrd_t *brdp;
1646 unsigned int len, stlen, head, tail, size, count, cooksize;
1647 unsigned char *buf, *shbuf;
1648 unsigned long flags;
1649
1650#ifdef DEBUG
1651 printk("stli_flushchars(tty=%x)\n", (int) tty);
1652#endif
1653
1654 cooksize = stli_txcooksize;
1655 cooktty = stli_txcooktty;
1656 stli_txcooksize = 0;
1657 stli_txcookrealsize = 0;
1658 stli_txcooktty = (struct tty_struct *) NULL;
1659
1660 if (tty == (struct tty_struct *) NULL)
1661 return;
1662 if (cooktty == (struct tty_struct *) NULL)
1663 return;
1664 if (tty != cooktty)
1665 tty = cooktty;
1666 if (cooksize == 0)
1667 return;
1668
1669 portp = tty->driver_data;
1670 if (portp == (stliport_t *) NULL)
1671 return;
1672 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1673 return;
1674 brdp = stli_brds[portp->brdnr];
1675 if (brdp == (stlibrd_t *) NULL)
1676 return;
1677
1678 save_flags(flags);
1679 cli();
1680 EBRDENABLE(brdp);
1681
1682 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1683 head = (unsigned int) ap->txq.head;
1684 tail = (unsigned int) ap->txq.tail;
1685 if (tail != ((unsigned int) ap->txq.tail))
1686 tail = (unsigned int) ap->txq.tail;
1687 size = portp->txsize;
1688 if (head >= tail) {
1689 len = size - (head - tail) - 1;
1690 stlen = size - head;
1691 } else {
1692 len = tail - head - 1;
1693 stlen = len;
1694 }
1695
1696 len = MIN(len, cooksize);
1697 count = 0;
1698 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1699 buf = stli_txcookbuf;
1700
1701 while (len > 0) {
1702 stlen = MIN(len, stlen);
1703 memcpy((shbuf + head), buf, stlen);
1704 buf += stlen;
1705 len -= stlen;
1706 count += stlen;
1707 head += stlen;
1708 if (head >= size) {
1709 head = 0;
1710 stlen = tail;
1711 }
1712 }
1713
1714 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1715 ap->txq.head = head;
1716
1717 if (test_bit(ST_TXBUSY, &portp->state)) {
1718 if (ap->changed.data & DT_TXEMPTY)
1719 ap->changed.data &= ~DT_TXEMPTY;
1720 }
1721 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1722 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1723 portp->portidx;
1724 *bits |= portp->portbit;
1725 set_bit(ST_TXBUSY, &portp->state);
1726
1727 EBRDDISABLE(brdp);
1728 restore_flags(flags);
1729}
1730
1731/*****************************************************************************/
1732
1733static int stli_writeroom(struct tty_struct *tty)
1734{
1735 volatile cdkasyrq_t *rp;
1736 stliport_t *portp;
1737 stlibrd_t *brdp;
1738 unsigned int head, tail, len;
1739 unsigned long flags;
1740
1741#ifdef DEBUG
1742 printk("stli_writeroom(tty=%x)\n", (int) tty);
1743#endif
1744
1745 if (tty == (struct tty_struct *) NULL)
1746 return(0);
1747 if (tty == stli_txcooktty) {
1748 if (stli_txcookrealsize != 0) {
1749 len = stli_txcookrealsize - stli_txcooksize;
1750 return(len);
1751 }
1752 }
1753
1754 portp = tty->driver_data;
1755 if (portp == (stliport_t *) NULL)
1756 return(0);
1757 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1758 return(0);
1759 brdp = stli_brds[portp->brdnr];
1760 if (brdp == (stlibrd_t *) NULL)
1761 return(0);
1762
1763 save_flags(flags);
1764 cli();
1765 EBRDENABLE(brdp);
1766 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1767 head = (unsigned int) rp->head;
1768 tail = (unsigned int) rp->tail;
1769 if (tail != ((unsigned int) rp->tail))
1770 tail = (unsigned int) rp->tail;
1771 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1772 len--;
1773 EBRDDISABLE(brdp);
1774 restore_flags(flags);
1775
1776 if (tty == stli_txcooktty) {
1777 stli_txcookrealsize = len;
1778 len -= stli_txcooksize;
1779 }
1780 return(len);
1781}
1782
1783/*****************************************************************************/
1784
1785/*
1786 * Return the number of characters in the transmit buffer. Normally we
1787 * will return the number of chars in the shared memory ring queue.
1788 * We need to kludge around the case where the shared memory buffer is
1789 * empty but not all characters have drained yet, for this case just
1790 * return that there is 1 character in the buffer!
1791 */
1792
1793static int stli_charsinbuffer(struct tty_struct *tty)
1794{
1795 volatile cdkasyrq_t *rp;
1796 stliport_t *portp;
1797 stlibrd_t *brdp;
1798 unsigned int head, tail, len;
1799 unsigned long flags;
1800
1801#ifdef DEBUG
1802 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1803#endif
1804
1805 if (tty == (struct tty_struct *) NULL)
1806 return(0);
1807 if (tty == stli_txcooktty)
1808 stli_flushchars(tty);
1809 portp = tty->driver_data;
1810 if (portp == (stliport_t *) NULL)
1811 return(0);
1812 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1813 return(0);
1814 brdp = stli_brds[portp->brdnr];
1815 if (brdp == (stlibrd_t *) NULL)
1816 return(0);
1817
1818 save_flags(flags);
1819 cli();
1820 EBRDENABLE(brdp);
1821 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1822 head = (unsigned int) rp->head;
1823 tail = (unsigned int) rp->tail;
1824 if (tail != ((unsigned int) rp->tail))
1825 tail = (unsigned int) rp->tail;
1826 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1827 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1828 len = 1;
1829 EBRDDISABLE(brdp);
1830 restore_flags(flags);
1831
1832 return(len);
1833}
1834
1835/*****************************************************************************/
1836
1837/*
1838 * Generate the serial struct info.
1839 */
1840
1841static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1842{
1843 struct serial_struct sio;
1844 stlibrd_t *brdp;
1845
1846#ifdef DEBUG
1847 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1848#endif
1849
1850 memset(&sio, 0, sizeof(struct serial_struct));
1851 sio.type = PORT_UNKNOWN;
1852 sio.line = portp->portnr;
1853 sio.irq = 0;
1854 sio.flags = portp->flags;
1855 sio.baud_base = portp->baud_base;
1856 sio.close_delay = portp->close_delay;
1857 sio.closing_wait = portp->closing_wait;
1858 sio.custom_divisor = portp->custom_divisor;
1859 sio.xmit_fifo_size = 0;
1860 sio.hub6 = 0;
1861
1862 brdp = stli_brds[portp->brdnr];
1863 if (brdp != (stlibrd_t *) NULL)
1864 sio.port = brdp->iobase;
1865
1866 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1867 -EFAULT : 0;
1868}
1869
1870/*****************************************************************************/
1871
1872/*
1873 * Set port according to the serial struct info.
1874 * At this point we do not do any auto-configure stuff, so we will
1875 * just quietly ignore any requests to change irq, etc.
1876 */
1877
1878static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1879{
1880 struct serial_struct sio;
1881 int rc;
1882
1883#ifdef DEBUG
1884 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1885#endif
1886
1887 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1888 return -EFAULT;
1889 if (!capable(CAP_SYS_ADMIN)) {
1890 if ((sio.baud_base != portp->baud_base) ||
1891 (sio.close_delay != portp->close_delay) ||
1892 ((sio.flags & ~ASYNC_USR_MASK) !=
1893 (portp->flags & ~ASYNC_USR_MASK)))
1894 return(-EPERM);
1895 }
1896
1897 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1898 (sio.flags & ASYNC_USR_MASK);
1899 portp->baud_base = sio.baud_base;
1900 portp->close_delay = sio.close_delay;
1901 portp->closing_wait = sio.closing_wait;
1902 portp->custom_divisor = sio.custom_divisor;
1903
1904 if ((rc = stli_setport(portp)) < 0)
1905 return(rc);
1906 return(0);
1907}
1908
1909/*****************************************************************************/
1910
1911static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1912{
1913 stliport_t *portp = tty->driver_data;
1914 stlibrd_t *brdp;
1915 int rc;
1916
1917 if (portp == (stliport_t *) NULL)
1918 return(-ENODEV);
1919 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1920 return(0);
1921 brdp = stli_brds[portp->brdnr];
1922 if (brdp == (stlibrd_t *) NULL)
1923 return(0);
1924 if (tty->flags & (1 << TTY_IO_ERROR))
1925 return(-EIO);
1926
1927 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1928 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1929 return(rc);
1930
1931 return stli_mktiocm(portp->asig.sigvalue);
1932}
1933
1934static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1935 unsigned int set, unsigned int clear)
1936{
1937 stliport_t *portp = tty->driver_data;
1938 stlibrd_t *brdp;
1939 int rts = -1, dtr = -1;
1940
1941 if (portp == (stliport_t *) NULL)
1942 return(-ENODEV);
1943 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1944 return(0);
1945 brdp = stli_brds[portp->brdnr];
1946 if (brdp == (stlibrd_t *) NULL)
1947 return(0);
1948 if (tty->flags & (1 << TTY_IO_ERROR))
1949 return(-EIO);
1950
1951 if (set & TIOCM_RTS)
1952 rts = 1;
1953 if (set & TIOCM_DTR)
1954 dtr = 1;
1955 if (clear & TIOCM_RTS)
1956 rts = 0;
1957 if (clear & TIOCM_DTR)
1958 dtr = 0;
1959
1960 stli_mkasysigs(&portp->asig, dtr, rts);
1961
1962 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1963 sizeof(asysigs_t), 0);
1964}
1965
1966static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1967{
1968 stliport_t *portp;
1969 stlibrd_t *brdp;
1970 unsigned int ival;
1971 int rc;
1972 void __user *argp = (void __user *)arg;
1973
1974#ifdef DEBUG
1975 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1976 (int) tty, (int) file, cmd, (int) arg);
1977#endif
1978
1979 if (tty == (struct tty_struct *) NULL)
1980 return(-ENODEV);
1981 portp = tty->driver_data;
1982 if (portp == (stliport_t *) NULL)
1983 return(-ENODEV);
1984 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1985 return(0);
1986 brdp = stli_brds[portp->brdnr];
1987 if (brdp == (stlibrd_t *) NULL)
1988 return(0);
1989
1990 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1991 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1992 if (tty->flags & (1 << TTY_IO_ERROR))
1993 return(-EIO);
1994 }
1995
1996 rc = 0;
1997
1998 switch (cmd) {
1999 case TIOCGSOFTCAR:
2000 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2001 (unsigned __user *) arg);
2002 break;
2003 case TIOCSSOFTCAR:
2004 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2005 tty->termios->c_cflag =
2006 (tty->termios->c_cflag & ~CLOCAL) |
2007 (ival ? CLOCAL : 0);
2008 break;
2009 case TIOCGSERIAL:
2010 rc = stli_getserial(portp, argp);
2011 break;
2012 case TIOCSSERIAL:
2013 rc = stli_setserial(portp, argp);
2014 break;
2015 case STL_GETPFLAG:
2016 rc = put_user(portp->pflag, (unsigned __user *)argp);
2017 break;
2018 case STL_SETPFLAG:
2019 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2020 stli_setport(portp);
2021 break;
2022 case COM_GETPORTSTATS:
2023 rc = stli_getportstats(portp, argp);
2024 break;
2025 case COM_CLRPORTSTATS:
2026 rc = stli_clrportstats(portp, argp);
2027 break;
2028 case TIOCSERCONFIG:
2029 case TIOCSERGWILD:
2030 case TIOCSERSWILD:
2031 case TIOCSERGETLSR:
2032 case TIOCSERGSTRUCT:
2033 case TIOCSERGETMULTI:
2034 case TIOCSERSETMULTI:
2035 default:
2036 rc = -ENOIOCTLCMD;
2037 break;
2038 }
2039
2040 return(rc);
2041}
2042
2043/*****************************************************************************/
2044
2045/*
2046 * This routine assumes that we have user context and can sleep.
2047 * Looks like it is true for the current ttys implementation..!!
2048 */
2049
2050static void stli_settermios(struct tty_struct *tty, struct termios *old)
2051{
2052 stliport_t *portp;
2053 stlibrd_t *brdp;
2054 struct termios *tiosp;
2055 asyport_t aport;
2056
2057#ifdef DEBUG
2058 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2059#endif
2060
2061 if (tty == (struct tty_struct *) NULL)
2062 return;
2063 portp = tty->driver_data;
2064 if (portp == (stliport_t *) NULL)
2065 return;
2066 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2067 return;
2068 brdp = stli_brds[portp->brdnr];
2069 if (brdp == (stlibrd_t *) NULL)
2070 return;
2071
2072 tiosp = tty->termios;
2073 if ((tiosp->c_cflag == old->c_cflag) &&
2074 (tiosp->c_iflag == old->c_iflag))
2075 return;
2076
2077 stli_mkasyport(portp, &aport, tiosp);
2078 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2079 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2080 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2081 sizeof(asysigs_t), 0);
2082 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2083 tty->hw_stopped = 0;
2084 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2085 wake_up_interruptible(&portp->open_wait);
2086}
2087
2088/*****************************************************************************/
2089
2090/*
2091 * Attempt to flow control who ever is sending us data. We won't really
2092 * do any flow control action here. We can't directly, and even if we
2093 * wanted to we would have to send a command to the slave. The slave
2094 * knows how to flow control, and will do so when its buffers reach its
2095 * internal high water marks. So what we will do is set a local state
2096 * bit that will stop us sending any RX data up from the poll routine
2097 * (which is the place where RX data from the slave is handled).
