blob: 982b0d3877f8a0b4a77ee6e8e1b129ea25d34ed4 [file] [log] [blame]
Luis R. Rodriguez8fe65362010-04-15 17:38:14 -04001/*
2 * Copyright (c) 2008-2010 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "hw.h"
18#include "hw-ops.h"
19#include "../regd.h"
20#include "ar9002_phy.h"
21
22/* All code below is for non single-chip solutions */
23
24/**
25 * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
26 * @rfbuf:
27 * @reg32:
28 * @numBits:
29 * @firstBit:
30 * @column:
31 *
32 * Performs analog "swizzling" of parameters into their location.
33 * Used on external AR2133/AR5133 radios.
34 */
35static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
36 u32 numBits, u32 firstBit,
37 u32 column)
38{
39 u32 tmp32, mask, arrayEntry, lastBit;
40 int32_t bitPosition, bitsLeft;
41
42 tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
43 arrayEntry = (firstBit - 1) / 8;
44 bitPosition = (firstBit - 1) % 8;
45 bitsLeft = numBits;
46 while (bitsLeft > 0) {
47 lastBit = (bitPosition + bitsLeft > 8) ?
48 8 : bitPosition + bitsLeft;
49 mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
50 (column * 8);
51 rfBuf[arrayEntry] &= ~mask;
52 rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
53 (column * 8)) & mask;
54 bitsLeft -= 8 - bitPosition;
55 tmp32 = tmp32 >> (8 - bitPosition);
56 bitPosition = 0;
57 arrayEntry++;
58 }
59}
60
61/*
62 * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
63 * rf_pwd_icsyndiv.
64 *
65 * Theoretical Rules:
66 * if 2 GHz band
67 * if forceBiasAuto
68 * if synth_freq < 2412
69 * bias = 0
70 * else if 2412 <= synth_freq <= 2422
71 * bias = 1
72 * else // synth_freq > 2422
73 * bias = 2
74 * else if forceBias > 0
75 * bias = forceBias & 7
76 * else
77 * no change, use value from ini file
78 * else
79 * no change, invalid band
80 *
81 * 1st Mod:
82 * 2422 also uses value of 2
83 * <approved>
84 *
85 * 2nd Mod:
86 * Less than 2412 uses value of 0, 2412 and above uses value of 2
87 */
88static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
89{
90 struct ath_common *common = ath9k_hw_common(ah);
91 u32 tmp_reg;
92 int reg_writes = 0;
93 u32 new_bias = 0;
94
95 if (!AR_SREV_5416(ah) || synth_freq >= 3000)
96 return;
97
98 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
99
100 if (synth_freq < 2412)
101 new_bias = 0;
102 else if (synth_freq < 2422)
103 new_bias = 1;
104 else
105 new_bias = 2;
106
107 /* pre-reverse this field */
108 tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
109
110 ath_print(common, ATH_DBG_CONFIG,
111 "Force rf_pwd_icsyndiv to %1d on %4d\n",
112 new_bias, synth_freq);
113
114 /* swizzle rf_pwd_icsyndiv */
115 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
116
117 /* write Bank 6 with new params */
118 REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
119}
120
121/**
122 * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
123 * @ah: atheros hardware stucture
124 * @chan:
125 *
126 * For the external AR2133/AR5133 radios, takes the MHz channel value and set
127 * the channel value. Assumes writes enabled to analog bus and bank6 register
128 * cache in ah->analogBank6Data.
