Davide Ferri | 8d009a0 | 2009-06-23 22:34:06 -0300 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for Xceive XC4000 "QAM/8VSB single chip tuner" |
| 3 | * |
| 4 | * Copyright (c) 2007 Xceive Corporation |
| 5 | * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> |
| 6 | * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> |
| 7 | * Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2 of the License, or |
| 12 | * (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; if not, write to the Free Software |
| 22 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 23 | */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/moduleparam.h> |
| 27 | #include <linux/videodev2.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/dvb/frontend.h> |
| 30 | #include <linux/i2c.h> |
| 31 | |
| 32 | #include "dvb_frontend.h" |
| 33 | |
| 34 | #include "xc4000.h" |
| 35 | #include "tuner-i2c.h" |
| 36 | |
| 37 | static int debug; |
| 38 | module_param(debug, int, 0644); |
| 39 | MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); |
| 40 | |
| 41 | static int no_poweroff; |
| 42 | module_param(no_poweroff, int, 0644); |
| 43 | MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" |
| 44 | "\t\t1 keep device energized and with tuner ready all the times.\n" |
| 45 | "\t\tFaster, but consumes more power and keeps the device hotter"); |
| 46 | |
| 47 | static DEFINE_MUTEX(xc4000_list_mutex); |
| 48 | static LIST_HEAD(hybrid_tuner_instance_list); |
| 49 | |
| 50 | #define dprintk(level, fmt, arg...) if (debug >= level) \ |
| 51 | printk(KERN_INFO "%s: " fmt, "xc4000", ## arg) |
| 52 | |
| 53 | #define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.26.fw" |
| 54 | #define XC4000_DEFAULT_FIRMWARE_SIZE 8236 |
| 55 | |
| 56 | struct xc4000_priv { |
| 57 | struct tuner_i2c_props i2c_props; |
| 58 | struct list_head hybrid_tuner_instance_list; |
| 59 | |
| 60 | u32 if_khz; |
| 61 | u32 freq_hz; |
| 62 | u32 bandwidth; |
| 63 | u8 video_standard; |
| 64 | u8 rf_mode; |
| 65 | }; |
| 66 | |
| 67 | /* Misc Defines */ |
| 68 | #define MAX_TV_STANDARD 23 |
| 69 | #define XC_MAX_I2C_WRITE_LENGTH 64 |
| 70 | |
| 71 | /* Signal Types */ |
| 72 | #define XC_RF_MODE_AIR 0 |
| 73 | #define XC_RF_MODE_CABLE 1 |
| 74 | |
| 75 | /* Result codes */ |
| 76 | #define XC_RESULT_SUCCESS 0 |
| 77 | #define XC_RESULT_RESET_FAILURE 1 |
| 78 | #define XC_RESULT_I2C_WRITE_FAILURE 2 |
| 79 | #define XC_RESULT_I2C_READ_FAILURE 3 |
| 80 | #define XC_RESULT_OUT_OF_RANGE 5 |
| 81 | |
| 82 | /* Product id */ |
| 83 | #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000 |
| 84 | #define XC_PRODUCT_ID_FW_LOADED 0x0FA0 /* WAS: 0x1388*/ |
| 85 | |
| 86 | /* Registers */ |
| 87 | #define XREG_INIT 0x00 |
| 88 | #define XREG_VIDEO_MODE 0x01 |
| 89 | #define XREG_AUDIO_MODE 0x02 |
| 90 | #define XREG_RF_FREQ 0x03 |
| 91 | #define XREG_D_CODE 0x04 |
| 92 | #define XREG_IF_OUT 0x05 /* ?? */ |
| 93 | #define XREG_SEEK_MODE 0x07 /* WAS: 0x06 */ |
| 94 | #define XREG_POWER_DOWN 0x08 /* WAS: 0x0A Obsolete */ |
| 95 | #define XREG_SIGNALSOURCE 0x0A /* WAS: 0x0D 0=Air, 1=Cable */ |
| 96 | //#define XREG_SMOOTHEDCVBS 0x0E |
| 97 | //#define XREG_XTALFREQ 0x0F |
| 98 | //#define XREG_FINERFREQ 0x10 |
| 99 | //#define XREG_DDIMODE 0x11 |
| 100 | |
| 101 | #define XREG_ADC_ENV 0x00 |
| 102 | #define XREG_QUALITY 0x01 |
| 103 | #define XREG_FRAME_LINES 0x02 |
| 104 | #define XREG_HSYNC_FREQ 0x03 |
| 105 | #define XREG_LOCK 0x04 |
| 106 | #define XREG_FREQ_ERROR 0x05 |
| 107 | #define XREG_SNR 0x06 |
| 108 | #define XREG_VERSION 0x07 |
| 109 | #define XREG_PRODUCT_ID 0x08 |
| 110 | //#define XREG_BUSY 0x09 |
| 111 | //#define XREG_BUILD 0x0D |
| 112 | |
| 113 | /* |
| 114 | Basic firmware description. This will remain with |
| 115 | the driver for documentation purposes. |
| 116 | |
| 117 | This represents an I2C firmware file encoded as a |
| 118 | string of unsigned char. Format is as follows: |
| 119 | |
| 120 | char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB |
| 121 | char[1 ]=len0_LSB -> length of first write transaction |
| 122 | char[2 ]=data0 -> first byte to be sent |
| 123 | char[3 ]=data1 |
| 124 | char[4 ]=data2 |
| 125 | char[ ]=... |
| 126 | char[M ]=dataN -> last byte to be sent |
| 127 | char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB |
| 128 | char[M+2]=len1_LSB -> length of second write transaction |
| 129 | char[M+3]=data0 |
| 130 | char[M+4]=data1 |
| 131 | ... |
| 132 | etc. |
| 133 | |
| 134 | The [len] value should be interpreted as follows: |
| 135 | |
| 136 | len= len_MSB _ len_LSB |
| 137 | len=1111_1111_1111_1111 : End of I2C_SEQUENCE |