2098 */
2099
2100static void stli_throttle(struct tty_struct *tty)
2101{
2102 stliport_t *portp;
2103
2104#ifdef DEBUG
2105 printk("stli_throttle(tty=%x)\n", (int) tty);
2106#endif
2107
2108 if (tty == (struct tty_struct *) NULL)
2109 return;
2110 portp = tty->driver_data;
2111 if (portp == (stliport_t *) NULL)
2112 return;
2113
2114 set_bit(ST_RXSTOP, &portp->state);
2115}
2116
2117/*****************************************************************************/
2118
2119/*
2120 * Unflow control the device sending us data... That means that all
2121 * we have to do is clear the RXSTOP state bit. The next poll call
2122 * will then be able to pass the RX data back up.
2123 */
2124
2125static void stli_unthrottle(struct tty_struct *tty)
2126{
2127 stliport_t *portp;
2128
2129#ifdef DEBUG
2130 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2131#endif
2132
2133 if (tty == (struct tty_struct *) NULL)
2134 return;
2135 portp = tty->driver_data;
2136 if (portp == (stliport_t *) NULL)
2137 return;
2138
2139 clear_bit(ST_RXSTOP, &portp->state);
2140}
2141
2142/*****************************************************************************/
2143
2144/*
2145 * Stop the transmitter. Basically to do this we will just turn TX
2146 * interrupts off.
2147 */
2148
2149static void stli_stop(struct tty_struct *tty)
2150{
2151 stlibrd_t *brdp;
2152 stliport_t *portp;
2153 asyctrl_t actrl;
2154
2155#ifdef DEBUG
2156 printk("stli_stop(tty=%x)\n", (int) tty);
2157#endif
2158
2159 if (tty == (struct tty_struct *) NULL)
2160 return;
2161 portp = tty->driver_data;
2162 if (portp == (stliport_t *) NULL)
2163 return;
2164 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2165 return;
2166 brdp = stli_brds[portp->brdnr];
2167 if (brdp == (stlibrd_t *) NULL)
2168 return;
2169
2170 memset(&actrl, 0, sizeof(asyctrl_t));
2171 actrl.txctrl = CT_STOPFLOW;
2172#if 0
2173 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2174#endif
2175}
2176
2177/*****************************************************************************/
2178
2179/*
2180 * Start the transmitter again. Just turn TX interrupts back on.
2181 */
2182
2183static void stli_start(struct tty_struct *tty)
2184{
2185 stliport_t *portp;
2186 stlibrd_t *brdp;
2187 asyctrl_t actrl;
2188
2189#ifdef DEBUG
2190 printk("stli_start(tty=%x)\n", (int) tty);
2191#endif
2192
2193 if (tty == (struct tty_struct *) NULL)
2194 return;
2195 portp = tty->driver_data;
2196 if (portp == (stliport_t *) NULL)
2197 return;
2198 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2199 return;
2200 brdp = stli_brds[portp->brdnr];
2201 if (brdp == (stlibrd_t *) NULL)
2202 return;
2203
2204 memset(&actrl, 0, sizeof(asyctrl_t));
2205 actrl.txctrl = CT_STARTFLOW;
2206#if 0
2207 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2208#endif
2209}
2210
2211/*****************************************************************************/
2212
2213/*
2214 * Scheduler called hang up routine. This is called from the scheduler,
2215 * not direct from the driver "poll" routine. We can't call it there
2216 * since the real local hangup code will enable/disable the board and
2217 * other things that we can't do while handling the poll. Much easier
2218 * to deal with it some time later (don't really care when, hangups
2219 * aren't that time critical).
2220 */
2221
2222static void stli_dohangup(void *arg)
2223{
2224 stliport_t *portp;
2225
2226#ifdef DEBUG
2227 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2228#endif
2229
2230 /*
2231 * FIXME: There's a module removal race here: tty_hangup
2232 * calls schedule_work which will call into this
2233 * driver later.
2234 */
2235 portp = (stliport_t *) arg;
2236 if (portp != (stliport_t *) NULL) {
2237 if (portp->tty != (struct tty_struct *) NULL) {
2238 tty_hangup(portp->tty);
2239 }
2240 }
2241}
2242
2243/*****************************************************************************/
2244
2245/*
2246 * Hangup this port. This is pretty much like closing the port, only
2247 * a little more brutal. No waiting for data to drain. Shutdown the
2248 * port and maybe drop signals. This is rather tricky really. We want
2249 * to close the port as well.
2250 */
2251
2252static void stli_hangup(struct tty_struct *tty)
2253{
2254 stliport_t *portp;
2255 stlibrd_t *brdp;
2256 unsigned long flags;
2257
2258#ifdef DEBUG
2259 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2260#endif
2261
2262 if (tty == (struct tty_struct *) NULL)
2263 return;
2264 portp = tty->driver_data;
2265 if (portp == (stliport_t *) NULL)
2266 return;
2267 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2268 return;
2269 brdp = stli_brds[portp->brdnr];
2270 if (brdp == (stlibrd_t *) NULL)
2271 return;
2272
2273 portp->flags &= ~ASYNC_INITIALIZED;
2274
2275 save_flags(flags);
2276 cli();
2277 if (! test_bit(ST_CLOSING, &portp->state))
2278 stli_rawclose(brdp, portp, 0, 0);
2279 if (tty->termios->c_cflag & HUPCL) {
2280 stli_mkasysigs(&portp->asig, 0, 0);
2281 if (test_bit(ST_CMDING, &portp->state)) {
2282 set_bit(ST_DOSIGS, &portp->state);
2283 set_bit(ST_DOFLUSHTX, &portp->state);
2284 set_bit(ST_DOFLUSHRX, &portp->state);
2285 } else {
2286 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2287 &portp->asig, sizeof(asysigs_t), 0);
2288 }
2289 }
2290 restore_flags(flags);
2291
2292 clear_bit(ST_TXBUSY, &portp->state);
2293 clear_bit(ST_RXSTOP, &portp->state);
2294 set_bit(TTY_IO_ERROR, &tty->flags);
2295 portp->tty = (struct tty_struct *) NULL;
2296 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2297 portp->refcount = 0;
2298 wake_up_interruptible(&portp->open_wait);
2299}
2300
2301/*****************************************************************************/
2302
2303/*
2304 * Flush characters from the lower buffer. We may not have user context
2305 * so we cannot sleep waiting for it to complete. Also we need to check
2306 * if there is chars for this port in the TX cook buffer, and flush them
2307 * as well.
2308 */
2309
2310static void stli_flushbuffer(struct tty_struct *tty)
2311{
2312 stliport_t *portp;
2313 stlibrd_t *brdp;
2314 unsigned long ftype, flags;
2315
2316#ifdef DEBUG
2317 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2318#endif
2319
2320 if (tty == (struct tty_struct *) NULL)
2321 return;
2322 portp = tty->driver_data;
2323 if (portp == (stliport_t *) NULL)
2324 return;
2325 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2326 return;
2327 brdp = stli_brds[portp->brdnr];
2328 if (brdp == (stlibrd_t *) NULL)
2329 return;
2330
2331 save_flags(flags);
2332 cli();
2333 if (tty == stli_txcooktty) {
2334 stli_txcooktty = (struct tty_struct *) NULL;
2335 stli_txcooksize = 0;
2336 stli_txcookrealsize = 0;
2337 }
2338 if (test_bit(ST_CMDING, &portp->state)) {
2339 set_bit(ST_DOFLUSHTX, &portp->state);
2340 } else {
2341 ftype = FLUSHTX;
2342 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2343 ftype |= FLUSHRX;
2344 clear_bit(ST_DOFLUSHRX, &portp->state);
2345 }
2346 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2347 sizeof(unsigned long), 0);
2348 }
2349 restore_flags(flags);
2350
2351 wake_up_interruptible(&tty->write_wait);
2352 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2353 tty->ldisc.write_wakeup)
2354 (tty->ldisc.write_wakeup)(tty);
2355}
2356
2357/*****************************************************************************/
2358
2359static void stli_breakctl(struct tty_struct *tty, int state)
2360{
2361 stlibrd_t *brdp;
2362 stliport_t *portp;
2363 long arg;
2364 /* long savestate, savetime; */
2365
2366#ifdef DEBUG
2367 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2368#endif
2369
2370 if (tty == (struct tty_struct *) NULL)
2371 return;
2372 portp = tty->driver_data;
2373 if (portp == (stliport_t *) NULL)
2374 return;
2375 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2376 return;
2377 brdp = stli_brds[portp->brdnr];
2378 if (brdp == (stlibrd_t *) NULL)
2379 return;
2380
2381/*
2382 * Due to a bug in the tty send_break() code we need to preserve
2383 * the current process state and timeout...
2384 savetime = current->timeout;
2385 savestate = current->state;
2386 */
2387
2388 arg = (state == -1) ? BREAKON : BREAKOFF;
2389 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2390
2391/*
2392 *
2393 current->timeout = savetime;
2394 current->state = savestate;
2395 */
2396}
2397
2398/*****************************************************************************/
2399
2400static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2401{
2402 stliport_t *portp;
2403 unsigned long tend;
2404
2405#ifdef DEBUG
2406 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2407#endif
2408
2409 if (tty == (struct tty_struct *) NULL)
2410 return;
2411 portp = tty->driver_data;
2412 if (portp == (stliport_t *) NULL)
2413 return;
2414
2415 if (timeout == 0)
2416 timeout = HZ;
2417 tend = jiffies + timeout;
2418
2419 while (test_bit(ST_TXBUSY, &portp->state)) {
2420 if (signal_pending(current))
2421 break;
2422 msleep_interruptible(20);
2423 if (time_after_eq(jiffies, tend))
2424 break;
2425 }
2426}
2427
2428/*****************************************************************************/
2429
2430static void stli_sendxchar(struct tty_struct *tty, char ch)
2431{
2432 stlibrd_t *brdp;
2433 stliport_t *portp;
2434 asyctrl_t actrl;
2435
2436#ifdef DEBUG
2437 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2438#endif
2439
2440 if (tty == (struct tty_struct *) NULL)
2441 return;
2442 portp = tty->driver_data;
2443 if (portp == (stliport_t *) NULL)
2444 return;
2445 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2446 return;
2447 brdp = stli_brds[portp->brdnr];
2448 if (brdp == (stlibrd_t *) NULL)
2449 return;
2450
2451 memset(&actrl, 0, sizeof(asyctrl_t));
2452 if (ch == STOP_CHAR(tty)) {
2453 actrl.rxctrl = CT_STOPFLOW;
2454 } else if (ch == START_CHAR(tty)) {
2455 actrl.rxctrl = CT_STARTFLOW;
2456 } else {
2457 actrl.txctrl = CT_SENDCHR;
2458 actrl.tximdch = ch;
2459 }
2460
2461 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2462}
2463
2464/*****************************************************************************/
2465
2466#define MAXLINE 80
2467
2468/*
2469 * Format info for a specified port. The line is deliberately limited
2470 * to 80 characters. (If it is too long it will be truncated, if too
2471 * short then padded with spaces).
2472 */
2473
2474static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2475{
2476 char *sp, *uart;
2477 int rc, cnt;
2478
2479 rc = stli_portcmdstats(portp);
2480
2481 uart = "UNKNOWN";
2482 if (brdp->state & BST_STARTED) {
2483 switch (stli_comstats.hwid) {
2484 case 0: uart = "2681"; break;
2485 case 1: uart = "SC26198"; break;
2486 default: uart = "CD1400"; break;
2487 }
2488 }
2489
2490 sp = pos;
2491 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2492
2493 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2494 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2495 (int) stli_comstats.rxtotal);
2496
2497 if (stli_comstats.rxframing)
2498 sp += sprintf(sp, " fe:%d",
2499 (int) stli_comstats.rxframing);
2500 if (stli_comstats.rxparity)
2501 sp += sprintf(sp, " pe:%d",
2502 (int) stli_comstats.rxparity);
2503 if (stli_comstats.rxbreaks)
2504 sp += sprintf(sp, " brk:%d",
2505 (int) stli_comstats.rxbreaks);
2506 if (stli_comstats.rxoverrun)
2507 sp += sprintf(sp, " oe:%d",
2508 (int) stli_comstats.rxoverrun);
2509
2510 cnt = sprintf(sp, "%s%s%s%s%s ",
2511 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2512 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2513 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2514 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2515 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2516 *sp = ' ';
2517 sp += cnt;
2518 }
2519
2520 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2521 *sp++ = ' ';
2522 if (cnt >= MAXLINE)
2523 pos[(MAXLINE - 2)] = '+';
2524 pos[(MAXLINE - 1)] = '\n';
2525
2526 return(MAXLINE);
2527}
2528
2529/*****************************************************************************/
2530
2531/*
2532 * Port info, read from the /proc file system.