129 */
130static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
131{
132 struct ath_common *common = ath9k_hw_common(ah);
133 u32 channelSel = 0;
134 u32 bModeSynth = 0;
135 u32 aModeRefSel = 0;
136 u32 reg32 = 0;
137 u16 freq;
138 struct chan_centers centers;
139
140 ath9k_hw_get_channel_centers(ah, chan, &centers);
141 freq = centers.synth_center;
142
143 if (freq < 4800) {
144 u32 txctl;
145
146 if (((freq - 2192) % 5) == 0) {
147 channelSel = ((freq - 672) * 2 - 3040) / 10;
148 bModeSynth = 0;
149 } else if (((freq - 2224) % 5) == 0) {
150 channelSel = ((freq - 704) * 2 - 3040) / 10;
151 bModeSynth = 1;
152 } else {
153 ath_print(common, ATH_DBG_FATAL,
154 "Invalid channel %u MHz\n", freq);
155 return -EINVAL;
156 }
157
158 channelSel = (channelSel << 2) & 0xff;
159 channelSel = ath9k_hw_reverse_bits(channelSel, 8);
160
161 txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
162 if (freq == 2484) {
163
164 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
165 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
166 } else {
167 REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
168 txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
169 }
170
171 } else if ((freq % 20) == 0 && freq >= 5120) {
172 channelSel =
173 ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
174 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
175 } else if ((freq % 10) == 0) {
176 channelSel =
177 ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
178 if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
179 aModeRefSel = ath9k_hw_reverse_bits(2, 2);
180 else
181 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
182 } else if ((freq % 5) == 0) {
183 channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
184 aModeRefSel = ath9k_hw_reverse_bits(1, 2);
185 } else {
186 ath_print(common, ATH_DBG_FATAL,
187 "Invalid channel %u MHz\n", freq);
188 return -EINVAL;
189 }
190
191 ar5008_hw_force_bias(ah, freq);
192
193 reg32 =
194 (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
195 (1 << 5) | 0x1;
196
197 REG_WRITE(ah, AR_PHY(0x37), reg32);
198
199 ah->curchan = chan;
200 ah->curchan_rad_index = -1;
201
202 return 0;
203}
204
205/**
206 * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
207 * @ah: atheros hardware structure
208 * @chan:
209 *
210 * For non single-chip solutions. Converts to baseband spur frequency given the
211 * input channel frequency and compute register settings below.
212 */
213static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
214 struct ath9k_channel *chan)
215{
216 int bb_spur = AR_NO_SPUR;
217 int bin, cur_bin;
218 int spur_freq_sd;
219 int spur_delta_phase;
220 int denominator;
221 int upper, lower, cur_vit_mask;
222 int tmp, new;
223 int i;
224 int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
225 AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
226 };
227 int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
228 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
229 };
230 int inc[4] = { 0, 100, 0, 0 };
231
232 int8_t mask_m[123];
233 int8_t mask_p[123];
234 int8_t mask_amt;
235 int tmp_mask;
236 int cur_bb_spur;
237 bool is2GHz = IS_CHAN_2GHZ(chan);
238
239 memset(&mask_m, 0, sizeof(int8_t) * 123);
240 memset(&mask_p, 0, sizeof(int8_t) * 123);
241
242 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
243 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
244 if (AR_NO_SPUR == cur_bb_spur)
245 break;
246 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
247 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
248 bb_spur = cur_bb_spur;
249 break;
250 }
251 }
252
253 if (AR_NO_SPUR == bb_spur)
254 return;
255
256 bin = bb_spur * 32;
257
258 tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
259 new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
260 AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
261 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
262 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
263
264 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
265
266 new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
267 AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
268 AR_PHY_SPUR_REG_MASK_RATE_SELECT |
269 AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
270 SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
271 REG_WRITE(ah, AR_PHY_SPUR_REG, new);
272
273 spur_delta_phase = ((bb_spur * 524288) / 100) &
274 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
275
276 denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
277 spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
278
279 new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
280 SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
281 SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
282 REG_WRITE(ah, AR_PHY_TIMING11, new);
283
284 cur_bin = -6000;
285 upper = bin + 100;
286 lower = bin - 100;
287
288 for (i = 0; i < 4; i++) {
289 int pilot_mask = 0;