| 138 | len=0000_0000_0000_0000 : Reset command: Do hardware reset |
| 139 | len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767) |
| 140 | len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms |
| 141 | |
| 142 | For the RESET and WAIT commands, the two following bytes will contain |
| 143 | immediately the length of the following transaction. |
| 144 | |
| 145 | */ |
| 146 | struct XC_TV_STANDARD { |
| 147 | char *Name; |
| 148 | u16 AudioMode; |
| 149 | u16 VideoMode; |
| 150 | }; |
| 151 | |
| 152 | /* Tuner standards */ |
| 153 | #define MN_NTSC_PAL_BTSC 0 |
| 154 | #define MN_NTSC_PAL_A2 1 |
| 155 | #define MN_NTSC_PAL_EIAJ 2 |
| 156 | #define MN_NTSC_PAL_Mono 3 |
| 157 | #define BG_PAL_A2 4 |
| 158 | #define BG_PAL_NICAM 5 |
| 159 | #define BG_PAL_MONO 6 |
| 160 | #define I_PAL_NICAM 7 |
| 161 | #define I_PAL_NICAM_MONO 8 |
| 162 | #define DK_PAL_A2 9 |
| 163 | #define DK_PAL_NICAM 10 |
| 164 | #define DK_PAL_MONO 11 |
| 165 | #define DK_SECAM_A2DK1 12 |
| 166 | #define DK_SECAM_A2LDK3 13 |
| 167 | #define DK_SECAM_A2MONO 14 |
| 168 | #define L_SECAM_NICAM 15 |
| 169 | #define LC_SECAM_NICAM 16 |
| 170 | #define DTV6 17 |
| 171 | #define DTV8 18 |
| 172 | #define DTV7_8 19 |
| 173 | #define DTV7 20 |
| 174 | #define FM_Radio_INPUT2 21 |
| 175 | #define FM_Radio_INPUT1 22 |
| 176 | |
| 177 | /* WAS : |
| 178 | static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = { |
| 179 | {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, |
| 180 | {"M/N-NTSC/PAL-A2", 0x0600, 0x8020}, |
| 181 | {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, |
| 182 | {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, |
| 183 | {"B/G-PAL-A2", 0x0A00, 0x8049}, |
| 184 | {"B/G-PAL-NICAM", 0x0C04, 0x8049}, |
| 185 | {"B/G-PAL-MONO", 0x0878, 0x8059}, |
| 186 | {"I-PAL-NICAM", 0x1080, 0x8009}, |
| 187 | {"I-PAL-NICAM-MONO", 0x0E78, 0x8009}, |
| 188 | {"D/K-PAL-A2", 0x1600, 0x8009}, |
| 189 | {"D/K-PAL-NICAM", 0x0E80, 0x8009}, |
| 190 | {"D/K-PAL-MONO", 0x1478, 0x8009}, |
| 191 | {"D/K-SECAM-A2 DK1", 0x1200, 0x8009}, |
| 192 | {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, |
| 193 | {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, |
| 194 | {"L-SECAM-NICAM", 0x8E82, 0x0009}, |
| 195 | {"L'-SECAM-NICAM", 0x8E82, 0x4009}, |
| 196 | {"DTV6", 0x00C0, 0x8002}, |
| 197 | {"DTV8", 0x00C0, 0x800B}, |
| 198 | {"DTV7/8", 0x00C0, 0x801B}, |
| 199 | {"DTV7", 0x00C0, 0x8007}, |
| 200 | {"FM Radio-INPUT2", 0x9802, 0x9002}, |
| 201 | {"FM Radio-INPUT1", 0x0208, 0x9002} |
| 202 | };*/ |
| 203 | |
| 204 | static struct XC_TV_STANDARD XC4000_Standard[MAX_TV_STANDARD] = { |
| 205 | {"M/N-NTSC/PAL-BTSC", 0x0000, 0x8020}, |
| 206 | {"M/N-NTSC/PAL-A2", 0x0000, 0x8020}, |
| 207 | {"M/N-NTSC/PAL-EIAJ", 0x0040, 0x8020}, |
| 208 | {"M/N-NTSC/PAL-Mono", 0x0078, 0x8020}, |
| 209 | {"B/G-PAL-A2", 0x0000, 0x8059}, |
| 210 | {"B/G-PAL-NICAM", 0x0004, 0x8059}, |
| 211 | {"B/G-PAL-MONO", 0x0078, 0x8059}, |
| 212 | {"I-PAL-NICAM", 0x0080, 0x8049}, |
| 213 | {"I-PAL-NICAM-MONO", 0x0078, 0x8049}, |
| 214 | {"D/K-PAL-A2", 0x0000, 0x8049}, |
| 215 | {"D/K-PAL-NICAM", 0x0080, 0x8049}, |
| 216 | {"D/K-PAL-MONO", 0x0078, 0x8049}, |
| 217 | {"D/K-SECAM-A2 DK1", 0x0000, 0x8049}, |
| 218 | {"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049}, |
| 219 | {"D/K-SECAM-A2 MONO", 0x0078, 0x8049}, |
| 220 | {"L-SECAM-NICAM", 0x8080, 0x0009}, |
| 221 | {"L'-SECAM-NICAM", 0x8080, 0x4009}, |
| 222 | {"DTV6", 0x00C0, 0x8002}, |
| 223 | {"DTV8", 0x00C0, 0x800B}, |
| 224 | {"DTV7/8", 0x00C0, 0x801B}, |
| 225 | {"DTV7", 0x00C0, 0x8007}, |
| 226 | {"FM Radio-INPUT2", 0x0008, 0x9800}, |
| 227 | {"FM Radio-INPUT1", 0x0008, 0x9000} |
| 228 | }; |
| 229 | |
| 230 | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe); |
| 231 | static int xc4000_is_firmware_loaded(struct dvb_frontend *fe); |
| 232 | static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val); |
| 233 | static int xc4000_TunerReset(struct dvb_frontend *fe); |
| 234 | |
| 235 | static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len) |
| 236 | { |
| 237 | struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
| 238 | .flags = 0, .buf = buf, .len = len }; |
| 239 | |
| 240 | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { |
| 241 | printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n", len); |
| 242 | return XC_RESULT_I2C_WRITE_FAILURE; |
| 243 | } |
| 244 | return XC_RESULT_SUCCESS; |
| 245 | } |
| 246 | |
| 247 | /* This routine is never used because the only time we read data from the |
| 248 | i2c bus is when we read registers, and we want that to be an atomic i2c |
| 249 | transaction in case we are on a multi-master bus */ |