2533 */
2534
2535static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2536{
2537 stlibrd_t *brdp;
2538 stliport_t *portp;
2539 int brdnr, portnr, totalport;
2540 int curoff, maxoff;
2541 char *pos;
2542
2543#ifdef DEBUG
2544 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2545 "data=%x\n", (int) page, (int) start, (int) off, count,
2546 (int) eof, (int) data);
2547#endif
2548
2549 pos = page;
2550 totalport = 0;
2551 curoff = 0;
2552
2553 if (off == 0) {
2554 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2555 stli_drvversion);
2556 while (pos < (page + MAXLINE - 1))
2557 *pos++ = ' ';
2558 *pos++ = '\n';
2559 }
2560 curoff = MAXLINE;
2561
2562/*
2563 * We scan through for each board, panel and port. The offset is
2564 * calculated on the fly, and irrelevant ports are skipped.
2565 */
2566 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2567 brdp = stli_brds[brdnr];
2568 if (brdp == (stlibrd_t *) NULL)
2569 continue;
2570 if (brdp->state == 0)
2571 continue;
2572
2573 maxoff = curoff + (brdp->nrports * MAXLINE);
2574 if (off >= maxoff) {
2575 curoff = maxoff;
2576 continue;
2577 }
2578
2579 totalport = brdnr * STL_MAXPORTS;
2580 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2581 totalport++) {
2582 portp = brdp->ports[portnr];
2583 if (portp == (stliport_t *) NULL)
2584 continue;
2585 if (off >= (curoff += MAXLINE))
2586 continue;
2587 if ((pos - page + MAXLINE) > count)
2588 goto stli_readdone;
2589 pos += stli_portinfo(brdp, portp, totalport, pos);
2590 }
2591 }
2592
2593 *eof = 1;
2594
2595stli_readdone:
2596 *start = page;
2597 return(pos - page);
2598}
2599
2600/*****************************************************************************/
2601
2602/*
2603 * Generic send command routine. This will send a message to the slave,
2604 * of the specified type with the specified argument. Must be very
2605 * careful of data that will be copied out from shared memory -
2606 * containing command results. The command completion is all done from
2607 * a poll routine that does not have user context. Therefore you cannot
2608 * copy back directly into user space, or to the kernel stack of a
2609 * process. This routine does not sleep, so can be called from anywhere.
2610 */
2611
2612static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2613{
2614 volatile cdkhdr_t *hdrp;
2615 volatile cdkctrl_t *cp;
2616 volatile unsigned char *bits;
2617 unsigned long flags;
2618
2619#ifdef DEBUG
2620 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2621 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2622 (int) arg, size, copyback);
2623#endif
2624
2625 save_flags(flags);
2626 cli();
2627
2628 if (test_bit(ST_CMDING, &portp->state)) {
2629 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2630 (int) cmd);
2631 restore_flags(flags);
2632 return;
2633 }
2634
2635 EBRDENABLE(brdp);
2636 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2637 if (size > 0) {
2638 memcpy((void *) &(cp->args[0]), arg, size);
2639 if (copyback) {
2640 portp->argp = arg;
2641 portp->argsize = size;
2642 }
2643 }
2644 cp->status = 0;
2645 cp->cmd = cmd;
2646 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2647 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2648 portp->portidx;
2649 *bits |= portp->portbit;
2650 set_bit(ST_CMDING, &portp->state);
2651 EBRDDISABLE(brdp);
2652 restore_flags(flags);
2653}
2654
2655/*****************************************************************************/
2656
2657/*
2658 * Read data from shared memory. This assumes that the shared memory
2659 * is enabled and that interrupts are off. Basically we just empty out
2660 * the shared memory buffer into the tty buffer. Must be careful to
2661 * handle the case where we fill up the tty buffer, but still have
2662 * more chars to unload.
2663 */
2664
2665static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2666{
2667 volatile cdkasyrq_t *rp;
2668 volatile char *shbuf;
2669 struct tty_struct *tty;
2670 unsigned int head, tail, size;
2671 unsigned int len, stlen;
2672
2673#ifdef DEBUG
2674 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2675 (int) brdp, (int) portp);
2676#endif
2677
2678 if (test_bit(ST_RXSTOP, &portp->state))
2679 return;
2680 tty = portp->tty;
2681 if (tty == (struct tty_struct *) NULL)
2682 return;
2683
2684 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2685 head = (unsigned int) rp->head;
2686 if (head != ((unsigned int) rp->head))
2687 head = (unsigned int) rp->head;
2688 tail = (unsigned int) rp->tail;
2689 size = portp->rxsize;
2690 if (head >= tail) {
2691 len = head - tail;
2692 stlen = len;
2693 } else {
2694 len = size - (tail - head);
2695 stlen = size - tail;
2696 }
2697
Alan Cox33f0f882006-01-09 20:54:13 -08002698 len = tty_buffer_request_room(tty, len);
2699 /* FIXME : iomap ? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002700 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2701
2702 while (len > 0) {
2703 stlen = MIN(len, stlen);
Alan Cox33f0f882006-01-09 20:54:13 -08002704 tty_insert_flip_string(tty, (char *)(shbuf + tail), stlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705 len -= stlen;
2706 tail += stlen;
2707 if (tail >= size) {
2708 tail = 0;
2709 stlen = head;
2710 }
2711 }
2712 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2713 rp->tail = tail;
2714
2715 if (head != tail)
2716 set_bit(ST_RXING, &portp->state);
2717
2718 tty_schedule_flip(tty);
2719}
2720
2721/*****************************************************************************/
2722
2723/*
2724 * Set up and carry out any delayed commands. There is only a small set
2725 * of slave commands that can be done "off-level". So it is not too
2726 * difficult to deal with them here.
2727 */
2728
2729static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2730{
2731 int cmd;
2732
2733 if (test_bit(ST_DOSIGS, &portp->state)) {
2734 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2735 test_bit(ST_DOFLUSHRX, &portp->state))
2736 cmd = A_SETSIGNALSF;
2737 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2738 cmd = A_SETSIGNALSFTX;
2739 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2740 cmd = A_SETSIGNALSFRX;
2741 else
2742 cmd = A_SETSIGNALS;
2743 clear_bit(ST_DOFLUSHTX, &portp->state);
2744 clear_bit(ST_DOFLUSHRX, &portp->state);
2745 clear_bit(ST_DOSIGS, &portp->state);
2746 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2747 sizeof(asysigs_t));
2748 cp->status = 0;
2749 cp->cmd = cmd;
2750 set_bit(ST_CMDING, &portp->state);
2751 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2752 test_bit(ST_DOFLUSHRX, &portp->state)) {
2753 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2754 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2755 clear_bit(ST_DOFLUSHTX, &portp->state);
2756 clear_bit(ST_DOFLUSHRX, &portp->state);
2757 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2758 cp->status = 0;
2759 cp->cmd = A_FLUSH;
2760 set_bit(ST_CMDING, &portp->state);
2761 }
2762}
2763
2764/*****************************************************************************/
2765
2766/*
2767 * Host command service checking. This handles commands or messages
2768 * coming from the slave to the host. Must have board shared memory
2769 * enabled and interrupts off when called. Notice that by servicing the
2770 * read data last we don't need to change the shared memory pointer
2771 * during processing (which is a slow IO operation).
2772 * Return value indicates if this port is still awaiting actions from
2773 * the slave (like open, command, or even TX data being sent). If 0
2774 * then port is still busy, otherwise no longer busy.
2775 */
2776
2777static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2778{
2779 volatile cdkasy_t *ap;
2780 volatile cdkctrl_t *cp;
2781 struct tty_struct *tty;
2782 asynotify_t nt;
2783 unsigned long oldsigs;
2784 int rc, donerx;
2785
2786#ifdef DEBUG
2787 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2788 (int) brdp, channr);
2789#endif
2790
2791 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2792 cp = &ap->ctrl;
2793
2794/*
2795 * Check if we are waiting for an open completion message.
2796 */
2797 if (test_bit(ST_OPENING, &portp->state)) {
2798 rc = (int) cp->openarg;
2799 if ((cp->open == 0) && (rc != 0)) {
2800 if (rc > 0)
2801 rc--;
2802 cp->openarg = 0;
2803 portp->rc = rc;
2804 clear_bit(ST_OPENING, &portp->state);
2805 wake_up_interruptible(&portp->raw_wait);
2806 }
2807 }
2808
2809/*
2810 * Check if we are waiting for a close completion message.
2811 */
2812 if (test_bit(ST_CLOSING, &portp->state)) {
2813 rc = (int) cp->closearg;
2814 if ((cp->close == 0) && (rc != 0)) {
2815 if (rc > 0)
2816 rc--;
2817 cp->closearg = 0;
2818 portp->rc = rc;
2819 clear_bit(ST_CLOSING, &portp->state);
2820 wake_up_interruptible(&portp->raw_wait);
2821 }
2822 }
2823
2824/*
2825 * Check if we are waiting for a command completion message. We may
2826 * need to copy out the command results associated with this command.
2827 */
2828 if (test_bit(ST_CMDING, &portp->state)) {
2829 rc = cp->status;
2830 if ((cp->cmd == 0) && (rc != 0)) {
2831 if (rc > 0)
2832 rc--;
2833 if (portp->argp != (void *) NULL) {
2834 memcpy(portp->argp, (void *) &(cp->args[0]),
2835 portp->argsize);
2836 portp->argp = (void *) NULL;
2837 }
2838 cp->status = 0;
2839 portp->rc = rc;
2840 clear_bit(ST_CMDING, &portp->state);
2841 stli_dodelaycmd(portp, cp);
2842 wake_up_interruptible(&portp->raw_wait);
2843 }
2844 }
2845
2846/*
2847 * Check for any notification messages ready. This includes lots of
2848 * different types of events - RX chars ready, RX break received,
2849 * TX data low or empty in the slave, modem signals changed state.
2850 */
2851 donerx = 0;
2852
2853 if (ap->notify) {
2854 nt = ap->changed;
2855 ap->notify = 0;
2856 tty = portp->tty;
2857
2858 if (nt.signal & SG_DCD) {
2859 oldsigs = portp->sigs;
2860 portp->sigs = stli_mktiocm(nt.sigvalue);
2861 clear_bit(ST_GETSIGS, &portp->state);
2862 if ((portp->sigs & TIOCM_CD) &&
2863 ((oldsigs & TIOCM_CD) == 0))
2864 wake_up_interruptible(&portp->open_wait);
2865 if ((oldsigs & TIOCM_CD) &&
2866 ((portp->sigs & TIOCM_CD) == 0)) {
2867 if (portp->flags & ASYNC_CHECK_CD) {
2868 if (tty)
2869 schedule_work(&portp->tqhangup);
2870 }
2871 }
2872 }
2873
2874 if (nt.data & DT_TXEMPTY)
2875 clear_bit(ST_TXBUSY, &portp->state);
2876 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2877 if (tty != (struct tty_struct *) NULL) {
2878 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2879 tty->ldisc.write_wakeup) {
2880 (tty->ldisc.write_wakeup)(tty);
2881 EBRDENABLE(brdp);
2882 }
2883 wake_up_interruptible(&tty->write_wait);
2884 }
2885 }
2886
2887 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2888 if (tty != (struct tty_struct *) NULL) {
Alan Cox33f0f882006-01-09 20:54:13 -08002889 tty_insert_flip_char(tty, 0, TTY_BREAK);
2890 if (portp->flags & ASYNC_SAK) {
2891 do_SAK(tty);
2892 EBRDENABLE(brdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002893 }
Alan Cox33f0f882006-01-09 20:54:13 -08002894 tty_schedule_flip(tty);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895 }
2896 }
2897
2898 if (nt.data & DT_RXBUSY) {
2899 donerx++;
2900 stli_read(brdp, portp);
2901 }
2902 }
2903
2904/*
2905 * It might seem odd that we are checking for more RX chars here.
2906 * But, we need to handle the case where the tty buffer was previously
2907 * filled, but we had more characters to pass up. The slave will not
2908 * send any more RX notify messages until the RX buffer has been emptied.
2909 * But it will leave the service bits on (since the buffer is not empty).
2910 * So from here we can try to process more RX chars.
2911 */
2912 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2913 clear_bit(ST_RXING, &portp->state);
2914 stli_read(brdp, portp);
2915 }
2916
2917 return((test_bit(ST_OPENING, &portp->state) ||
2918 test_bit(ST_CLOSING, &portp->state) ||
2919 test_bit(ST_CMDING, &portp->state) ||
2920 test_bit(ST_TXBUSY, &portp->state) ||
2921 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2922}
2923
2924/*****************************************************************************/
2925
2926/*
2927 * Service all ports on a particular board. Assumes that the boards
2928 * shared memory is enabled, and that the page pointer is pointed
2929 * at the cdk header structure.
2930 */
2931
2932static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2933{
2934 stliport_t *portp;
2935 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2936 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2937 unsigned char *slavep;
2938 int bitpos, bitat, bitsize;
2939 int channr, nrdevs, slavebitchange;
2940
2941 bitsize = brdp->bitsize;
2942 nrdevs = brdp->nrdevs;
2943
2944/*
2945 * Check if slave wants any service. Basically we try to do as
2946 * little work as possible here. There are 2 levels of service
2947 * bits. So if there is nothing to do we bail early. We check
2948 * 8 service bits at a time in the inner loop, so we can bypass
2949 * the lot if none of them want service.