290 int chan_mask = 0;
291 int bp = 0;
292 for (bp = 0; bp < 30; bp++) {
293 if ((cur_bin > lower) && (cur_bin < upper)) {
294 pilot_mask = pilot_mask | 0x1 << bp;
295 chan_mask = chan_mask | 0x1 << bp;
296 }
297 cur_bin += 100;
298 }
299 cur_bin += inc[i];
300 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
301 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
302 }
303
304 cur_vit_mask = 6100;
305 upper = bin + 120;
306 lower = bin - 120;
307
308 for (i = 0; i < 123; i++) {
309 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
310
311 /* workaround for gcc bug #37014 */
312 volatile int tmp_v = abs(cur_vit_mask - bin);
313
314 if (tmp_v < 75)
315 mask_amt = 1;
316 else
317 mask_amt = 0;
318 if (cur_vit_mask < 0)
319 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
320 else
321 mask_p[cur_vit_mask / 100] = mask_amt;
322 }
323 cur_vit_mask -= 100;
324 }
325
326 tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
327 | (mask_m[48] << 26) | (mask_m[49] << 24)
328 | (mask_m[50] << 22) | (mask_m[51] << 20)
329 | (mask_m[52] << 18) | (mask_m[53] << 16)
330 | (mask_m[54] << 14) | (mask_m[55] << 12)
331 | (mask_m[56] << 10) | (mask_m[57] << 8)
332 | (mask_m[58] << 6) | (mask_m[59] << 4)
333 | (mask_m[60] << 2) | (mask_m[61] << 0);
334 REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
335 REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
336
337 tmp_mask = (mask_m[31] << 28)
338 | (mask_m[32] << 26) | (mask_m[33] << 24)
339 | (mask_m[34] << 22) | (mask_m[35] << 20)
340 | (mask_m[36] << 18) | (mask_m[37] << 16)
341 | (mask_m[48] << 14) | (mask_m[39] << 12)
342 | (mask_m[40] << 10) | (mask_m[41] << 8)
343 | (mask_m[42] << 6) | (mask_m[43] << 4)
344 | (mask_m[44] << 2) | (mask_m[45] << 0);
345 REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
346 REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
347
348 tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
349 | (mask_m[18] << 26) | (mask_m[18] << 24)
350 | (mask_m[20] << 22) | (mask_m[20] << 20)
351 | (mask_m[22] << 18) | (mask_m[22] << 16)
352 | (mask_m[24] << 14) | (mask_m[24] << 12)
353 | (mask_m[25] << 10) | (mask_m[26] << 8)
354 | (mask_m[27] << 6) | (mask_m[28] << 4)
355 | (mask_m[29] << 2) | (mask_m[30] << 0);
356 REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
357 REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
358
359 tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
360 | (mask_m[2] << 26) | (mask_m[3] << 24)
361 | (mask_m[4] << 22) | (mask_m[5] << 20)
362 | (mask_m[6] << 18) | (mask_m[7] << 16)
363 | (mask_m[8] << 14) | (mask_m[9] << 12)
364 | (mask_m[10] << 10) | (mask_m[11] << 8)
365 | (mask_m[12] << 6) | (mask_m[13] << 4)
366 | (mask_m[14] << 2) | (mask_m[15] << 0);
367 REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
368 REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
369
370 tmp_mask = (mask_p[15] << 28)
371 | (mask_p[14] << 26) | (mask_p[13] << 24)
372 | (mask_p[12] << 22) | (mask_p[11] << 20)
373 | (mask_p[10] << 18) | (mask_p[9] << 16)
374 | (mask_p[8] << 14) | (mask_p[7] << 12)
375 | (mask_p[6] << 10) | (mask_p[5] << 8)
376 | (mask_p[4] << 6) | (mask_p[3] << 4)
377 | (mask_p[2] << 2) | (mask_p[1] << 0);
378 REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
379 REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
380
381 tmp_mask = (mask_p[30] << 28)
382 | (mask_p[29] << 26) | (mask_p[28] << 24)
383 | (mask_p[27] << 22) | (mask_p[26] << 20)
384 | (mask_p[25] << 18) | (mask_p[24] << 16)
385 | (mask_p[23] << 14) | (mask_p[22] << 12)
386 | (mask_p[21] << 10) | (mask_p[20] << 8)
387 | (mask_p[19] << 6) | (mask_p[18] << 4)
388 | (mask_p[17] << 2) | (mask_p[16] << 0);
389 REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
390 REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
391
392 tmp_mask = (mask_p[45] << 28)
393 | (mask_p[44] << 26) | (mask_p[43] << 24)
394 | (mask_p[42] << 22) | (mask_p[41] << 20)
395 | (mask_p[40] << 18) | (mask_p[39] << 16)
396 | (mask_p[38] << 14) | (mask_p[37] << 12)
397 | (mask_p[36] << 10) | (mask_p[35] << 8)
398 | (mask_p[34] << 6) | (mask_p[33] << 4)
399 | (mask_p[32] << 2) | (mask_p[31] << 0);
400 REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
401 REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
402
403 tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
404 | (mask_p[59] << 26) | (mask_p[58] << 24)
405 | (mask_p[57] << 22) | (mask_p[56] << 20)
406 | (mask_p[55] << 18) | (mask_p[54] << 16)
407 | (mask_p[53] << 14) | (mask_p[52] << 12)
408 | (mask_p[51] << 10) | (mask_p[50] << 8)
409 | (mask_p[49] << 6) | (mask_p[48] << 4)
410 | (mask_p[47] << 2) | (mask_p[46] << 0);
411 REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
412 REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
413}
414
415/**
416 * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
417 * @ah: atheros hardware structure
418 *
419 * Only required for older devices with external AR2133/AR5133 radios.