| 250 | static int xc_read_i2c_data(struct xc4000_priv *priv, u8 *buf, int len) |
| 251 | { |
| 252 | struct i2c_msg msg = { .addr = priv->i2c_props.addr, |
| 253 | .flags = I2C_M_RD, .buf = buf, .len = len }; |
| 254 | |
| 255 | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { |
| 256 | printk(KERN_ERR "xc4000 I2C read failed (len=%i)\n", len); |
| 257 | return -EREMOTEIO; |
| 258 | } |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | static void xc_wait(int wait_ms) |
| 263 | { |
| 264 | msleep(wait_ms); |
| 265 | } |
| 266 | |
| 267 | static int xc4000_TunerReset(struct dvb_frontend *fe) |
| 268 | { |
| 269 | struct xc4000_priv *priv = fe->tuner_priv; |
| 270 | int ret; |
| 271 | |
| 272 | dprintk(1, "%s()\n", __func__); |
| 273 | |
| 274 | if (fe->callback) { |
| 275 | ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? |
| 276 | fe->dvb->priv : |
| 277 | priv->i2c_props.adap->algo_data, |
| 278 | DVB_FRONTEND_COMPONENT_TUNER, |
| 279 | XC4000_TUNER_RESET, 0); |
| 280 | if (ret) { |
| 281 | printk(KERN_ERR "xc4000: reset failed\n"); |
| 282 | return XC_RESULT_RESET_FAILURE; |
| 283 | } |
| 284 | } else { |
| 285 | printk(KERN_ERR "xc4000: no tuner reset callback function, fatal\n"); |
| 286 | return XC_RESULT_RESET_FAILURE; |
| 287 | } |
| 288 | return XC_RESULT_SUCCESS; |
| 289 | } |
| 290 | |
| 291 | static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData) |
| 292 | { |
| 293 | u8 buf[4]; |
| 294 | // int WatchDogTimer = 100; |
| 295 | int result; |
| 296 | |
| 297 | buf[0] = (regAddr >> 8) & 0xFF; |
| 298 | buf[1] = regAddr & 0xFF; |
| 299 | buf[2] = (i2cData >> 8) & 0xFF; |
| 300 | buf[3] = i2cData & 0xFF; |
| 301 | result = xc_send_i2c_data(priv, buf, 4); |
| 302 | //WAS THERE |
| 303 | // if (result == XC_RESULT_SUCCESS) { |
| 304 | // /* wait for busy flag to clear */ |
| 305 | // while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) { |
| 306 | // buf[0] = 0; |
| 307 | // buf[1] = XREG_BUSY; |
| 308 | // |
| 309 | // result = xc_send_i2c_data(priv, buf, 2); |
| 310 | // if (result == XC_RESULT_SUCCESS) { |
| 311 | // result = xc_read_i2c_data(priv, buf, 2); |
| 312 | // if (result == XC_RESULT_SUCCESS) { |
| 313 | // if ((buf[0] == 0) && (buf[1] == 0)) { |
| 314 | // /* busy flag cleared */ |
| 315 | // break; |
| 316 | // } else { |
| 317 | // xc_wait(5); /* wait 5 ms */ |
| 318 | // WatchDogTimer--; |
| 319 | // } |
| 320 | // } |
| 321 | // } |
| 322 | // } |
| 323 | // } |
| 324 | // if (WatchDogTimer < 0) |
| 325 | // result = XC_RESULT_I2C_WRITE_FAILURE; |
| 326 | |
| 327 | return result; |
| 328 | } |
| 329 | |
| 330 | static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) |
| 331 | { |
| 332 | struct xc4000_priv *priv = fe->tuner_priv; |
| 333 | |
| 334 | int i, nbytes_to_send, result; |
| 335 | unsigned int len, pos, index; |
| 336 | u8 buf[XC_MAX_I2C_WRITE_LENGTH]; |
| 337 | |
| 338 | index = 0; |
| 339 | while ((i2c_sequence[index] != 0xFF) || |
| 340 | (i2c_sequence[index + 1] != 0xFF)) { |
| 341 | len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; |
| 342 | if (len == 0x0000) { |
| 343 | /* RESET command */ |
| 344 | result = xc4000_TunerReset(fe); |
| 345 | index += 2; |
| 346 | if (result != XC_RESULT_SUCCESS) |
| 347 | return result; |
| 348 | } else if (len & 0x8000) { |
| 349 | /* WAIT command */ |
| 350 | xc_wait(len & 0x7FFF); |
| 351 | index += 2; |
| 352 | } else { |
| 353 | /* Send i2c data whilst ensuring individual transactions |
| 354 | * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. |
| 355 | */ |
| 356 | index += 2; |
| 357 | buf[0] = i2c_sequence[index]; |
| 358 | buf[1] = i2c_sequence[index + 1]; |
| 359 | pos = 2; |
| 360 | while (pos < len) { |
| 361 | if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) |
| 362 | nbytes_to_send = |
| 363 | XC_MAX_I2C_WRITE_LENGTH; |
| 364 | else |
| 365 | nbytes_to_send = (len - pos + 2); |
| 366 | for (i = 2; i < nbytes_to_send; i++) { |
| 367 | buf[i] = i2c_sequence[index + pos + |
| 368 | i - 2]; |
| 369 | } |
| 370 | result = xc_send_i2c_data(priv, buf, |
| 371 | nbytes_to_send); |
| 372 | |
| 373 | if (result != XC_RESULT_SUCCESS) |
| 374 | return result; |
| 375 | |
| 376 | pos += nbytes_to_send - 2; |
| 377 | } |
| 378 | index += len; |
| 379 | } |
| 380 | } |
| 381 | return XC_RESULT_SUCCESS; |
| 382 | } |
| 383 | |
| 384 | static int xc_initialize(struct xc4000_priv *priv) |
| 385 | { |
| 386 | dprintk(1, "%s()\n", __func__); |
| 387 | return xc_write_reg(priv, XREG_INIT, 0); |
| 388 | } |
| 389 | |
| 390 | static int xc_SetTVStandard(struct xc4000_priv *priv, |
| 391 | u16 VideoMode, u16 AudioMode) |
| 392 | { |