2950 */
2951 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2952 bitsize);
2953
2954 memset(&slavebits[0], 0, bitsize);
2955 slavebitchange = 0;
2956
2957 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2958 if (hostbits[bitpos] == 0)
2959 continue;
2960 channr = bitpos * 8;
2961 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2962 if (hostbits[bitpos] & bitat) {
2963 portp = brdp->ports[(channr - 1)];
2964 if (stli_hostcmd(brdp, portp)) {
2965 slavebitchange++;
2966 slavebits[bitpos] |= bitat;
2967 }
2968 }
2969 }
2970 }
2971
2972/*
2973 * If any of the ports are no longer busy then update them in the
2974 * slave request bits. We need to do this after, since a host port
2975 * service may initiate more slave requests.
2976 */
2977 if (slavebitchange) {
2978 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2979 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
2980 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2981 if (slavebits[bitpos])
2982 slavep[bitpos] &= ~slavebits[bitpos];
2983 }
2984 }
2985}
2986
2987/*****************************************************************************/
2988
2989/*
2990 * Driver poll routine. This routine polls the boards in use and passes
2991 * messages back up to host when necessary. This is actually very
2992 * CPU efficient, since we will always have the kernel poll clock, it
2993 * adds only a few cycles when idle (since board service can be
2994 * determined very easily), but when loaded generates no interrupts
2995 * (with their expensive associated context change).
2996 */
2997
2998static void stli_poll(unsigned long arg)
2999{
3000 volatile cdkhdr_t *hdrp;
3001 stlibrd_t *brdp;
3002 int brdnr;
3003
3004 stli_timerlist.expires = STLI_TIMEOUT;
3005 add_timer(&stli_timerlist);
3006
3007/*
3008 * Check each board and do any servicing required.
3009 */
3010 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3011 brdp = stli_brds[brdnr];
3012 if (brdp == (stlibrd_t *) NULL)
3013 continue;
3014 if ((brdp->state & BST_STARTED) == 0)
3015 continue;
3016
3017 EBRDENABLE(brdp);
3018 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3019 if (hdrp->hostreq)
3020 stli_brdpoll(brdp, hdrp);
3021 EBRDDISABLE(brdp);
3022 }
3023}
3024
3025/*****************************************************************************/
3026
3027/*
3028 * Translate the termios settings into the port setting structure of
3029 * the slave.
3030 */
3031
3032static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3033{
3034#ifdef DEBUG
3035 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3036 (int) portp, (int) pp, (int) tiosp);
3037#endif
3038
3039 memset(pp, 0, sizeof(asyport_t));
3040
3041/*
3042 * Start of by setting the baud, char size, parity and stop bit info.
3043 */
3044 pp->baudout = tiosp->c_cflag & CBAUD;
3045 if (pp->baudout & CBAUDEX) {
3046 pp->baudout &= ~CBAUDEX;
3047 if ((pp->baudout < 1) || (pp->baudout > 4))
3048 tiosp->c_cflag &= ~CBAUDEX;
3049 else
3050 pp->baudout += 15;
3051 }
3052 pp->baudout = stli_baudrates[pp->baudout];
3053 if ((tiosp->c_cflag & CBAUD) == B38400) {
3054 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3055 pp->baudout = 57600;
3056 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3057 pp->baudout = 115200;
3058 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3059 pp->baudout = 230400;
3060 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3061 pp->baudout = 460800;
3062 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3063 pp->baudout = (portp->baud_base / portp->custom_divisor);
3064 }
3065 if (pp->baudout > STL_MAXBAUD)
3066 pp->baudout = STL_MAXBAUD;
3067 pp->baudin = pp->baudout;
3068
3069 switch (tiosp->c_cflag & CSIZE) {
3070 case CS5:
3071 pp->csize = 5;
3072 break;
3073 case CS6:
3074 pp->csize = 6;
3075 break;
3076 case CS7:
3077 pp->csize = 7;
3078 break;
3079 default:
3080 pp->csize = 8;
3081 break;
3082 }
3083
3084 if (tiosp->c_cflag & CSTOPB)
3085 pp->stopbs = PT_STOP2;
3086 else
3087 pp->stopbs = PT_STOP1;
3088
3089 if (tiosp->c_cflag & PARENB) {
3090 if (tiosp->c_cflag & PARODD)
3091 pp->parity = PT_ODDPARITY;
3092 else
3093 pp->parity = PT_EVENPARITY;
3094 } else {
3095 pp->parity = PT_NOPARITY;
3096 }
3097
3098/*
3099 * Set up any flow control options enabled.
3100 */
3101 if (tiosp->c_iflag & IXON) {
3102 pp->flow |= F_IXON;
3103 if (tiosp->c_iflag & IXANY)
3104 pp->flow |= F_IXANY;
3105 }
3106 if (tiosp->c_cflag & CRTSCTS)
3107 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3108
3109 pp->startin = tiosp->c_cc[VSTART];
3110 pp->stopin = tiosp->c_cc[VSTOP];
3111 pp->startout = tiosp->c_cc[VSTART];
3112 pp->stopout = tiosp->c_cc[VSTOP];
3113
3114/*
3115 * Set up the RX char marking mask with those RX error types we must
3116 * catch. We can get the slave to help us out a little here, it will
3117 * ignore parity errors and breaks for us, and mark parity errors in
3118 * the data stream.
3119 */
3120 if (tiosp->c_iflag & IGNPAR)
3121 pp->iflag |= FI_IGNRXERRS;
3122 if (tiosp->c_iflag & IGNBRK)
3123 pp->iflag |= FI_IGNBREAK;
3124
3125 portp->rxmarkmsk = 0;
3126 if (tiosp->c_iflag & (INPCK | PARMRK))
3127 pp->iflag |= FI_1MARKRXERRS;
3128 if (tiosp->c_iflag & BRKINT)
3129 portp->rxmarkmsk |= BRKINT;
3130
3131/*
3132 * Set up clocal processing as required.
3133 */
3134 if (tiosp->c_cflag & CLOCAL)
3135 portp->flags &= ~ASYNC_CHECK_CD;
3136 else
3137 portp->flags |= ASYNC_CHECK_CD;
3138
3139/*
3140 * Transfer any persistent flags into the asyport structure.
3141 */
3142 pp->pflag = (portp->pflag & 0xffff);
3143 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3144 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3145 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3146}
3147
3148/*****************************************************************************/
3149
3150/*
3151 * Construct a slave signals structure for setting the DTR and RTS
3152 * signals as specified.
3153 */
3154
3155static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3156{
3157#ifdef DEBUG
3158 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3159 (int) sp, dtr, rts);
3160#endif
3161
3162 memset(sp, 0, sizeof(asysigs_t));
3163 if (dtr >= 0) {
3164 sp->signal |= SG_DTR;
3165 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3166 }
3167 if (rts >= 0) {
3168 sp->signal |= SG_RTS;
3169 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3170 }
3171}
3172
3173/*****************************************************************************/
3174
3175/*
3176 * Convert the signals returned from the slave into a local TIOCM type
3177 * signals value. We keep them locally in TIOCM format.
3178 */
3179
3180static long stli_mktiocm(unsigned long sigvalue)
3181{
3182 long tiocm;
3183
3184#ifdef DEBUG
3185 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3186#endif
3187
3188 tiocm = 0;
3189 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3190 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3191 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3192 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3193 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3194 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3195 return(tiocm);
3196}
3197
3198/*****************************************************************************/
3199
3200/*
3201 * All panels and ports actually attached have been worked out. All
3202 * we need to do here is set up the appropriate per port data structures.
3203 */
3204
3205static int stli_initports(stlibrd_t *brdp)
3206{
3207 stliport_t *portp;
3208 int i, panelnr, panelport;
3209
3210#ifdef DEBUG
3211 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3212#endif
3213
3214 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
Tobias Klauserb0b4ed72006-03-31 02:30:56 -08003215 portp = kzalloc(sizeof(stliport_t), GFP_KERNEL);
3216 if (!portp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003217 printk("STALLION: failed to allocate port structure\n");
3218 continue;
3219 }
3220
Linus Torvalds1da177e2005-04-16 15:20:36 -07003221 portp->magic = STLI_PORTMAGIC;
3222 portp->portnr = i;
3223 portp->brdnr = brdp->brdnr;
3224 portp->panelnr = panelnr;
3225 portp->baud_base = STL_BAUDBASE;
3226 portp->close_delay = STL_CLOSEDELAY;
3227 portp->closing_wait = 30 * HZ;
3228 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3229 init_waitqueue_head(&portp->open_wait);
3230 init_waitqueue_head(&portp->close_wait);
3231 init_waitqueue_head(&portp->raw_wait);
3232 panelport++;
3233 if (panelport >= brdp->panels[panelnr]) {
3234 panelport = 0;
3235 panelnr++;
3236 }
3237 brdp->ports[i] = portp;
3238 }
3239
3240 return(0);
3241}
3242
3243/*****************************************************************************/
3244
3245/*
3246 * All the following routines are board specific hardware operations.
3247 */
3248
3249static void stli_ecpinit(stlibrd_t *brdp)
3250{
3251 unsigned long memconf;
3252
3253#ifdef DEBUG
3254 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3255#endif
3256
3257 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3258 udelay(10);
3259 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3260 udelay(100);
3261
3262 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3263 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3264}
3265
3266/*****************************************************************************/
3267
3268static void stli_ecpenable(stlibrd_t *brdp)
3269{
3270#ifdef DEBUG
3271 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3272#endif
3273 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3274}
3275
3276/*****************************************************************************/
3277
3278static void stli_ecpdisable(stlibrd_t *brdp)
3279{
3280#ifdef DEBUG
3281 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3282#endif
3283 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3284}
3285
3286/*****************************************************************************/
3287
3288static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3289{
3290 void *ptr;
3291 unsigned char val;
3292
3293#ifdef DEBUG
3294 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3295 (int) offset);
3296#endif
3297
3298 if (offset > brdp->memsize) {
3299 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3300 "range at line=%d(%d), brd=%d\n",
3301 (int) offset, line, __LINE__, brdp->brdnr);
3302 ptr = NULL;
3303 val = 0;
3304 } else {
3305 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3306 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3307 }
3308 outb(val, (brdp->iobase + ECP_ATMEMPR));
3309 return(ptr);
3310}
3311
3312/*****************************************************************************/
3313
3314static void stli_ecpreset(stlibrd_t *brdp)
3315{
3316#ifdef DEBUG
3317 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3318#endif
3319
3320 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3321 udelay(10);
3322 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3323 udelay(500);
3324}
3325
3326/*****************************************************************************/
3327
3328static void stli_ecpintr(stlibrd_t *brdp)
3329{
3330#ifdef DEBUG
3331 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3332#endif
3333 outb(0x1, brdp->iobase);
3334}
3335
3336/*****************************************************************************/
3337
3338/*
3339 * The following set of functions act on ECP EISA boards.
3340 */
3341
3342static void stli_ecpeiinit(stlibrd_t *brdp)
3343{
3344 unsigned long memconf;
3345
3346#ifdef DEBUG
3347 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3348#endif
3349
3350 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3351 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3352 udelay(10);
3353 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3354 udelay(500);
3355
3356 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3357 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3358 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3359 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3360}
3361
3362/*****************************************************************************/
3363
3364static void stli_ecpeienable(stlibrd_t *brdp)
3365{
3366 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3367}
3368
3369/*****************************************************************************/
3370
3371static void stli_ecpeidisable(stlibrd_t *brdp)
3372{
3373 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3374}
3375
3376/*****************************************************************************/
3377
3378static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3379{
3380 void *ptr;
3381 unsigned char val;
3382
3383#ifdef DEBUG
3384 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3385 (int) brdp, (int) offset, line);
3386#endif
3387
3388 if (offset > brdp->memsize) {
3389 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3390 "range at line=%d(%d), brd=%d\n",
3391 (int) offset, line, __LINE__, brdp->brdnr);
3392 ptr = NULL;
3393 val = 0;
3394 } else {
3395 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3396 if (offset < ECP_EIPAGESIZE)
3397 val = ECP_EIENABLE;
3398 else
3399 val = ECP_EIENABLE | 0x40;
3400 }
3401 outb(val, (brdp->iobase + ECP_EICONFR));
3402 return(ptr);
3403}
3404
3405/*****************************************************************************/
3406
3407static void stli_ecpeireset(stlibrd_t *brdp)
3408{
3409 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3410 udelay(10);
3411 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3412 udelay(500);
3413}
3414
3415/*****************************************************************************/
3416
3417/*
3418 * The following set of functions act on ECP MCA boards.
3419 */
3420
3421static void stli_ecpmcenable(stlibrd_t *brdp)
3422{
3423 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3424}
3425
3426/*****************************************************************************/
3427
3428static void stli_ecpmcdisable(stlibrd_t *brdp)
3429{
3430 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3431}
3432
3433/*****************************************************************************/
3434
3435static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3436{
3437 void *ptr;
3438 unsigned char val;
3439
3440 if (offset > brdp->memsize) {
3441 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3442 "range at line=%d(%d), brd=%d\n",
3443 (int) offset, line, __LINE__, brdp->brdnr);
3444 ptr = NULL;
3445 val = 0;
3446 } else {
3447 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3448 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3449 }
3450 outb(val, (brdp->iobase + ECP_MCCONFR));
3451 return(ptr);
3452}
3453
3454/*****************************************************************************/
3455
3456static void stli_ecpmcreset(stlibrd_t *brdp)
3457{
3458 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3459 udelay(10);
3460 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3461 udelay(500);
3462}
3463
3464/*****************************************************************************/
3465
3466/*
3467 * The following set of functions act on ECP PCI boards.