420 */
421static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
422{
423#define ATH_ALLOC_BANK(bank, size) do { \
424 bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
425 if (!bank) { \
426 ath_print(common, ATH_DBG_FATAL, \
427 "Cannot allocate RF banks\n"); \
428 return -ENOMEM; \
429 } \
430 } while (0);
431
432 struct ath_common *common = ath9k_hw_common(ah);
433
434 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
435
436 ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
437 ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
438 ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
439 ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
440 ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
441 ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
442 ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
443 ATH_ALLOC_BANK(ah->addac5416_21,
444 ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
445 ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
446
447 return 0;
448#undef ATH_ALLOC_BANK
449}
450
451
452/**
453 * ar5008_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
454 * @ah: atheros hardware struture
455 * For the external AR2133/AR5133 radios banks.
456 */
457static void ar5008_hw_rf_free_ext_banks(struct ath_hw *ah)
458{
459#define ATH_FREE_BANK(bank) do { \
460 kfree(bank); \
461 bank = NULL; \
462 } while (0);
463
464 BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
465
466 ATH_FREE_BANK(ah->analogBank0Data);
467 ATH_FREE_BANK(ah->analogBank1Data);
468 ATH_FREE_BANK(ah->analogBank2Data);
469 ATH_FREE_BANK(ah->analogBank3Data);
470 ATH_FREE_BANK(ah->analogBank6Data);
471 ATH_FREE_BANK(ah->analogBank6TPCData);
472 ATH_FREE_BANK(ah->analogBank7Data);
473 ATH_FREE_BANK(ah->addac5416_21);
474 ATH_FREE_BANK(ah->bank6Temp);
475
476#undef ATH_FREE_BANK
477}
478
479/* *
480 * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
481 * @ah: atheros hardware structure
482 * @chan:
483 * @modesIndex:
484 *
485 * Used for the external AR2133/AR5133 radios.
486 *
487 * Reads the EEPROM header info from the device structure and programs
488 * all rf registers. This routine requires access to the analog
489 * rf device. This is not required for single-chip devices.
490 */
491static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
492 struct ath9k_channel *chan,
493 u16 modesIndex)
494{
495 u32 eepMinorRev;
496 u32 ob5GHz = 0, db5GHz = 0;
497 u32 ob2GHz = 0, db2GHz = 0;
498 int regWrites = 0;
499
500 /*
501 * Software does not need to program bank data
502 * for single chip devices, that is AR9280 or anything
503 * after that.