| 393 | int ret; |
| 394 | dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode); |
| 395 | dprintk(1, "%s() Standard = %s\n", |
| 396 | __func__, |
| 397 | XC4000_Standard[priv->video_standard].Name); |
| 398 | |
| 399 | ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode); |
| 400 | if (ret == XC_RESULT_SUCCESS) |
| 401 | ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode); |
| 402 | |
| 403 | return ret; |
| 404 | } |
| 405 | |
| 406 | static int xc_SetSignalSource(struct xc4000_priv *priv, u16 rf_mode) |
| 407 | { |
| 408 | dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, |
| 409 | rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); |
| 410 | |
| 411 | if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { |
| 412 | rf_mode = XC_RF_MODE_CABLE; |
| 413 | printk(KERN_ERR |
| 414 | "%s(), Invalid mode, defaulting to CABLE", |
| 415 | __func__); |
| 416 | } |
| 417 | return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); |
| 418 | } |
| 419 | |
| 420 | static const struct dvb_tuner_ops xc4000_tuner_ops; |
| 421 | |
| 422 | static int xc_set_RF_frequency(struct xc4000_priv *priv, u32 freq_hz) |
| 423 | { |
| 424 | u16 freq_code; |
| 425 | |
| 426 | dprintk(1, "%s(%u)\n", __func__, freq_hz); |
| 427 | |
| 428 | if ((freq_hz > xc4000_tuner_ops.info.frequency_max) || |
| 429 | (freq_hz < xc4000_tuner_ops.info.frequency_min)) |
| 430 | return XC_RESULT_OUT_OF_RANGE; |
| 431 | |
| 432 | freq_code = (u16)(freq_hz / 15625); |
| 433 | |
| 434 | /* WAS: Starting in firmware version 1.1.44, Xceive recommends using the |
| 435 | FINERFREQ for all normal tuning (the doc indicates reg 0x03 should |
| 436 | only be used for fast scanning for channel lock) */ |
| 437 | return xc_write_reg(priv, XREG_RF_FREQ, freq_code); /* WAS: XREG_FINERFREQ */ |
| 438 | } |
| 439 | |
| 440 | |
| 441 | static int xc_set_IF_frequency(struct xc4000_priv *priv, u32 freq_khz) |
| 442 | { |
| 443 | u32 freq_code = (freq_khz * 1024)/1000; |
| 444 | dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", |
| 445 | __func__, freq_khz, freq_code); |
| 446 | |
| 447 | return xc_write_reg(priv, XREG_IF_OUT, freq_code); |
| 448 | } |
| 449 | |
| 450 | |
| 451 | static int xc_get_ADC_Envelope(struct xc4000_priv *priv, u16 *adc_envelope) |
| 452 | { |
| 453 | return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope); |
| 454 | } |
| 455 | |
| 456 | static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz) |
| 457 | { |
| 458 | int result; |
| 459 | u16 regData; |
| 460 | u32 tmp; |
| 461 | |
| 462 | result = xc4000_readreg(priv, XREG_FREQ_ERROR, ®Data); |
| 463 | if (result != XC_RESULT_SUCCESS) |
| 464 | return result; |
| 465 | |
| 466 | tmp = (u32)regData; |
| 467 | (*freq_error_hz) = (tmp * 15625) / 1000; |
| 468 | return result; |
| 469 | } |
| 470 | |
| 471 | static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status) |
| 472 | { |
| 473 | return xc4000_readreg(priv, XREG_LOCK, lock_status); |
| 474 | } |
| 475 | |
| 476 | static int xc_get_version(struct xc4000_priv *priv, |
| 477 | u8 *hw_majorversion, u8 *hw_minorversion, |
| 478 | u8 *fw_majorversion, u8 *fw_minorversion) |
| 479 | { |
| 480 | u16 data; |
| 481 | int result; |
| 482 | |
| 483 | result = xc4000_readreg(priv, XREG_VERSION, &data); |
| 484 | if (result != XC_RESULT_SUCCESS) |
| 485 | return result; |
| 486 | |
| 487 | (*hw_majorversion) = (data >> 12) & 0x0F; |
| 488 | (*hw_minorversion) = (data >> 8) & 0x0F; |
| 489 | (*fw_majorversion) = (data >> 4) & 0x0F; |
| 490 | (*fw_minorversion) = data & 0x0F; |
| 491 | |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | /* WAS THERE |
| 496 | static int xc_get_buildversion(struct xc4000_priv *priv, u16 *buildrev) |
| 497 | { |
| 498 | return xc4000_readreg(priv, XREG_BUILD, buildrev); |
| 499 | }*/ |
| 500 | |
| 501 | static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz) |
| 502 | { |
| 503 | u16 regData; |
| 504 | int result; |
| 505 | |
| 506 | result = xc4000_readreg(priv, XREG_HSYNC_FREQ, ®Data); |
| 507 | if (result != XC_RESULT_SUCCESS) |
| 508 | return result; |
| 509 | |
| 510 | (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100; |
| 511 | return result; |
| 512 | } |
| 513 | |
| 514 | static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines) |
| 515 | { |
| 516 | return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines); |
| 517 | } |
| 518 | |
| 519 | static int xc_get_quality(struct xc4000_priv *priv, u16 *quality) |
| 520 | { |
| 521 | return xc4000_readreg(priv, XREG_QUALITY, quality); |
| 522 | } |
| 523 | |
| 524 | static u16 WaitForLock(struct xc4000_priv *priv) |
| 525 | { |
| 526 | u16 lockState = 0; |