3468 */
3469
3470static void stli_ecppciinit(stlibrd_t *brdp)
3471{
3472#ifdef DEBUG
3473 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3474#endif
3475
3476 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3477 udelay(10);
3478 outb(0, (brdp->iobase + ECP_PCICONFR));
3479 udelay(500);
3480}
3481
3482/*****************************************************************************/
3483
3484static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3485{
3486 void *ptr;
3487 unsigned char val;
3488
3489#ifdef DEBUG
3490 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3491 (int) brdp, (int) offset, line);
3492#endif
3493
3494 if (offset > brdp->memsize) {
3495 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3496 "range at line=%d(%d), board=%d\n",
3497 (int) offset, line, __LINE__, brdp->brdnr);
3498 ptr = NULL;
3499 val = 0;
3500 } else {
3501 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3502 val = (offset / ECP_PCIPAGESIZE) << 1;
3503 }
3504 outb(val, (brdp->iobase + ECP_PCICONFR));
3505 return(ptr);
3506}
3507
3508/*****************************************************************************/
3509
3510static void stli_ecppcireset(stlibrd_t *brdp)
3511{
3512 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3513 udelay(10);
3514 outb(0, (brdp->iobase + ECP_PCICONFR));
3515 udelay(500);
3516}
3517
3518/*****************************************************************************/
3519
3520/*
3521 * The following routines act on ONboards.
3522 */
3523
3524static void stli_onbinit(stlibrd_t *brdp)
3525{
3526 unsigned long memconf;
3527
3528#ifdef DEBUG
3529 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3530#endif
3531
3532 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3533 udelay(10);
3534 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3535 mdelay(1000);
3536
3537 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3538 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3539 outb(0x1, brdp->iobase);
3540 mdelay(1);
3541}
3542
3543/*****************************************************************************/
3544
3545static void stli_onbenable(stlibrd_t *brdp)
3546{
3547#ifdef DEBUG
3548 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3549#endif
3550 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3551}
3552
3553/*****************************************************************************/
3554
3555static void stli_onbdisable(stlibrd_t *brdp)
3556{
3557#ifdef DEBUG
3558 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3559#endif
3560 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3561}
3562
3563/*****************************************************************************/
3564
3565static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3566{
3567 void *ptr;
3568
3569#ifdef DEBUG
3570 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3571 (int) offset);
3572#endif
3573
3574 if (offset > brdp->memsize) {
3575 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3576 "range at line=%d(%d), brd=%d\n",
3577 (int) offset, line, __LINE__, brdp->brdnr);
3578 ptr = NULL;
3579 } else {
3580 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3581 }
3582 return(ptr);
3583}
3584
3585/*****************************************************************************/
3586
3587static void stli_onbreset(stlibrd_t *brdp)
3588{
3589
3590#ifdef DEBUG
3591 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3592#endif
3593
3594 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3595 udelay(10);
3596 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3597 mdelay(1000);
3598}
3599
3600/*****************************************************************************/
3601
3602/*
3603 * The following routines act on ONboard EISA.
3604 */
3605
3606static void stli_onbeinit(stlibrd_t *brdp)
3607{
3608 unsigned long memconf;
3609
3610#ifdef DEBUG
3611 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3612#endif
3613
3614 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3615 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3616 udelay(10);
3617 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3618 mdelay(1000);
3619
3620 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3621 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3622 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3623 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3624 outb(0x1, brdp->iobase);
3625 mdelay(1);
3626}
3627
3628/*****************************************************************************/
3629
3630static void stli_onbeenable(stlibrd_t *brdp)
3631{
3632#ifdef DEBUG
3633 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3634#endif
3635 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3636}
3637
3638/*****************************************************************************/
3639
3640static void stli_onbedisable(stlibrd_t *brdp)
3641{
3642#ifdef DEBUG
3643 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3644#endif
3645 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3646}
3647
3648/*****************************************************************************/
3649
3650static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3651{
3652 void *ptr;
3653 unsigned char val;
3654
3655#ifdef DEBUG
3656 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3657 (int) brdp, (int) offset, line);
3658#endif
3659
3660 if (offset > brdp->memsize) {
3661 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3662 "range at line=%d(%d), brd=%d\n",
3663 (int) offset, line, __LINE__, brdp->brdnr);
3664 ptr = NULL;
3665 val = 0;
3666 } else {
3667 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3668 if (offset < ONB_EIPAGESIZE)
3669 val = ONB_EIENABLE;
3670 else
3671 val = ONB_EIENABLE | 0x40;
3672 }
3673 outb(val, (brdp->iobase + ONB_EICONFR));
3674 return(ptr);
3675}
3676
3677/*****************************************************************************/
3678
3679static void stli_onbereset(stlibrd_t *brdp)
3680{
3681
3682#ifdef DEBUG
3683 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3684#endif
3685
3686 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3687 udelay(10);
3688 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3689 mdelay(1000);
3690}
3691
3692/*****************************************************************************/
3693
3694/*
3695 * The following routines act on Brumby boards.
3696 */
3697
3698static void stli_bbyinit(stlibrd_t *brdp)
3699{
3700
3701#ifdef DEBUG
3702 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3703#endif
3704
3705 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3706 udelay(10);
3707 outb(0, (brdp->iobase + BBY_ATCONFR));
3708 mdelay(1000);
3709 outb(0x1, brdp->iobase);
3710 mdelay(1);
3711}
3712
3713/*****************************************************************************/
3714
3715static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3716{
3717 void *ptr;
3718 unsigned char val;
3719
3720#ifdef DEBUG
3721 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3722 (int) offset);
3723#endif
3724
3725 if (offset > brdp->memsize) {
3726 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3727 "range at line=%d(%d), brd=%d\n",
3728 (int) offset, line, __LINE__, brdp->brdnr);
3729 ptr = NULL;
3730 val = 0;
3731 } else {
3732 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3733 val = (unsigned char) (offset / BBY_PAGESIZE);
3734 }
3735 outb(val, (brdp->iobase + BBY_ATCONFR));
3736 return(ptr);
3737}
3738
3739/*****************************************************************************/
3740
3741static void stli_bbyreset(stlibrd_t *brdp)
3742{
3743
3744#ifdef DEBUG
3745 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3746#endif
3747
3748 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3749 udelay(10);
3750 outb(0, (brdp->iobase + BBY_ATCONFR));
3751 mdelay(1000);
3752}
3753
3754/*****************************************************************************/
3755
3756/*
3757 * The following routines act on original old Stallion boards.
3758 */
3759
3760static void stli_stalinit(stlibrd_t *brdp)
3761{
3762
3763#ifdef DEBUG
3764 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3765#endif
3766
3767 outb(0x1, brdp->iobase);
3768 mdelay(1000);
3769}
3770
3771/*****************************************************************************/
3772
3773static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3774{
3775 void *ptr;
3776
3777#ifdef DEBUG
3778 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3779 (int) offset);
3780#endif
3781
3782 if (offset > brdp->memsize) {
3783 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3784 "range at line=%d(%d), brd=%d\n",
3785 (int) offset, line, __LINE__, brdp->brdnr);
3786 ptr = NULL;
3787 } else {
3788 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3789 }
3790 return(ptr);
3791}
3792
3793/*****************************************************************************/
3794
3795static void stli_stalreset(stlibrd_t *brdp)
3796{
3797 volatile unsigned long *vecp;
3798
3799#ifdef DEBUG
3800 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3801#endif
3802
3803 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3804 *vecp = 0xffff0000;
3805 outb(0, brdp->iobase);
3806 mdelay(1000);
3807}
3808
3809/*****************************************************************************/
3810
3811/*
3812 * Try to find an ECP board and initialize it. This handles only ECP
3813 * board types.
3814 */
3815
3816static int stli_initecp(stlibrd_t *brdp)
3817{
3818 cdkecpsig_t sig;
3819 cdkecpsig_t *sigsp;
3820 unsigned int status, nxtid;
3821 char *name;
3822 int panelnr, nrports;
3823
3824#ifdef DEBUG
3825 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3826#endif
3827
3828 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3829 return -EIO;
3830
3831 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3832 {
3833 release_region(brdp->iobase, brdp->iosize);
3834 return(-ENODEV);
3835 }
3836
3837 brdp->iosize = ECP_IOSIZE;
3838
3839/*
3840 * Based on the specific board type setup the common vars to access
3841 * and enable shared memory. Set all board specific information now
3842 * as well.
3843 */
3844 switch (brdp->brdtype) {
3845 case BRD_ECP:
3846 brdp->membase = (void *) brdp->memaddr;
3847 brdp->memsize = ECP_MEMSIZE;
3848 brdp->pagesize = ECP_ATPAGESIZE;
3849 brdp->init = stli_ecpinit;
3850 brdp->enable = stli_ecpenable;
3851 brdp->reenable = stli_ecpenable;
3852 brdp->disable = stli_ecpdisable;
3853 brdp->getmemptr = stli_ecpgetmemptr;
3854 brdp->intr = stli_ecpintr;
3855 brdp->reset = stli_ecpreset;
3856 name = "serial(EC8/64)";
3857 break;
3858
3859 case BRD_ECPE:
3860 brdp->membase = (void *) brdp->memaddr;
3861 brdp->memsize = ECP_MEMSIZE;
3862 brdp->pagesize = ECP_EIPAGESIZE;
3863 brdp->init = stli_ecpeiinit;
3864 brdp->enable = stli_ecpeienable;
3865 brdp->reenable = stli_ecpeienable;
3866 brdp->disable = stli_ecpeidisable;
3867 brdp->getmemptr = stli_ecpeigetmemptr;
3868 brdp->intr = stli_ecpintr;
3869 brdp->reset = stli_ecpeireset;
3870 name = "serial(EC8/64-EI)";
3871 break;
3872
3873 case BRD_ECPMC:
3874 brdp->membase = (void *) brdp->memaddr;
3875 brdp->memsize = ECP_MEMSIZE;
3876 brdp->pagesize = ECP_MCPAGESIZE;
3877 brdp->init = NULL;
3878 brdp->enable = stli_ecpmcenable;
3879 brdp->reenable = stli_ecpmcenable;
3880 brdp->disable = stli_ecpmcdisable;
3881 brdp->getmemptr = stli_ecpmcgetmemptr;
3882 brdp->intr = stli_ecpintr;
3883 brdp->reset = stli_ecpmcreset;
3884 name = "serial(EC8/64-MCA)";
3885 break;
3886
3887 case BRD_ECPPCI:
3888 brdp->membase = (void *) brdp->memaddr;
3889 brdp->memsize = ECP_PCIMEMSIZE;
3890 brdp->pagesize = ECP_PCIPAGESIZE;
3891 brdp->init = stli_ecppciinit;
3892 brdp->enable = NULL;
3893 brdp->reenable = NULL;
3894 brdp->disable = NULL;
3895 brdp->getmemptr = stli_ecppcigetmemptr;
3896 brdp->intr = stli_ecpintr;
3897 brdp->reset = stli_ecppcireset;
3898 name = "serial(EC/RA-PCI)";
3899 break;
3900
3901 default:
3902 release_region(brdp->iobase, brdp->iosize);
3903 return(-EINVAL);
3904 }
3905
3906/*
3907 * The per-board operations structure is all set up, so now let's go
3908 * and get the board operational. Firstly initialize board configuration
3909 * registers. Set the memory mapping info so we can get at the boards
3910 * shared memory.
3911 */
3912 EBRDINIT(brdp);
3913
3914 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3915 if (brdp->membase == (void *) NULL)
3916 {
3917 release_region(brdp->iobase, brdp->iosize);
3918 return(-ENOMEM);
3919 }
3920
3921/*
3922 * Now that all specific code is set up, enable the shared memory and
3923 * look for the a signature area that will tell us exactly what board
3924 * this is, and what it is connected to it.
3925 */
3926 EBRDENABLE(brdp);
3927 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3928 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3929 EBRDDISABLE(brdp);
3930
3931#if 0
3932 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3933 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3934 (int) sig.panelid[1], (int) sig.panelid[2],
3935 (int) sig.panelid[3], (int) sig.panelid[4],
3936 (int) sig.panelid[5], (int) sig.panelid[6],
3937 (int) sig.panelid[7]);
3938#endif
3939
3940 if (sig.magic != ECP_MAGIC)
3941 {
3942 release_region(brdp->iobase, brdp->iosize);
3943 return(-ENODEV);
3944 }
3945
3946/*
3947 * Scan through the signature looking at the panels connected to the
3948 * board. Calculate the total number of ports as we go.
3949 */
3950 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3951 status = sig.panelid[nxtid];
3952 if ((status & ECH_PNLIDMASK) != nxtid)
3953 break;
3954
3955 brdp->panelids[panelnr] = status;
3956 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3957 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3958 nxtid++;
3959 brdp->panels[panelnr] = nrports;
3960 brdp->nrports += nrports;
3961 nxtid++;
3962 brdp->nrpanels++;
3963 }
3964
3965
3966 brdp->state |= BST_FOUND;
3967 return(0);
3968}
3969
3970/*****************************************************************************/
3971
3972/*
3973 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3974 * This handles only these board types.