504 */
505 if (AR_SREV_9280_10_OR_LATER(ah))
506 return true;
507
508 /* Setup rf parameters */
509 eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
510
511 /* Setup Bank 0 Write */
512 RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
513
514 /* Setup Bank 1 Write */
515 RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
516
517 /* Setup Bank 2 Write */
518 RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
519
520 /* Setup Bank 6 Write */
521 RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
522 modesIndex);
523 {
524 int i;
525 for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
526 ah->analogBank6Data[i] =
527 INI_RA(&ah->iniBank6TPC, i, modesIndex);
528 }
529 }
530
531 /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
532 if (eepMinorRev >= 2) {
533 if (IS_CHAN_2GHZ(chan)) {
534 ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
535 db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
536 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
537 ob2GHz, 3, 197, 0);
538 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
539 db2GHz, 3, 194, 0);
540 } else {
541 ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
542 db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
543 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
544 ob5GHz, 3, 203, 0);
545 ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
546 db5GHz, 3, 200, 0);
547 }
548 }
549
550 /* Setup Bank 7 Setup */
551 RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
552
553 /* Write Analog registers */
554 REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
555 regWrites);
556 REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
557 regWrites);
558 REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
559 regWrites);
560 REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
561 regWrites);
562 REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
563 regWrites);
564 REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
565 regWrites);
566
567 return true;
568}
569
570static void ar5008_hw_init_bb(struct ath_hw *ah,
571 struct ath9k_channel *chan)
572{
573 u32 synthDelay;
574
575 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
576 if (IS_CHAN_B(chan))
577 synthDelay = (4 * synthDelay) / 22;
578 else
579 synthDelay /= 10;
580
581 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
582
583 udelay(synthDelay + BASE_ACTIVATE_DELAY);
584}
585
586static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
587{
588 int rx_chainmask, tx_chainmask;
589
590 rx_chainmask = ah->rxchainmask;
591 tx_chainmask = ah->txchainmask;
592
593 switch (rx_chainmask) {
594 case 0x5:
595 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
596 AR_PHY_SWAP_ALT_CHAIN);
597 case 0x3:
598 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
599 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
600 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
601 break;
602 }
603 case 0x1:
604 case 0x2:
605 case 0x7:
606 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
607 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
608 break;
609 default:
610 break;
611 }
612
613 REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
614 if (tx_chainmask == 0x5) {
615 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
616 AR_PHY_SWAP_ALT_CHAIN);
617 }
618 if (AR_SREV_9100(ah))
619 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
620 REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
621}
622
623static void ar5008_hw_override_ini(struct ath_hw *ah,
624 struct ath9k_channel *chan)
625{
626 u32 val;
627
628 /*
629 * Set the RX_ABORT and RX_DIS and clear if off only after
630 * RXE is set for MAC. This prevents frames with corrupted
631 * descriptor status.
632 */
633 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
634
635 if (AR_SREV_9280_10_OR_LATER(ah)) {
636 val = REG_READ(ah, AR_PCU_MISC_MODE2);
637
638 if (!AR_SREV_9271(ah))
639 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
640
641 if (AR_SREV_9287_10_OR_LATER(ah))
642 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
643
644 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
645 }
646
647 if (!AR_SREV_5416_20_OR_LATER(ah) ||
648 AR_SREV_9280_10_OR_LATER(ah))
649 return;
650 /*
651 * Disable BB clock gating
652 * Necessary to avoid issues on AR5416 2.0
653 */
654 REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
655
656 /*
657 * Disable RIFS search on some chips to avoid baseband
658 * hang issues.