| 527 | int watchDogCount = 40; |
| 528 | |
| 529 | while ((lockState == 0) && (watchDogCount > 0)) { |
| 530 | xc_get_lock_status(priv, &lockState); |
| 531 | if (lockState != 1) { |
| 532 | xc_wait(5); |
| 533 | watchDogCount--; |
| 534 | } |
| 535 | } |
| 536 | return lockState; |
| 537 | } |
| 538 | |
| 539 | #define XC_TUNE_ANALOG 0 |
| 540 | #define XC_TUNE_DIGITAL 1 |
| 541 | static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz, int mode) |
| 542 | { |
| 543 | int found = 0; |
| 544 | |
| 545 | dprintk(1, "%s(%u)\n", __func__, freq_hz); |
| 546 | |
| 547 | if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS) |
| 548 | return 0; |
| 549 | |
| 550 | if (mode == XC_TUNE_ANALOG) { |
| 551 | if (WaitForLock(priv) == 1) |
| 552 | found = 1; |
| 553 | } |
| 554 | |
| 555 | return found; |
| 556 | } |
| 557 | |
| 558 | static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val) |
| 559 | { |
| 560 | u8 buf[2] = { reg >> 8, reg & 0xff }; |
| 561 | u8 bval[2] = { 0, 0 }; |
| 562 | struct i2c_msg msg[2] = { |
| 563 | { .addr = priv->i2c_props.addr, |
| 564 | .flags = 0, .buf = &buf[0], .len = 2 }, |
| 565 | { .addr = priv->i2c_props.addr, |
| 566 | .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, |
| 567 | }; |
| 568 | |
| 569 | if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { |
| 570 | printk(KERN_WARNING "xc4000: I2C read failed\n"); |
| 571 | return -EREMOTEIO; |
| 572 | } |
| 573 | |
| 574 | *val = (bval[0] << 8) | bval[1]; |
| 575 | return XC_RESULT_SUCCESS; |
| 576 | } |
| 577 | |
| 578 | static int xc4000_fwupload(struct dvb_frontend *fe) |
| 579 | { |
| 580 | struct xc4000_priv *priv = fe->tuner_priv; |
| 581 | const struct firmware *fw; |
| 582 | int ret; |
| 583 | |
| 584 | /* request the firmware, this will block and timeout */ |
| 585 | printk(KERN_INFO "xc4000: waiting for firmware upload (%s)...\n", |
| 586 | XC4000_DEFAULT_FIRMWARE); |
| 587 | |
| 588 | ret = request_firmware(&fw, XC4000_DEFAULT_FIRMWARE, |
| 589 | priv->i2c_props.adap->dev.parent); |
| 590 | if (ret) { |
| 591 | printk(KERN_ERR "xc4000: Upload failed. (file not found?)\n"); |
| 592 | ret = XC_RESULT_RESET_FAILURE; |
| 593 | goto out; |
| 594 | } else { |
| 595 | printk(KERN_DEBUG "xc4000: firmware read %Zu bytes.\n", |
| 596 | fw->size); |
| 597 | ret = XC_RESULT_SUCCESS; |
| 598 | } |
| 599 | |
| 600 | if (fw->size != XC4000_DEFAULT_FIRMWARE_SIZE) { |
| 601 | printk(KERN_ERR "xc4000: firmware incorrect size\n"); |
| 602 | ret = XC_RESULT_RESET_FAILURE; |
| 603 | } else { |
| 604 | printk(KERN_INFO "xc4000: firmware uploading...\n"); |
| 605 | ret = xc_load_i2c_sequence(fe, fw->data); |
| 606 | printk(KERN_INFO "xc4000: firmware upload complete...\n"); |
| 607 | } |
| 608 | |
| 609 | out: |
| 610 | release_firmware(fw); |
| 611 | return ret; |
| 612 | } |
| 613 | |
| 614 | static void xc_debug_dump(struct xc4000_priv *priv) |
| 615 | { |
| 616 | u16 adc_envelope; |
| 617 | u32 freq_error_hz = 0; |
| 618 | u16 lock_status; |
| 619 | u32 hsync_freq_hz = 0; |
| 620 | u16 frame_lines; |
| 621 | u16 quality; |
| 622 | u8 hw_majorversion = 0, hw_minorversion = 0; |
| 623 | u8 fw_majorversion = 0, fw_minorversion = 0; |
| 624 | // u16 fw_buildversion = 0; |
| 625 | |
| 626 | /* Wait for stats to stabilize. |
| 627 | * Frame Lines needs two frame times after initial lock |
| 628 | * before it is valid. |
| 629 | */ |
| 630 | xc_wait(100); |
| 631 | |
| 632 | xc_get_ADC_Envelope(priv, &adc_envelope); |
| 633 | dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); |
| 634 | |
| 635 | xc_get_frequency_error(priv, &freq_error_hz); |
| 636 | dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); |
| 637 | |
| 638 | xc_get_lock_status(priv, &lock_status); |
| 639 | dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", |
| 640 | lock_status); |
| 641 | |
| 642 | xc_get_version(priv, &hw_majorversion, &hw_minorversion, |
| 643 | &fw_majorversion, &fw_minorversion); |
| 644 | // WAS: |
| 645 | // xc_get_buildversion(priv, &fw_buildversion); |
| 646 | // dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n", |
| 647 | // hw_majorversion, hw_minorversion, |
| 648 | // fw_majorversion, fw_minorversion, fw_buildversion); |
| 649 | // NOW: |
| 650 | dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n", |
| 651 | hw_majorversion, hw_minorversion, |
| 652 | fw_majorversion, fw_minorversion); |
| 653 | |
| 654 | xc_get_hsync_freq(priv, &hsync_freq_hz); |
| 655 | dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); |
| 656 | |
| 657 | xc_get_frame_lines(priv, &frame_lines); |
| 658 | dprintk(1, "*** Frame lines = %d\n", frame_lines); |
| 659 | |