3975 */
3976
3977static int stli_initonb(stlibrd_t *brdp)
3978{
3979 cdkonbsig_t sig;
3980 cdkonbsig_t *sigsp;
3981 char *name;
3982 int i;
3983
3984#ifdef DEBUG
3985 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
3986#endif
3987
3988/*
3989 * Do a basic sanity check on the IO and memory addresses.
3990 */
3991 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3992 return(-ENODEV);
3993
3994 brdp->iosize = ONB_IOSIZE;
3995
3996 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3997 return -EIO;
3998
3999/*
4000 * Based on the specific board type setup the common vars to access
4001 * and enable shared memory. Set all board specific information now
4002 * as well.
4003 */
4004 switch (brdp->brdtype) {
4005 case BRD_ONBOARD:
4006 case BRD_ONBOARD32:
4007 case BRD_ONBOARD2:
4008 case BRD_ONBOARD2_32:
4009 case BRD_ONBOARDRS:
4010 brdp->membase = (void *) brdp->memaddr;
4011 brdp->memsize = ONB_MEMSIZE;
4012 brdp->pagesize = ONB_ATPAGESIZE;
4013 brdp->init = stli_onbinit;
4014 brdp->enable = stli_onbenable;
4015 brdp->reenable = stli_onbenable;
4016 brdp->disable = stli_onbdisable;
4017 brdp->getmemptr = stli_onbgetmemptr;
4018 brdp->intr = stli_ecpintr;
4019 brdp->reset = stli_onbreset;
4020 if (brdp->memaddr > 0x100000)
4021 brdp->enabval = ONB_MEMENABHI;
4022 else
4023 brdp->enabval = ONB_MEMENABLO;
4024 name = "serial(ONBoard)";
4025 break;
4026
4027 case BRD_ONBOARDE:
4028 brdp->membase = (void *) brdp->memaddr;
4029 brdp->memsize = ONB_EIMEMSIZE;
4030 brdp->pagesize = ONB_EIPAGESIZE;
4031 brdp->init = stli_onbeinit;
4032 brdp->enable = stli_onbeenable;
4033 brdp->reenable = stli_onbeenable;
4034 brdp->disable = stli_onbedisable;
4035 brdp->getmemptr = stli_onbegetmemptr;
4036 brdp->intr = stli_ecpintr;
4037 brdp->reset = stli_onbereset;
4038 name = "serial(ONBoard/E)";
4039 break;
4040
4041 case BRD_BRUMBY4:
4042 case BRD_BRUMBY8:
4043 case BRD_BRUMBY16:
4044 brdp->membase = (void *) brdp->memaddr;
4045 brdp->memsize = BBY_MEMSIZE;
4046 brdp->pagesize = BBY_PAGESIZE;
4047 brdp->init = stli_bbyinit;
4048 brdp->enable = NULL;
4049 brdp->reenable = NULL;
4050 brdp->disable = NULL;
4051 brdp->getmemptr = stli_bbygetmemptr;
4052 brdp->intr = stli_ecpintr;
4053 brdp->reset = stli_bbyreset;
4054 name = "serial(Brumby)";
4055 break;
4056
4057 case BRD_STALLION:
4058 brdp->membase = (void *) brdp->memaddr;
4059 brdp->memsize = STAL_MEMSIZE;
4060 brdp->pagesize = STAL_PAGESIZE;
4061 brdp->init = stli_stalinit;
4062 brdp->enable = NULL;
4063 brdp->reenable = NULL;
4064 brdp->disable = NULL;
4065 brdp->getmemptr = stli_stalgetmemptr;
4066 brdp->intr = stli_ecpintr;
4067 brdp->reset = stli_stalreset;
4068 name = "serial(Stallion)";
4069 break;
4070
4071 default:
4072 release_region(brdp->iobase, brdp->iosize);
4073 return(-EINVAL);
4074 }
4075
4076/*
4077 * The per-board operations structure is all set up, so now let's go
4078 * and get the board operational. Firstly initialize board configuration
4079 * registers. Set the memory mapping info so we can get at the boards
4080 * shared memory.
4081 */
4082 EBRDINIT(brdp);
4083
4084 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4085 if (brdp->membase == (void *) NULL)
4086 {
4087 release_region(brdp->iobase, brdp->iosize);
4088 return(-ENOMEM);
4089 }
4090
4091/*
4092 * Now that all specific code is set up, enable the shared memory and
4093 * look for the a signature area that will tell us exactly what board
4094 * this is, and how many ports.
4095 */
4096 EBRDENABLE(brdp);
4097 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4098 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4099 EBRDDISABLE(brdp);
4100
4101#if 0
4102 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4103 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4104 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4105#endif
4106
4107 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4108 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4109 {
4110 release_region(brdp->iobase, brdp->iosize);
4111 return(-ENODEV);
4112 }
4113
4114/*
4115 * Scan through the signature alive mask and calculate how many ports
4116 * there are on this board.
4117 */
4118 brdp->nrpanels = 1;
4119 if (sig.amask1) {
4120 brdp->nrports = 32;
4121 } else {
4122 for (i = 0; (i < 16); i++) {
4123 if (((sig.amask0 << i) & 0x8000) == 0)
4124 break;
4125 }
4126 brdp->nrports = i;
4127 }
4128 brdp->panels[0] = brdp->nrports;
4129
4130
4131 brdp->state |= BST_FOUND;
4132 return(0);
4133}
4134
4135/*****************************************************************************/
4136
4137/*
4138 * Start up a running board. This routine is only called after the
4139 * code has been down loaded to the board and is operational. It will
4140 * read in the memory map, and get the show on the road...
4141 */
4142
4143static int stli_startbrd(stlibrd_t *brdp)
4144{
4145 volatile cdkhdr_t *hdrp;
4146 volatile cdkmem_t *memp;
4147 volatile cdkasy_t *ap;
4148 unsigned long flags;
4149 stliport_t *portp;
4150 int portnr, nrdevs, i, rc;
4151
4152#ifdef DEBUG
4153 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4154#endif
4155
4156 rc = 0;
4157
4158 save_flags(flags);
4159 cli();
4160 EBRDENABLE(brdp);
4161 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4162 nrdevs = hdrp->nrdevs;
4163
4164#if 0
4165 printk("%s(%d): CDK version %d.%d.%d --> "
4166 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4167 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4168 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4169 (int) hdrp->slavep);
4170#endif
4171
4172 if (nrdevs < (brdp->nrports + 1)) {
4173 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4174 "all devices, devices=%d\n", nrdevs);
4175 brdp->nrports = nrdevs - 1;
4176 }
4177 brdp->nrdevs = nrdevs;
4178 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4179 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4180 brdp->bitsize = (nrdevs + 7) / 8;
4181 memp = (volatile cdkmem_t *) hdrp->memp;
4182 if (((unsigned long) memp) > brdp->memsize) {
4183 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4184 rc = -EIO;
4185 goto stli_donestartup;
4186 }
4187 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4188 if (memp->dtype != TYP_ASYNCTRL) {
4189 printk(KERN_ERR "STALLION: no slave control device found\n");
4190 goto stli_donestartup;
4191 }
4192 memp++;
4193
4194/*
4195 * Cycle through memory allocation of each port. We are guaranteed to
4196 * have all ports inside the first page of slave window, so no need to
4197 * change pages while reading memory map.
4198 */
4199 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4200 if (memp->dtype != TYP_ASYNC)
4201 break;
4202 portp = brdp->ports[portnr];
4203 if (portp == (stliport_t *) NULL)
4204 break;
4205 portp->devnr = i;
4206 portp->addr = memp->offset;
4207 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4208 portp->portidx = (unsigned char) (i / 8);
4209 portp->portbit = (unsigned char) (0x1 << (i % 8));
4210 }
4211
4212 hdrp->slavereq = 0xff;
4213
4214/*
4215 * For each port setup a local copy of the RX and TX buffer offsets
4216 * and sizes. We do this separate from the above, because we need to
4217 * move the shared memory page...
4218 */
4219 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4220 portp = brdp->ports[portnr];
4221 if (portp == (stliport_t *) NULL)
4222 break;
4223 if (portp->addr == 0)
4224 break;
4225 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4226 if (ap != (volatile cdkasy_t *) NULL) {
4227 portp->rxsize = ap->rxq.size;
4228 portp->txsize = ap->txq.size;
4229 portp->rxoffset = ap->rxq.offset;
4230 portp->txoffset = ap->txq.offset;
4231 }
4232 }
4233
4234stli_donestartup:
4235 EBRDDISABLE(brdp);
4236 restore_flags(flags);
4237
4238 if (rc == 0)
4239 brdp->state |= BST_STARTED;
4240
4241 if (! stli_timeron) {
4242 stli_timeron++;
4243 stli_timerlist.expires = STLI_TIMEOUT;
4244 add_timer(&stli_timerlist);
4245 }
4246
4247 return(rc);
4248}
4249
4250/*****************************************************************************/
4251
4252/*
4253 * Probe and initialize the specified board.
4254 */
4255
4256static int __init stli_brdinit(stlibrd_t *brdp)
4257{
4258#ifdef DEBUG
4259 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4260#endif
4261
4262 stli_brds[brdp->brdnr] = brdp;
4263
4264 switch (brdp->brdtype) {
4265 case BRD_ECP:
4266 case BRD_ECPE:
4267 case BRD_ECPMC:
4268 case BRD_ECPPCI:
4269 stli_initecp(brdp);
4270 break;
4271 case BRD_ONBOARD:
4272 case BRD_ONBOARDE:
4273 case BRD_ONBOARD2:
4274 case BRD_ONBOARD32:
4275 case BRD_ONBOARD2_32:
4276 case BRD_ONBOARDRS:
4277 case BRD_BRUMBY4:
4278 case BRD_BRUMBY8:
4279 case BRD_BRUMBY16:
4280 case BRD_STALLION:
4281 stli_initonb(brdp);
4282 break;
4283 case BRD_EASYIO:
4284 case BRD_ECH:
4285 case BRD_ECHMC:
4286 case BRD_ECHPCI:
4287 printk(KERN_ERR "STALLION: %s board type not supported in "
4288 "this driver\n", stli_brdnames[brdp->brdtype]);
4289 return(ENODEV);
4290 default:
4291 printk(KERN_ERR "STALLION: board=%d is unknown board "
4292 "type=%d\n", brdp->brdnr, brdp->brdtype);
4293 return(ENODEV);
4294 }
4295
4296 if ((brdp->state & BST_FOUND) == 0) {
4297 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4298 "io=%x mem=%x\n",
4299 stli_brdnames[brdp->brdtype], brdp->brdnr,
4300 brdp->iobase, (int) brdp->memaddr);
4301 return(ENODEV);
4302 }
4303
4304 stli_initports(brdp);
4305 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4306 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4307 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4308 brdp->nrpanels, brdp->nrports);
4309 return(0);
4310}
4311
4312/*****************************************************************************/
4313
4314/*
4315 * Probe around trying to find where the EISA boards shared memory
4316 * might be. This is a bit if hack, but it is the best we can do.
4317 */
4318
4319static int stli_eisamemprobe(stlibrd_t *brdp)
4320{
4321 cdkecpsig_t ecpsig, *ecpsigp;
4322 cdkonbsig_t onbsig, *onbsigp;
4323 int i, foundit;
4324
4325#ifdef DEBUG
4326 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4327#endif
4328
4329/*
4330 * First up we reset the board, to get it into a known state. There
4331 * is only 2 board types here we need to worry about. Don;t use the
4332 * standard board init routine here, it programs up the shared
4333 * memory address, and we don't know it yet...
4334 */
4335 if (brdp->brdtype == BRD_ECPE) {
4336 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4337 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4338 udelay(10);
4339 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4340 udelay(500);
4341 stli_ecpeienable(brdp);
4342 } else if (brdp->brdtype == BRD_ONBOARDE) {
4343 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4344 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4345 udelay(10);
4346 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4347 mdelay(100);
4348 outb(0x1, brdp->iobase);
4349 mdelay(1);
4350 stli_onbeenable(brdp);
4351 } else {
4352 return(-ENODEV);
4353 }
4354
4355 foundit = 0;
4356 brdp->memsize = ECP_MEMSIZE;
4357
4358/*
4359 * Board shared memory is enabled, so now we have a poke around and
4360 * see if we can find it.
4361 */
4362 for (i = 0; (i < stli_eisamempsize); i++) {
4363 brdp->memaddr = stli_eisamemprobeaddrs[i];
4364 brdp->membase = (void *) brdp->memaddr;
4365 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4366 if (brdp->membase == (void *) NULL)
4367 continue;
4368
4369 if (brdp->brdtype == BRD_ECPE) {
4370 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4371 CDK_SIGADDR, __LINE__);
4372 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4373 if (ecpsig.magic == ECP_MAGIC)
4374 foundit = 1;
4375 } else {
4376 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4377 CDK_SIGADDR, __LINE__);
4378 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4379 if ((onbsig.magic0 == ONB_MAGIC0) &&
4380 (onbsig.magic1 == ONB_MAGIC1) &&
4381 (onbsig.magic2 == ONB_MAGIC2) &&
4382 (onbsig.magic3 == ONB_MAGIC3))
4383 foundit = 1;
4384 }
4385
4386 iounmap(brdp->membase);
4387 if (foundit)
4388 break;
4389 }
4390
4391/*
4392 * Regardless of whether we found the shared memory or not we must
4393 * disable the region. After that return success or failure.