659 */
660 if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
661 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
662 val &= ~AR_PHY_RIFS_INIT_DELAY;
663 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
664 }
665}
666
667static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
668 struct ath9k_channel *chan)
669{
670 u32 phymode;
671 u32 enableDacFifo = 0;
672
673 if (AR_SREV_9285_10_OR_LATER(ah))
674 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
675 AR_PHY_FC_ENABLE_DAC_FIFO);
676
677 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
678 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
679
680 if (IS_CHAN_HT40(chan)) {
681 phymode |= AR_PHY_FC_DYN2040_EN;
682
683 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
684 (chan->chanmode == CHANNEL_G_HT40PLUS))
685 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
686
687 }
688 REG_WRITE(ah, AR_PHY_TURBO, phymode);
689
690 ath9k_hw_set11nmac2040(ah);
691
692 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
693 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
694}
695
696
697static int ar5008_hw_process_ini(struct ath_hw *ah,
698 struct ath9k_channel *chan)
699{
700 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
701 int i, regWrites = 0;
702 struct ieee80211_channel *channel = chan->chan;
703 u32 modesIndex, freqIndex;
704
705 switch (chan->chanmode) {
706 case CHANNEL_A:
707 case CHANNEL_A_HT20:
708 modesIndex = 1;
709 freqIndex = 1;
710 break;
711 case CHANNEL_A_HT40PLUS:
712 case CHANNEL_A_HT40MINUS:
713 modesIndex = 2;
714 freqIndex = 1;
715 break;
716 case CHANNEL_G:
717 case CHANNEL_G_HT20:
718 case CHANNEL_B:
719 modesIndex = 4;
720 freqIndex = 2;
721 break;
722 case CHANNEL_G_HT40PLUS:
723 case CHANNEL_G_HT40MINUS:
724 modesIndex = 3;
725 freqIndex = 2;
726 break;
727
728 default:
729 return -EINVAL;
730 }
731
732 if (AR_SREV_9287_12_OR_LATER(ah)) {
733 /* Enable ASYNC FIFO */
734 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
735 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
736 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
737 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
738 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
739 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
740 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
741 }
742
743 /*
744 * Set correct baseband to analog shift setting to
745 * access analog chips.
746 */
747 REG_WRITE(ah, AR_PHY(0), 0x00000007);
748
749 /* Write ADDAC shifts */
750 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
751 ah->eep_ops->set_addac(ah, chan);
752
753 if (AR_SREV_5416_22_OR_LATER(ah)) {
754 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
755 } else {
756 struct ar5416IniArray temp;
757 u32 addacSize =
758 sizeof(u32) * ah->iniAddac.ia_rows *
759 ah->iniAddac.ia_columns;
760
761 /* For AR5416 2.0/2.1 */
762 memcpy(ah->addac5416_21,
763 ah->iniAddac.ia_array, addacSize);
764
765 /* override CLKDRV value at [row, column] = [31, 1] */
766 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
767
768 temp.ia_array = ah->addac5416_21;
769 temp.ia_columns = ah->iniAddac.ia_columns;
770 temp.ia_rows = ah->iniAddac.ia_rows;
771 REG_WRITE_ARRAY(&temp, 1, regWrites);
772 }
773
774 REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
775
776 for (i = 0; i < ah->iniModes.ia_rows; i++) {
777 u32 reg = INI_RA(&ah->iniModes, i, 0);
778 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
779
780 if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
781 val &= ~AR_AN_TOP2_PWDCLKIND;
782
783 REG_WRITE(ah, reg, val);
784
785 if (reg >= 0x7800 && reg < 0x78a0
786 && ah->config.analog_shiftreg) {
787 udelay(100);
788 }
789
790 DO_DELAY(regWrites);
791 }
792
793 if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
794 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
795
796 if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
797 AR_SREV_9287_10_OR_LATER(ah))
798 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
799
800 if (AR_SREV_9271_10(ah))
801 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
802 modesIndex, regWrites);
803
804 /* Write common array parameters */
805 for (i = 0; i < ah->iniCommon.ia_rows; i++) {
806 u32 reg = INI_RA(&ah->iniCommon, i, 0);
807 u32 val = INI_RA(&ah->iniCommon, i, 1);
808
809 REG_WRITE(ah, reg, val);
810
811 if (reg >= 0x7800 && reg < 0x78a0
812 && ah->config.analog_shiftreg) {
813 udelay(100);
814 }
815
816 DO_DELAY(regWrites);
817 }
818
819 if (AR_SREV_9271(ah)) {
820 if (ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE) == 1)
821 REG_WRITE_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
822 modesIndex, regWrites);
823 else
824 REG_WRITE_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
825 modesIndex, regWrites);
826 }
827
828 REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
829
830 if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
831 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
832 regWrites);
833 }
834
835 ar5008_hw_override_ini(ah, chan);
836 ar5008_hw_set_channel_regs(ah, chan);
837 ar5008_hw_init_chain_masks(ah);
838 ath9k_olc_init(ah);
839
840 /* Set TX power */
841 ah->eep_ops->set_txpower(ah, chan,
842 ath9k_regd_get_ctl(regulatory, chan),
843 channel->max_antenna_gain * 2,
844 channel->max_power * 2,
845 min((u32) MAX_RATE_POWER,
846 (u32) regulatory->power_limit));
847
848 /* Write analog registers */
849 if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
850 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
851 "ar5416SetRfRegs failed\n");
852 return -EIO;
853 }
854
855 return 0;
856}
857
858static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
859{
860 u32 rfMode = 0;
861
862 if (chan == NULL)
863 return;
864
865 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
866 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
867
868 if (!AR_SREV_9280_10_OR_LATER(ah))
869 rfMode |= (IS_CHAN_5GHZ(chan)) ?