| 660 | xc_get_quality(priv, &quality); |
| 661 | dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality); |
| 662 | } |
| 663 | |
| 664 | static int xc4000_set_params(struct dvb_frontend *fe, |
| 665 | struct dvb_frontend_parameters *params) |
| 666 | { |
| 667 | struct xc4000_priv *priv = fe->tuner_priv; |
| 668 | int ret; |
| 669 | |
| 670 | if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) |
| 671 | xc_load_fw_and_init_tuner(fe); |
| 672 | |
| 673 | dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency); |
| 674 | |
| 675 | if (fe->ops.info.type == FE_ATSC) { |
| 676 | dprintk(1, "%s() ATSC\n", __func__); |
| 677 | switch (params->u.vsb.modulation) { |
| 678 | case VSB_8: |
| 679 | case VSB_16: |
| 680 | dprintk(1, "%s() VSB modulation\n", __func__); |
| 681 | priv->rf_mode = XC_RF_MODE_AIR; |
| 682 | priv->freq_hz = params->frequency - 1750000; |
| 683 | priv->bandwidth = BANDWIDTH_6_MHZ; |
| 684 | priv->video_standard = DTV6; |
| 685 | break; |
| 686 | case QAM_64: |
| 687 | case QAM_256: |
| 688 | case QAM_AUTO: |
| 689 | dprintk(1, "%s() QAM modulation\n", __func__); |
| 690 | priv->rf_mode = XC_RF_MODE_CABLE; |
| 691 | priv->freq_hz = params->frequency - 1750000; |
| 692 | priv->bandwidth = BANDWIDTH_6_MHZ; |
| 693 | priv->video_standard = DTV6; |
| 694 | break; |
| 695 | default: |
| 696 | return -EINVAL; |
| 697 | } |
| 698 | } else if (fe->ops.info.type == FE_OFDM) { |
| 699 | dprintk(1, "%s() OFDM\n", __func__); |
| 700 | switch (params->u.ofdm.bandwidth) { |
| 701 | case BANDWIDTH_6_MHZ: |
| 702 | priv->bandwidth = BANDWIDTH_6_MHZ; |
| 703 | priv->video_standard = DTV6; |
| 704 | priv->freq_hz = params->frequency - 1750000; |
| 705 | break; |
| 706 | case BANDWIDTH_7_MHZ: |
| 707 | printk(KERN_ERR "xc4000 bandwidth 7MHz not supported\n"); |
| 708 | return -EINVAL; |
| 709 | case BANDWIDTH_8_MHZ: |
| 710 | priv->bandwidth = BANDWIDTH_8_MHZ; |
| 711 | priv->video_standard = DTV8; |
| 712 | priv->freq_hz = params->frequency - 2750000; |
| 713 | break; |
| 714 | default: |
| 715 | printk(KERN_ERR "xc4000 bandwidth not set!\n"); |
| 716 | return -EINVAL; |
| 717 | } |
| 718 | priv->rf_mode = XC_RF_MODE_AIR; |
| 719 | } else { |
| 720 | printk(KERN_ERR "xc4000 modulation type not supported!\n"); |
| 721 | return -EINVAL; |
| 722 | } |
| 723 | |
| 724 | dprintk(1, "%s() frequency=%d (compensated)\n", |
| 725 | __func__, priv->freq_hz); |
| 726 | |
| 727 | ret = xc_SetSignalSource(priv, priv->rf_mode); |
| 728 | if (ret != XC_RESULT_SUCCESS) { |
| 729 | printk(KERN_ERR |
| 730 | "xc4000: xc_SetSignalSource(%d) failed\n", |
| 731 | priv->rf_mode); |
| 732 | return -EREMOTEIO; |
| 733 | } |
| 734 | |
| 735 | ret = xc_SetTVStandard(priv, |
| 736 | XC4000_Standard[priv->video_standard].VideoMode, |
| 737 | XC4000_Standard[priv->video_standard].AudioMode); |
| 738 | if (ret != XC_RESULT_SUCCESS) { |
| 739 | printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n"); |
| 740 | return -EREMOTEIO; |
| 741 | } |
| 742 | |
| 743 | ret = xc_set_IF_frequency(priv, priv->if_khz); |
| 744 | if (ret != XC_RESULT_SUCCESS) { |
| 745 | printk(KERN_ERR "xc4000: xc_Set_IF_frequency(%d) failed\n", |
| 746 | priv->if_khz); |
| 747 | return -EIO; |
| 748 | } |
| 749 | |
| 750 | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); |
| 751 | |
| 752 | if (debug) |
| 753 | xc_debug_dump(priv); |
| 754 | |
| 755 | return 0; |
| 756 | } |
| 757 | |
| 758 | static int xc4000_is_firmware_loaded(struct dvb_frontend *fe) |
| 759 | { |
| 760 | struct xc4000_priv *priv = fe->tuner_priv; |
| 761 | int ret; |
| 762 | u16 id; |
| 763 | |
| 764 | ret = xc4000_readreg(priv, XREG_PRODUCT_ID, &id); |
| 765 | if (ret == XC_RESULT_SUCCESS) { |
| 766 | if (id == XC_PRODUCT_ID_FW_NOT_LOADED) |
| 767 | ret = XC_RESULT_RESET_FAILURE; |
| 768 | else |
| 769 | ret = XC_RESULT_SUCCESS; |
| 770 | } |
| 771 | |
| 772 | dprintk(1, "%s() returns %s id = 0x%x\n", __func__, |
| 773 | ret == XC_RESULT_SUCCESS ? "True" : "False", id); |
| 774 | return ret; |
| 775 | } |
| 776 | |
| 777 | static int xc4000_set_analog_params(struct dvb_frontend *fe, |
| 778 | struct analog_parameters *params) |
| 779 | { |
| 780 | struct xc4000_priv *priv = fe->tuner_priv; |
| 781 | int ret; |
| 782 | |
| 783 | if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) |
| 784 | xc_load_fw_and_init_tuner(fe); |
| 785 | |
| 786 | dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", |
| 787 | __func__, params->frequency); |
| 788 | |
| 789 | /* Fix me: it could be air. */ |
| 790 | priv->rf_mode = params->mode; |
| 791 | if (params->mode > XC_RF_MODE_CABLE) |
| 792 | priv->rf_mode = XC_RF_MODE_CABLE; |
| 793 | |