4394 */
4395 if (brdp->brdtype == BRD_ECPE)
4396 stli_ecpeidisable(brdp);
4397 else
4398 stli_onbedisable(brdp);
4399
4400 if (! foundit) {
4401 brdp->memaddr = 0;
4402 brdp->membase = NULL;
4403 printk(KERN_ERR "STALLION: failed to probe shared memory "
4404 "region for %s in EISA slot=%d\n",
4405 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4406 return(-ENODEV);
4407 }
4408 return(0);
4409}
4410
4411static int stli_getbrdnr(void)
4412{
4413 int i;
4414
4415 for (i = 0; i < STL_MAXBRDS; i++) {
4416 if (!stli_brds[i]) {
4417 if (i >= stli_nrbrds)
4418 stli_nrbrds = i + 1;
4419 return i;
4420 }
4421 }
4422 return -1;
4423}
4424
4425/*****************************************************************************/
4426
4427/*
4428 * Probe around and try to find any EISA boards in system. The biggest
4429 * problem here is finding out what memory address is associated with
4430 * an EISA board after it is found. The registers of the ECPE and
4431 * ONboardE are not readable - so we can't read them from there. We
4432 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4433 * actually have any way to find out the real value. The best we can
4434 * do is go probing around in the usual places hoping we can find it.
4435 */
4436
4437static int stli_findeisabrds(void)
4438{
4439 stlibrd_t *brdp;
4440 unsigned int iobase, eid;
4441 int i;
4442
4443#ifdef DEBUG
4444 printk(KERN_DEBUG "stli_findeisabrds()\n");
4445#endif
4446
4447/*
4448 * Firstly check if this is an EISA system. Do this by probing for
4449 * the system board EISA ID. If this is not an EISA system then
4450 * don't bother going any further!
4451 */
4452 outb(0xff, 0xc80);
4453 if (inb(0xc80) == 0xff)
4454 return(0);
4455
4456/*
4457 * Looks like an EISA system, so go searching for EISA boards.
4458 */
4459 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4460 outb(0xff, (iobase + 0xc80));
4461 eid = inb(iobase + 0xc80);
4462 eid |= inb(iobase + 0xc81) << 8;
4463 if (eid != STL_EISAID)
4464 continue;
4465
4466/*
4467 * We have found a board. Need to check if this board was
4468 * statically configured already (just in case!).
4469 */
4470 for (i = 0; (i < STL_MAXBRDS); i++) {
4471 brdp = stli_brds[i];
4472 if (brdp == (stlibrd_t *) NULL)
4473 continue;
4474 if (brdp->iobase == iobase)
4475 break;
4476 }
4477 if (i < STL_MAXBRDS)
4478 continue;
4479
4480/*
4481 * We have found a Stallion board and it is not configured already.
4482 * Allocate a board structure and initialize it.
4483 */
4484 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4485 return(-ENOMEM);
4486 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4487 return(-ENOMEM);
4488 eid = inb(iobase + 0xc82);
4489 if (eid == ECP_EISAID)
4490 brdp->brdtype = BRD_ECPE;
4491 else if (eid == ONB_EISAID)
4492 brdp->brdtype = BRD_ONBOARDE;
4493 else
4494 brdp->brdtype = BRD_UNKNOWN;
4495 brdp->iobase = iobase;
4496 outb(0x1, (iobase + 0xc84));
4497 if (stli_eisamemprobe(brdp))
4498 outb(0, (iobase + 0xc84));
4499 stli_brdinit(brdp);
4500 }
4501
4502 return(0);
4503}
4504
4505/*****************************************************************************/
4506
4507/*
4508 * Find the next available board number that is free.
4509 */
4510
4511/*****************************************************************************/
4512
4513#ifdef CONFIG_PCI
4514
4515/*
4516 * We have a Stallion board. Allocate a board structure and
4517 * initialize it. Read its IO and MEMORY resources from PCI
4518 * configuration space.
4519 */
4520
4521static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4522{
4523 stlibrd_t *brdp;
4524
4525#ifdef DEBUG
4526 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4527 brdtype, dev->bus->number, dev->devfn);
4528#endif
4529
4530 if (pci_enable_device(devp))
4531 return(-EIO);
4532 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4533 return(-ENOMEM);
4534 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4535 printk(KERN_INFO "STALLION: too many boards found, "
4536 "maximum supported %d\n", STL_MAXBRDS);
4537 return(0);
4538 }
4539 brdp->brdtype = brdtype;
4540
4541#ifdef DEBUG
4542 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4543 pci_resource_start(devp, 0),
4544 pci_resource_start(devp, 1),
4545 pci_resource_start(devp, 2),
4546 pci_resource_start(devp, 3));
4547#endif
4548
4549/*
4550 * We have all resources from the board, so lets setup the actual
4551 * board structure now.
4552 */
4553 brdp->iobase = pci_resource_start(devp, 3);
4554 brdp->memaddr = pci_resource_start(devp, 2);
4555 stli_brdinit(brdp);
4556
4557 return(0);
4558}
4559
4560/*****************************************************************************/
4561
4562/*
4563 * Find all Stallion PCI boards that might be installed. Initialize each
4564 * one as it is found.
4565 */
4566
4567static int stli_findpcibrds(void)
4568{
4569 struct pci_dev *dev = NULL;
4570 int rc;
4571
4572#ifdef DEBUG
4573 printk("stli_findpcibrds()\n");
4574#endif
4575
4576 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4577 PCI_DEVICE_ID_ECRA, dev))) {
4578 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4579 return(rc);
4580 }
4581
4582 return(0);
4583}
4584
4585#endif
4586
4587/*****************************************************************************/
4588
4589/*
4590 * Allocate a new board structure. Fill out the basic info in it.
4591 */
4592
4593static stlibrd_t *stli_allocbrd(void)
4594{
4595 stlibrd_t *brdp;
4596
Tobias Klauserb0b4ed72006-03-31 02:30:56 -08004597 brdp = kzalloc(sizeof(stlibrd_t), GFP_KERNEL);
4598 if (!brdp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004599 printk(KERN_ERR "STALLION: failed to allocate memory "
4600 "(size=%d)\n", sizeof(stlibrd_t));
Tobias Klauserb0b4ed72006-03-31 02:30:56 -08004601 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004602 }
4603
Linus Torvalds1da177e2005-04-16 15:20:36 -07004604 brdp->magic = STLI_BOARDMAGIC;
4605 return(brdp);
4606}
4607
4608/*****************************************************************************/
4609
4610/*
4611 * Scan through all the boards in the configuration and see what we
4612 * can find.
4613 */
4614
4615static int stli_initbrds(void)
4616{
4617 stlibrd_t *brdp, *nxtbrdp;
4618 stlconf_t *confp;
4619 int i, j;
4620
4621#ifdef DEBUG
4622 printk(KERN_DEBUG "stli_initbrds()\n");
4623#endif
4624
4625 if (stli_nrbrds > STL_MAXBRDS) {
4626 printk(KERN_INFO "STALLION: too many boards in configuration "
4627 "table, truncating to %d\n", STL_MAXBRDS);
4628 stli_nrbrds = STL_MAXBRDS;
4629 }
4630
4631/*
4632 * Firstly scan the list of static boards configured. Allocate
4633 * resources and initialize the boards as found. If this is a
4634 * module then let the module args override static configuration.
4635 */
4636 for (i = 0; (i < stli_nrbrds); i++) {
4637 confp = &stli_brdconf[i];
4638#ifdef MODULE
4639 stli_parsebrd(confp, stli_brdsp[i]);
4640#endif
4641 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4642 return(-ENOMEM);
4643 brdp->brdnr = i;
4644 brdp->brdtype = confp->brdtype;
4645 brdp->iobase = confp->ioaddr1;
4646 brdp->memaddr = confp->memaddr;
4647 stli_brdinit(brdp);
4648 }
4649
4650/*
4651 * Static configuration table done, so now use dynamic methods to
4652 * see if any more boards should be configured.
4653 */
4654#ifdef MODULE
4655 stli_argbrds();
4656#endif
Adrian Bunkdbc6b5f2005-06-25 14:59:03 -07004657 if (STLI_EISAPROBE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004658 stli_findeisabrds();
4659#ifdef CONFIG_PCI
4660 stli_findpcibrds();
4661#endif
4662
4663/*
4664 * All found boards are initialized. Now for a little optimization, if
4665 * no boards are sharing the "shared memory" regions then we can just
4666 * leave them all enabled. This is in fact the usual case.
4667 */
4668 stli_shared = 0;
4669 if (stli_nrbrds > 1) {
4670 for (i = 0; (i < stli_nrbrds); i++) {
4671 brdp = stli_brds[i];
4672 if (brdp == (stlibrd_t *) NULL)
4673 continue;
4674 for (j = i + 1; (j < stli_nrbrds); j++) {
4675 nxtbrdp = stli_brds[j];
4676 if (nxtbrdp == (stlibrd_t *) NULL)
4677 continue;
4678 if ((brdp->membase >= nxtbrdp->membase) &&
4679 (brdp->membase <= (nxtbrdp->membase +
4680 nxtbrdp->memsize - 1))) {
4681 stli_shared++;
4682 break;
4683 }
4684 }
4685 }
4686 }
4687
4688 if (stli_shared == 0) {
4689 for (i = 0; (i < stli_nrbrds); i++) {
4690 brdp = stli_brds[i];
4691 if (brdp == (stlibrd_t *) NULL)
4692 continue;
4693 if (brdp->state & BST_FOUND) {
4694 EBRDENABLE(brdp);
4695 brdp->enable = NULL;
4696 brdp->disable = NULL;
4697 }
4698 }
4699 }
4700
4701 return(0);
4702}
4703
4704/*****************************************************************************/
4705
4706/*
4707 * Code to handle an "staliomem" read operation. This device is the
4708 * contents of the board shared memory. It is used for down loading
4709 * the slave image (and debugging :-)
4710 */
4711
4712static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4713{
4714 unsigned long flags;
4715 void *memptr;
4716 stlibrd_t *brdp;
4717 int brdnr, size, n;
4718
4719#ifdef DEBUG
4720 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4721 (int) fp, (int) buf, count, (int) offp);
4722#endif
4723
4724 brdnr = iminor(fp->f_dentry->d_inode);
4725 if (brdnr >= stli_nrbrds)
4726 return(-ENODEV);
4727 brdp = stli_brds[brdnr];
4728 if (brdp == (stlibrd_t *) NULL)
4729 return(-ENODEV);
4730 if (brdp->state == 0)
4731 return(-ENODEV);
4732 if (fp->f_pos >= brdp->memsize)
4733 return(0);
4734
4735 size = MIN(count, (brdp->memsize - fp->f_pos));
4736
4737 save_flags(flags);
4738 cli();
4739 EBRDENABLE(brdp);
4740 while (size > 0) {
4741 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4742 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4743 if (copy_to_user(buf, memptr, n)) {
4744 count = -EFAULT;
4745 goto out;
4746 }
4747 fp->f_pos += n;
4748 buf += n;
4749 size -= n;
4750 }
4751out:
4752 EBRDDISABLE(brdp);
4753 restore_flags(flags);
4754
4755 return(count);
4756}
4757
4758/*****************************************************************************/
4759
4760/*
4761 * Code to handle an "staliomem" write operation. This device is the
4762 * contents of the board shared memory. It is used for down loading
4763 * the slave image (and debugging :-)
4764 */
4765
4766static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4767{
4768 unsigned long flags;
4769 void *memptr;
4770 stlibrd_t *brdp;
4771 char __user *chbuf;
4772 int brdnr, size, n;
4773
4774#ifdef DEBUG
4775 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4776 (int) fp, (int) buf, count, (int) offp);
4777#endif
4778
4779 brdnr = iminor(fp->f_dentry->d_inode);
4780 if (brdnr >= stli_nrbrds)
4781 return(-ENODEV);
4782 brdp = stli_brds[brdnr];
4783 if (brdp == (stlibrd_t *) NULL)
4784 return(-ENODEV);
4785 if (brdp->state == 0)
4786 return(-ENODEV);
4787 if (fp->f_pos >= brdp->memsize)
4788 return(0);
4789
4790 chbuf = (char __user *) buf;
4791 size = MIN(count, (brdp->memsize - fp->f_pos));
4792
4793 save_flags(flags);
4794 cli();
4795 EBRDENABLE(brdp);
4796 while (size > 0) {
4797 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4798 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4799 if (copy_from_user(memptr, chbuf, n)) {
4800 count = -EFAULT;
4801 goto out;
4802 }
4803 fp->f_pos += n;
4804 chbuf += n;
4805 size -= n;
4806 }
4807out:
4808 EBRDDISABLE(brdp);
4809 restore_flags(flags);
4810
4811 return(count);
4812}
4813
4814/*****************************************************************************/
4815
4816/*
4817 * Return the board stats structure to user app.