870 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
871
872 if ((AR_SREV_9280_20(ah) || AR_SREV_9300_20_OR_LATER(ah))
873 && IS_CHAN_A_5MHZ_SPACED(chan))
874 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
875
876 REG_WRITE(ah, AR_PHY_MODE, rfMode);
877}
878
879static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
880{
881 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
882}
883
884static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
885 struct ath9k_channel *chan)
886{
887 u32 coef_scaled, ds_coef_exp, ds_coef_man;
888 u32 clockMhzScaled = 0x64000000;
889 struct chan_centers centers;
890
891 if (IS_CHAN_HALF_RATE(chan))
892 clockMhzScaled = clockMhzScaled >> 1;
893 else if (IS_CHAN_QUARTER_RATE(chan))
894 clockMhzScaled = clockMhzScaled >> 2;
895
896 ath9k_hw_get_channel_centers(ah, chan, &centers);
897 coef_scaled = clockMhzScaled / centers.synth_center;
898
899 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
900 &ds_coef_exp);
901
902 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
903 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
904 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
905 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
906
907 coef_scaled = (9 * coef_scaled) / 10;
908
909 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
910 &ds_coef_exp);
911
912 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
913 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
914 REG_RMW_FIELD(ah, AR_PHY_HALFGI,
915 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
916}
917
918static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
919{
920 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
921 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
922 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
923}
924
925static void ar5008_hw_rfbus_done(struct ath_hw *ah)
926{
927 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
928 if (IS_CHAN_B(ah->curchan))
929 synthDelay = (4 * synthDelay) / 22;
930 else
931 synthDelay /= 10;
932
933 udelay(synthDelay + BASE_ACTIVATE_DELAY);
934
935 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
936}
937
938static void ar5008_hw_enable_rfkill(struct ath_hw *ah)
939{
940 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
941 AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
942
943 REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
944 AR_GPIO_INPUT_MUX2_RFSILENT);
945
946 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
947 REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
948}
949
950static void ar5008_restore_chainmask(struct ath_hw *ah)
951{
952 int rx_chainmask = ah->rxchainmask;
953
954 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
955 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
956 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
957 }
958}
959
960static void ar5008_set_diversity(struct ath_hw *ah, bool value)
961{
962 u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
963 if (value)
964 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
965 else
966 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
967 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
968}
969
970void ar5008_hw_attach_phy_ops(struct ath_hw *ah)
971{
972 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
973
974 priv_ops->rf_set_freq = ar5008_hw_set_channel;
975 priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
976
977 priv_ops->rf_alloc_ext_banks = ar5008_hw_rf_alloc_ext_banks;
978 priv_ops->rf_free_ext_banks = ar5008_hw_rf_free_ext_banks;
979 priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
980 priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
981 priv_ops->init_bb = ar5008_hw_init_bb;
982 priv_ops->process_ini = ar5008_hw_process_ini;
983 priv_ops->set_rfmode = ar5008_hw_set_rfmode;
984 priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
985 priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
986 priv_ops->rfbus_req = ar5008_hw_rfbus_req;
987 priv_ops->rfbus_done = ar5008_hw_rfbus_done;
988 priv_ops->enable_rfkill = ar5008_hw_enable_rfkill;
989 priv_ops->restore_chainmask = ar5008_restore_chainmask;
990 priv_ops->set_diversity = ar5008_set_diversity;
991}