| 794 | /* params->frequency is in units of 62.5khz */ |
| 795 | priv->freq_hz = params->frequency * 62500; |
| 796 | |
| 797 | /* FIX ME: Some video standards may have several possible audio |
| 798 | standards. We simply default to one of them here. |
| 799 | */ |
| 800 | if (params->std & V4L2_STD_MN) { |
| 801 | /* default to BTSC audio standard */ |
| 802 | priv->video_standard = MN_NTSC_PAL_BTSC; |
| 803 | goto tune_channel; |
| 804 | } |
| 805 | |
| 806 | if (params->std & V4L2_STD_PAL_BG) { |
| 807 | /* default to NICAM audio standard */ |
| 808 | priv->video_standard = BG_PAL_NICAM; |
| 809 | goto tune_channel; |
| 810 | } |
| 811 | |
| 812 | if (params->std & V4L2_STD_PAL_I) { |
| 813 | /* default to NICAM audio standard */ |
| 814 | priv->video_standard = I_PAL_NICAM; |
| 815 | goto tune_channel; |
| 816 | } |
| 817 | |
| 818 | if (params->std & V4L2_STD_PAL_DK) { |
| 819 | /* default to NICAM audio standard */ |
| 820 | priv->video_standard = DK_PAL_NICAM; |
| 821 | goto tune_channel; |
| 822 | } |
| 823 | |
| 824 | if (params->std & V4L2_STD_SECAM_DK) { |
| 825 | /* default to A2 DK1 audio standard */ |
| 826 | priv->video_standard = DK_SECAM_A2DK1; |
| 827 | goto tune_channel; |
| 828 | } |
| 829 | |
| 830 | if (params->std & V4L2_STD_SECAM_L) { |
| 831 | priv->video_standard = L_SECAM_NICAM; |
| 832 | goto tune_channel; |
| 833 | } |
| 834 | |
| 835 | if (params->std & V4L2_STD_SECAM_LC) { |
| 836 | priv->video_standard = LC_SECAM_NICAM; |
| 837 | goto tune_channel; |
| 838 | } |
| 839 | |
| 840 | tune_channel: |
| 841 | ret = xc_SetSignalSource(priv, priv->rf_mode); |
| 842 | if (ret != XC_RESULT_SUCCESS) { |
| 843 | printk(KERN_ERR |
| 844 | "xc4000: xc_SetSignalSource(%d) failed\n", |
| 845 | priv->rf_mode); |
| 846 | return -EREMOTEIO; |
| 847 | } |
| 848 | |
| 849 | ret = xc_SetTVStandard(priv, |
| 850 | XC4000_Standard[priv->video_standard].VideoMode, |
| 851 | XC4000_Standard[priv->video_standard].AudioMode); |
| 852 | if (ret != XC_RESULT_SUCCESS) { |
| 853 | printk(KERN_ERR "xc4000: xc_SetTVStandard failed\n"); |
| 854 | return -EREMOTEIO; |
| 855 | } |
| 856 | |
| 857 | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); |
| 858 | |
| 859 | if (debug) |
| 860 | xc_debug_dump(priv); |
| 861 | |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq) |
| 866 | { |
| 867 | struct xc4000_priv *priv = fe->tuner_priv; |
| 868 | dprintk(1, "%s()\n", __func__); |
| 869 | *freq = priv->freq_hz; |
| 870 | return 0; |
| 871 | } |
| 872 | |
| 873 | static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) |
| 874 | { |
| 875 | struct xc4000_priv *priv = fe->tuner_priv; |
| 876 | dprintk(1, "%s()\n", __func__); |
| 877 | |
| 878 | *bw = priv->bandwidth; |
| 879 | return 0; |
| 880 | } |
| 881 | |
| 882 | static int xc4000_get_status(struct dvb_frontend *fe, u32 *status) |
| 883 | { |
| 884 | struct xc4000_priv *priv = fe->tuner_priv; |
| 885 | u16 lock_status = 0; |
| 886 | |
| 887 | xc_get_lock_status(priv, &lock_status); |
| 888 | |
| 889 | dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); |
| 890 | |
| 891 | *status = lock_status; |
| 892 | |
| 893 | return 0; |
| 894 | } |
| 895 | |
| 896 | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe) |
| 897 | { |
| 898 | struct xc4000_priv *priv = fe->tuner_priv; |
| 899 | int ret = 0; |
| 900 | |
| 901 | if (xc4000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) { |
| 902 | ret = xc4000_fwupload(fe); |
| 903 | if (ret != XC_RESULT_SUCCESS) |
| 904 | return ret; |
| 905 | } |
| 906 | |
| 907 | /* Start the tuner self-calibration process */ |
| 908 | ret |= xc_initialize(priv); |
| 909 | |
| 910 | /* Wait for calibration to complete. |
| 911 | * We could continue but XC4000 will clock stretch subsequent |
| 912 | * I2C transactions until calibration is complete. This way we |
| 913 | * don't have to rely on clock stretching working. |
| 914 | */ |
| 915 | xc_wait(100); |
| 916 | |
| 917 | /* Default to "CABLE" mode */ |
| 918 | ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); |
| 919 | |
| 920 | return ret; |
| 921 | } |
| 922 | |
| 923 | static int xc4000_sleep(struct dvb_frontend *fe) |
| 924 | { |
| 925 | int ret; |
| 926 | |
| 927 | dprintk(1, "%s()\n", __func__); |
| 928 | |
| 929 | /* Avoid firmware reload on slow devices */ |
| 930 | if (no_poweroff) |
| 931 | return 0; |
| 932 | |
| 933 | /* According to Xceive technical support, the "powerdown" register |
| 934 | was removed in newer versions of the firmware. The "supported" |
| 935 | way to sleep the tuner is to pull the reset pin low for 10ms */ |
| 936 | ret = xc4000_TunerReset(fe); |
| 937 | if (ret != XC_RESULT_SUCCESS) { |