4818 */
4819
4820static int stli_getbrdstats(combrd_t __user *bp)
4821{
4822 stlibrd_t *brdp;
4823 int i;
4824
4825 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4826 return -EFAULT;
4827 if (stli_brdstats.brd >= STL_MAXBRDS)
4828 return(-ENODEV);
4829 brdp = stli_brds[stli_brdstats.brd];
4830 if (brdp == (stlibrd_t *) NULL)
4831 return(-ENODEV);
4832
4833 memset(&stli_brdstats, 0, sizeof(combrd_t));
4834 stli_brdstats.brd = brdp->brdnr;
4835 stli_brdstats.type = brdp->brdtype;
4836 stli_brdstats.hwid = 0;
4837 stli_brdstats.state = brdp->state;
4838 stli_brdstats.ioaddr = brdp->iobase;
4839 stli_brdstats.memaddr = brdp->memaddr;
4840 stli_brdstats.nrpanels = brdp->nrpanels;
4841 stli_brdstats.nrports = brdp->nrports;
4842 for (i = 0; (i < brdp->nrpanels); i++) {
4843 stli_brdstats.panels[i].panel = i;
4844 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4845 stli_brdstats.panels[i].nrports = brdp->panels[i];
4846 }
4847
4848 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4849 return -EFAULT;
4850 return(0);
4851}
4852
4853/*****************************************************************************/
4854
4855/*
4856 * Resolve the referenced port number into a port struct pointer.
4857 */
4858
4859static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4860{
4861 stlibrd_t *brdp;
4862 int i;
4863
4864 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4865 return((stliport_t *) NULL);
4866 brdp = stli_brds[brdnr];
4867 if (brdp == (stlibrd_t *) NULL)
4868 return((stliport_t *) NULL);
4869 for (i = 0; (i < panelnr); i++)
4870 portnr += brdp->panels[i];
4871 if ((portnr < 0) || (portnr >= brdp->nrports))
4872 return((stliport_t *) NULL);
4873 return(brdp->ports[portnr]);
4874}
4875
4876/*****************************************************************************/
4877
4878/*
4879 * Return the port stats structure to user app. A NULL port struct
4880 * pointer passed in means that we need to find out from the app
4881 * what port to get stats for (used through board control device).
4882 */
4883
4884static int stli_portcmdstats(stliport_t *portp)
4885{
4886 unsigned long flags;
4887 stlibrd_t *brdp;
4888 int rc;
4889
4890 memset(&stli_comstats, 0, sizeof(comstats_t));
4891
4892 if (portp == (stliport_t *) NULL)
4893 return(-ENODEV);
4894 brdp = stli_brds[portp->brdnr];
4895 if (brdp == (stlibrd_t *) NULL)
4896 return(-ENODEV);
4897
4898 if (brdp->state & BST_STARTED) {
4899 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4900 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4901 return(rc);
4902 } else {
4903 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4904 }
4905
4906 stli_comstats.brd = portp->brdnr;
4907 stli_comstats.panel = portp->panelnr;
4908 stli_comstats.port = portp->portnr;
4909 stli_comstats.state = portp->state;
4910 stli_comstats.flags = portp->flags;
4911
4912 save_flags(flags);
4913 cli();
4914 if (portp->tty != (struct tty_struct *) NULL) {
4915 if (portp->tty->driver_data == portp) {
4916 stli_comstats.ttystate = portp->tty->flags;
Alan Cox33f0f882006-01-09 20:54:13 -08004917 stli_comstats.rxbuffered = -1 /*portp->tty->flip.count*/;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004918 if (portp->tty->termios != (struct termios *) NULL) {
4919 stli_comstats.cflags = portp->tty->termios->c_cflag;
4920 stli_comstats.iflags = portp->tty->termios->c_iflag;
4921 stli_comstats.oflags = portp->tty->termios->c_oflag;
4922 stli_comstats.lflags = portp->tty->termios->c_lflag;
4923 }
4924 }
4925 }
4926 restore_flags(flags);
4927
4928 stli_comstats.txtotal = stli_cdkstats.txchars;
4929 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4930 stli_comstats.txbuffered = stli_cdkstats.txringq;
4931 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4932 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4933 stli_comstats.rxparity = stli_cdkstats.parity;
4934 stli_comstats.rxframing = stli_cdkstats.framing;
4935 stli_comstats.rxlost = stli_cdkstats.ringover;
4936 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4937 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4938 stli_comstats.txxon = stli_cdkstats.txstart;
4939 stli_comstats.txxoff = stli_cdkstats.txstop;
4940 stli_comstats.rxxon = stli_cdkstats.rxstart;
4941 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4942 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4943 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4944 stli_comstats.modem = stli_cdkstats.dcdcnt;
4945 stli_comstats.hwid = stli_cdkstats.hwid;
4946 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4947
4948 return(0);
4949}
4950
4951/*****************************************************************************/
4952
4953/*
4954 * Return the port stats structure to user app. A NULL port struct
4955 * pointer passed in means that we need to find out from the app
4956 * what port to get stats for (used through board control device).
4957 */
4958
4959static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4960{
4961 stlibrd_t *brdp;
4962 int rc;
4963
4964 if (!portp) {
4965 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4966 return -EFAULT;
4967 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4968 stli_comstats.port);
4969 if (!portp)
4970 return -ENODEV;
4971 }
4972
4973 brdp = stli_brds[portp->brdnr];
4974 if (!brdp)
4975 return -ENODEV;
4976
4977 if ((rc = stli_portcmdstats(portp)) < 0)
4978 return rc;
4979
4980 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4981 -EFAULT : 0;
4982}
4983
4984/*****************************************************************************/
4985
4986/*
4987 * Clear the port stats structure. We also return it zeroed out...
4988 */
4989
4990static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
4991{
4992 stlibrd_t *brdp;
4993 int rc;
4994
4995 if (!portp) {
4996 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4997 return -EFAULT;
4998 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4999 stli_comstats.port);
5000 if (!portp)
5001 return -ENODEV;
5002 }
5003
5004 brdp = stli_brds[portp->brdnr];
5005 if (!brdp)
5006 return -ENODEV;
5007
5008 if (brdp->state & BST_STARTED) {
5009 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5010 return rc;
5011 }
5012
5013 memset(&stli_comstats, 0, sizeof(comstats_t));
5014 stli_comstats.brd = portp->brdnr;
5015 stli_comstats.panel = portp->panelnr;
5016 stli_comstats.port = portp->portnr;
5017
5018 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5019 return -EFAULT;
5020 return 0;
5021}
5022
5023/*****************************************************************************/
5024
5025/*
5026 * Return the entire driver ports structure to a user app.
5027 */
5028
5029static int stli_getportstruct(stliport_t __user *arg)
5030{
5031 stliport_t *portp;
5032
5033 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5034 return -EFAULT;
5035 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5036 stli_dummyport.portnr);
5037 if (!portp)
5038 return -ENODEV;
5039 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5040 return -EFAULT;
5041 return 0;
5042}
5043
5044/*****************************************************************************/
5045
5046/*
5047 * Return the entire driver board structure to a user app.
5048 */
5049
5050static int stli_getbrdstruct(stlibrd_t __user *arg)
5051{
5052 stlibrd_t *brdp;
5053
5054 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5055 return -EFAULT;
5056 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5057 return -ENODEV;
5058 brdp = stli_brds[stli_dummybrd.brdnr];
5059 if (!brdp)
5060 return -ENODEV;
5061 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5062 return -EFAULT;
5063 return 0;
5064}
5065
5066/*****************************************************************************/
5067
5068/*
5069 * The "staliomem" device is also required to do some special operations on
5070 * the board. We need to be able to send an interrupt to the board,
5071 * reset it, and start/stop it.
5072 */
5073
5074static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5075{
5076 stlibrd_t *brdp;
5077 int brdnr, rc, done;
5078 void __user *argp = (void __user *)arg;
5079
5080#ifdef DEBUG
5081 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5082 (int) ip, (int) fp, cmd, (int) arg);
5083#endif
5084
5085/*
5086 * First up handle the board independent ioctls.
5087 */
5088 done = 0;
5089 rc = 0;
5090
5091 switch (cmd) {
5092 case COM_GETPORTSTATS:
5093 rc = stli_getportstats(NULL, argp);
5094 done++;
5095 break;
5096 case COM_CLRPORTSTATS:
5097 rc = stli_clrportstats(NULL, argp);
5098 done++;
5099 break;
5100 case COM_GETBRDSTATS:
5101 rc = stli_getbrdstats(argp);
5102 done++;
5103 break;
5104 case COM_READPORT:
5105 rc = stli_getportstruct(argp);
5106 done++;
5107 break;
5108 case COM_READBOARD:
5109 rc = stli_getbrdstruct(argp);
5110 done++;
5111 break;
5112 }
5113
5114 if (done)
5115 return(rc);
5116
5117/*
5118 * Now handle the board specific ioctls. These all depend on the
5119 * minor number of the device they were called from.
5120 */
5121 brdnr = iminor(ip);
5122 if (brdnr >= STL_MAXBRDS)
5123 return(-ENODEV);
5124 brdp = stli_brds[brdnr];
5125 if (!brdp)
5126 return(-ENODEV);
5127 if (brdp->state == 0)
5128 return(-ENODEV);
5129
5130 switch (cmd) {
5131 case STL_BINTR:
5132 EBRDINTR(brdp);
5133 break;
5134 case STL_BSTART:
5135 rc = stli_startbrd(brdp);
5136 break;
5137 case STL_BSTOP:
5138 brdp->state &= ~BST_STARTED;
5139 break;
5140 case STL_BRESET:
5141 brdp->state &= ~BST_STARTED;
5142 EBRDRESET(brdp);
5143 if (stli_shared == 0) {
5144 if (brdp->reenable != NULL)
5145 (* brdp->reenable)(brdp);
5146 }
5147 break;
5148 default:
5149 rc = -ENOIOCTLCMD;
5150 break;
5151 }
5152
5153 return(rc);
5154}
5155
5156static struct tty_operations stli_ops = {
5157 .open = stli_open,
5158 .close = stli_close,
5159 .write = stli_write,
5160 .put_char = stli_putchar,
5161 .flush_chars = stli_flushchars,
5162 .write_room = stli_writeroom,
5163 .chars_in_buffer = stli_charsinbuffer,
5164 .ioctl = stli_ioctl,
5165 .set_termios = stli_settermios,
5166 .throttle = stli_throttle,
5167 .unthrottle = stli_unthrottle,
5168 .stop = stli_stop,
5169 .start = stli_start,
5170 .hangup = stli_hangup,
5171 .flush_buffer = stli_flushbuffer,
5172 .break_ctl = stli_breakctl,
5173 .wait_until_sent = stli_waituntilsent,
5174 .send_xchar = stli_sendxchar,
5175 .read_proc = stli_readproc,
5176 .tiocmget = stli_tiocmget,
5177 .tiocmset = stli_tiocmset,
5178};
5179
5180/*****************************************************************************/
5181
5182int __init stli_init(void)
5183{
5184 int i;
5185 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5186
5187 stli_initbrds();
5188
5189 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5190 if (!stli_serial)
5191 return -ENOMEM;
5192
5193/*
5194 * Allocate a temporary write buffer.
5195 */
Tobias Klauserb0b4ed72006-03-31 02:30:56 -08005196 stli_tmpwritebuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
5197 if (!stli_tmpwritebuf)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005198 printk(KERN_ERR "STALLION: failed to allocate memory "
5199 "(size=%d)\n", STLI_TXBUFSIZE);
Tobias Klauserb0b4ed72006-03-31 02:30:56 -08005200 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
5201 if (!stli_txcookbuf)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005202 printk(KERN_ERR "STALLION: failed to allocate memory "
5203 "(size=%d)\n", STLI_TXBUFSIZE);
5204
5205/*
5206 * Set up a character driver for the shared memory region. We need this
5207 * to down load the slave code image. Also it is a useful debugging tool.
5208 */
5209 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5210 printk(KERN_ERR "STALLION: failed to register serial memory "
5211 "device\n");
5212
gregkh@suse.deca8eca62005-03-23 09:53:09 -08005213 istallion_class = class_create(THIS_MODULE, "staliomem");
Greg Kroah-Hartman7c69ef72005-06-20 21:15:16 -07005214 for (i = 0; i < 4; i++)
Greg Kroah-Hartman53f46542005-10-27 22:25:43 -07005215 class_device_create(istallion_class, NULL,
5216 MKDEV(STL_SIOMEMMAJOR, i),
Linus Torvalds1da177e2005-04-16 15:20:36 -07005217 NULL, "staliomem%d", i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005218
5219/*
5220 * Set up the tty driver structure and register us as a driver.
5221 */
5222 stli_serial->owner = THIS_MODULE;
5223 stli_serial->driver_name = stli_drvname;
5224 stli_serial->name = stli_serialname;
5225 stli_serial->major = STL_SERIALMAJOR;
5226 stli_serial->minor_start = 0;
5227 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5228 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5229 stli_serial->init_termios = stli_deftermios;
5230 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5231 tty_set_operations(stli_serial, &stli_ops);
5232
5233 if (tty_register_driver(stli_serial)) {
5234 put_tty_driver(stli_serial);
5235 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5236 return -EBUSY;
5237 }
5238 return(0);
5239}
5240
5241/*****************************************************************************/