| 938 | printk(KERN_ERR |
| 939 | "xc4000: %s() unable to shutdown tuner\n", |
| 940 | __func__); |
| 941 | return -EREMOTEIO; |
| 942 | } else |
| 943 | return XC_RESULT_SUCCESS; |
| 944 | } |
| 945 | |
| 946 | static int xc4000_init(struct dvb_frontend *fe) |
| 947 | { |
| 948 | struct xc4000_priv *priv = fe->tuner_priv; |
| 949 | dprintk(1, "%s()\n", __func__); |
| 950 | |
| 951 | if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) { |
| 952 | printk(KERN_ERR "xc4000: Unable to initialise tuner\n"); |
| 953 | return -EREMOTEIO; |
| 954 | } |
| 955 | |
| 956 | if (debug) |
| 957 | xc_debug_dump(priv); |
| 958 | |
| 959 | return 0; |
| 960 | } |
| 961 | |
| 962 | static int xc4000_release(struct dvb_frontend *fe) |
| 963 | { |
| 964 | struct xc4000_priv *priv = fe->tuner_priv; |
| 965 | |
| 966 | dprintk(1, "%s()\n", __func__); |
| 967 | |
| 968 | mutex_lock(&xc4000_list_mutex); |
| 969 | |
| 970 | if (priv) |
| 971 | hybrid_tuner_release_state(priv); |
| 972 | |
| 973 | mutex_unlock(&xc4000_list_mutex); |
| 974 | |
| 975 | fe->tuner_priv = NULL; |
| 976 | |
| 977 | return 0; |
| 978 | } |
| 979 | |
| 980 | static const struct dvb_tuner_ops xc4000_tuner_ops = { |
| 981 | .info = { |
| 982 | .name = "Xceive XC4000", |
| 983 | .frequency_min = 1000000, |
| 984 | .frequency_max = 1023000000, |
| 985 | .frequency_step = 50000, |
| 986 | }, |
| 987 | |
| 988 | .release = xc4000_release, |
| 989 | .init = xc4000_init, |
| 990 | .sleep = xc4000_sleep, |
| 991 | |
| 992 | .set_params = xc4000_set_params, |
| 993 | .set_analog_params = xc4000_set_analog_params, |
| 994 | .get_frequency = xc4000_get_frequency, |
| 995 | .get_bandwidth = xc4000_get_bandwidth, |
| 996 | .get_status = xc4000_get_status |
| 997 | }; |
| 998 | |
| 999 | struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe, |
| 1000 | struct i2c_adapter *i2c, |
| 1001 | struct xc4000_config *cfg) |
| 1002 | { |
| 1003 | struct xc4000_priv *priv = NULL; |
| 1004 | int instance; |
| 1005 | u16 id = 0; |
| 1006 | |
| 1007 | dprintk(1, "%s(%d-%04x)\n", __func__, |
| 1008 | i2c ? i2c_adapter_id(i2c) : -1, |
| 1009 | cfg ? cfg->i2c_address : -1); |
| 1010 | |
| 1011 | mutex_lock(&xc4000_list_mutex); |
| 1012 | |
| 1013 | instance = hybrid_tuner_request_state(struct xc4000_priv, priv, |
| 1014 | hybrid_tuner_instance_list, |
| 1015 | i2c, cfg->i2c_address, "xc4000"); |
| 1016 | switch (instance) { |
| 1017 | case 0: |
| 1018 | goto fail; |
| 1019 | break; |
| 1020 | case 1: |
| 1021 | /* new tuner instance */ |
| 1022 | priv->bandwidth = BANDWIDTH_6_MHZ; |
| 1023 | fe->tuner_priv = priv; |
| 1024 | break; |
| 1025 | default: |
| 1026 | /* existing tuner instance */ |
| 1027 | fe->tuner_priv = priv; |
| 1028 | break; |
| 1029 | } |
| 1030 | |
| 1031 | if (priv->if_khz == 0) { |
| 1032 | /* If the IF hasn't been set yet, use the value provided by |
| 1033 | the caller (occurs in hybrid devices where the analog |
| 1034 | call to xc4000_attach occurs before the digital side) */ |
| 1035 | priv->if_khz = cfg->if_khz; |
| 1036 | } |
| 1037 | |
| 1038 | /* Check if firmware has been loaded. It is possible that another |
| 1039 | instance of the driver has loaded the firmware. |
| 1040 | */ |
| 1041 | |
| 1042 | if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS) |
| 1043 | goto fail; |
| 1044 | |
| 1045 | switch (id) { |
| 1046 | case XC_PRODUCT_ID_FW_LOADED: |
| 1047 | printk(KERN_INFO |
| 1048 | "xc4000: Successfully identified at address 0x%02x\n", |
| 1049 | cfg->i2c_address); |
| 1050 | printk(KERN_INFO |
| 1051 | "xc4000: Firmware has been loaded previously\n"); |
| 1052 | break; |
| 1053 | case XC_PRODUCT_ID_FW_NOT_LOADED: |
| 1054 | printk(KERN_INFO |
| 1055 | "xc4000: Successfully identified at address 0x%02x\n", |
| 1056 | cfg->i2c_address); |
| 1057 | printk(KERN_INFO |
| 1058 | "xc4000: Firmware has not been loaded previously\n"); |
| 1059 | break; |
| 1060 | default: |
| 1061 | printk(KERN_ERR |
| 1062 | "xc4000: Device not found at addr 0x%02x (0x%x)\n", |
| 1063 | cfg->i2c_address, id); |
| 1064 | goto fail; |
| 1065 | } |
| 1066 | |
| 1067 | mutex_unlock(&xc4000_list_mutex); |
| 1068 | |
| 1069 | memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops, |
| 1070 | sizeof(struct dvb_tuner_ops)); |
| 1071 | |
| 1072 | return fe; |
| 1073 | fail: |
| 1074 | mutex_unlock(&xc4000_list_mutex); |
| 1075 | |
| 1076 | xc4000_release(fe); |
| 1077 | return NULL; |
| 1078 | } |
| 1079 | EXPORT_SYMBOL(xc4000_attach); |
| 1080 | |
| 1081 | MODULE_AUTHOR("Steven Toth, Davide Ferri"); |
| 1082 | MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver"); |
| 1083 | MODULE_LICENSE("GPL"); |